JP5062988B2 - Novel titanium oxide and method for synthesizing novel titanium oxide - Google Patents

Novel titanium oxide and method for synthesizing novel titanium oxide Download PDF

Info

Publication number
JP5062988B2
JP5062988B2 JP2005304672A JP2005304672A JP5062988B2 JP 5062988 B2 JP5062988 B2 JP 5062988B2 JP 2005304672 A JP2005304672 A JP 2005304672A JP 2005304672 A JP2005304672 A JP 2005304672A JP 5062988 B2 JP5062988 B2 JP 5062988B2
Authority
JP
Japan
Prior art keywords
titanium oxide
honeycomb
range
particles
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005304672A
Other languages
Japanese (ja)
Other versions
JP2007112655A (en
Inventor
勝博 城野
嗣雄 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2005304672A priority Critical patent/JP5062988B2/en
Publication of JP2007112655A publication Critical patent/JP2007112655A/en
Application granted granted Critical
Publication of JP5062988B2 publication Critical patent/JP5062988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

本発明は、新規な結晶構造および/または粒子構造を有する酸化チタンおよび該酸化チタンの製造方法に関する。
さらに詳しくは、触媒、触媒担体、吸着剤、光触媒、抗菌剤、消臭剤、光学材料、化粧料配合剤、顔料、塗料、充填剤、エレクトロニクス材料等として有用な新規な結晶構造および/または粒子構造を有する酸化チタンおよび該酸化チタンの製造方法に関する。
The present invention relates to titanium oxide having a novel crystal structure and / or particle structure and a method for producing the titanium oxide.
More specifically, novel crystal structures and / or particles useful as catalysts, catalyst carriers, adsorbents, photocatalysts, antibacterial agents, deodorants, optical materials, cosmetic ingredients, pigments, paints, fillers, electronic materials, etc. The present invention relates to a titanium oxide having a structure and a method for producing the titanium oxide.

酸化チタンは化学的性質、物理的性質、物理化学的性質において特徴的な性質を有することから種々の用途に用いられている。具体的には触媒、触媒担体、吸着剤、光触媒、光学材料、化粧料配合剤、顔料、塗料、充填剤、エレクトロニクス材料等として用いられている。近年、酸化チタンナノチューブ(特開平10−152323号公報、特許文献1)、酸化チタン繊維(特許第3616927号(特許文献2)、特開2005−68001号公報(特許文献3))等新たな形状、特性を有する酸化チタンも知られている。
特開平10−152323号公報 特許第3616927号公報 特開2005−68001号公報
Titanium oxide is used in various applications because of its characteristic properties in chemical properties, physical properties, and physicochemical properties. Specifically, it is used as a catalyst, a catalyst carrier, an adsorbent, a photocatalyst, an optical material, a cosmetic compounding agent, a pigment, a paint, a filler, an electronic material, and the like. Recently, new shapes such as titanium oxide nanotubes (Japanese Patent Laid-Open No. 10-152323, Patent Document 1), titanium oxide fibers (Japanese Patent No. 3616927 (Patent Document 2), Japanese Patent Laid-Open No. 2005-68001 (Patent Document 3)), etc. Titanium oxide having characteristics is also known.
Japanese Patent Laid-Open No. 10-152323 Japanese Patent No. 3616927 JP 2005-68001 A

しかしながら、従来の酸化チタン粒子は粒子密度が高く、用途によっては性能が不充分で、特に単位酸化チタン重量当たりの活性、吸着量等が不充分で、これらを解決する新規な酸化チタンが求められていた。   However, conventional titanium oxide particles have a high particle density, and performance is insufficient depending on the application. In particular, activity and adsorption amount per unit titanium oxide weight are insufficient, and a new titanium oxide that solves these problems is required. It was.

本発明者らは、これまでにない結晶構造および形状を有する新規酸化チタンを得るべく種々検討した結果、酸化チタン粉末をアルカリ水溶液に混合し、無撹拌下で水熱処理し、ついで、常温で静置すると新規な結晶構造および/または形状を有する酸化チタン粒子が生成することを見出して本発明を完成するに至った。   As a result of various studies to obtain a novel titanium oxide having an unprecedented crystal structure and shape, the present inventors have mixed titanium oxide powder with an alkaline aqueous solution, hydrothermally treated without stirring, and then allowed to stand at room temperature. As a result, it was found that titanium oxide particles having a novel crystal structure and / or shape were produced, and the present invention was completed.

本発明の構成は以下の通りである。
[1]本発明に係る新規の結晶質酸化チタン粒子は、X線回折において、少なくとも2θ=
24.10°、2θ=28.22°、2θ=48.16°に回折ピークを有することを特徴としている。
結晶質酸化チタンの結晶子径が4〜20nmの範囲にあることが好ましい。
[2]前記結晶質酸化チタンは、平均粒子径が0.5〜10μmの範囲にあり、粒子密度が
0.01〜0.2g/mlの範囲にあることが望ましい。
[3]本発明に係る新規のハニカム状酸化チタン粒子は、平均粒子径が0.5〜10μmの
範囲にあり、粒子密度が0.01〜0.2g/mlの範囲にあることを特徴としている。[4]前記ハニカムを形成する空洞の(入り口の)大きさが0.01〜0.3μmの範囲に
あり、空洞壁の厚みが1〜20nmの範囲にある。
[5]前記ハニカム状酸化チタン粒子は、X線回折において、少なくとも2θ=24.10
°、2θ=28.22°、2θ=48.16°に回折ピークを有する。
[6]結晶子径が4〜20nmの範囲にある。
[7]以上のような結晶質酸化チタンまたはハニカム状酸化チタン粒子は、酸化チタン粉末
をアルカリ水溶液に混合し、無撹拌下、130〜200℃で20〜100時間水熱処理し、ついで、60℃以下に冷却し、24時間以上静置することで製造される。
[8]前記酸化チタン粉末が天然ルチル鉱を粉砕したものである。
[9]前記酸化チタン粉末のモル数(MT)とアルカリのモル数(MA)との比(MA)/(MT)が10〜300の範囲にある。
The configuration of the present invention is as follows.
[1] The novel crystalline titanium oxide particles according to the present invention have at least 2θ =
It is characterized by having a diffraction peak at 24.10 °, 2θ = 28.22 °, and 2θ = 48.16 °.
It is preferable that the crystalline titanium oxide has a crystallite diameter in the range of 4 to 20 nm.
[2] The crystalline titanium oxide preferably has an average particle diameter in the range of 0.5 to 10 μm and a particle density in the range of 0.01 to 0.2 g / ml.
[3] The novel honeycomb-like titanium oxide particles according to the present invention have an average particle diameter in the range of 0.5 to 10 μm and a particle density in the range of 0.01 to 0.2 g / ml. Yes. [4] The size of the cavity (inlet) forming the honeycomb is in the range of 0.01 to 0.3 μm, and the thickness of the cavity wall is in the range of 1 to 20 nm.
[5] The honeycomb-like titanium oxide particles have an X-ray diffraction of at least 2θ = 24.10.
It has a diffraction peak at °, 2θ = 28.22 °, 2θ = 48.16 °.
[6] The crystallite diameter is in the range of 4 to 20 nm.
[7] The crystalline titanium oxide or honeycomb-like titanium oxide particles as described above are obtained by mixing titanium oxide powder with an alkaline aqueous solution, hydrothermally treating at 130 to 200 ° C. for 20 to 100 hours without stirring, and then at 60 ° C. It is manufactured by cooling to the following and allowing to stand for 24 hours or more.
[8] The titanium oxide powder is obtained by pulverizing natural rutile ore.
[9] The ratio (M A ) / (M T ) between the number of moles of titanium oxide powder (M T ) and the number of moles of alkali (M A ) is in the range of 10 to 300.

