JPS6125657B2 - - Google Patents
Info
- Publication number
- JPS6125657B2 JPS6125657B2 JP54093460A JP9346079A JPS6125657B2 JP S6125657 B2 JPS6125657 B2 JP S6125657B2 JP 54093460 A JP54093460 A JP 54093460A JP 9346079 A JP9346079 A JP 9346079A JP S6125657 B2 JPS6125657 B2 JP S6125657B2
- Authority
- JP
- Japan
- Prior art keywords
- alkali metal
- fiber
- titania
- melt
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 67
- 239000000835 fiber Substances 0.000 claims description 45
- 229910052783 alkali metal Inorganic materials 0.000 claims description 17
- 239000000155 melt Substances 0.000 claims description 16
- 239000002657 fibrous material Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 13
- 239000003365 glass fiber Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- -1 alkali metal titanate Chemical class 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 7
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 150000007524 organic acids Chemical class 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000011707 mineral Substances 0.000 claims description 4
- 229910052701 rubidium Inorganic materials 0.000 claims description 4
- 208000005156 Dehydration Diseases 0.000 claims description 3
- 229910052792 caesium Inorganic materials 0.000 claims description 3
- 230000018044 dehydration Effects 0.000 claims description 3
- 238000006297 dehydration reaction Methods 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- AKMXMQQXGXKHAN-UHFFFAOYSA-N titanium;hydrate Chemical compound O.[Ti] AKMXMQQXGXKHAN-UHFFFAOYSA-N 0.000 claims description 3
- 239000012071 phase Substances 0.000 description 8
- 150000001340 alkali metals Chemical class 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 150000001339 alkali metal compounds Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 2
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Chemical compound [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000007605 air drying Methods 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910000025 caesium bicarbonate Inorganic materials 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910000026 rubidium carbonate Inorganic materials 0.000 description 1
- WPFGFHJALYCVMO-UHFFFAOYSA-L rubidium carbonate Chemical compound [Rb+].[Rb+].[O-]C([O-])=O WPFGFHJALYCVMO-UHFFFAOYSA-L 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【発明の詳細な説明】
本発明はチタニヤ水和物繊維、チタニヤガラス
繊維の製造法に関するチタニヤ水和物繊維、チタ
ニヤガラス繊維は陽イオン交換剤、陽イオン吸着
剤、過材、触媒及び触媒の担体などに有用なも
のである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing titania hydrate fibers and titania glass fibers, titania hydrate fibers, titania glass fibers, cation exchange agents, cation adsorbents, filter materials, catalysts, catalyst carriers, etc. It is useful for
従来、チタニヤガラス繊維は、高圧容器を用い
た水熱法やフラツクス法及び固相反応などによ
り、チタニヤ又はチタン酸アルカリ金属の結晶合
成の際に、特殊の条件下で副合成することができ
ることが知られている。しかしながら、これらの
方法によつて得られるものは、数μ乃至数100μ
程度の長さの繊維のものであり、しかも少量しか
得られず、工業的に製造することが困難である欠
点があつた。 It has been known that titania glass fibers can be synthesized as a sub-synthesis under special conditions during the crystal synthesis of titania or alkali metal titanates by hydrothermal methods using high-pressure vessels, flux methods, solid phase reactions, etc. It is being However, the amount obtained by these methods ranges from several microns to several hundred microns.
It has the drawback that it is difficult to produce industrially because it is made of fibers with a certain length and can only be obtained in small quantities.
本発明はこの欠点を改良せんとするものであ
り、その目的は高圧容器やフラツクスを必要とせ
ず、工業的に生産が容易で、且つ繊維長の長い繊
維を得られる製造法を提供するにある。 The present invention aims to improve this drawback, and its purpose is to provide a manufacturing method that does not require a high-pressure container or flux, is easy to produce industrially, and can obtain fibers with a long fiber length. .
