JPH01203039A - Adsorbent indicating new lithium selectivity and manufacture thereof - Google Patents

Adsorbent indicating new lithium selectivity and manufacture thereof

Info

Publication number
JPH01203039A
JPH01203039A JP2827188A JP2827188A JPH01203039A JP H01203039 A JPH01203039 A JP H01203039A JP 2827188 A JP2827188 A JP 2827188A JP 2827188 A JP2827188 A JP 2827188A JP H01203039 A JPH01203039 A JP H01203039A
Authority
JP
Japan
Prior art keywords
lithium
adsorbent
li2tio3
adsorption
acidic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2827188A
Other languages
Japanese (ja)
Other versions
JPH0525541B2 (en
Inventor
Kenta Oi
健太 大井
Yoshitaka Miyai
宮井 良孝
Shunsaku Kato
俊作 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2827188A priority Critical patent/JPH01203039A/en
Publication of JPH01203039A publication Critical patent/JPH01203039A/en
Publication of JPH0525541B2 publication Critical patent/JPH0525541B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To increase selective adsorption and adsorption capacity by treating Li2TiO3 with an acidic solution of the pH value or smaller and allowing lithium to be eluted from the Li2TiO3 and thereby providing an adsorbent with a specific X-ray peak value. CONSTITUTION:Li2CO3 and TiO2 are mixed at a mol. ratio of 1:1 and then thermally treated at approx. 800 deg.C for a few hours to prepare Li2TiO3 used as raw material. This raw material Li2TiO3 is added to an acidic solution of pH value or smaller 5 which is prepared using mineral acids such as hydrochloric and sulphuric or organic acids such as formic and acetic. After this, the Li2TiO3 is immersed in this condition at room temperature for at least, 1hr, and preferably for a few days. Then it is stirred to allow lithium to be eluted. Then, the solid is taken out and after water washing, preferably dried at temperatures below 70 deg.C to obtain an adsorbent. This adsorbent has highly selective adsorption with lithium and has an X-ray diffraction peak value as shown in Table 1.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規なリチウム選択性を示す吸着剤及びその製
造方法に関するものである。さらに詳しくいえば、本発
明は、リチウムに対する選択吸着性に優れ、かつ吸着容
量や吸着速度が大きく、その上希薄溶液中で安定であっ
て、毒性の少ない安価な吸着剤及びその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a novel adsorbent exhibiting lithium selectivity and a method for producing the same. More specifically, the present invention relates to an inexpensive adsorbent that has excellent selective adsorption for lithium, has a large adsorption capacity and adsorption rate, is stable in dilute solutions, and has low toxicity, and a method for producing the same. It is.

従来の技術 近年、リチウム金属及びその化合物は、多くの分野、例
えばセラミックス、電池、冷媒吸着剤、医薬品などに用
いられておシ、また将来、大容量電池、アルミニウム合
金材料、核融合燃料などとしての利用が考えられること
から、リチウムの需要の著しい増大が見込まれている〔
「日本鉱業会誌」第97巻、第221ページ〕。
BACKGROUND OF THE INVENTION In recent years, lithium metal and its compounds have been used in many fields, such as ceramics, batteries, refrigerant adsorbents, and pharmaceuticals, and in the future, they will be used in large-capacity batteries, aluminum alloy materials, nuclear fusion fuels, etc. Demand for lithium is expected to increase significantly due to the potential use of lithium.
“Journal of the Japan Mining Association,” Volume 97, Page 221].

前記リチウム金属及びその化合物は、現在上としてスポ
ジューメン、アングリコナイト、ベターライト、レビド
ライトなどのリチウム含有鉱石、及びリチウム濃度の高
い塩湖や地下かん水などを原料として製造されている。
The lithium metal and its compounds are currently produced using lithium-containing ores such as spodumene, angliconite, betterite, and levidolite, and salt lakes and underground brine with high lithium concentration as raw materials.

しかるに、わが国においては、前記のようなリチウム鉱
石資源がなく、リチウム金属やその化合物は全量輸入に
依存しているのが現状である。−方、わが国の地熱水や
温泉水にはかなシのリチウムを含有するものがあり、ま
た周囲をとシまく海洋中にも微量のリチウムが含まれて
いる。したがって、これらのリチウムを含む希薄溶液か
ら該リチウムを効率よく回収する技術を確立することが
強く要望されている。
However, our country does not have the above-mentioned lithium ore resources, and currently relies entirely on imports for lithium metal and its compounds. - On the other hand, some geothermal water and hot spring water in Japan contain small amounts of lithium, and trace amounts of lithium are also contained in the surrounding oceans. Therefore, it is strongly desired to establish a technique for efficiently recovering lithium from these dilute solutions containing lithium.

ところで、チタン酸化物については、これまで種々の結
晶形態のものが知られておシ、例えば天然鉱石として、
ルチル、アナタース、プルカイトなどがあるが、これら
はいずれもリチウム吸着性を示さない。また、最近、層
状のチタン酸アルカリを酸処理し、アルカリ金属イオン
を溶出させて成る層状のチタン酸化物が報告されている
〔「窯業協会誌」第94巻、第621ページ(1986
年〕〕。
By the way, titanium oxide has been known in various crystal forms, for example, as a natural ore,
There are rutile, anatase, pulchite, etc., but none of these exhibit lithium adsorption properties. In addition, a layered titanium oxide produced by acid-treating a layered alkali titanate to elute alkali metal ions has recently been reported [Ceramic Industry Association Journal, Vol. 94, p. 621 (1986
Year〕〕.

