JPH01258737A - Adsorbent for recovery of rare earth element in aqueous solution - Google Patents

Adsorbent for recovery of rare earth element in aqueous solution

Info

Publication number
JPH01258737A
JPH01258737A JP63084746A JP8474688A JPH01258737A JP H01258737 A JPH01258737 A JP H01258737A JP 63084746 A JP63084746 A JP 63084746A JP 8474688 A JP8474688 A JP 8474688A JP H01258737 A JPH01258737 A JP H01258737A
Authority
JP
Japan
Prior art keywords
rare earth
adsorbent
earth elements
fibrous
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63084746A
Other languages
Japanese (ja)
Other versions
JPH0525542B2 (en
Inventor
Takayoshi Sasaki
高義 佐々木
Yoshinori Fujiki
藤木 良規
Masaru Komatsu
優 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP63084746A priority Critical patent/JPH01258737A/en
Publication of JPH01258737A publication Critical patent/JPH01258737A/en
Publication of JPH0525542B2 publication Critical patent/JPH0525542B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To improve selective adsorption of the title adsorbent by prepg. the adsorbent for rare earth elements in an aq. soln. from a fibrous hydrate of titania obtd. by removing potassium from fibrous crystals of potassium dititanate by treating with an acid. CONSTITUTION:Fibrous hydrate of titania obtd. by removing potassium from fibrous crystals of potassium dititanate by an acid treatment is used as an adsorbent for recovery of rare earth elements in the aq. soln. Said adsorbent is used by dipping the adsorbent in the aq. soln., or by packing the adsorbent in a glass tube and passing the aq. soln. through the glass tube, etc. The rare earth elements are recovered easily from the adsorbent which has adsorbed the rare earth element by dipping the adsorbent in a ca. 1N aq. soln. of an acid. The process may be either a bath process or a column process.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水溶液中の希土類元素の吸着回収材に関する。[Detailed description of the invention] Industrial applications The present invention relates to a material for adsorbing and recovering rare earth elements in an aqueous solution.

モナズ石等の希土類元素原鉱の酸またはアルカリ溶解液
、希土類元素を使用する工場廃液や原子力発電に伴って
出る放射性廃液中に含まれる希土類元素を吸着回収する
のに用いられる。
It is used to adsorb and recover rare earth elements contained in acidic or alkaline solutions of raw rare earth element ores such as monazite, factory waste fluids that use rare earth elements, and radioactive waste fluids generated from nuclear power generation.

従来技術 従来、水溶液中の希土類元素を回収するには、主として
有機イオン交換樹脂が使用されてきた。
Prior Art Conventionally, organic ion exchange resins have been mainly used to recover rare earth elements from aqueous solutions.

しかし、有機イオン交換樹脂は高温水中及び高い放射線
線量下の水溶液には使用し得なく、また化学的安定性が
低いため、強酸・強アルカリ中では劣化が速く、かつ希
土類元素と他の金属イオンとの吸着性の差が小さい等の
欠点があった。
However, organic ion-exchange resins cannot be used in high-temperature water or aqueous solutions under high radiation doses, and because of their low chemical stability, they deteriorate quickly in strong acids and strong alkalis, and are susceptible to rare earth elements and other metal ions. There were drawbacks such as a small difference in adsorption between the two.

発明が解決しようとする課題 本発明は前記の有機イオン交換樹脂の欠点を解消しよう
とするものである。その目的は耐熱性。
Problems to be Solved by the Invention The present invention aims to eliminate the drawbacks of the above-mentioned organic ion exchange resins. Its purpose is heat resistance.

耐放射線性、耐酸・耐アルカリ性に優れ、希土類元素に
対して高い選択性と吸着容量を示す水溶液中の希土類元
素を吸着・回収する材料を提供しようとするものである
The present invention aims to provide a material that adsorbs and recovers rare earth elements in an aqueous solution, which has excellent radiation resistance, acid resistance, and alkali resistance, and exhibits high selectivity and adsorption capacity for rare earth elements.

