JPS6156017B2 - - Google Patents

Info

Publication number
JPS6156017B2
JPS6156017B2 JP57224588A JP22458882A JPS6156017B2 JP S6156017 B2 JPS6156017 B2 JP S6156017B2 JP 57224588 A JP57224588 A JP 57224588A JP 22458882 A JP22458882 A JP 22458882A JP S6156017 B2 JPS6156017 B2 JP S6156017B2
Authority
JP
Japan
Prior art keywords
cesium
titanate
hollandite
leaching
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57224588A
Other languages
Japanese (ja)
Other versions
JPS58117499A (en
Inventor
Yoshinori Fujiki
Masaru Komatsu
Yukihiro Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP57224588A priority Critical patent/JPS58117499A/en
Publication of JPS58117499A publication Critical patent/JPS58117499A/en
Publication of JPS6156017B2 publication Critical patent/JPS6156017B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水溶液中のセシウムの固定化法に関す
る。 高レベル放射性廃液中にはセシウムが含有され
ており、これを放置すると公害となり危険であ
る。 従来、高レベル放射性廃液からセシウムを分離
固化する方法としては、ほうけい酸ガラスにより
固化する方法とゼオライトによりセシウムをイオ
ン交換して分離し、これを1000〜1200℃に加熱し
てポールサイト鉱物相に変換させて固定化する方
法が知られている。 しかしながら、ほうけい酸ガラス固化法は、固
化する際硝酸塩等を使用するため、溶融の際ルツ
ボ材が浸食され、溶融温度も高く、セシウムの揮
発が起こること。また固化体は経年変化及び崩壊
熱の蓄積により分相・結晶化が起る等耐久性が悪
く、且つ固化体のセシウムの浸出率は10-7g/
cm2・dayのオーダーで浸出も大きい欠点がある。
ゼオライトを使用する方法は、その固化体はセシ
ウムの浸出率が2〜3×10-9g/cm2・dayで浸出
率の低い長所を持つているが、ゼオライトのイオ
ン交換容量が小さく、またセシウムを固定する熱
処理温度が1000〜2000℃と比較的高いため、熱処
理時にセシウムが揮発する欠点がある。 本発明は従来法の欠点を改善しようとするもの
であり、セシウムに対し高い吸着兼イオン交換性
を有し、セシウムを固化するための熱処理時にセ
シウムの揮発がなく、且つ固化体のセシウムの浸
出率が低いセシウムの固定化法を提供するにあ
る。 本発明者は、さきにTiO2とK2Oの溶融物から
繊維状物を形成して繊維状チタン酸カリウム
K2O・nTiO2(ただし、n=1〜6)となし、こ
の繊維状チタン酸カリウムからK2O成分を酸水溶
液等で溶出することによつて、繊維状チタニヤ水
和物TiO2・mH2O(ただし、m=0〜3)を作る
ことに成功した。(特願昭53−676856号、特願昭
54−93460号) 更に得られた繊維状チタニヤ水和物の性質につ
いて研究を続けた結果、該繊維状チタニヤ水和物
は、水溶液中のセシウムを吸着、イオン交換し、
チタン酸セシウムCsxO・nTiO2・mH2O(ただ
し、x=0.5〜2、n=1〜8、m=0〜7)と
なることがわかつた。 また、セシウムを吸着、イオン交換したもの
に、特定の金属酸化物又は加熱して酸化物となる
金属塩を混合し、更に過剰量の二酸化チタンを加
えあるいは加えることなく、加熱処理すると、チ
タン酸アルカリ金属特有のTiO6八面体の連結に
より、トンネル構造を有するホーランダイト型の
化合物となり、セシウムを該トンネル構造中に固
定し浸出し難くなること。さらにホーランダイト
型化合物と二酸化チタンの混合相においてセシウ
ムの浸出率が小さくなること。且つ耐久性の大き
い安定な鉱物相となること。及びこれを加圧成形
して焼結すると更にセシウムの浸出率が小さく耐
久性の優れたものとなることを知見した。この知
見に基いて本発明を完成したものである。 本発明において使用するチタニヤ水和物は非晶
質ゲル状物、非晶質又は結晶質の粉状物又は粒状
物、非晶質又は結晶質の繊維状物などのいずれの
形状のものでもセシウムを吸着、イオン交換し得
られるが、繊維状のものが吸着量も多く取扱いが
容易である点で好ましく、特に結晶質で層状構造
を有する繊維状のものがよい。 水溶液中のセシウムの吸着、イオン交換は、水
溶液中に浸漬しても、吸着材を充填したカラムに
セシウム水溶液を通じてもよい。 水溶液中のセシウムは、チタン酸セシウム
CsxO・nTiO2・mH2O(ただし、x、n、mは前
記と同じ)となる。吸着、イオン交換量はセシウ
ムの濃度、反応時間、温度等により変化する。ま
た、x、n及びmの値は、500〜1000℃の温度で
加熱処理して結晶化させ、X線粉末回折法で合成
相を定めることができる。 セシウムを固定化するには、前記チタン酸セシ
ウムにホーランダイト型構造をつくる場合にTi
の置換成分として有効なことが知られている
Mg,Co,Ni,Cuの2価の金属(以下M〓と総称
する)、A,Fe,Cr,Mn,Co,Gaの3価金属
(以下M〓と総称する)の酸化物、若しくは加熱
により酸化物となるこれ等の金属塩例えば炭酸
塩、重炭酸塩、硝酸塩、水酸化物、の単独又は2
種以上を混合し、場合により二酸化チタンを過剰
量例えばホーランダイト型チタン酸セシウム1モ
ルに対し約10モルまでの量混合して磨枠する。得
られた磨枠物を500〜1300℃で加熱して結晶した
ホーランダイト型構造のものとする。その組成は
次の通りである。(1)CsxM〓y/2Ti8-y/2O16(た
だし、x=0.5〜2.0、y=0.5〜2)、(2)
CsxM〓yTi8-yO16(ただし、x、yは前記と同
じ)、過剰量のチタンはアナターゼ相又はルチル
相として混在する。加熱温度が500℃未満では長
時間を要し、1300℃を超えるとセシウムの揮発が
生じる。 次に、これらを5Kg/cm2〜500Kg/cm2の圧力で
加圧成形した後100℃以上で溶融温度より低い温
度で焼結すると、容積が縮小すると共にセシウム
の浸出率も少なく耐久性の大きいものとなる。 この加圧成形、焼結の2段法にかえ、ホツトプ
レス法で加圧成形、焼結を同時に行つてもよく、
またはチタン酸セシウムに金属酸化物を添加して
ホーランダイト型チタン酸セシウムに変換する際
に、この組成混合物を直接ホツトプレスしてもよ
い。 本発明のセシウムの吸着兼イオン交換材は、そ
の材料がチタン酸で、TiO6八面体の連結様式中