本発明によれば、従来にはなかった、新規な結晶構造、新規なハニカム状の粒子構造を有する酸化チタンが得られる。この新規酸化チタンは、従来より知られていた酸化チタンとくらべて、触媒、触媒担体、吸着剤、光触媒、抗菌剤、消臭剤、光学材料、化粧料配合剤、顔料、塗料、充填剤、エレクトロニクス材料等として非常に有用であり、その機能が高い。   According to the present invention, titanium oxide having a novel crystal structure and a novel honeycomb-like particle structure, which has not been conventionally obtained, can be obtained. This new titanium oxide is a catalyst, catalyst carrier, adsorbent, photocatalyst, antibacterial agent, deodorant, optical material, cosmetic compounding agent, pigment, paint, filler, compared with the conventionally known titanium oxide. It is very useful as an electronic material and has a high function.

以下、本発明について具体的に説明する。
[結晶質酸化チタン]
本発明に係る結晶質酸化チタンは、X線回折において、少なくとも2θ=24.10°
、2θ=28.22°、2θ=48.16°に回折ピークを有することを特徴としている。このようなX線回折パターンを図1に示す。
Hereinafter, the present invention will be specifically described.
[Crystalline titanium oxide]
The crystalline titanium oxide according to the present invention has at least 2θ = 24.0 ° in X-ray diffraction.
It is characterized by having a diffraction peak at 2θ = 28.22 ° and 2θ = 48.16 °. Such an X-ray diffraction pattern is shown in FIG.

従来、結晶性酸化チタンにはアナタース型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン等が公知であるが、本発明の結晶質酸化チタンは全く新規な回折ピークを有し、新規な結晶構造を有している。なお、本発明の新規結晶質酸化チタンには、新規結晶性以外に、アナタース、ルチル、ブルッカイトや無定形の酸化チタンを含んでいてもよい。   Conventionally, anatase-type titanium oxide, rutile-type titanium oxide, brookite-type titanium oxide, and the like are known as crystalline titanium oxide, but the crystalline titanium oxide of the present invention has a completely new diffraction peak and a novel crystal structure. have. The novel crystalline titanium oxide of the present invention may contain anatase, rutile, brookite and amorphous titanium oxide in addition to the novel crystallinity.

本発明に係る結晶質酸化チタンの結晶子径は、通常、4〜20nm、さらには5〜15nmの範囲にあるものは各種用途に用いたときに、その効果が顕著に発現できる。
結晶質酸化チタンの結晶子径が小さいもの場合は、得られたとしても結晶性が低く、充分な性能が発現しないことがある。また、前記範囲を越えて大きいものは、現状得ることが困難である。
When the crystalline titanium oxide according to the present invention has a crystallite diameter in the range of usually 4 to 20 nm, further 5 to 15 nm, the effect can be remarkably exhibited when used for various applications.
When the crystalline titanium oxide has a small crystallite size, even if it is obtained, the crystallinity is low and sufficient performance may not be exhibited. Moreover, it is difficult to obtain a large product exceeding the above range.

なお、結晶子径はX線回折により、デバイーシェラーの式を用いて求めることができる

このような新規な結晶質酸化チタンは、従来のアナタースやルチルなどの酸化チタンに比べて、バンドキャップ、屈折率、密度などが異なるために、新たな触媒、触媒担体、吸着剤、光触媒、光学材料、化粧料配合剤、顔料、塗料、充填剤、エレクトロニクス材料等の用途に好適に使用できる。
The crystallite diameter can be obtained by X-ray diffraction using the Debye-Scherrer equation.
Such new crystalline titanium oxide has different band caps, refractive index, density, etc. compared to conventional titanium oxides such as anatase and rutile, so new catalysts, catalyst carriers, adsorbents, photocatalysts, optical It can be suitably used for applications such as materials, cosmetic ingredients, pigments, paints, fillers, and electronic materials.

このような結晶質酸化チタンの形状、大きさ等には特に制限されるものではない。
下記に示す本発明に係るハニカム状酸化チタン粒子には、以上の結晶質酸化チタンに含まれるものもある。
There is no particular limitation on the shape, size, etc. of such crystalline titanium oxide.
Some honeycomb-like titanium oxide particles according to the present invention shown below are included in the above crystalline titanium oxide.

[ハニカム状酸化チタン粒子]
つぎに、本発明に係るハニカム状酸化チタン粒子について説明する。
本発明に係るハニカム状酸化チタン粒子は、平均粒子径が0.5〜10μmの範囲にあり、粒子密度が0.01〜0.2g/mlの範囲にあることを特徴としている。
[Honeycomb-like titanium oxide particles]
Next, the honeycomb-like titanium oxide particles according to the present invention will be described.
The honeycomb-like titanium oxide particles according to the present invention are characterized by having an average particle diameter in the range of 0.5 to 10 μm and a particle density in the range of 0.01 to 0.2 g / ml.

なお、ハニカム状粒子とは概略板状である酸化チタンが集合し、少なくとも粒子の外部表面に開口状態の空洞(マクロポア)を有している。また、このような粒子を毬藻状粒子、ネギ坊主状粒子ということもある。   Note that the honeycomb-like particles are aggregates of substantially plate-like titanium oxide, and have at least open cavities (macropores) on the outer surface of the particles. In addition, such particles are sometimes referred to as diatomaceous particles or leek shaved particles.

本発明のハニカム状酸化チタン粒子の平均粒子径および粒子密度が前記範囲内にあるものは、触媒、触媒担体、吸着剤、光触媒、抗菌剤、消臭剤、光学材料、化粧料配合剤、顔料、塗料、充填剤、エレクトロニクス材料等として非常に有用であり、その機能性にも優れている。   The average particle size and particle density of the honeycomb-like titanium oxide particles of the present invention are within the above ranges. Catalyst, catalyst carrier, adsorbent, photocatalyst, antibacterial agent, deodorant, optical material, cosmetic compounding agent, pigment It is very useful as a paint, a filler, an electronic material, etc., and has excellent functionality.