課題を解決するための手段 本発明者らはさきにニチタン酸カリウム組成割合のTi
01とKzOの溶融物を急冷することによって繊維状の
ニチタン酸カリウムの結晶を得ることに成功し、これを
酸処理により脱カリウムを行い繊維状チタニャ水和物(
11,Ti、o、 ・n1ltO)を得ることに成功し
た。
Means for Solving the Problems The present inventors first determined the Ti composition ratio of potassium nititanate.
By rapidly cooling the melt of 01 and KzO, we succeeded in obtaining fibrous potassium nititanate crystals, which were depotassiumed by acid treatment to form fibrous titania hydrate (
11,Ti, o, ·n1ltO).

得られた繊維状チタニャ水和物の性質について研究を進
めた結果、水溶液中の希土類元素を選択的に吸着回収し
得られると共に高い吸着能を有し、また耐化学薬品性、
耐放射線性、耐熱性も高く、これらの水溶液にも使用可
能でかつ繊維状であるため、固液分離が容易でカラ11
法による吸着において目詰りがなく、高能率で吸着処理
し得られることを究明し得た。この知見に基づいて本発
明を完成した。
As a result of conducting research on the properties of the obtained fibrous titania hydrate, we found that it can selectively adsorb and recover rare earth elements in aqueous solutions, has high adsorption capacity, and has chemical resistance.
It has high radiation resistance and heat resistance, can be used in these aqueous solutions, and is fibrous, so solid-liquid separation is easy.
It has been found that there is no clogging in adsorption using this method, and that the adsorption process can be performed with high efficiency. The present invention was completed based on this knowledge.

本発明の要旨は、ニチタン酸カリウムの繊維状結晶を酸
処理により脱カリウムして得られる繊維状チタニャ水和
物からなる水溶液中の希土類元素の吸着回収材にある。
The gist of the present invention is a material for adsorbing and recovering rare earth elements in an aqueous solution, which is made of fibrous titania hydrate obtained by depotassiuming fibrous crystals of potassium nititanate by acid treatment.

水溶液中の希土類元素の吸着は、該水溶液中に吸着材を
浸漬しても、また、吸着材をガラス管等に充填し、これ
に水溶液を通じてもよい。
Rare earth elements in an aqueous solution may be adsorbed by immersing the adsorbent in the aqueous solution, or by filling a glass tube or the like with the adsorbent and passing the aqueous solution through the adsorbent.

希土類元素としては、Y、 La、 Ce、 Pr、 
Nd、 Pm。
Rare earth elements include Y, La, Ce, Pr,
Nd, Pm.

Sn+、 Eu、 Gd、 Tb、 llo、 Br、
 Tm、 Yb、 Lu$が挙げられる。
Sn+, Eu, Gd, Tb, llo, Br,
Examples include Tm, Yb, and Lu$.

希土類元素を吸着したものから希土類元素を回収するこ
とは、■規定程度の酸水溶液に浸漬することによって容
易に達成できる。この手順はバ・フチ法によってもカラ
ム法によってもよい。
Recovering rare earth elements from materials on which rare earth elements have been adsorbed can be easily achieved by immersing the material in an aqueous acid solution of a standard concentration. This procedure may be performed by the Ba-Fuchi method or the column method.

