JPS5940767B2 - Manufacturing method of amorphous titania - Google Patents

Manufacturing method of amorphous titania

Info

Publication number
JPS5940767B2
JPS5940767B2 JP3013480A JP3013480A JPS5940767B2 JP S5940767 B2 JPS5940767 B2 JP S5940767B2 JP 3013480 A JP3013480 A JP 3013480A JP 3013480 A JP3013480 A JP 3013480A JP S5940767 B2 JPS5940767 B2 JP S5940767B2
Authority
JP
Japan
Prior art keywords
chikunya
hydrate
alkali metal
component
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3013480A
Other languages
Japanese (ja)
Other versions
JPS55136125A (en
Inventor
良規 藤木
進啓 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP3013480A priority Critical patent/JPS5940767B2/en
Publication of JPS55136125A publication Critical patent/JPS55136125A/en
Publication of JPS5940767B2 publication Critical patent/JPS5940767B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は陽イオン交換剤、陽イオン吸着剤、触媒及び触
媒の担体、沢過剤などとして優れた性能を有する非晶質
チタニヱの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing amorphous titanium which has excellent performance as a cation exchanger, a cation adsorbent, a catalyst and catalyst carrier, a filtering agent, and the like.

従来、アルコキシドチタンを加水分解して非晶質のチク
ニヤ水和物を作る方法は知られている。
Conventionally, a method for producing amorphous chikunya hydrate by hydrolyzing titanium alkoxide has been known.

この方法によって得られる非晶質チクニヤ水和物は、処
理条件により比表面積や粒度に大きな差異を生じ反応性
が著しく変化したり、脱水して非晶質チクニャを得よう
とすると、脱水と同時に結晶化が起こり、無水の非晶質
チクニャを得ることが困難であった。
The amorphous chikunya hydrate obtained by this method has a large difference in specific surface area and particle size depending on the processing conditions, and the reactivity changes markedly. Crystallization occurred and it was difficult to obtain anhydrous amorphous chikuna.

本発明はチクニヤ水和物から脱水により無水の非晶質チ
クニャを得る方法を提供せんとするものである。
The present invention aims to provide a method for obtaining anhydrous amorphous chikunya by dehydration from chikunya hydrate.

本発明は、結晶相のチタン酸アルカリ金属M20−nT
t02 (ただし、MはNa、に、RbまたはCsを
表わし、nは1〜6である)の組成の化合物を、酸水溶
液で処理してM20成分を抽出し、TiO2・n H2
0の組成のチクニヤ水和物となし、得られた水和物を2
00℃以上でアナターゼ結晶化温度より低い温度で脱水
処理する方法にある。
The present invention provides crystalline phase alkali metal titanate M20-nT
A compound with a composition of t02 (where M represents Na, Rb or Cs, and n is 1 to 6) is treated with an acid aqueous solution to extract the M20 component, and TiO2.n H2
Chikunya hydrate with a composition of 0 and the obtained hydrate with a composition of 2
The method involves dehydration treatment at a temperature of 00°C or higher and lower than the anatase crystallization temperature.

本発明の方法で使用する結晶相のチタン酸アルカリ金属
は、例えば、酸化チタンとアルカリ成分の粉末を、M2
()nTi02 (ただし、M、nは前記と同じもの
を表わす、以下同様)を生成する割合で配合したものを
、その溶融温度より低い温度で加熱すると、両者が溶融
せず固相反応して結晶微粒子状のチタン酸アルカリ金属
として得られる。
The crystalline alkali metal titanate used in the method of the present invention is, for example, a mixture of powders of titanium oxide and an alkali component with M2
()nTi02 (M and n are the same as above, the same applies hereafter) is heated at a temperature lower than its melting temperature, and the two do not melt but undergo a solid phase reaction. Obtained as alkali metal titanate in the form of crystalline particles.

また非晶質のチタン酸アルカリ金属を、その溶融温度よ
り低い温度で加熱反応させることによっても得られる。
It can also be obtained by heating and reacting an amorphous alkali metal titanate at a temperature lower than its melting temperature.

しかし、これらの方法のみならず他の方法で製造したも
のでも使用することができる。
However, not only these methods but also those produced by other methods can be used.

チタン成分としての酸化チタンは、その種類はなんでも
よいが、アルカIJ &尿成分と反応し易いことが望ま
しい。
Any type of titanium oxide may be used as the titanium component, but it is desirable that it easily reacts with alkali IJ and urine components.

従って粒度が細かく、比表面積が大きく、出来れば50
0〜0.1rrl/9粒度で反応活性であるものが好ま
しい。
Therefore, the particle size is fine and the specific surface area is large, preferably 50
It is preferable to have a reactive activity at a particle size of 0 to 0.1 rrl/9.

その点でアナターゼ型のものがよい。In this respect, the anatase type is better.

アルカリ成分としては、例えば、KOH,NaOH。Examples of the alkaline component include KOH and NaOH.