本発明者らは前記目的を達成すべく研究の結
果、一般式M2O成分・nTiO2(ただし、MはNa、
K、Rb、又はCsを、nは1〜5を示す。)で表わ
されるチタン酸アルカリ金属、又は該チタン酸ア
ルカリ金属の原料である例えば酸化チタンとアル
カリ金属化物の混合物を、その溶融温度に加熱し
て溶融体を生成させ、該溶融体を急冷、放冷、徐
冷又はこれらの組合せにより平均長さ5mm程度の
繊維状に結晶化したものが得られること。また、
該結晶質の繊維状物を鉱酸又は有機酸で処理する
とM2O成分成分が抽出され、TiO2・nH2Oの組成
のものに変えてチタニヤ水和物繊維にすることが
でき、該繊維状物を250℃以下の温度で加熱脱水
処理すると、チタニヤガラス繊維が容易に得られ
ることを知見し、本発明を完成した。 As a result of research to achieve the above object, the present inventors found that the general formula M 2 O component nTiO 2 (where M is Na,
K, Rb, or Cs; n represents 1 to 5; ) or a raw material for the alkali metal titanate, such as a mixture of titanium oxide and an alkali metal compound, is heated to its melting temperature to form a melt, and the melt is rapidly cooled and allowed to stand. Crystallized fibers with an average length of about 5 mm can be obtained by cooling, slow cooling, or a combination thereof. Also,
When the crystalline fibrous material is treated with a mineral acid or an organic acid, the M 2 O component is extracted, and it can be converted into a titania hydrate fiber by changing it to one with a composition of TiO 2 .nH 2 O. The present invention was completed based on the finding that titania glass fibers can be easily obtained by subjecting fibrous materials to heat dehydration treatment at temperatures below 250°C.
本発明の方法において用いる酸化チタンとして
は、反応性が良好であるアナターゼ型のものが好
ましく、粒度はアルカリ金属成分と反応しやすく
するために細かいことが望ましい。また酸化チタ
ンのみならず、酸化チタンを生成するチタン化合
物を原料として使用してもよい。 The titanium oxide used in the method of the present invention is preferably anatase type titanium oxide, which has good reactivity, and the particle size is preferably fine to facilitate reaction with alkali metal components. In addition to titanium oxide, a titanium compound that produces titanium oxide may be used as a raw material.
本発明の方法において用いるアルカリ金属酸化
物としては、K2O、Na2O、Rb2O、Cs2Oなどが
あげられ、また該酸化物を生成するアルカリ金属
化合物、例えばKOH、NaOH、RbOH,CsOH、
K2CO3、NaCO3、Rb2CO3、Cs2CO3、KHCO3、
NaHCO3、RbHCO3、CsHCO3、KNO3、
NaNO3、RbNO3、CoNO3、なども原料として使
用してもよい。 The alkali metal oxides used in the method of the present invention include K 2 O, Na 2 O, Rb 2 O, Cs 2 O, etc., and the alkali metal compounds that produce the oxides, such as KOH, NaOH, RbOH. ,CsOH,
K2CO3 , NaCO3 , Rb2CO3 , Cs2CO3 , KHCO3 ,
NaHCO3 , RbHCO3 , CsHCO3 , KNO3 ,
NaNO 3 , RbNO 3 , CoNO 3 , etc. may also be used as raw materials.
前記の如き原料をM2O成分・nTiO2(ただし、
0<n<5)を生成する割合で配合して溶融する
と、反応してチタン酸アルカリ金属が生成する。
なお、チタン酸アルカリ金属はこの方法に限らず
他の方法で製造してもよい。 The above raw materials are mixed with M 2 O component nTiO 2 (however,
When they are blended and melted at a ratio that produces 0<n<5), they react to produce alkali metal titanate.
Note that the alkali metal titanate may be produced not only by this method but also by other methods.