実施例 1゜ (1)  繊維状チタニャ水和物11□Ti、05・n
)120の製造炭酸カリウムと二酸化チタンの粉末をモ
ル比で1;2の割合で混合した。この混合物約45gを
100+me白金ルツボに入れ、1工00°Cで30分
間加熱して溶融させた。この溶融物を別の金属製容器(
底を外側から水冷)に流し込んで急冷して繊維状の結晶
集合体を得た。この結晶集合体は粉末X線回折法により
ニチタン酸カリウド(KzTizOs)であることが確
認された。この結晶集合体は水中に約2時間浸漬するこ
とにより解繊し得られた。得られた繊維を1規定塩酸水
溶液100mjl!に対し10gの割合で処理すること
によりニチタン酸カリウムの層間に含まれるカリウムを
溶脱させ、水洗、風乾して繊維状チタニャ水和物()I
zTtzOs  ’nHzo)を得た。(これを100
0°Cに加熱した際の重量減少が24.0%であったの
で、n=1.8と計算される。)この繊維は直径0.1
〜0.50の束状で長さは平均5閤であった。粉末X線
回折法により層状構造を有する結晶質であることが確認
された。
Example 1゜(1) Fibrous titania hydrate 11□Ti, 05・n
) Preparation of 120 Potassium carbonate and titanium dioxide powder were mixed in a molar ratio of 1:2. Approximately 45 g of this mixture was placed in a 100+me platinum crucible and heated at 00° C. for 30 minutes to melt it. Transfer this melt to another metal container (
The bottom was poured into a water cooler from the outside and quenched to obtain a fibrous crystal aggregate. This crystal aggregate was confirmed to be potassium nititanate (KzTizOs) by powder X-ray diffraction. This crystal aggregate was defibrated by immersing it in water for about 2 hours. The obtained fibers were added to 100 mjl of 1N hydrochloric acid aqueous solution! Potassium contained between the layers of potassium nititanate is leached out by treating at a ratio of 10 g to
zTtzOs 'nHzo) was obtained. (This is 100
Since the weight loss upon heating to 0°C was 24.0%, n=1.8 is calculated. ) This fiber has a diameter of 0.1
~0.50 bundles with an average length of 5 loaves. It was confirmed by powder X-ray diffraction that it was crystalline with a layered structure.

(2)水溶液中の希土類元素の吸着回収上記(1)で得
られた繊維状チタニャ水和物1gを0.1 mof d
m−”の4度の希土類酢酸塩水溶液(代表として、Y、
 La、 Ce、 Nd、 Sm、 Gdを使用)10
抛!中にパンチ法で浸漬し、25°Cで14日間接触さ
せた。吸着処理後上澄液中の残存希土類元素量をキレー
ト滴定法もしくは誘導結合アルゴンプラズマ発光分光法
によって定量して吸着前との濃度差により吸着量を求め
た。希土類元素が吸着された固相はが過水洗後風乾し、
700°Cで1時間加熱して水分含量を測定した。以下
にこの実験により求められた各希土類元素の吸着量、水
分含量、吸着体の化学組成を示す。
(2) Adsorption and recovery of rare earth elements in aqueous solution 1 g of the fibrous titania hydrate obtained in (1) above is 0.1 mof d
m-” 4 degree rare earth acetate aqueous solution (representatively Y,
(Using La, Ce, Nd, Sm, Gd) 10
Haru! It was immersed in the liquid by punching method and left in contact at 25°C for 14 days. The amount of rare earth elements remaining in the supernatant after adsorption treatment was determined by chelate titration or inductively coupled argon plasma emission spectroscopy, and the adsorbed amount was determined from the difference in concentration from before adsorption. The solid phase on which the rare earth elements have been adsorbed is washed with water and then air-dried.
The water content was measured after heating at 700°C for 1 hour. The adsorption amount of each rare earth element, water content, and chemical composition of the adsorbent obtained through this experiment are shown below.

妥− 藪 区 電   >  j  ♂  !  湧  S実施例 2
゜ 繊維状チタニャ水和物の希土類元素に対する選択的吸着
試験 実施例1で得られた繊維状チタニャ水和物0.1gを1
 xto−’ moffi dm−’の濃度のLa、 
Gd、 Ndの希土類硝酸塩水溶液10cm″と25°
Cで2週間接触させた。この際液相のpH値を硝酸添加
により制御した。
Yabu Ward > j ♂! Yuu S example 2
゜Selective adsorption test for rare earth elements on fibrous titania hydrate 0.1 g of the fibrous titania hydrate obtained in Example 1
xto-' moffi dm-' concentration La,
Rare earth nitrate aqueous solution of Gd and Nd 10cm'' and 25°
C for 2 weeks. At this time, the pH value of the liquid phase was controlled by adding nitric acid.

し、次の式から分配係数を計算した。Then, the distribution coefficient was calculated from the following formula.

