JPH0525542B2 - - Google Patents

Info

Publication number
JPH0525542B2
JPH0525542B2 JP63084746A JP8474688A JPH0525542B2 JP H0525542 B2 JPH0525542 B2 JP H0525542B2 JP 63084746 A JP63084746 A JP 63084746A JP 8474688 A JP8474688 A JP 8474688A JP H0525542 B2 JPH0525542 B2 JP H0525542B2
Authority
JP
Japan
Prior art keywords
rare earth
earth elements
adsorption
fibrous
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63084746A
Other languages
Japanese (ja)
Other versions
JPH01258737A (en
Inventor
Takayoshi Sasaki
Yoshinori Fujiki
Masaru Komatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP63084746A priority Critical patent/JPH01258737A/en
Publication of JPH01258737A publication Critical patent/JPH01258737A/en
Publication of JPH0525542B2 publication Critical patent/JPH0525542B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は水溶液中の希土類元素の吸着回収材に
関する。 モナズ石等の希土類元素原鉱の酸またはアルカ
リ溶解液、希土類元素を使用する工場廃液や原子
力発電に伴つて出る放射性廃液中に含まれる希土
類元素を吸着回収するのに用いられる。 従来技術 従来、水溶液中の希土類元素を回収するには、
主として有機イオン交換樹脂が使用されてきた。
しかし、有機イオン交換樹脂は高温水中及び高い
放射線線量下の水溶液には使用し得なく、また化
学的安定性が低いため、強酸・強アルカリ中では
劣化が速く、かつ希土類元素と他の金属イオンと
の吸着性が小さい等の欠点があつた。 発明が解決しようとする課題 本発明は前記の有機イオン交換樹脂の欠点を解
消しようとするものである。その目的は耐熱性、
耐放射線性、耐酸・耐アルカリ性に優れ、希土類
元素に対して高い選択性と吸着容量を示す水溶液
中の希土類元素を吸着・回収する材料を提供しよ
うとするものである。 課題を解決するための手段 本発明者らはさきに二チタン酸カリウム組成割
合のTiO2とK2Oの溶解物を急冷することによつ
て繊維状の二チタン酸カリウムの結晶を得ること
に成功し、これを酸処理により脱カリウムを行い
繊維状チタニヤ水和物(H2Ti2O5・nH2O)を得
ることに成功した。 得られた繊維状チタニヤ水和物の性質について
研究を進めた結果、水溶液中の希土類元素を選択
的に吸着回収し得られると共に高い吸着能を有
し、また耐化学薬品性、耐放射線性、耐熱性も高
く、これらの水溶液にも使用可能でかつ繊維状で
あるため、固液分離が容易でカラム法による吸着
において目詰りがなく、高能率で吸着処理し得ら
れることを究明し得た。この知見に基づいて本発
明を完成した。 本発明の要旨は、二チタン酸カリウムの繊維状
結晶を酸処理により脱カリウムして得られる繊維
状チタニア水和物からなる水溶液中の希土類元素
の吸着回収材にある。 水溶液中の希土類元素の吸着は、該水溶液中に
吸着材を浸漬しても、また、吸着材をガラス管等
に充填し、これに水溶液を通じてもよい。 希土類元素としては、Y、La、Ce、Pr、Nd、
Pm、Sm、Eu、Gd、Tb、Ho、Er、Tm、Yb、
Luが挙げられる。 希土類元素を吸着したものから希土類元素を回
収することは、1規定程度の酸水溶液に浸漬する
ことによつて容易に達成できる。この手順はバツ
チ法によつてもカラム法によつてもよい。 実施例 1 (1) 繊維状チタニヤ水和物H2Ti2O5・nH2Oの製
造炭酸カリウムと二酸化チタンの粉末をモル比
で1:2の割合で混合した。この混合物約45g
を100ml白金ルツボに入れ、1100℃で30分間加
熱して溶融させた。この溶融物を別の金属製容
器(底を外側から水冷)に流し込んで急冷して
繊維状の結晶集合体を得た。この結晶集合体は
粉末X線回折法により二チタン酸カリウム
(K2Ti2O5)であることが確認された。この結
晶集合体は水中に約2時間浸漬することにより
解繊し得られた。得られた繊維を1規定塩酸水
溶液100mlに対し10gの割合で処理することに
より二チタン酸カリウムの層間に含まれるカリ
ウムを溶脱させ、水洗、風乾して繊維状チタニ
ヤ水和物(H2Ti2O5・nH2O)を得た。(これを
1000℃に加熱した際の重量減少が24.0%であつ
たので、n=1.8と計算される。)この繊維は直
径0.1〜0.5mmの束状で長さは平均5mmであつ
た。粉末X線回折法により層状構造を有する結
晶質であることが確認された。 (2) 水溶液中の希土類元素の吸着回収 上記(1)で得られた繊維状チタニヤ水和物1g
を0.1moldm-3の濃度の希土類酢酸塩水溶液
(代表として、Y、La、Ce、Nd、Sm、Gdを
使用)100ml中にバツチ法で浸漬し、25℃で14
日間接触させた。吸着処理後上澄液中の残存希
土類元素量をキレート滴定法もしくは誘導結合
アルゴンプラズマ発光分光法によつて定量して
吸着前との濃度差により吸着量を求めた。希土
類元素が吸着された固相は過水洗後風乾し、
700℃で1時間加熱して水分含量を測定した。
以下にこの実験により求められた各希土類元素
の吸着量、水分含量、吸着体の化学組成を示
す。
INDUSTRIAL APPLICATION FIELD The present invention relates to an adsorption and recovery material for rare earth elements in an aqueous solution. It is used to adsorb and recover rare earth elements contained in acidic or alkaline solutions of rare earth element raw ores such as monazite, factory waste fluids that use rare earth elements, and radioactive waste fluids generated from nuclear power generation. Conventional technology Conventionally, in order to recover rare earth elements from an aqueous solution,
Primarily organic ion exchange resins have been used.
However, organic ion-exchange resins cannot be used in high-temperature water or aqueous solutions under high radiation doses, and because of their low chemical stability, they deteriorate quickly in strong acids and strong alkalis, and are susceptible to rare earth elements and other metal ions. There were drawbacks such as low adsorption with. Problems to be Solved by the Invention The present invention aims to solve the above-mentioned drawbacks of organic ion exchange resins. Its purpose is heat resistance,