得られたチタン酸アルカリ金属又はその原料混
合物を、そのまま又は繊維成形を容易にするため
の粘度調整剤、バインダー剤例えばほう酸アルカ
リ金属等を配合して、それらの溶融点以上の温度
に加熱して溶融体を作り、該溶融体から繊維状を
作る。繊維形成法としては、溶融体を単に冷却す
るだけでも、アルカリ金属成分の量が比較的多い
ため繊維状に結晶化し得られ、例えば溶融体を底
が冷却されている金属製容器の中へ流出させて固
化させることによつて得られる。また、一般のガ
ラス長繊維形成法、プツシングから流出する溶融
体に高圧蒸気を吹付ける蒸気吹付法による短繊維
形成法により容易に得られる。繊維形成を溶融体
を単に冷却する方法においては、繊維の集合した
塊状体として得られるが、これを例えば水に浸漬
して未反応のM2O成分成分を洗浄すると繊維状
物として分離し得られる。 The obtained alkali metal titanate or its raw material mixture is heated as it is or mixed with a viscosity modifier, a binder agent such as an alkali metal borate, etc. to facilitate fiber forming, and heated to a temperature equal to or higher than their melting point. A melt is produced, and a fibrous material is produced from the melt. As a fiber forming method, simply cooling the melt can crystallize it into fibers due to the relatively large amount of alkali metal components, and for example, the melt can be poured into a metal container with a cooled bottom. It is obtained by letting it solidify. Further, it can be easily obtained by a general glass long fiber forming method or a short fiber forming method using a steam blowing method in which high pressure steam is sprayed onto the melt flowing out from pushing. When fiber formation is performed by simply cooling the melt, a lump of fibers is obtained, but if the unreacted M 2 O component is washed away by immersing it in water, it can be separated as a fibrous material. It will be done.
次いで、繊維状生成物は、鉱酸又は有機酸、好
ましくは塩酸水溶溶液でアルカリ金属成分を抽出
する。 The fibrous product is then extracted with a mineral or organic acid, preferably an aqueous solution of hydrochloric acid, to extract the alkali metal components.
この抽出は、急激におこなうと、表面部分のみ
のアルカリ金属成分を抽出することとなり、芯部
のアルカリ金属成分が充分に除去できない欠点が
ある。したがつて、ある程度の時間をかけて浸漬
することが望ましい。 If this extraction is carried out too quickly, the alkali metal component will be extracted only from the surface portion, and the alkali metal component from the core portion will not be sufficiently removed. Therefore, it is desirable to soak for a certain amount of time.
稀薄な酸水溶液は、沸点以下の温度に加温して
用いても良い。さらに、抽出効果を増大させるた
めに、撹拌、循環等の操作をおこなつても良い。
稀薄な酸水溶液としては、無機酸、有機酸のいず
れであつても良いが、生成物を不純にしないもの
を用いることが望ましい。抽出割合は、繊維物の
組成がTiO2・nH2O・(0<n≦5)となるよう
に抽出する。 A dilute aqueous acid solution may be used after being heated to a temperature below its boiling point. Furthermore, in order to increase the extraction effect, operations such as stirring and circulation may be performed.
The dilute acid aqueous solution may be either an inorganic acid or an organic acid, but it is desirable to use one that does not impure the product. The extraction ratio is such that the composition of the fibrous material is TiO 2 ·nH 2 O · (0<n≦5).
アルカリ金属成分を抽出処理することによつて
TiO2・nH2O組成を有するチタニヤ水和物繊維が
得られる。このチタニヤ水和物繊維は、もとのチ
タン酸アルカリ金属の構造を保持し、アルカリ金
属イオンがH+又はH3O+イオンなどと置換した構
造を有する結晶質中間相であり、膨潤・脱水特性
イオン交換性を有する。 By extracting alkali metal components
Titanium hydrate fibers having a TiO 2 .nH 2 O composition are obtained. This titania hydrate fiber retains the original alkali metal titanate structure and is a crystalline intermediate phase with a structure in which alkali metal ions are replaced with H + or H 3 O + ions, and it swells and dehydrates. Has characteristic ion exchange properties.