RbOH、CsOH、に2 COs 、Na 2CO3
、Rb 2 COs 。
RbOH, CsOH, 2COs, Na2CO3
, Rb2COs.

C3C03,KHCO3,NaHCO3,RbHCO3
゜C3HC03,に20.Na2O,Rb2O,C52
0等のアルカリ金属酸化物または加熱により酸化物を生
成するアルカリ金属化合物が使用される。
C3C03, KHCO3, NaHCO3, RbHCO3
゜C3HC03, 20. Na2O, Rb2O, C52
An alkali metal oxide such as 0 or an alkali metal compound which produces an oxide upon heating is used.

これらの原料混合物から前記の方法で得られた結晶相の
チタン酸アルカリ金属を、鉱酸類、有機酸類等の酸水溶
液で処理してM20成分を抽出する。
The crystalline alkali metal titanate obtained from the mixture of these raw materials by the above method is treated with an aqueous solution of an acid such as a mineral acid or an organic acid to extract the M20 component.

これらのM20成分の抽出剤としては、チタン酸アルカ
リ金属を溶解するものであってはいけない。
The extractant for these M20 components must not dissolve alkali metal titanate.

例えば濃硫酸では溶解するので、注意を要す。For example, it dissolves in concentrated sulfuric acid, so care must be taken.

抽出が容易で溶解しない点で塩酸水溶液が好ましい。Hydrochloric acid aqueous solution is preferred because it is easy to extract and does not dissolve.

この抽出は酸水溶液を沸点以下の温度で加温して使用し
てもよく、また攪拌、循環等の操作を行ってもよい。
This extraction may be performed by heating an aqueous acid solution at a temperature below its boiling point, or by performing operations such as stirring and circulation.

このM、0成分の抽出は、余り急激に行うと、表面部分
のみのM20成分を抽出し、芯部のM20成分が残存す
るので、成程度の時間をかけて行うことが好ましい。
If the extraction of the M and 0 components is carried out too rapidly, the M20 component of only the surface portion will be extracted and the M20 component of the core portion will remain, so it is preferable to carry out the extraction over a period of time.

しかし、場合によっては、ある程度のM20成分を残存
させて陽イオン交換容量の増大を図ることもできる。
However, in some cases, a certain amount of M20 component may remain to increase the cation exchange capacity.

M20成分を抽出処理を行ったTiO2・nH2O組成
のチクニヤ水和物は、元のチタン酸アルカリ金属の骨格
構造を保持し、アルカリ金属のイオンがH+またはH3
0+イオンなどと置換した構造を有する結晶質である。
Chikunya hydrate with a TiO2/nH2O composition that has been subjected to extraction treatment for the M20 component retains the original alkali metal titanate skeleton structure, and the alkali metal ions are H+ or H3
It is a crystalline substance with a structure in which 0+ ions are substituted.

そして膨潤、脱水特性を有し、且つH+またはH30+
イオンと他の錯イオンと置換するイオン交換、イオン吸
着特性を有する。
and has swelling and dehydration properties, and H+ or H30+
It has ion exchange and ion adsorption properties to replace ions with other complex ions.

得られた結晶質のチクニヤ水和物を、200℃以上アナ
ターゼ型チタニチク結晶化する温度より低い温度である
600℃より低い温度で加熱すると、無水の非晶質チク
ニャが得られる。
Anhydrous amorphous chikunya is obtained by heating the obtained crystalline chikunya hydrate at a temperature lower than 600° C., which is lower than the temperature at which anatase-type titanium crystallizes at 200° C. or more.

この非晶質チクニヤは多価カチオンなどに対するイオン
吸着性の優れた性質を有する。
This amorphous chikunya has excellent ion adsorption properties for polyvalent cations and the like.

またガスの吸着浄化剤、フィルターとしても使用し得ら
れる。
It can also be used as a gas adsorption purifier and filter.

実施例 TiO2(アナターゼ型)0.01μmとに2CO30
,01μmの各粉末を、モル比で4:1の割合でよく混
合した。
Example TiO2 (anatase type) 0.01μm and 2CO30
, 01 μm were mixed well at a molar ratio of 4:1.

該混合物239を100ydの白金ルツボに充填し、電
気炉を用いて800℃で10時間加熱反応させた。
The mixture 239 was filled into a 100 yd platinum crucible, and heated and reacted at 800° C. for 10 hours using an electric furnace.

この反応生成物は0.05μm〜0,1μmの粒子で比
表面積は1〜0.In/g程度であった。
This reaction product has particles of 0.05 μm to 0.1 μm and a specific surface area of 1 to 0.1 μm. It was about In/g.

この生成物をX線回折で同定したところ全部に2Ti4
0.相であった。
This product was identified by X-ray diffraction, and all 2Ti4
0. It was phase.