にセシウムを固定化するので、従来のけい酸塩の
ゼオライトのSiO4四面体の連結様式の中に固定
されるものに比較して固定化が優れている。ま
た、固定化の処理温度が1300℃より低い温度で行
い得られるため、焼結時にセシウムの揮発する恐
れもなく、且つ固定化をホーランダイト型構造の
ものとするので、セシウムの浸出も少ない。且つ
例えばセシウムの放射性元素は壊変によつてバリ
ウムに移行するが、本発明におけるホーランダイ
ト型構造のチタン酸アルカリ金属中のアルカリ成
分がバリウムに交換しても、安定でこの壊変過定
で耐久性が低下することもなく、また壊変熱の蓄
積により相当高温(700〜1000℃)になるが高温
下においても安定であり、セシウムを安定に固定
化し得る優れた効果を有する。 実施例 1 (1) 繊維状チタン酸カリウムの製造 TiO2とK2CO3の粉末をモル比で2:1の割
合で混合した。 該混合物約45gを100ml白金ルツボに充填
し、1000℃で30分間加熱溶融した。該溶融物を
別の金属容器(底を外側から水冷)へ流出して
急冷し繊維状に結晶化させた。得られた繊維状
結晶物の塊状物を、水中に約2時間浸漬して解
繊した。解繊した繊維は直径0.1〜0.5mmの束状
で平均5mmの長さであつた。本繊維は結晶性が
悪いので、900℃で30分間加熱した。これは
K2Ti4O9とK2Ti2O5の混合相の繊維であつた。 (2) 繊維状チタニヤ水和物の製造 上記(1)で得られた繊維を1N―HC水溶液
100mlに対して10gの割合で約1時間該水溶液
に浸漬してK2O成分を抽出し、水洗、風乾して
チタニヤ水和物を得た。TiO2・mH2Oのmの値
は0.5〜1.5であつた。該チタニヤ水和物の銅対
陰極としたX線粉末回折図は、2θ=10゜、
25.6゜、48.6゜附近にブロードなピークを示す
結晶質繊維であつた。 (3) 水溶液中のセシウムの吸着、イオン交換
0.5NCsOH水溶液100mlに対して0.1gの割合
で、前記チタニヤ水和物繊維を24〜48時間撹拌
しない状態で浸漬した後、過風乾した。この
粉末X線回折図は、2θ=30゜附近に極めてブ
ロードなピークを示すものであつた。これを
900℃で30分間加熱処理したものは、六チタン
酸セシウムCS2Ti6O13相の回折図と一致した。
風乾のままのものは含水量が約12.5%で
CS2Ti6O13・5.3H2Oの含水相の六チタン酸セシ
ウムであつた。そのCsイオンの吸着イオン交
換量は約31%であつた。 (4) 六チタン酸セシウムからホーランダイト型チ
タン酸セシウムへの変換 六チタン酸セシウムの脱水物(CS2Ti6O13
0.5gに対してA2O30.067gの割合で添加し、
粉枠混合した後、1000℃で24時間以上加熱し
た。得られたものはホーランダイト型チタン酸
セシウムであつた。 (5) ホーランダイト型チタン酸セシウムの成形固
定化 (4)で得られたホーランダイト型チタン酸セシ
ウム(Cs2A2Ti6O16)0.431gを500Kg/cm2
圧力下で直径1.3cm厚さ0.1cmのペレツト状に成
形した後、再び1000℃で15時間焼成した。その
表面積は窒素ガス吸着法により測定した結果
5.8×104cm2/gであつた。 (6) 純水中でのセシウムの浸出 該固化体を100mlの蒸留水中に浸漬し、撹拌
しながら経時変化に対するpH変化の挙動を調
べた。セシウムイオンの浸出に伴うpH値の上
昇は、約30分でピークとなり、その後は漸次減
少する傾向を示した。このpH値の減少は、セ
シウムの浸出が極めた少なく、空気中の炭酸ガ
スの溶解による影響の方が大きいためと考えら
れる。 24時間浸漬を繰返し3回(72時間)行つたと
きのセシウムの浸出量について原子吸光法で測
定した結果、1.33×10-7g/cm2・dayであつ
た。浸出率の計算は次式で求めた。 L=A/S・1/t L:浸出率(g/cm2・24h)、A:セシウム
の浸出量(g)、S:試料の表面積(cm2)、t:
浸出時間(h) 実施例 2 実施例1の(4)におけるホーランダイト型チタン
酸セシウムCsxMyTi8-yO16の組成のx、yの値を
変化すると共に、過剰のTiO2の混合量を変え、
1000℃で24時間熱処理した。得られたものの純水
中でのセシウムの浸出率は次の通りであつた。
The present invention relates to a method for immobilizing cesium in an aqueous solution. High-level radioactive waste liquid contains cesium, and if left untreated, it can cause pollution and be dangerous. Conventionally, methods for separating and solidifying cesium from high-level radioactive waste liquid include solidifying it with borosilicate glass, separating cesium by ion exchange with zeolite, and heating it to 1000 to 1200°C to form the polesite mineral phase. A method of converting and fixing is known. However, since the borosilicate vitrification method uses nitrates and the like during solidification, the crucible material is eroded during melting, the melting temperature is high, and cesium volatilizes. In addition, the solidified material has poor durability due to phase separation and crystallization due to aging and accumulation of decay heat, and the cesium leaching rate of the solidified material is 10 -7 g/
The drawback is that leaching is large on the order of cm 2 day.