次いで、得られたチタニヤ水和物繊維を250℃
以下の温度で加熱脱水処理することによつて、チ
タニヤガラス繊維が得られる。この加熱脱水処理
の温度は、当然、チタニヤガラスの安定領域であ
る250℃以下でなければならない。 Next, the obtained titania hydrate fiber was heated at 250°C.
Titanium glass fibers can be obtained by heating and dehydrating at the following temperatures. Naturally, the temperature of this heating and dehydration treatment must be below 250°C, which is the stable range of titanium glass.
この繊維は多価カチオンなどに対するすぐれた
イオン吸着性、液体又は気体の清浄過性を有
し、また触媒及び触媒の担体としても有効であ
る。 This fiber has excellent ion adsorption properties for polyvalent cations, liquid or gas cleaning properties, and is also effective as a catalyst and a carrier for the catalyst.
さらに、得られたチタニヤ水和物繊維又はチタ
ニヤガラス繊維を250℃を超え1200℃以下の温度
範囲内で加熱すると、アナターゼ型又はルチル型
結晶質のチタニヤ繊維が得られる。加熱温度が
250℃を超え900℃以下の温度範囲ではアナターゼ
型の結晶質チタニヤ繊維が生成し、900℃を超え
1200℃以下の温度範囲ではルチル型の結晶質チタ
ニヤ繊維が生成する。この繊維は前記の吸着剤、
過剤、触媒又は触媒の担体としての用途のほ
か、絶縁材料、1840℃の融点を持つ耐熱・断熱材
料として有用なものである。 Furthermore, when the obtained titania hydrate fiber or titania glass fiber is heated within a temperature range of more than 250°C and less than 1200°C, anatase type or rutile type crystalline titania fiber can be obtained. heating temperature
Anatase-type crystalline titania fibers are produced in the temperature range exceeding 250℃ and below 900℃;
In the temperature range below 1200°C, rutile-type crystalline titania fibers are formed. This fiber is the adsorbent mentioned above,
In addition to being used as a superagent, catalyst, or catalyst carrier, it is useful as an insulating material and a heat-resistant/insulating material with a melting point of 1840°C.
実施例 1
TiO2・K2CO3の各粉末をモル比で2:1の割
合に混合した。該混合物約45gを100ml白金ルツ
ボに充填し、1100℃で約30分間加熱溶融した。該
溶融物を水で底を冷却している200mlの金属製容
器の中へ流出して急冷し繊維状に結晶させた。得
られたものは平均5mmの長さの繊維状物の塊状集
合体であつた。これを水中に約1時間浸漬し、末
反応のK2O成分を洗浄すると、繊維状物は分離さ
れた。この場合、塊状集合体に繊維軸に対して垂
直方向から圧縮応力を加えると繊維状物の分離が
促進される。Example 1 TiO 2 .K 2 CO 3 powders were mixed at a molar ratio of 2:1. About 45 g of the mixture was filled into a 100 ml platinum crucible and melted by heating at 1100° C. for about 30 minutes. The melt was poured into a 200 ml metal container whose bottom was cooled with water and quenched to crystallize into fibers. What was obtained was a fibrous aggregate with an average length of 5 mm. This was immersed in water for about 1 hour to wash off the residual K 2 O component, and the fibrous material was separated. In this case, applying compressive stress to the aggregate in a direction perpendicular to the fiber axis promotes separation of the fibrous material.
分離された繊維状物は直径0.1〜0.5mmの束状で
平均約5mmの長さのものであつた。偏光顕微鏡下
では強い干渉色と伸長方向で直消光する結晶体で
あつた。対陰極にCu Kαを使用した粉末X線回
折図、20=11゜,29゜,48゜附近にブロードなピ
ークを示すだけであるから、極めて結晶性の悪い
繊維である。これを900℃に加熱して結晶化を良
くすると、K2Ti4O9相と末知相(K2T2O5相と思
われる)の2相からなることが分つた。 The separated fibrous materials were bundles with a diameter of 0.1 to 0.5 mm and an average length of about 5 mm. Under a polarizing microscope, it was a crystalline material with strong interference color and direct extinction in the direction of elongation. The powder X-ray diffraction diagram using Cu Kα as the anticathode shows only broad peaks around 20=11°, 29°, and 48°, indicating that the fiber has extremely poor crystallinity. When this was heated to 900°C to improve crystallization, it was found that it consisted of two phases: a K 2 Ti 4 O 9 phase and a Chichi phase (possibly a K 2 T 2 O 5 phase).