The present invention aims to provide a material that adsorbs and recovers rare earth elements in an aqueous solution, which has excellent radiation resistance, acid resistance, and alkali resistance, and exhibits high selectivity and adsorption capacity for rare earth elements. Means for Solving the Problems The present inventors first obtained fibrous potassium dititanate crystals by rapidly cooling a melt of TiO 2 and K 2 O having a potassium dititanate composition ratio. They succeeded in depotassiuming this by acid treatment and succeeded in obtaining fibrous titanium hydrate (H 2 Ti 2 O 5 .nH 2 O). As a result of research on the properties of the obtained fibrous titanium hydrate, we found that it can selectively adsorb and recover rare earth elements in aqueous solutions, has high adsorption capacity, and has chemical resistance, radiation resistance, It has been found that it has high heat resistance, can be used in these aqueous solutions, and is fibrous, so solid-liquid separation is easy, there is no clogging in column adsorption, and it can be obtained by highly efficient adsorption treatment. . The present invention was completed based on this knowledge. The gist of the present invention is a material for adsorbing and recovering rare earth elements in an aqueous solution comprising fibrous titania hydrate obtained by depotassiuming fibrous crystals of potassium dititanate by acid treatment. Rare earth elements in an aqueous solution may be adsorbed by immersing the adsorbent in the aqueous solution, or by filling a glass tube or the like with the adsorbent and passing the aqueous solution through the adsorbent. Rare earth elements include Y, La, Ce, Pr, Nd,
Pm, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb,
An example is Lu. Recovering rare earth elements from the rare earth element adsorbed material can be easily accomplished by immersing the material in an approximately 1N acid aqueous solution. This procedure may be performed by a batch method or a column method. Example 1 (1) Production of fibrous titania hydrate H 2 Ti 2 O 5 ·nH 2 O Potassium carbonate and titanium dioxide powder were mixed at a molar ratio of 1:2. Approximately 45g of this mixture
was placed in a 100ml platinum crucible and heated at 1100°C for 30 minutes to melt it. This melt was poured into another metal container (the bottom of which was water-cooled from the outside) and rapidly cooled to obtain a fibrous crystal aggregate. This crystal aggregate was confirmed to be potassium dititanate (K 2 Ti 2 O 5 ) by powder X-ray diffraction. This crystal aggregate was defibrated by immersing it in water for about 2 hours. The obtained fibers were treated at a ratio of 10 g to 100 ml of a 1N aqueous hydrochloric acid solution to leach potassium contained between the layers of potassium dititanate, washed with water, and air-dried to form fibrous titanium hydrate (H 2 Ti 2 O 5 .nH 2 O) was obtained. (this
Since the weight loss when heated to 1000°C was 24.0%, n = 1.8 is calculated. ) The fibers were bundle-like with a diameter of 0.1 to 0.5 mm and an average length of 5 mm. It was confirmed by powder X-ray diffraction that it was crystalline with a layered structure. (2) Adsorption and recovery of rare earth elements in aqueous solution 1 g of fibrous titanium hydrate obtained in (1) above
was immersed in 100 ml of a rare earth acetate aqueous solution (typically Y, La, Ce, Nd, Sm, and Gd) with a concentration of 0.1 mold m -3 and heated at 25°C for 14 hours.
They were kept in contact for days. The amount of rare earth elements remaining in the supernatant after adsorption treatment was determined by chelate titration or inductively coupled argon plasma emission spectroscopy, and the amount of adsorption was determined from the difference in concentration from before adsorption. The solid phase on which rare earth elements have been adsorbed is washed with water and then air-dried.
The water content was measured after heating at 700°C for 1 hour.
The adsorption amount of each rare earth element, water content, and chemical composition of the adsorbent obtained through this experiment are shown below.