これをlN−HCl水溶液100m1に対して10gの
割合で該水溶液中に浸漬し、約1時間攪拌しなからに2
0成分の抽出を行った。
This was immersed in the aqueous solution at a ratio of 10 g to 100 ml of 1N-HCl aqueous solution, and stirred for about 1 hour.
0 component was extracted.

これを水洗、風乾して結晶質のチクニヤ水和物を得た。This was washed with water and air-dried to obtain a crystalline chikunya hydrate.

得られた水和物を500℃で加熱脱水して非晶質チクニ
ャを得た。
The obtained hydrate was heated and dehydrated at 500°C to obtain amorphous chikunya.

この非晶質チクニャは吸湿性、吸水性がなく、膨潤・脱
水特性を示さない。
This amorphous chikunya has no hygroscopicity or water absorption, and does not exhibit swelling or dehydration properties.

Claims (1)

【特許請求の範囲】 1 一般式M20 ・n T t O2(ただし、Mは
Na 。 K、RbまたはCsを表わし、nは1〜6)で示される
結晶相のチタン酸アルカリ金属を、酸水溶液で処理して
M20成分を抽出し、TiO2・nH2O(ただし、n
は1〜6)の組成のチクニヤ水和物となし、得られたチ
クニヤ水和物を200℃以上でアナターゼ結晶化温度よ
り低い温度で脱水処理することを特徴とする非晶質チク
ニャの製造法。
[Claims] 1. An alkali metal titanate having a crystalline phase represented by the general formula M20 ・n T t O2 (where M represents Na, K, Rb, or Cs, and n is 1 to 6) is dissolved in an acid aqueous solution. to extract the M20 component, TiO2・nH2O (however, n
is a chikunya hydrate having the composition of 1 to 6), and the obtained chikunya hydrate is dehydrated at a temperature of 200°C or higher and lower than the anatase crystallization temperature. .
JP3013480A 1980-03-10 1980-03-10 Manufacturing method of amorphous titania Expired JPS5940767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3013480A JPS5940767B2 (en) 1980-03-10 1980-03-10 Manufacturing method of amorphous titania

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3013480A JPS5940767B2 (en) 1980-03-10 1980-03-10 Manufacturing method of amorphous titania

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7685778A Division JPS553372A (en) 1978-06-23 1978-06-23 Production of titania hydrate and amorphous titania

Publications (2)

Publication Number Publication Date
JPS55136125A JPS55136125A (en) 1980-10-23
JPS5940767B2 true JPS5940767B2 (en) 1984-10-02

Family

ID=12295296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3013480A Expired JPS5940767B2 (en) 1980-03-10 1980-03-10 Manufacturing method of amorphous titania

Country Status (1)

Country Link
JP (1) JPS5940767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965372U (en) * 1982-10-22 1984-05-01 松下電器産業株式会社 Solar heat collection control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010025628A (en) * 2001-01-12 2001-04-06 이종국 Preparation of Titanium oxide Nanocrystalline Powder at Low Temperature
WO2012162879A1 (en) * 2011-05-30 2012-12-06 南京钛威科技有限公司 Method for preparing macroporous titania or precursor thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5965372U (en) * 1982-10-22 1984-05-01 松下電器産業株式会社 Solar heat collection control device

Also Published As

Publication number Publication date
JPS55136125A (en) 1980-10-23

Similar Documents

Publication Publication Date Title
JPH01313320A (en) Zeolite based on silica and germanium oxide and synthesis
CN101830506A (en) Preparation method of high-purity nano zirconium dioxide
JP2017511786A (en) Method for activating U3O8 for its conversion to UO tetrahydrate
JPH0653566B2 (en) Method for producing crystalline zirconium phosphate
JPH08511504A (en) Kaolins amorphous derivatives
JPS62502683A (en) chemical purification method
JPS59102821A (en) Manufacture of chromium (iii) compound
JPS5940767B2 (en) Manufacturing method of amorphous titania
US5085845A (en) Production and use of crystalline hydrogen-phosphate compounds having layer structure
JPS6125657B2 (en)
JP2823070B2 (en) Method for producing high-purity zirconium oxychloride crystal
JP4015212B2 (en) Ion exchanger
JPS61256922A (en) Immobilizing method for strontium incorporated in aqueous solution
JPS6335414A (en) Manufacture of sodium tetraborate pentahydrate
JPS6132053B2 (en)
JPS5820300B2 (en) Adsorption and ion exchange material for cesium in aqueous solution
JPH024442A (en) High performance lithium adsorbent and its preparation
JPH0416507A (en) Method for hydrothermally synthesizing phyllisilicate
JPH07101711A (en) Crystalline zirconium phosphate
JPH05507054A (en) A simple method for producing swellable layered silicates
JPS61256920A (en) Sectorial magnesium oxysulfate and its production
JPH0130765B2 (en)
US2013856A (en) Alkali-metal zirconium tartrate and method of producing same
JPH0450063B2 (en)
JPH04927B2 (en)