粒子径は上記範囲であれば、また特に制限されないが、小さいものは、触媒活性が低下したり、基材への配合が困難となることがある。また、粒子径が大きいものは現状得ることが困難である。なお、より効果的な平均粒子径の範囲は1〜8μmである。   The particle diameter is not particularly limited as long as it is in the above range, but if it is small, the catalyst activity may be lowered or it may be difficult to mix with a substrate. Also, it is difficult to obtain a large particle size at present. In addition, the range of a more effective average particle diameter is 1-8 micrometers.

また、ハニカム状酸化チタン粒子は粒子密度が、より効果的には、0.01〜0.1g/mlの範囲である。粒子密度が低いものは、粒子が崩壊しやすく、得ることが困難であり、粒子密度が0.2g/mlを超えるものは得られたとしても、外部表面に開口状態の空洞が少なくなり、本発明の目的とするハニカム状酸化チタン粒子を形成しないことがある。   Further, the honeycomb-like titanium oxide particles have a particle density in a range of 0.01 to 0.1 g / ml more effectively. When the particle density is low, the particles are easy to disintegrate and difficult to obtain. Even when the particle density exceeds 0.2 g / ml, the number of open cavities is reduced on the external surface, The honeycomb-like titanium oxide particles that are the object of the invention may not be formed.

本発明における粒子密度は、メスシリンダーにハニカム状酸化チタン粒子を入れ、木槌で約5分間タッピングし後、ハニカム状酸化チタン粒子の充填容積を計測し、ハニカム状酸化チタン粒子の重量をハニカム状酸化チタン粒子の充填容積で除して求めることができる。   The particle density in the present invention is determined by placing honeycomb-shaped titanium oxide particles in a graduated cylinder, tapping with a mallet for about 5 minutes, measuring the filling volume of the honeycomb-shaped titanium oxide particles, and determining the weight of the honeycomb-shaped titanium oxide particles as the honeycomb shape. It can be obtained by dividing by the filling volume of the titanium oxide particles.

ハニカム状酸化チタン粒子のハニカムを形成する空洞の入り口の大きさ(すなわちマクロポアの径)は、通常0.01〜0.3μmの範囲にある。なお、入り口の大きさが小さいものは、なんら従来の酸化チタン粒子と変わらないことがあり、また入り口の大きさが大きすぎると、空洞壁の厚みが薄くなりすぎて粒子強度が不充分となることがある。ハニカム状粒子の形状保持という点では、入り口の大きさが0.05〜0.2μmの範囲にあるものがより望ましい。   The size of the entrance of the cavity forming the honeycomb of the honeycomb-like titanium oxide particles (that is, the diameter of the macropore) is usually in the range of 0.01 to 0.3 μm. In addition, a small entrance size may not be different from conventional titanium oxide particles, and if the entrance size is too large, the thickness of the cavity wall becomes too thin and the particle strength becomes insufficient. Sometimes. In view of maintaining the shape of the honeycomb-shaped particles, it is more desirable that the size of the entrance is in the range of 0.05 to 0.2 μm.

このような、ハニカム状酸化チタン粒子の走査型電子顕微鏡写真を、図2に示す。
また、本発明のハニカム状酸化チタン粒子の、粒子径、空洞の入り口の大きさおよび空洞壁の厚みは、粒子の走査型電子顕微鏡写真(SEM)を撮影し、写真に於ける粒子の中心部の空洞10個(程度)についてノギスを用いて測定し、このような測定を20個の粒子について実施し、その平均値として求めることができる。
A scanning electron micrograph of such honeycomb-like titanium oxide particles is shown in FIG.
The honeycomb-shaped titanium oxide particles of the present invention were measured for particle diameter, cavity entrance size, and cavity wall thickness by taking a scanning electron micrograph (SEM) of the particles, 10 cavities (about) are measured using calipers, and such measurement is performed on 20 particles, and the average value can be obtained.

ハニカム状酸化チタン粒子のハニカムを形成する空洞の入り口径は、通常、前記粒子径の1/100〜1/5の範囲にある。
また、空洞壁の厚みは、通常1〜20nmの範囲にある。なお、空洞壁の厚みが薄ものは、粒子強度が不充分となり、厚いものは、得られたとしても空洞入り口径が小さ過ぎたり、粒子密度が高くなり、本発明の目的の形状を構成しない場合がある。空洞壁の厚みが、特に2〜15nmの範囲にあると、目的の形状が保持されるとともに、強度の高いハニカム状酸化チタン粒子を得ることができる。
The entrance diameter of the cavity forming the honeycomb of the honeycomb-like titanium oxide particles is usually in the range of 1/100 to 1/5 of the particle diameter.
The thickness of the cavity wall is usually in the range of 1 to 20 nm. In addition, when the thickness of the cavity wall is thin, the particle strength is insufficient. Even when the thickness is large, the diameter of the cavity entrance is too small or the particle density becomes high, and does not constitute the object shape of the present invention. There is a case. When the thickness of the cavity wall is particularly in the range of 2 to 15 nm, the desired shape can be maintained and honeycomb-like titanium oxide particles having high strength can be obtained.

このようなハニカム状酸化チタン粒子は、X線回折において、少なくとも2θ=24.10°、2θ=28.22°、2θ=48.16°に回折ピークを有することが好ましく、結晶子径が4〜20nmの範囲にあることが好ましい。   Such honeycomb-like titanium oxide particles preferably have a diffraction peak at least 2θ = 24.10 °, 2θ = 28.22 °, 2θ = 48.16 ° in X-ray diffraction, and have a crystallite diameter of 4 It is preferable to be in the range of ˜20 nm.

本発明に係る新規なハニカム状酸化チタン粒子は、従来の繊維状、板状アナタースやルチルなどの酸化チタンに比べて、触媒担持量や吸着量が大きく、さらには外部に開放された空洞を有し、この空洞の径が0.01〜0.3μmと大きいために、この空洞に別の活性成分として、粒子径が約0.01〜0.1μmの活性成分を析出させたり、あらかじめ、粒子径などを最適となるように調製した金属コロイド粒子、無機酸化物粒子などを担持
することができる。このため、触媒、触媒担体、吸着剤、光触媒、光学材料、化粧料配合剤、顔料、塗料、充填剤、エレクトロニクス材料等の用途に好適に使用できる。
The novel honeycomb-like titanium oxide particles according to the present invention have a larger amount of catalyst supported and adsorbed than conventional titanium oxides such as fibrous, plate-like anatase and rutile, and also have cavities opened to the outside. Since the cavity has a large diameter of 0.01 to 0.3 μm, an active ingredient having a particle diameter of about 0.01 to 0.1 μm is deposited in the cavity as another active ingredient. Metal colloidal particles, inorganic oxide particles and the like prepared to optimize the diameter can be supported. For this reason, it can be suitably used for applications such as a catalyst, a catalyst carrier, an adsorbent, a photocatalyst, an optical material, a cosmetic compounding agent, a pigment, a paint, a filler, and an electronic material.