次いで、得られた繊維状物を1N―HCl水溶液
100mlに対して10gの割合で浸漬し、約1時間撹
拌しながらK2O成分の抽出を行つた後、水洗、風
乾してチタニヤ水和物繊維を得た。該チタニヤ水
和物の粉末X線回折図は2θ〕10゜,25.6゜,
48.6゜附近にブロードなピークを示す結晶質繊維
であつた。 Next, the obtained fibrous material was dissolved in a 1N-HCl aqueous solution.
The fibers were immersed at a ratio of 10 g per 100 ml, and the K 2 O component was extracted while stirring for about 1 hour, followed by washing with water and air drying to obtain titania hydrate fibers. The powder X-ray diffraction pattern of the titania hydrate is 2θ〕10゜, 25.6゜,
It was a crystalline fiber exhibiting a broad peak around 48.6°.
また、溶融物を別容器への流出にかえて、か
ら取り出したルツポの底を水で急冷して繊維状物
を作り、これを前記と同じ処理を行つた。また、
溶融させた後、炉の電源を切り、炉の中でルツボ
の底に冷却物を接触させて冷却して繊維状物を作
り、これを前記と同じ処理を行つたところ、いず
れの方法においても同様なチタニヤ水和物繊維が
得られた。また、溶融体を急冷して得た塊状物を
水で処理を省略して直接1NのHCl水溶液で処理
し、繊維の分離とK2O成分の抽出を同時に行つて
も同様のチタニヤ水和物繊維が得られた。 In addition, instead of draining the melt into a separate container, the bottom of the receptacle taken out was quenched with water to produce a fibrous material, which was then treated in the same manner as above. Also,
After melting, the power to the furnace was turned off, and a cooling material was brought into contact with the bottom of the crucible in the furnace to form a fibrous material, which was then treated in the same manner as described above. A similar titania hydrate fiber was obtained. Furthermore, even if the lump obtained by quenching the melt is directly treated with 1N HCl aqueous solution without water treatment, and the fiber separation and K2O component extraction are performed simultaneously, the same titanium hydrate can be obtained. Fibers were obtained.
実施例 2
実施例1の方法で得たチタニヤ水和物繊維を
100〜250℃で加熱脱水処理を行うことにより、チ
タニヤガラス繊維が得られた。該チタニヤガラス
繊維の粉末X線回折図は回折ピークを示さなかつ
た。Example 2 The titania hydrate fiber obtained by the method of Example 1 was
Titanium glass fibers were obtained by heating and dehydrating at 100 to 250°C. The powder X-ray diffraction pattern of the titania glass fiber showed no diffraction peaks.
実施例 3
実施例1の方法で作成した該溶融体をプツシン
グから流出させそれに高圧空気を吹きつけて繊維
化した。飛散物は束状繊維の集合体であり、この
集合体は実施例1と同様に水で処理することによ
り更に細い繊維に分離することができる。得られ
た繊維の組成については900℃で加熱処理して調
べたがK2Ti4O9相と未知相(K2Ti2O5と思われ
る)の混合相であつた。Example 3 The melt produced by the method of Example 1 was discharged from a pushing and was blown with high pressure air to form fibers. The scattered matter is an aggregate of bundled fibers, and this aggregate can be separated into finer fibers by treating with water in the same manner as in Example 1. The composition of the obtained fiber was investigated by heat treatment at 900°C, and it was found to be a mixed phase of K 2 Ti 4 O 9 phase and an unknown phase (possibly K 2 Ti 2 O 5 ).