The method using zeolite has the advantage of a low cesium leaching rate of 2 to 3 × 10 -9 g/cm 2 ·day, but the ion exchange capacity of zeolite is small, and Since the heat treatment temperature for fixing cesium is relatively high at 1000 to 2000°C, there is a drawback that cesium evaporates during heat treatment. The present invention aims to improve the drawbacks of the conventional method, and has high adsorption and ion exchange properties for cesium, no volatilization of cesium during heat treatment to solidify cesium, and leaching of cesium from the solidified product. The purpose of the present invention is to provide a method for immobilizing cesium with low yield. The present inventor first formed a fibrous material from a melt of TiO 2 and K 2 O to produce fibrous potassium titanate.
By eluting the K 2 O component from this fibrous potassium titanate with an acid aqueous solution etc., fibrous titanium hydrate TiO 2 Successfully produced mH 2 O (m=0 to 3). (Special Application No. 53-676856,
54-93460) Further, as a result of continuing research on the properties of the obtained fibrous titania hydrate, it was found that the fibrous titania hydrate adsorbs and ion-exchanges cesium in an aqueous solution.
It was found that cesium titanate Cs x O.nTiO 2.mH 2 O (x=0.5-2, n=1-8, m =0-7). In addition, when cesium is adsorbed and ion-exchanged, a specific metal oxide or a metal salt that becomes an oxide when heated is mixed, and an excessive amount of titanium dioxide is added or heat-treated without adding titanium dioxide. The connection of TiO 6 octahedrons, which are unique to alkali metals, results in a hollandite-type compound with a tunnel structure, which fixes cesium in the tunnel structure and makes it difficult to leach out. Furthermore, the leaching rate of cesium is reduced in the mixed phase of hollandite-type compounds and titanium dioxide. In addition, it becomes a highly durable and stable mineral phase. It has also been found that when this is pressure-molded and sintered, the cesium leaching rate is further reduced and the durability is excellent. The present invention was completed based on this knowledge. The titanium hydrate used in the present invention may be in any form such as an amorphous gel, an amorphous or crystalline powder or granule, or an amorphous or crystalline fibrous material, and may contain cesium. Although it can be obtained by adsorption and ion exchange, fibrous materials are preferable because they have a large amount of adsorption and are easy to handle. In particular, fibrous materials having a crystalline layered structure are preferred. Adsorption and ion exchange of cesium in an aqueous solution may be carried out by immersion in the aqueous solution or by passing the cesium aqueous solution through a column filled with an adsorbent. Cesium in aqueous solution is cesium titanate
Cs x O·nTiO 2 ·mH 2 O (x, n, m are the same as above). The amount of adsorption and ion exchange varies depending on the concentration of cesium, reaction time, temperature, etc. Moreover, the values of x, n, and m can be determined by crystallizing by heat treatment at a temperature of 500 to 1000° C. and determining the synthesized phase by X-ray powder diffraction method. In order to immobilize cesium, Ti
It is known to be effective as a replacement component for