さらに各種成型体に成型加工してもよく、加工方法としては特に制限されない。
以上のような結晶性酸化チタンおよびハニカム状酸化チタン粒子は、以下の製造方法で製造することができる。
Furthermore, it may be molded into various molded bodies, and the processing method is not particularly limited.
The crystalline titanium oxide and honeycomb-like titanium oxide particles as described above can be produced by the following production method.

[製造方法]
本発明に係る新規酸化チタンの製造方法は、酸化チタン粉末をアルカリ水溶液に混合し、無撹拌下、130〜200℃で水熱処理し、ついで、60℃以下に冷却し、24時間以上静置することを特徴としている。
[Production method]
In the method for producing a novel titanium oxide according to the present invention, a titanium oxide powder is mixed with an alkaline aqueous solution, hydrothermally treated at 130 to 200 ° C. without stirring, then cooled to 60 ° C. or lower and allowed to stand for 24 hours or longer. It is characterized by that.

酸化チタン粉末としては、天然あるいは合成の酸化チタンを用いることができ、天然の酸化チタンとしては天然ルチル鉱、キンコウ石等が挙げられ、合成酸化チタンとしては、従来公知の酸化チタンを用いることができ、例えば、塩化チタン、硫酸チタニルなどを水酸化ナトリウムなどの塩基で中和して得た水酸化チタンを加熱焼成して得られる酸化チタン等が挙げられる。   As the titanium oxide powder, natural or synthetic titanium oxide can be used. Examples of the natural titanium oxide include natural rutile or cinnabarite. Conventionally known titanium oxide can be used as the synthetic titanium oxide. Examples thereof include titanium oxide obtained by heating and baking titanium hydroxide obtained by neutralizing titanium chloride, titanyl sulfate and the like with a base such as sodium hydroxide.

なかでも天然ルチル鉱を用いると、理由は定かではないが、本発明に係る新規な結晶構造および/またはハニカム粒子構造を有する酸化チタンを容易に得ることができる。
酸化チタン粉末は粒子径が10〜500μm、さらには30〜300μmの範囲にあることが好ましい。酸化チタン粉末の粒子径が小さい場合、理由は明らかではないが、ハニカム状酸化チタンが得られないことがある。酸化チタン粉末の粒子径が大きすぎると、後述するアルカリへの溶解速度が小さいためか、新規な結晶性を有する酸化チタンやハニカム状酸化チタンが得られないことがある。
Among these, when natural rutile ore is used, the titanium oxide having a novel crystal structure and / or honeycomb particle structure according to the present invention can be easily obtained, although the reason is not clear.
The titanium oxide powder preferably has a particle size in the range of 10 to 500 μm, more preferably 30 to 300 μm. When the particle diameter of the titanium oxide powder is small, the reason is not clear, but honeycomb-like titanium oxide may not be obtained. If the particle diameter of the titanium oxide powder is too large, titanium oxide or honeycomb-like titanium oxide having novel crystallinity may not be obtained because the dissolution rate in alkali described later is low.

このような酸化チタン粉末をアルカリ水溶液に混合する。アルカリ水溶液としてはNaOH、KOH等の水溶液が用いられ、このとき、酸化チタン粉末のモル数(MT)とアル
カリのモル数(MA)との比(MA)/(MT)が10〜300さらには20〜250の範
囲にあることが好ましい。この範囲であれば、新規な結晶性を有する酸化チタンやハニカム状酸化チタンを得ることができる。
Such titanium oxide powder is mixed in an alkaline aqueous solution. As the alkali aqueous solution NaOH, aqueous KOH or the like is used, this time, the number of moles of titanium oxide powder (M T) and the number of moles of alkali (M A) and the ratio of (M A) / (M T ) is 10 It is preferably in the range of ˜300, more preferably 20˜250. Within this range, titanium oxide or honeycomb-like titanium oxide having novel crystallinity can be obtained.

なお、(MA)/(MT)が低いと、酸化チタン粉末のアルカリへの溶解が不充分となったり、結晶化速度が小さくなるためかハニカム状酸化チタンが得られないことがある。(MA)/(MT)が高すぎても新規な結晶性を有する酸化チタンやハニカム状酸化チタンが得られないことがある。 If (M A ) / (M T ) is low, honeycomb-like titanium oxide may not be obtained because the titanium oxide powder is not sufficiently dissolved in alkali or the crystallization rate is low. Even if (M A ) / (M T ) is too high, titanium oxide or honeycomb-like titanium oxide having novel crystallinity may not be obtained.

アルカリ水溶液中の酸化チタン粉末の濃度はTiO2として0.3〜2重量%、さらには0.5〜1.5重量%の範囲にあることが好ましい。
アルカリ水溶液中の酸化チタン粉末の濃度が低い場合は、ハニカム状酸化チタンの結晶体が得られない場合があり、高すぎても、原料の酸化チタン粉末が残存し、新規な結晶性を有する酸化チタンに、原料に由来する結晶性が存在したり、得られるハニカム状酸化チタン粒子の純度が低下することがある。
The concentration of the titanium oxide powder in the alkaline aqueous solution is preferably in the range of 0.3 to 2 % by weight, more preferably 0.5 to 1.5% by weight as TiO 2 .
When the concentration of titanium oxide powder in the alkaline aqueous solution is low, honeycomb-like titanium oxide crystals may not be obtained. Even if the concentration is too high, the raw material titanium oxide powder remains, and the oxide has novel crystallinity. Titanium may have crystallinity derived from raw materials, or the purity of the resulting honeycomb-like titanium oxide particles may be lowered.

ついで、酸化チタン粉末を混合したアルカリ水溶液を130〜200℃、好ましくは150〜180℃に昇温し、20〜100時間、好ましくは30〜70時間水熱処理する。
このとき、酸化チタン粉末をアルカリ水溶液に混合する際および昇温時を除いて,
撹拌しないことが好ましい。昇温後、撹拌すると水熱処理後の時点で繊維状酸化チタンあるいは管状酸化チタンが生成し、前記した本発明に係る新規な結晶構造の酸化チタンや、ハニカム状酸化チタン粒子が得られないことがある。
Next, the aqueous alkali solution mixed with the titanium oxide powder is heated to 130 to 200 ° C., preferably 150 to 180 ° C., and hydrothermally treated for 20 to 100 hours, preferably 30 to 70 hours.
At this time, except when mixing the titanium oxide powder into the alkaline aqueous solution and at the time of raising the temperature,
It is preferable not to stir. When the temperature is raised and stirred, fibrous titanium oxide or tubular titanium oxide is formed at the time after hydrothermal treatment, and the above-described novel crystalline titanium oxide or honeycomb-like titanium oxide particles according to the present invention cannot be obtained. is there.