但し、固相中の希土類元素量は液相の初期濃度と平衡後
の濃度の差として求めた。
However, the amount of rare earth elements in the solid phase was determined as the difference between the initial concentration in the liquid phase and the concentration after equilibrium.

その結果は第1図の通りであった。この図が示すように
La、 Gd、 Ndの希土類元素はいずれも分配係数
の対数と液相のpi値とは良好な直線関係を示した。比
較のため、アルカリ土類金属、二価遷移金属のデータを
併示した。
The results were as shown in Figure 1. As shown in this figure, the rare earth elements La, Gd, and Nd all showed a good linear relationship between the logarithm of the partition coefficient and the pi value of the liquid phase. For comparison, data on alkaline earth metals and divalent transition metals are also shown.

金属イオンの吸着性は分配係数の大小で評価することが
でき、希土類元素の吸着性がアルカリ土類金属、二価遷
移金属(Goを除く)よりも大きいことが分かる。
The adsorptivity of metal ions can be evaluated by the size of the distribution coefficient, and it can be seen that the adsorptivity of rare earth elements is greater than that of alkaline earth metals and divalent transition metals (excluding Go).

発明の効果 本発明の吸着回収材は、耐熱性、耐放射線性。Effect of the invention The adsorption and recovery material of the present invention has heat resistance and radiation resistance.

耐酸、耐アルカリ性に優れているため、高温水中、高い
放射線量下でも使用し得られ、また強酸、強アルカリ中
でも劣化が少ない。かつ希土類元素の吸着能も優れ、ま
た繊維状であるため、取扱いが容易であるばかりでなく
、固液分離が容易で、カラムにした場合口づまりもなく
効率よく希土類元素と吸着回収し得られる。
Because it has excellent acid and alkali resistance, it can be used in high-temperature water and under high radiation doses, and there is little deterioration even in strong acids and strong alkalis. It also has an excellent ability to adsorb rare earth elements, and since it is fibrous, it is not only easy to handle, but also easy to perform solid-liquid separation, and when used in a column, it can adsorb and recover rare earth elements efficiently without clogging. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の吸着回収材による希土類元素の分配
係数と液相のpHとの関係図である。 −一。 特許出願人 科学技術庁無機材質研究所長瀬   高 
  信   雄
FIG. 1 is a diagram showing the relationship between the distribution coefficient of rare earth elements and the pH of the liquid phase using the adsorption and recovery material of the present invention. -One. Patent applicant Takashi Nagase, Institute of Inorganic Materials, Science and Technology Agency
Nobuo

Claims (1)

【特許請求の範囲】[Claims] 二チタン酸カリウムの繊維状結晶を酸処理により脱カリ
ウムして得られる繊維状チタニア水和物からなる水溶液
中の希土類元素の吸着回収材。
A material for adsorbing and recovering rare earth elements in an aqueous solution, which is made of fibrous titania hydrate obtained by depotassiuming fibrous crystals of potassium dititanate by acid treatment.
JP63084746A 1988-04-06 1988-04-06 Adsorbent for recovery of rare earth element in aqueous solution Granted JPH01258737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63084746A JPH01258737A (en) 1988-04-06 1988-04-06 Adsorbent for recovery of rare earth element in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63084746A JPH01258737A (en) 1988-04-06 1988-04-06 Adsorbent for recovery of rare earth element in aqueous solution

Publications (2)

Publication Number Publication Date
JPH01258737A true JPH01258737A (en) 1989-10-16
JPH0525542B2 JPH0525542B2 (en) 1993-04-13

Family

ID=13839255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63084746A Granted JPH01258737A (en) 1988-04-06 1988-04-06 Adsorbent for recovery of rare earth element in aqueous solution

Country Status (1)