【表】 実施例 2 繊維状チタニヤ水和物の希土類元素に対する選
択的吸着試験 実施例1で得られた繊維状チタニヤ水和物0.1
gを1×10-4moldm-3の濃度のLa、Gd、Ndの
希土類硝酸塩水溶液10cm3と25℃で2週間接触させ
た。この際液相のPH値を硝酸添加により制御し
た。平衡到達後、上澄液の希土類元素の残存量
(濃度は誘導結合アルゴンプラズマ発光分光法に
より求めた)とPH値を測定し、次の式から分配係
数を計算した。 分配係数=固相1g中の希土類元素量/液相1cm
3中の希土類元素量 但し、固相中の希土類元素量は液相の初期濃度
と平衡後の濃度の差として求めた。 その結果は第1図の通りであつた。この図が示
すようにLa、Gd、Ndの希土類元素はいずれも分
配係数の対数と液相のPH値とは良好な直線関係を
示した。比較のため、アルカリ土類金属、二価遷
移金属のデータを併示した。 金属イオンの吸着性は分配係数の大小で評価す
ることができ、希土類元素の吸着性がアルカリ土
類金属、二価遷移金属(Cuを除く)よりも大き
いことが分かる。 発明の効果 本発明の吸着回収材は、耐熱性、耐放射線性、
耐酸、耐アルカリ性に優れているため、高温水
中、高い放射線量下でも使用し得られ、また強
酸、強アルカリ中でも劣化が少ない。かつ希土類
元素の吸着能も優れ、また繊維状であるため、取
扱いが容易であるばかりでなく、固液分離が容易
で、カラムにした場合目づまりもなく効率よく希
土類元素を吸着回収し得られる。
[Table] Example 2 Selective adsorption test for rare earth elements on fibrous titania hydrate Fibrous titania hydrate obtained in Example 1 0.1
g was brought into contact with 10 cm 3 of a rare earth nitrate aqueous solution of La, Gd, and Nd at a concentration of 1×10 −4 moldm −3 at 25° C. for 2 weeks. At this time, the pH value of the liquid phase was controlled by adding nitric acid. After reaching equilibrium, the remaining amount of rare earth elements in the supernatant (the concentration was determined by inductively coupled argon plasma emission spectroscopy) and the PH value were measured, and the distribution coefficient was calculated from the following formula. Partition coefficient = amount of rare earth elements in 1g of solid phase/1cm of liquid phase
3. However, the amount of rare earth elements in the solid phase was determined as the difference between the initial concentration in the liquid phase and the concentration after equilibrium. The results were as shown in Figure 1. As shown in this figure, the rare earth elements La, Gd, and Nd all showed a good linear relationship between the logarithm of the partition coefficient and the pH value of the liquid phase. For comparison, data on alkaline earth metals and divalent transition metals are also shown. The adsorption of metal ions can be evaluated by the size of the distribution coefficient, and it can be seen that the adsorption of rare earth elements is greater than that of alkaline earth metals and divalent transition metals (excluding Cu). Effects of the Invention The adsorption and recovery material of the present invention has heat resistance, radiation resistance,
Because it has excellent acid and alkali resistance, it can be used in high-temperature water and under high radiation doses, and there is little deterioration even in strong acids and strong alkalis. It also has an excellent ability to adsorb rare earth elements, and because it is fibrous, it is not only easy to handle, but also easy to perform solid-liquid separation, and when used in columns, rare earth elements can be adsorbed and recovered efficiently without clogging. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の吸着回収材による希土類元
素の分配係数と液相のPHとの関係図である。
FIG. 1 is a diagram showing the relationship between the distribution coefficient of rare earth elements and the pH of the liquid phase using the adsorption and recovery material of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 二チタン酸カリウムの繊維状結晶を酸処理に
より脱カリウムして得られる繊維状チタニア水和
物からなる水溶液中の希土類元素の吸着回収材。
1. An adsorption and recovery material for rare earth elements in an aqueous solution, which is made of fibrous titania hydrate obtained by depotassiuming fibrous crystals of potassium dititanate by acid treatment.
JP63084746A 1988-04-06 1988-04-06 Adsorbent for recovery of rare earth element in aqueous solution Granted JPH01258737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63084746A JPH01258737A (en) 1988-04-06 1988-04-06 Adsorbent for recovery of rare earth element in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63084746A JPH01258737A (en) 1988-04-06 1988-04-06 Adsorbent for recovery of rare earth element in aqueous solution