水熱処理後、撹拌することなく60℃以下、好ましくは室温まで冷却したのち、24時間以上、好ましくは48時間以上静置する。
冷却する際に撹拌すると、前記した本発明に係る新規な結晶構造の酸化チタンや、ハニカム状酸化チタン粒子が得られないことがある。
After the hydrothermal treatment, after cooling to 60 ° C. or lower, preferably room temperature, without stirring, the mixture is allowed to stand for 24 hours or longer, preferably 48 hours or longer.
When stirring during cooling, the above-described titanium oxide having a novel crystal structure and honeycomb-like titanium oxide particles according to the present invention may not be obtained.

静置温度が高いと、本発明の新規な結晶性を有する酸化チタンやハニカム状酸化チタンが得られないことがある。
また、静置時間が短いと、本発明に係る新規な結晶構造および/または粒子構造を有する酸化チタンの結晶性、粒子成長が不充分であったり、収率が不充分となることがある。
If the standing temperature is high, the novel crystalline titanium oxide or honeycomb-like titanium oxide of the present invention may not be obtained.
If the standing time is short, the crystallinity and particle growth of the titanium oxide having the novel crystal structure and / or particle structure according to the present invention may be insufficient, or the yield may be insufficient.

このようにして前記した本発明に係る新規な新規な結晶構造の酸化チタンや、ハニカム状酸化チタン粒子が得られる。また、必要に応じて濾過分離し、洗浄し、乾燥し、加熱処理してもよい。   In this way, titanium oxide having a novel novel crystal structure and honeycomb-like titanium oxide particles according to the present invention described above can be obtained. Further, it may be separated by filtration, washed, dried and heat-treated as necessary.

洗浄方法としてはアルカリを除去できれば特に制限はなく、従来公知の方法を採用することができる。例えば、純水あるいは塩酸などの酸性水を掛けたり、限外濾過膜法、イオン交換樹脂法等を用いることができる。   The washing method is not particularly limited as long as the alkali can be removed, and a conventionally known method can be employed. For example, pure water or acidic water such as hydrochloric acid can be applied, an ultrafiltration membrane method, an ion exchange resin method, or the like can be used.

乾燥方法も従来公知の方法を採用することができ、さらに、加熱処理する方法としては、使用目的によって、雰囲気(酸化雰囲気、還元雰囲気、不活性ガス雰囲気等)、温度を適宜選択することができる。   As a drying method, a conventionally known method can be adopted. Further, as a heat treatment method, an atmosphere (oxidizing atmosphere, reducing atmosphere, inert gas atmosphere, etc.) and temperature can be appropriately selected depending on the purpose of use. .

このようにして得られた酸化チタンは、X線回折において、少なくとも2θ=24.10°、2θ=28.22°、2θ=48.16°に回折ピークを有し、新規な結晶構造を有しており、結晶質酸化チタンは結晶子径が4〜20nmの範囲にある。   The titanium oxide obtained in this manner has a diffraction peak at least at 2θ = 24.0 °, 2θ = 28.22 °, 2θ = 48.16 ° in X-ray diffraction, and has a novel crystal structure. The crystalline titanium oxide has a crystallite diameter in the range of 4 to 20 nm.

また、得られた酸化チタンは、ハニカム状(毬藻状)酸化チタン粒子であり、平均粒子径が0.5〜10μmの範囲にあり、粒子密度が0.01〜0.2g/mlの範囲にある。   Further, the obtained titanium oxide is honeycomb (diatomaceous) titanium oxide particles, the average particle diameter is in the range of 0.5 to 10 μm, and the particle density is in the range of 0.01 to 0.2 g / ml. is there.

平均粒子径を制御するには、出発原料である酸化チタン粉末の粒子径、酸化チタン粉末のアルカリ水溶液中での濃度、酸化チタン粉末とアルカリのモル比などを調節するなどの方法で行われ、たとえば平均粒子径を前記範囲で大きくするには、酸化チタン粉末の粒子径を大きくしてアルカリへの溶解速度を小さくすればよい。   In order to control the average particle size, it is performed by a method such as adjusting the particle size of the titanium oxide powder as a starting material, the concentration of the titanium oxide powder in an alkaline aqueous solution, the molar ratio of the titanium oxide powder and the alkali, For example, in order to increase the average particle size within the above range, the particle size of the titanium oxide powder may be increased to decrease the dissolution rate in alkali.

また上記と同様にして、たとえば、粒子密度を前記範囲で大きくするには、酸化チタン粉末の粒子径を小さくすればよい。
また、得られたハニカム状粒子を粉砕などして、形状を破壊すれば、ハニカム状ではないが、上記新規な結晶構造を有する酸化チタンを得ることができる。必ずしも上記新規な結晶構造を有しないもののハニカム状の酸化チタン粒子を得ることも可能である。
In the same manner as described above, for example, in order to increase the particle density within the above range, the particle diameter of the titanium oxide powder may be decreased.
Further, if the obtained honeycomb-like particles are pulverized to destroy the shape, titanium oxide having the above novel crystal structure can be obtained although it is not honeycomb-like. It is also possible to obtain honeycomb-like titanium oxide particles that do not necessarily have the novel crystal structure.

[実施例]
以下、実施例により説明するが、本発明はこれらの実施例により限定されるものではない。
[実施例1]
酸化チタン(1)の調製
粉砕した天然ルチル鉱粉末(Tiwest Sales Pty. Ltd.製:平均粒子径150μm)1.2gを濃度40重量%のNaOH水溶液200mlに混合した。このとき、酸化チタン粉末のモル数(MT)とアルカリのモル数(MA)との比(MA)/(MT)は133であった
[Example]
Hereinafter, although an example explains, the present invention is not limited by these examples.
[Example 1]
Preparation of Titanium Oxide (1) 1.2 g of pulverized natural rutile ore powder (manufactured by Tiwest Sales Pty. Ltd .: average particle diameter 150 μm) was mixed with 200 ml of NaOH aqueous solution having a concentration of 40% by weight. In this case, the ratio of the moles of titanium oxide powder (M T) and the number of moles of alkali (M A) (M A) / (M T) was 133.