Oxides or heating of divalent metals such as Mg, Co, Ni, and Cu (hereinafter collectively referred to as M〓) and trivalent metals such as A, Fe, Cr, Mn, Co, and Ga (hereinafter collectively referred to as M〓) One or two of these metal salts, such as carbonates, bicarbonates, nitrates, and hydroxides, are converted into oxides by
If necessary, an excessive amount of titanium dioxide, for example, up to about 10 moles per mole of hollandite-type cesium titanate, is mixed and polished. The obtained polished frame is heated at 500 to 1300°C to form a crystallized hollandite structure. Its composition is as follows. (1)Cs x M〓 y/2 Ti 8-y/2 O 16 (x=0.5~2.0, y=0.5~2), (2)
Cs x M〓 y Ti 8-y O 16 (where x and y are the same as above), and an excessive amount of titanium is mixed as an anatase phase or a rutile phase. If the heating temperature is less than 500°C, it will take a long time, and if it exceeds 1300°C, cesium will volatilize. Next, if these are pressure-formed at a pressure of 5Kg/cm 2 to 500Kg/cm 2 and then sintered at a temperature of 100℃ or higher and lower than the melting temperature, the volume will be reduced and the cesium leaching rate will be low, resulting in poor durability. It becomes something big. Instead of this two-step method of pressure forming and sintering, pressure forming and sintering may be performed simultaneously using a hot press method.
Alternatively, when adding a metal oxide to cesium titanate to convert it into hollandite-type cesium titanate, this composition mixture may be directly hot-pressed. The cesium adsorption and ion exchange material of the present invention is made of titanic acid and fixes cesium in the TiO 6 octahedral connection mode, unlike the conventional silicate zeolite SiO 4 tetrahedron connection mode. Immobilization is superior compared to those that are immobilized inside. Furthermore, since the fixing process can be carried out at a temperature lower than 1300° C., there is no risk of cesium volatilizing during sintering, and since the fixation has a hollandite structure, there is little leaching of cesium. In addition, for example, the radioactive element of cesium transfers to barium through decay, but even if the alkali component in the alkali metal titanate of the hollandite structure in the present invention is exchanged with barium, it remains stable and durable due to this decay process. Although the temperature does not decrease and the temperature rises to a considerably high temperature (700 to 1000°C) due to the accumulation of decay heat, it is stable even at high temperatures, and has an excellent effect of stably fixing cesium. Example 1 (1) Production of fibrous potassium titanate TiO 2 and K 2 CO 3 powders were mixed at a molar ratio of 2:1. Approximately 45 g of the mixture was filled into a 100 ml platinum crucible and melted by heating at 1000° C. for 30 minutes. The melt was discharged into another metal container (the bottom of which was water-cooled from the outside), where it was rapidly cooled and crystallized into fibers. The resulting fibrous crystalline mass was defibrated by immersing it in water for about 2 hours. The defibrated fibers were bundles with a diameter of 0.1 to 0.5 mm and an average length of 5 mm. Since this fiber has poor crystallinity, it was heated at 900°C for 30 minutes. this is