次いで得られた繊維状物を1NのHCl水溶液を用
いて実施例1と同様の処理を施すことによりチタ
ニヤ水和物繊維を得た。 Next, the obtained fibrous material was treated in the same manner as in Example 1 using a 1N HCl aqueous solution to obtain titania hydrate fibers.
次いで実施例2の方法と同じ処理によりチタニ
ヤガラス繊維、更に該チタニヤガラス繊維を500
℃で加熱処理することによりアナターゼ型のチタ
ニヤ繊維を得ることが出来た。 Next, by the same treatment as in Example 2, titania glass fibers were added, and further the titania glass fibers were
Anatase type titania fibers could be obtained by heat treatment at ℃.
以上のように、本発明によると、従来長い繊維
長の物が得られず、しかも工業的生産の困難であ
つたチタニヤ水和物繊維及びチタニヤガラス繊維
を、複雑な装置を必要とせず工業的多量生産が容
易で、且つ長繊維の物も容易に得られる優れた効
果を奏するものである。 As described above, according to the present invention, titania hydrate fibers and titania glass fibers, which have conventionally been difficult to obtain with long fiber lengths and are difficult to produce industrially, can be produced in large quantities without the need for complicated equipment. It is easy to produce, and long fiber products can also be easily obtained, providing excellent effects.
Claims (1)
Rb又はCsを、nは1〜5を表わす)で示される
チタン酸アルカリ金属又は該チタン酸アルカリ金
属の原料混合物を、その溶融温度以上に加熱して
溶融体となし、該溶融体を冷却する過程で結晶質
の繊維状物を成形させ、次いで得られた繊維状物
を、鉱酸又は有機酸で処理することによりM2O
成分を抽出してTiO2・nH2O(ただし、0<n≦
5)の組成のチタニヤ水和物繊維とすることを特
徴とするチタニヤ水和物繊維の製造法。 2 一般式M2O・nTiO2(ただし、MはNa、K、
Rb又はCsを、nは1〜5を表わす)で示される
チタン酸アルカリ金属又は該チタン酸アルカリ金
属の原料混合物を、その溶融温度以上に加熱して
溶融体となし、該溶融体を冷却する過程で結晶質
の繊維状態を成形させ、次いで得られた繊維状物
を、鉱酸又は有機酸を処理することによりM2O
成分を抽出してTiO2・nH2O(ただし、0<n≦
5)の組成のチタニヤ水和物繊維となし、これを
250℃以下の温度で加熱脱水処理することを特徴
とするチタニヤガラス繊維の製造法。[Claims] 1 General formula M 2 O・nTiO 2 (where M is Na, K,
An alkali metal titanate represented by Rb or Cs (n represents 1 to 5) or a raw material mixture of the alkali metal titanate is heated above its melting temperature to form a melt, and the melt is cooled. A crystalline fibrous material is formed in the process, and then the obtained fibrous material is treated with a mineral acid or an organic acid to form M 2 O.
The components are extracted and TiO 2・nH 2 O (0<n≦
5) A method for producing a titania hydrate fiber, which is characterized in that the titania hydrate fiber has the composition. 2 General formula M 2 O・nTiO 2 (M is Na, K,
An alkali metal titanate represented by Rb or Cs (n represents 1 to 5) or a raw material mixture of the alkali metal titanate is heated above its melting temperature to form a melt, and the melt is cooled. A crystalline fibrous state is formed in the process, and then the obtained fibrous material is treated with mineral acid or organic acid to form M 2 O.
The components are extracted and TiO 2・nH 2 O (0<n≦
A titanium hydrate fiber having the composition of 5) is used.