酸化チタン粉末混合アルカリ水溶液をオートクレーブに充填し、撹拌することなく180℃に昇温し、50時間水熱処理した。その後、25℃に冷却し、48時間静置した。
ついで、濾過分離し、1Nの塩酸10gを含む1000gの蒸留水をかけて洗浄し、120℃で16時間乾燥して酸化チタン(1)を調製した。
The autoclave was filled with a titanium oxide powder mixed alkali aqueous solution, heated to 180 ° C. without stirring, and hydrothermally treated for 50 hours. Then, it cooled to 25 degreeC and left still for 48 hours.
Subsequently, it was separated by filtration, washed with 1000 g of distilled water containing 10 g of 1N hydrochloric acid, and dried at 120 ° C. for 16 hours to prepare titanium oxide (1).

得られた酸化チタン(1)について、X線回折により回折ピーク、結晶子径を測定した。
X線回折ピークを図1に示した。
なお、主要回折ピークについては、2θが24.10、28.22、48.16における回折の強度を
強(S)、中(M)、弱(W)として表した。
With respect to the obtained titanium oxide (1), a diffraction peak and a crystallite diameter were measured by X-ray diffraction.
The X-ray diffraction peak is shown in FIG.
For the main diffraction peak, the diffraction intensity at 2θ of 24.10, 28.22, and 48.16 was expressed as strong (S), medium (M), and weak (W).

また、得られた粒子の走査型電子顕微鏡写真を撮影し、図2に示すとともに平均粒子径、空洞の入り口の大きさおよび空洞壁の厚みを測定した。
さらにまた、前記した方法で粒子密度を測定した。結果を表1に示す。
Further, a scanning electron micrograph of the obtained particles was taken, and the average particle diameter, the size of the cavity entrance, and the thickness of the cavity wall were measured as shown in FIG.
Furthermore, the particle density was measured by the method described above. The results are shown in Table 1.

[実施例2]
酸化チタン(2)の調製
実施例1において、天然ルチル鉱粉末を濃度60重量%のNaOH水溶液200mlに混合し、酸化チタン粉末のモル数(MT)とアルカリのモル数(MA)との比(MA)/(
T)は200とした以外は同様にして酸化チタン(2)を調製した。得られた酸化チタン(2)について、X線回折により主要回折ピークの強度、結晶子径、平均粒子径、空洞の入り口の大きさおよび空洞壁の厚み、粒子密度を測定した。結果を表1に示す。
[Example 2]
Preparation of Titanium Oxide (2) In Example 1, natural rutile ore powder was mixed with 200 ml of NaOH aqueous solution having a concentration of 60% by weight, and the number of moles of titanium oxide powder (M T ) and the number of moles of alkali (M A ) Ratio (M A ) / (
Titanium oxide (2) was prepared in the same manner except that M T was 200. With respect to the obtained titanium oxide (2), the intensity of the main diffraction peak, crystallite diameter, average particle diameter, cavity entrance size, cavity wall thickness, and particle density were measured by X-ray diffraction. The results are shown in Table 1.

[実施例3]
酸化チタン(3)の調製
実施例1において、天然ルチル鉱粉末を濃度32重量%のNaOH水溶液200mlに混合し、酸化チタン粉末のモル数(MT)とアルカリのモル数(MA)との比(MA)/(
T)は106とした以外は同様にして酸化チタン(3)を調製した。得られた酸化チタン(3)について、X線回折により主要回折ピークの強度、結晶子径、平均粒子径、空洞の入り口の大きさおよび空洞壁の厚み、粒子密度を測定した。結果を表1に示す。
[Example 3]
Preparation of Titanium Oxide (3) In Example 1, natural rutile ore powder was mixed with 200 ml of NaOH aqueous solution having a concentration of 32% by weight, and the number of moles of titanium oxide powder (M T ) and the number of moles of alkali (M A ) Ratio (M A ) / (
Titanium oxide (3) was prepared in the same manner except that M T ) was 106. With respect to the obtained titanium oxide (3), the intensity of the main diffraction peak, the crystallite diameter, the average particle diameter, the size of the cavity entrance, the thickness of the cavity wall, and the particle density were measured by X-ray diffraction. The results are shown in Table 1.

[実施例4]
酸化チタン(4)の調製
実施例1において、水熱処理温度を150℃で実施した以外は同様にして酸化チタン(4)を調製した。得られた酸化チタン(4)について、X線回折により主要回折ピークの強度、
結晶子径、平均粒子径、空洞の入り口の大きさおよび空洞壁の厚み、粒子密度を測定した。結果を表1に示す。
[Example 4]
Preparation of titanium oxide (4) Titanium oxide (4) was prepared in the same manner as in Example 1 except that the hydrothermal treatment temperature was 150 ° C. About the obtained titanium oxide (4), the intensity of the main diffraction peak by X-ray diffraction,
The crystallite size, average particle size, cavity entrance size, cavity wall thickness, and particle density were measured. The results are shown in Table 1.

[実施例5]
酸化チタン(5)の調製
実施例1において、水熱処理温度を195℃で実施した以外は同様にして酸化チタン(5)を調製した。得られた酸化チタン(5)について、X線回折により主要回折ピークの強度、
結晶子径、平均粒子径、空洞の入り口の大きさおよび空洞壁の厚み、粒子密度を測定した。結果を表1に示す。
[Example 5]
Preparation of titanium oxide (5) Titanium oxide (5) was prepared in the same manner as in Example 1 except that the hydrothermal treatment temperature was 195 ° C. About the obtained titanium oxide (5), the intensity of the main diffraction peak by X-ray diffraction,
The crystallite size, average particle size, cavity entrance size, cavity wall thickness, and particle density were measured. The results are shown in Table 1.

[実施例6]
酸化チタン(6)の調製
実施例1において、天然ルチル鉱粉末を濃度40重量%のKOH水溶液200mlに混合し、酸化チタン粉末のモル数(MT)とアルカリのモル数(MA)との比(MA)/(MT
)は133とした以外は同様にして酸化チタン(6)を調製した。得られた酸化チタン(6)について、X線回折により主要回折ピークの強度、結晶子径、平均粒子径、空洞の入り口の
大きさおよび空洞壁の厚み、粒子密度を測定した。結果を表1に示す。
[Example 6]
Preparation of Titanium Oxide (6) In Example 1, natural rutile ore powder was mixed with 200 ml of KOH aqueous solution having a concentration of 40% by weight, and the number of moles of titanium oxide powder (M T ) and the number of moles of alkali (M A ) Ratio (M A ) / (M T
) Prepared titanium oxide (6) in the same manner except that it was 133. With respect to the obtained titanium oxide (6), the intensity of the main diffraction peak, the crystallite diameter, the average particle diameter, the size of the cavity entrance, the thickness of the cavity wall, and the particle density were measured by X-ray diffraction. The results are shown in Table 1.