The fibers were a mixed phase of K 2 Ti 4 O 9 and K 2 Ti 2 O 5 . (2) Production of fibrous titania hydrate The fibers obtained in (1) above were dissolved in 1N-HC aqueous solution.
The K 2 O component was extracted by immersing it in the aqueous solution for about 1 hour at a ratio of 10 g to 100 ml, followed by washing with water and air drying to obtain titania hydrate. The value of m for TiO 2 ·mH 2 O was 0.5 to 1.5. The X-ray powder diffraction pattern of the titanium hydrate with copper anticathode shows 2θ=10°,
It was a crystalline fiber showing broad peaks around 25.6° and 48.6°. (3) Adsorption and ion exchange of cesium in aqueous solution
The titanium hydrate fibers were immersed in a proportion of 0.1 g per 100 ml of 0.5NCsOH aqueous solution for 24 to 48 hours without stirring, and then dried with air. This powder X-ray diffraction diagram showed an extremely broad peak around 2θ=30°. this
The diffraction pattern of the cesium hexatitanate CS 2 Ti 6 O 13 phase obtained by heat treatment at 900°C for 30 minutes matched that of the cesium hexatitanate CS 2 Ti 6 O 13 phase.
Air-dried items have a moisture content of approximately 12.5%.
It was cesium hexatitanate in the aqueous phase of CS 2 Ti 6 O 13.5.3H 2 O. The adsorbed ion exchange amount of Cs ions was about 31%. (4) Conversion of cesium hexatitanate to hollandite type cesium titanate Dehydrated product of cesium hexatitanate (CS 2 Ti 6 O 13 )
Added at a ratio of 0.067g of A 2 O 3 to 0.5g,
After mixing the powder, it was heated at 1000°C for 24 hours or more. What was obtained was hollandite type cesium titanate. (5) Molding and immobilization of hollandite-type cesium titanate 0.431 g of hollandite-type cesium titanate (Cs 2 A 2 Ti 6 O 16 ) obtained in (4) was molded to a diameter of 1.3 cm under a pressure of 500 Kg/cm 2 After forming into pellets with a thickness of 0.1 cm, they were fired again at 1000°C for 15 hours. The surface area was measured by nitrogen gas adsorption method.
It was 5.8×10 4 cm 2 /g. (6) Leaching of cesium in pure water The solidified material was immersed in 100 ml of distilled water, and the behavior of pH change over time was investigated while stirring. The increase in pH value associated with the leaching of cesium ions reached a peak in about 30 minutes, and then showed a tendency to gradually decrease. This decrease in pH value is thought to be because leaching of cesium was extremely small and the effect of dissolving carbon dioxide in the air was greater. When the 24-hour immersion was repeated three times (72 hours), the amount of cesium leached was measured by atomic absorption spectrometry, and the result was 1.33×10 -7 g/cm 2 ·day. The leaching rate was calculated using the following formula. L=A/S・1/t L: Leaching rate (g/cm 2・24h), A: Leaching amount of cesium (g), S: Surface area of sample (cm 2 ), t:
Leaching time (h) Example 2 While changing the x and y values of the composition of hollandite type cesium titanate Cs x M y Ti 8-y O 16 in (4) of Example 1, the excess TiO 2 change the amount of mixture,
Heat treatment was performed at 1000°C for 24 hours. The leaching rate of cesium in pure water was as follows.