Publications (2)

Publication Number Publication Date
JPH01258737A JPH01258737A (en) 1989-10-16
JPH0525542B2 true JPH0525542B2 (en) 1993-04-13

Family

ID=13839255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63084746A Granted JPH01258737A (en) 1988-04-06 1988-04-06 Adsorbent for recovery of rare earth element in aqueous solution

Country Status (1)

Country Link
JP (1) JPH01258737A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7086524B2 (en) * 2017-03-08 2022-06-20 株式会社荏原製作所 Alkaline earth metal ion adsorbent and its manufacturing method and alkaline earth metal ion-containing liquid treatment equipment
JP7010670B2 (en) * 2017-11-13 2022-01-26 チタン工業株式会社 Strontium ion adsorbent and its manufacturing method
JP7106401B2 (en) 2018-09-05 2022-07-26 株式会社荏原製作所 Cobalt ion adsorbent, manufacturing method thereof, and cobalt ion-containing liquid treatment apparatus
JP7254610B2 (en) * 2019-05-10 2023-04-10 株式会社荏原製作所 Cobalt ion adsorbent and method for producing the same

Also Published As

Publication number Publication date
JPH01258737A (en) 1989-10-16

Similar Documents

Publication Publication Date Title
JPH0421543B2 (en)
JPS60161330A (en) Recovery of rare earth metal oxide having high purity from waste rare earth metal phosphor
CN111986828B (en) Sodalite-based ceramic-glass dual curing method for radioactive iodine waste
JPH0525542B2 (en)
JPS61256922A (en) Immobilizing method for strontium incorporated in aqueous solution
US5066404A (en) Method for separating sodium and potassium by ion exchange
JPS621293B2 (en)
JPS5820300B2 (en) Adsorption and ion exchange material for cesium in aqueous solution
JPS6132053B2 (en)
JPH024442A (en) High performance lithium adsorbent and its preparation
KR20170022522A (en) Method for preparing titanosilicate using dropwise method and titanosilicate absorbent for removing radioactive nuclides prepared thereby
Hubicka et al. Anion-exchange method for separation of ytterbium from holmium and erbium
JPS58117499A (en) Method of fixing cesium in water solution
JPS5976838A (en) Selective separation of rare earth metal
KR102654512B1 (en) Adsorbent for removing radionuclides and manufacturing method thereof
JP2001224957A (en) Agent for selectively separating lithium and its manufacturing method
JPH0450063B2 (en)
JP2685126B2 (en) Alkali metal substituted lithium antimonate and method for producing the same
JPH10213697A (en) Decontamination method for radio active waste
JPS62210052A (en) Uranium adsorbent and its production
JP2775412B2 (en) Lithium isotope separating agent
JPS6362545A (en) Lithium adsorbent and its production and recovering method for lithium by using same
JPS626849B2 (en)
JPH01203039A (en) Adsorbent indicating new lithium selectivity and manufacture thereof
JPS6346009B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term