[実施例7]
酸化チタン(7)の調製
実施例1において、酸化チタン粉末として天然ルチル鉱粉末(Tiwest Sales Pty. Ltd.製:平均粒子径40μm)1.2gを濃度40重量%のNaOH水溶液 200mlに混合し、酸化チタン粉末のモル数(MT)とアルカリのモル数(MA)との比(MA)/(
T)は133とした以外は同様にして酸化チタン(7)を調製した。得られた酸化チタン(7)について、X線回折により主要回折ピークの強度、結晶子径、平均粒子径、空洞の入り口の大きさおよび空洞壁の厚み、粒子密度を測定した。結果を表1に示す。
[Example 7]
Preparation of titanium oxide (7) In Example 1, 1.2 g of natural rutile ore powder (manufactured by Tiwest Sales Pty. Ltd .: average particle size 40 μm) as titanium oxide powder was mixed with 200 ml of NaOH aqueous solution having a concentration of 40 wt%, the ratio of the moles of titanium oxide powder (M T) and the number of moles of alkali (M a) (M a) / (
Titanium oxide (7) was prepared in the same manner except that M T ) was 133. With respect to the obtained titanium oxide (7), the intensity of the main diffraction peak, the crystallite diameter, the average particle diameter, the size of the cavity entrance, the thickness of the cavity wall, and the particle density were measured by X-ray diffraction. The results are shown in Table 1.

[比較例1]
酸化チタン(R1)の調製
実施例1において、水熱処理を撹拌下で行い、その後の静置を実施しなかった以外は同様にして酸化チタン(R1)を調製した。得られた酸化チタン(R1)について同様に評価したところ、X線回折により結晶型がアナターゼで、長さが10μm、径が0.06μmの繊維
状酸化チタン粒子であった。
[Comparative Example 1]
Preparation of Titanium Oxide (R1) Titanium oxide (R1) was prepared in the same manner as in Example 1 except that hydrothermal treatment was performed with stirring and the subsequent standing was not performed. When the obtained titanium oxide (R1) was evaluated in the same manner, it was fibrous titanium oxide particles having a crystal form of anatase, a length of 10 μm, and a diameter of 0.06 μm by X-ray diffraction.

[比較例2]
酸化チタン(R2)の調製
実施例1において、水熱処理を撹拌下で行った以外は同様にして酸化チタン(R2)を調製した。得られた酸化チタン(R2)について、同様に評価したところ、X線回折により結晶型
がアナターゼで、長さが10μm、径が0.05μmの繊維状酸化チタン粒子であった。
[Comparative Example 2]
Preparation of titanium oxide (R2) Titanium oxide (R2) was prepared in the same manner as in Example 1 except that hydrothermal treatment was performed under stirring. When the obtained titanium oxide (R2) was evaluated in the same manner, it was fibrous titanium oxide particles having a crystal form of anatase, a length of 10 μm, and a diameter of 0.05 μm by X-ray diffraction.

[比較例3]
酸化チタン(R3)の調製
実施例1において、水熱処理後、静置でなく撹拌しながら放置した以外は同様にして酸化チタン(R3)を調製した。得られた酸化チタン(R3)について同様に評価したところ、評価したところ、X線回折により結晶型が無定型で、粒子は凝集物であった。なお、繊維状の
粒子は得られなかった。
[Comparative Example 3]
Preparation of Titanium Oxide (R3) Titanium oxide (R3) was prepared in the same manner as in Example 1 except that the hydrothermal treatment was allowed to stand with stirring instead of standing still. The obtained titanium oxide (R3) was evaluated in the same manner. As a result, the crystal form was amorphous by X-ray diffraction, and the particles were aggregates. In addition, fibrous particles were not obtained.

[比較例4]
酸化チタン(R4)の調製
実施例1において、水熱処理を撹拌下で行い、ついで、静置せずに撹拌しながら放置した以外は同様にして酸化チタン(R4)を調製した。得られた酸化チタン(R4)について同様に評価したところ、X線回折により結晶型がアナターゼで、長さが10μm、径が0.05
μmの繊維状酸化チタン粒子であった。
[Comparative Example 4]
Preparation of Titanium Oxide (R4) Titanium oxide (R4) was prepared in the same manner as in Example 1 except that hydrothermal treatment was performed with stirring, and then the mixture was left standing without stirring. When the obtained titanium oxide (R4) was evaluated in the same manner, the crystal type was anatase by X-ray diffraction, the length was 10 μm, and the diameter was 0.05.
It was a fibrous titanium oxide particle of μm.

本発明に係る新規結晶質酸化チタンのX線回折パターンを示す(実施例1で調製したもの)1 shows an X-ray diffraction pattern of a novel crystalline titanium oxide according to the present invention (prepared in Example 1). 本発明に係るハニカム状酸化チタン粒子の走査型電子顕微鏡写真を示す。1 shows a scanning electron micrograph of honeycomb-like titanium oxide particles according to the present invention.

Claims (9)