A method for producing titania glass fiber, which is characterized by heat dehydration treatment at a temperature of 250°C or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9346079A JPS5617928A (en) | 1979-07-23 | 1979-07-23 | Manufacture of titania hydrate fiber, titania glass fiber and titania fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9346079A JPS5617928A (en) | 1979-07-23 | 1979-07-23 | Manufacture of titania hydrate fiber, titania glass fiber and titania fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5617928A JPS5617928A (en) | 1981-02-20 |
JPS6125657B2 true JPS6125657B2 (en) | 1986-06-17 |
Family
ID=14082936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9346079A Granted JPS5617928A (en) | 1979-07-23 | 1979-07-23 | Manufacture of titania hydrate fiber, titania glass fiber and titania fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5617928A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59150543A (en) * | 1983-02-16 | 1984-08-28 | Osaka Cement Kk | Synthesis of alkali titanate type ion exchange material |
JPS6046927A (en) * | 1983-08-24 | 1985-03-14 | Natl Inst For Res In Inorg Mater | Manufacture of titania fiber |
JPS6046926A (en) * | 1983-08-24 | 1985-03-14 | Natl Inst For Res In Inorg Mater | Manufacture of crystalline titanate fiber |
JPS60139336A (en) * | 1983-12-27 | 1985-07-24 | Otsuka Chem Co Ltd | Method for filtering beverage solution |
JPS6121915A (en) * | 1984-07-06 | 1986-01-30 | Kubota Ltd | Manufacture of titanium compound fiber |
JPS61129041A (en) * | 1984-11-29 | 1986-06-17 | Natl Inst For Res In Inorg Mater | Adsorption of divalent transition metal in aqueous solution and immobilization of ion exchange agent and divalent transition metal |
JPS6263899A (en) * | 1985-09-13 | 1987-03-20 | 科学技術庁無機材質研究所長 | Method of removing cobalt ion from cooling water |
JPH0621031B2 (en) * | 1990-01-05 | 1994-03-23 | 科学技術庁無機材質研究所長 | Ion exchange separation of sodium and potassium |
US5549734A (en) * | 1995-03-08 | 1996-08-27 | Astec Industries, Inc. | Baghouse cleaning method |
JP5062988B2 (en) * | 2005-10-19 | 2012-10-31 | 日揮触媒化成株式会社 | Novel titanium oxide and method for synthesizing novel titanium oxide |
CN102266748B (en) * | 2011-06-09 | 2013-04-24 | 中山大学 | Method for preparing titanic acid/titanium dioxide mixed nano-powder material |
-
1979
- 1979-07-23 JP JP9346079A patent/JPS5617928A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5617928A (en) | 1981-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05503065A (en) | Method for producing crystalline sodium disilicate in hot water | |
JPS6125657B2 (en) | ||
US3129105A (en) | Fibrous metal titanates | |
US3391994A (en) | Method for producing faujasitetype zeolites | |
US4179496A (en) | Fibrous crystalline potassium titanate and processes for preparing fibrous potassium titanates | |
US4265872A (en) | Process for producing crystalline fibrous potassium titanate | |
JPS5943440B2 (en) | Method for producing alkali titanate fiber material | |
JPS621293B2 (en) | ||
JPS61256922A (en) | Immobilizing method for strontium incorporated in aqueous solution | |
JP2747916B2 (en) | Potassium titanate long fiber and method for producing titania fiber using the same | |
JPS5941928B2 (en) | Titanium fiber manufacturing method | |
JPS5820300B2 (en) | Adsorption and ion exchange material for cesium in aqueous solution | |
JPS61187939A (en) | Adsorption of barium in aqueous solution, ion-exchange material and method for fixing barium | |
JPH0416507A (en) | Method for hydrothermally synthesizing phyllisilicate | |
JPS5941929B2 (en) | Manufacturing method of titanium glass fiber | |
JPH0223482B2 (en) | ||
DE3922508C2 (en) | ||
JPH0159214B2 (en) | ||
DE3317327C2 (en) | Method of Obtaining Fine Crystalline α-Quartz | |
JPH0338239B2 (en) | ||
JPS5940767B2 (en) | Manufacturing method of amorphous titania | |
JPH0244774B2 (en) | ||
JPH0543236A (en) | Production of combined barium hexatitanate fiber | |
JPS6121914A (en) | Manufacture of titanium compound fiber | |
JPH07242420A (en) | Production of polycrystalline fiber of alkaline earth metal titanate |