【表】 なお、TiO2の原料としてアナターゼを使用
し、1000℃以下の温度で、加熱処理及び焼結処理
を行つた場合はルチル相でなくアナターゼ相とな
る。 この結果から明らかなように、過剰のTiO2
添加すると浸出率が低下する。 前記の方法で製造したCs2A2Ti6O161モルに
対し12モルのTiO2を混合したもの及びこれを加
圧成形して焼結したものとの純水中におけるセシ
ウムの浸出率は次の通りであつた。
[Table] Note that when anatase is used as a raw material for TiO 2 and heat treatment and sintering are performed at a temperature of 1000°C or less, it becomes an anatase phase instead of a rutile phase. As is clear from this result, adding excess TiO 2 reduces the leaching rate. The cesium leaching rate in pure water of the mixture of 12 moles of TiO 2 to 1 mole of Cs 2 A 2 Ti 6 O 16 produced by the above method and the mixture obtained by pressure molding and sintering is as follows: It was as follows.

【表】 ト
この結果から明らかなように、加圧成形して焼
結するとセシウムの浸出率が小さくなることがわ
かる。 なお、実施例においては、A2O3の場合を挙
げたが、Mg,Co〓,Ni,Cu,Fe,Cr,Mn,
Co〓,Gaも同様にしてTiを置換して得られ、ほ
ぼ同様の結果が得られた。
[Table] G As is clear from the results, it can be seen that the leaching rate of cesium decreases when pressure molding and sintering are performed. In addition, in the examples, the case of A 2 O 3 was given, but Mg, Co〓, Ni, Cu, Fe, Cr, Mn,
Co〓 and Ga were also obtained by replacing Ti in the same manner, and almost the same results were obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 チタン酸カリウムK2O・nTiO2(ただし、n
=1〜6)からK2O成分を抽出して得られたチタ
ニヤ水和物TiO2・mH2O(ただし、m=0〜3)
によつて水溶液中のセシウムを吸着イオン交換さ
せて、チタン酸セシウムCsxO・nTiO2・mH2O
(ただし、x=0.5〜2、n=1〜8、m=0〜
7)となし、該チタン酸セシウムにMg,Co〓,
Ni,Zn,Cu,A,Fe,Cr,Mn,Co〓,Gaか
ら選ばれた金属の酸化物又は焼成して酸化物とな
るこれらの金属塩を混合し、この混合物を500〜
1300℃に加熱してホーランダイト型のチタン酸セ
シウム化合物又は該チタン酸セシウム化合物と二
酸化チタンの混合物となし、これを焼結すること
を特微とするセシウムの固定化法。
1 Potassium titanate K 2 O・nTiO 2 (however, n
Titanium hydrate TiO 2 mH 2 O obtained by extracting the K 2 O component from = 1 to 6) (where m = 0 to 3)
Cesium titanate Cs x O・nTiO 2・mH 2 O
(However, x=0.5~2, n=1~8, m=0~
7) Mg, Co〓,
Oxides of metals selected from Ni, Zn, Cu, A, Fe, Cr, Mn, Co〓, Ga or their metal salts which become oxides by firing are mixed, and this mixture is heated to
A method for fixing cesium characterized by heating to 1300°C to form a hollandite-type cesium titanate compound or a mixture of the cesium titanate compound and titanium dioxide, and sintering this.
JP57224588A 1982-12-20 1982-12-20 Method of fixing cesium in water solution Granted JPS58117499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57224588A JPS58117499A (en) 1982-12-20 1982-12-20 Method of fixing cesium in water solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57224588A JPS58117499A (en) 1982-12-20 1982-12-20 Method of fixing cesium in water solution