Country Link
JP (1) JPH01258737A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163954A1 (en) * 2017-03-08 2018-09-13 株式会社荏原製作所 Alkaline earth metal ion adsorbent, method for producing same, and alkaline earth metal ion-containing liquid processing apparatus
WO2019093008A1 (en) * 2017-11-13 2019-05-16 チタン工業株式会社 Strontium ion adsorbent material and method for producing same
JP2020037087A (en) * 2018-09-05 2020-03-12 株式会社荏原製作所 Cobalt ion adsorption agent and method for producing the same, and cobalt ion-containing liquid processing apparatus
JP2020185505A (en) * 2019-05-10 2020-11-19 株式会社荏原製作所 Cobalt ion adsorbent and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163954A1 (en) * 2017-03-08 2018-09-13 株式会社荏原製作所 Alkaline earth metal ion adsorbent, method for producing same, and alkaline earth metal ion-containing liquid processing apparatus
US11446631B2 (en) 2017-03-08 2022-09-20 Titan Kogyo Kabushiki Kaisha Alkaline earth metal ion adsorbent, and production method of the same, and alkaline earth metal ion-containing liquid treatment apparatus
WO2019093008A1 (en) * 2017-11-13 2019-05-16 チタン工業株式会社 Strontium ion adsorbent material and method for producing same
JP2019089010A (en) * 2017-11-13 2019-06-13 チタン工業株式会社 Strontium ion adsorbent and method for producing the same
JP2020037087A (en) * 2018-09-05 2020-03-12 株式会社荏原製作所 Cobalt ion adsorption agent and method for producing the same, and cobalt ion-containing liquid processing apparatus
WO2020050270A1 (en) * 2018-09-05 2020-03-12 株式会社荏原製作所 Cobalt ion adsorbent, method for producing same and treatment apparatus for cobalt ion-containing liquid
US11890610B2 (en) 2018-09-05 2024-02-06 Titan Kogyo Kabushiki Kaisha Cobalt ion adsorbent, method for producing same and treatment apparatus for cobalt ion-containing liquid
JP2020185505A (en) * 2019-05-10 2020-11-19 株式会社荏原製作所 Cobalt ion adsorbent and method for producing the same

Also Published As

Publication number Publication date
JPH0525542B2 (en) 1993-04-13

Similar Documents

Publication Publication Date Title
US4469628A (en) Fixation by ion exchange of toxic materials in a glass matrix
JPS6174645A (en) Regeneration of two-layered crystalline lithium aluminate using li(+) aqueous solution
CN111986828B (en) Sodalite-based ceramic-glass dual curing method for radioactive iodine waste
US20150343436A1 (en) Method for preparing silicotitanate and cs adsorbent
CN108176345A (en) The application of particulate form MnSb sorbent preparation methods and product and its removal radioactivity Sr, Co and Ag
US5268107A (en) Modified clinoptilolite as an ion exchange material
JPH01258737A (en) Adsorbent for recovery of rare earth element in aqueous solution
CN105080623B (en) A kind of ion-exchanger for being used for separation and/or Extraction of rare earth element
JPS61256922A (en) Immobilizing method for strontium incorporated in aqueous solution
JPS5962343A (en) Inorganic adsorbent and its manufacture and utilization method
US5875407A (en) Method for synthesizing pollucite from chabazite and cesium chloride
JPS621293B2 (en)
JPS5820300B2 (en) Adsorption and ion exchange material for cesium in aqueous solution
KR20170022522A (en) Method for preparing titanosilicate using dropwise method and titanosilicate absorbent for removing radioactive nuclides prepared thereby
Hernández-Barrales et al. Sorption of radioactive cobalt in natural Mexican clinoptilolite
US5066404A (en) Method for separating sodium and potassium by ion exchange
JPH024442A (en) High performance lithium adsorbent and its preparation
JPS6132053B2 (en)
KR20230082774A (en) Adsorbent for removing radionuclides and manufacturing method thereof
JPS58117499A (en) Method of fixing cesium in water solution
JP2001224957A (en) Agent for selectively separating lithium and its manufacturing method
JPH0450063B2 (en)
JP2019005702A (en) Tritium absorber and method for producing the same, and method of separating tritium from light water
JP2775412B2 (en) Lithium isotope separating agent
Yang et al. GEL Adsorption Processing for Waste Solidification in'NZP'Ceramics

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term