X線回折において、少なくとも2θ=24.10°、2θ=28.22°、2θ=48.16°に回折ピークを有する結晶質酸化チタン。   Crystalline titanium oxide having a diffraction peak at least 2θ = 24.10 °, 2θ = 28.22 °, 2θ = 48.16 ° in X-ray diffraction. 結晶子径が4〜20nmの範囲にあることを特徴とする請求項1に記載の結晶質酸化チタン。   The crystalline titanium oxide according to claim 1, wherein the crystallite diameter is in the range of 4 to 20 nm. X線回折において、少なくとも2θ=24.10°、2θ=28.22°、2θ=48.16°に回折ピークを有し、平均粒子径が0.5〜10μmの範囲にあり、粒子密度が0.01〜0.2g/mlの範囲にあることを特徴とするハニカム状酸化チタン粒子。 In X-ray diffraction, it has a diffraction peak at least at 2θ = 24.10 °, 2θ = 28.22 °, 2θ = 48.16 °, an average particle diameter is in the range of 0.5 to 10 μm, and the particle density is Honeycomb-like titanium oxide particles characterized by being in the range of 0.01 to 0.2 g / ml. 前記ハニカムを形成する空洞の(入り口の)大きさが0.01〜0.3μmの範囲にあり、空洞壁の厚みが1〜20nmの範囲にあることを特徴とする請求項3に記載のハニカム状酸化チタン粒子。   The honeycomb according to claim 3, wherein a size of the cavity (inlet) forming the honeycomb is in a range of 0.01 to 0.3 µm, and a thickness of a cavity wall is in a range of 1 to 20 nm. Titanium oxide particles. 結晶子径が4〜20nmの範囲にあることを特徴とする請求項3または4に記載のハニカム状酸化チタン粒子。 The honeycomb-like titanium oxide particles according to claim 3 or 4 , wherein the crystallite diameter is in the range of 4 to 20 nm. 酸化チタン粉末をアルカリ水溶液に混合し、無撹拌下、130〜200℃で20〜100時間水熱処理し、ついで、60℃以下に冷却し、24時間以上静置することを特徴とする請求項1または2に記載の結晶質酸化チタンの製造方法。   The titanium oxide powder is mixed with an alkaline aqueous solution, hydrothermally treated at 130 to 200 ° C. for 20 to 100 hours without stirring, then cooled to 60 ° C. or lower and allowed to stand for 24 hours or longer. Alternatively, the method for producing crystalline titanium oxide according to 2. 酸化チタン粉末をアルカリ水溶液に混合し、無撹拌下、130〜200℃で20〜100時間水熱処理し、ついで、60℃以下に冷却し、24時間以上静置することを特徴とする請求項3〜のいずれかに記載のハニカム状酸化チタン粒子の製造方法。 The titanium oxide powder is mixed with an alkaline aqueous solution, hydrothermally treated at 130 to 200 ° C. for 20 to 100 hours without stirring, then cooled to 60 ° C. or less and left to stand for 24 hours or more. the method for manufacturing a honeycomb-shaped titanium oxide particles according to any one of 1 to 5. 前記酸化チタン粉末が天然ルチル鉱を粉砕したものであることを特徴とする請求項6または7に記載の製造方法。 The production method according to claim 6 or 7 , wherein the titanium oxide powder is obtained by pulverizing natural rutile ore. 前記酸化チタン粉末のモル数(MT)とアルカリのモル数(MA)との比(MA)/(MT)が10〜300の範囲にあることを特徴とする請求項6または7に記載の酸化チタンの製造方法。 Claim 6 or 7 wherein the number of moles of titanium oxide powder (M T) and the number of moles of alkali (M A) and the ratio of (M A) / (M T ) is being in the range of 10-300 The manufacturing method of the titanium oxide as described in 2.
JP2005304672A 2005-10-19 2005-10-19 Novel titanium oxide and method for synthesizing novel titanium oxide Active JP5062988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304672A JP5062988B2 (en) 2005-10-19 2005-10-19 Novel titanium oxide and method for synthesizing novel titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304672A JP5062988B2 (en) 2005-10-19 2005-10-19 Novel titanium oxide and method for synthesizing novel titanium oxide

Publications (2)

Publication Number Publication Date
JP2007112655A JP2007112655A (en) 2007-05-10
JP5062988B2 true JP5062988B2 (en) 2012-10-31

Family

ID=38095176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304672A Active JP5062988B2 (en) 2005-10-19 2005-10-19 Novel titanium oxide and method for synthesizing novel titanium oxide

Country Status (1)

Country Link
JP (1) JP5062988B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5298282B2 (en) * 2008-10-03 2013-09-25 佐賀県 Method for producing titanium oxide particles
US8197779B2 (en) * 2009-01-08 2012-06-12 Lg Hausys, Ltd. Catalyst for removing nitrogen oxides from exhaust gas, method for preparing the same and method for removing nitrogen oxides using the same from exhaust gas
JP2014186033A (en) * 2014-04-04 2014-10-02 Sakai Chem Ind Co Ltd Cesium adsorbent containing titanium hydroxide
CN113521384B (en) * 2021-07-05 2022-05-10 湖南湘投金天钛金属股份有限公司 Titanium-based material and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617928A (en) * 1979-07-23 1981-02-20 Natl Inst For Res In Inorg Mater Manufacture of titania hydrate fiber, titania glass fiber and titania fiber
JPS61187939A (en) * 1985-02-14 1986-08-21 Natl Inst For Res In Inorg Mater Adsorption of barium in aqueous solution, ion-exchange material and method for fixing barium
JPS61256922A (en) * 1986-02-14 1986-11-14 Natl Inst For Res In Inorg Mater Immobilizing method for strontium incorporated in aqueous solution
JP2704351B2 (en) * 1992-11-16 1998-01-26 大塚化学株式会社 Monoclinic titanium dioxide fiber and method for producing the same
JP3925886B2 (en) * 1998-12-25 2007-06-06 テイカ株式会社 Spherical titanium dioxide aggregate formed from small spherical particles of titanium dioxide and method for producing the same
JP3616927B1 (en) * 2004-03-17 2005-02-02 義和 鈴木 Method for producing titanium oxide-based fine wire product

Also Published As

Publication number Publication date
JP2007112655A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
KR102298817B1 (en) Titania particles and a process for their production
JP4093744B2 (en) Method for producing tubular titanium oxide particles and tubular titanium oxide particles
JP3076844B1 (en) Mesoporous titanium oxide porous body and method for producing the same
JP4698981B2 (en) Fibrous titanium oxide particles, method for producing the same, and uses of the particles
US7223377B2 (en) Process for producing micro-mesoporous metal oxide having regulated pores formed by novel template removal method
Wang et al. 7 Preparation of
JP2008542190A (en) Rutile titania catalyst support
JPH1095617A (en) Plate-shaped titanium oxide, production thereof, and anti-sunburn cosmetic material, resin composition, coating material, adsorbent, ion exchanging resin, complex oxide precursor containing the same
JP4515337B2 (en) Porous titania for hydrotreating and hydrotreating method
JP5062988B2 (en) Novel titanium oxide and method for synthesizing novel titanium oxide
KR100814951B1 (en) Production method of transition metal doped titanate dioxide nano-tube
US8357348B2 (en) Method for preparing uniform anatase-type titanium dioxide nanoparticles
WO2014140840A2 (en) Rutile titanium dioxide microspheres and ordered botryoidal shapes of same
MXPA04004265A (en) Nanostructured titanium oxide material and method of obtaining same.
Visinescu et al. Additive-free 1, 4-butanediol mediated synthesis: a suitable route to obtain nanostructured, mesoporous spherical zinc oxide materials with multifunctional properties
JP2004122056A (en) Porous titanium oxide and production method of the same
JP4220495B2 (en) Titanium oxide dried product
JP4424905B2 (en) Anatase type titania-silica composite, production method thereof and photocatalytic material
KR100670944B1 (en) Process for preparing titanate and titanium oxynitride
KR100664751B1 (en) Preparation of titania nanotubes
Rhee et al. Synthesis of nitrogen-doped titanium oxide nanostructures via a surfactant-free hydrothermal route
KR101808034B1 (en) Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method
JP2012158500A (en) Composite having cerium oxide nanoparticle dispersed into zeolite, and method for producing the same
JP2011225396A (en) Method for producing porous transparent thin film comprising anatase nanocrystal of titanium oxide, porous transparent thin film and porous transparent thin film photocatalyst
KR101825137B1 (en) Preparing method of titanium oxide derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Ref document number: 5062988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250