Publications (2)

Publication Number Publication Date
JPS58117499A JPS58117499A (en) 1983-07-13
JPS6156017B2 true JPS6156017B2 (en) 1986-12-01

Family

ID=16816080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224588A Granted JPS58117499A (en) 1982-12-20 1982-12-20 Method of fixing cesium in water solution

Country Status (1)

Country Link
JP (1) JPS58117499A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2833257B1 (en) * 2001-12-11 2004-01-30 Commissariat Energie Atomique HOLLANDITE STRUCTURE CERAMIC INCORPORATING CESIUM FOR USE IN POSSIBLE CONDITIONING OF RADIOACTIVE CESIUM AND PROCESSES FOR SYNTHESIS
JP5561490B2 (en) * 2011-10-04 2014-07-30 堺化学工業株式会社 Adsorbent containing low crystalline or amorphous titanium hydroxide, method for producing the same, and method for treating aqueous solution containing cesium ions
JP5880851B2 (en) * 2012-06-15 2016-03-09 株式会社神戸製鋼所 Radionuclide decontamination system and radionuclide decontamination method

Also Published As

Publication number Publication date
JPS58117499A (en) 1983-07-13

Similar Documents

Publication Publication Date Title
JPS6132053B2 (en)
JPS6156017B2 (en)
JPS6227009B2 (en)
JPS5820300B2 (en) Adsorption and ion exchange material for cesium in aqueous solution
JPS6125657B2 (en)
JPS621293B2 (en)
SASAKI et al. Ion-exchange properties of hydrous titanium dioxide with a fibrous form obtained from potassium dititanate
JPH0450063B2 (en)
JPS61129041A (en) Adsorption of divalent transition metal in aqueous solution and immobilization of ion exchange agent and divalent transition metal
JPH024442A (en) High performance lithium adsorbent and its preparation
US5066404A (en) Method for separating sodium and potassium by ion exchange
JPH0525542B2 (en)
JP4015212B2 (en) Ion exchanger
JPS626849B2 (en)
KOMATSU* et al. Adsorption behavior of cobalt (II) ions on layered dihydrogen tetratitanate hydrate fibers in aqueous solutions in the range from 298 to 523 K
JPH05229900A (en) Production of phombic layered titanic acid plate crystal represented by hxmyti2-yo4-nh2o
JPS60161328A (en) Preparation of magnesia powder having high purity
JPS5869799A (en) Production of fibrous potassium titanate
JPH0648317B2 (en) Method for immobilizing radioactive cesium
JPH0326334A (en) Recovery agent of lithium and its production
JPH0234888B2 (en) SENIJOCHITANSANKARIUMUNOSEIZOHO
JPS629533B2 (en)
JP2683312B2 (en) Potassium selective adsorbent and method for producing the same
SU1181999A1 (en) Method of producing powder-like calcium and strontium pyroniobates
JPS5941928B2 (en) Titanium fiber manufacturing method