しかしながら、このものはリチウム吸着性を示すものの
、ナトリウムやカリウムに対する選択性が十分に高くな
いため、海水のようにすI−IJウムやカリウムがリチ
ウムと共に大量に共存する場合には、リチウム用吸着剤
としては不適である。
However, although this material exhibits lithium adsorption properties, its selectivity for sodium and potassium is not sufficiently high, so when a large amount of I-IJum and potassium coexist with lithium, such as in seawater, it is difficult to adsorb lithium. It is unsuitable as a drug.

発明が解決しようとする課題 本発明は、リチウムに対する選択吸着性に優れ、かつ吸
着容量や吸着速度が大きい上に、希薄溶液中で安定であ
って、毒性が少なく、しかも製造コストの低い新規な吸
着剤を提供することを目的としてなされたものである。
Problems to be Solved by the Invention The present invention provides a novel material that has excellent selective adsorption for lithium, has a large adsorption capacity and adsorption rate, is stable in dilute solutions, has little toxicity, and is low in production cost. This was done for the purpose of providing an adsorbent.

課題を解決するための手段 本発明者らは、先に原料としてMg2MnO4を用い、
これを酸処理することによシ、リチウム選択吸着性の優
れたマンガン酸化物を得ることに成功したが、本発明者
らは、リチウムとチタンの複合酸化物についても同じよ
うに研究を進めた結果、Li2TiJ を原料として用
い、これを酸処理して、その中のリチウムを溶出させる
ことにより、前記目的を達成しうろことを見い出し、こ
の知見に基づいて本発明を完成するに至った。
Means for Solving the Problems The present inventors first used Mg2MnO4 as a raw material,
By treating this with acid, we succeeded in obtaining manganese oxide with excellent lithium selective adsorption properties, but the present inventors also conducted research on composite oxides of lithium and titanium in the same way. As a result, it was discovered that the above object could be achieved by using Li2TiJ as a raw material and treating it with acid to elute the lithium therein. Based on this knowledge, the present invention was completed.

すなわち、本発明は、Li2TiO3の酸処理物であっ
て、リチウム選択性を示し、かつ主要なX線回折ピーク
が、 4.74±0.03      強 4.54±0.03      中 2.46±0.05中 1.72±0.03弱 1.52±0.03      弱 であるチタン酸化物系吸着剤を提供するものである。
That is, the present invention is an acid-treated product of Li2TiO3, which exhibits lithium selectivity and whose main X-ray diffraction peaks are: 4.74±0.03 strong 4.54±0.03 medium 2.46± The present invention provides a titanium oxide-based adsorbent that has a strength of 1.72±0.03 of 0.05 and 1.52±0.03 of 0.05.

このものは、Li2TiO3をpH5以下の酸性溶液で
処理し、その中のリチウムを溶出させることにより、製
造することができる。
This material can be produced by treating Li2TiO3 with an acidic solution having a pH of 5 or less and eluting the lithium therein.

本発明において原料として用いられるLi2TiO3は
12例えばLi2003とTlO2とをモル比1:lの
割合で混合して、約800℃の温度で数時間加熱処理す
ることによシ、あるいはリチウムの水酸化物、酸化物、
重炭酸塩、硝酸塩、ハロゲン化物などと、チタンの含水
酸化物、酸化物、硝酸塩、ハロゲン化物などとを適当な
組合せで混合したのち、400℃以上の温度で加熱処理
することにより、製造することができる。この際、初期
混合物中のリチウム量としては、チタンの2倍モル以上
存在する必要がある。2倍モル未満の場合には、異なっ
た結晶形態の化合物、例えばLi、、Ti、、6,04
、アナタース、ルチルなどが生成するため、リチウム吸
着性が著しく低下する。
Li2TiO3 used as a raw material in the present invention can be prepared by mixing 12, for example, Li2003 and TlO2 at a molar ratio of 1:1, and heating the mixture at a temperature of about 800°C for several hours, or by preparing lithium hydroxide. , oxide,
Produced by mixing bicarbonates, nitrates, halides, etc. with hydrous oxides, oxides, nitrates, halides, etc. of titanium in an appropriate combination, and then heating the mixture at a temperature of 400°C or higher. Can be done. At this time, the amount of lithium in the initial mixture needs to be at least twice the mole of titanium. If the amount is less than 2 times the molar amount, compounds with different crystal forms, such as Li, Ti, 6,04
, anatase, rutile, etc., resulting in a significant decrease in lithium adsorption.

本発明においては、前記Li2TiO3はpH5以下の
酸性溶液で処理され、その中のリチウムが溶出される。
In the present invention, the Li2TiO3 is treated with an acidic solution having a pH of 5 or less, and lithium therein is eluted.

この酸性溶液は、例えば塩酸、硫酸、硝酸、リン酸など
の鉱酸や、ギ酸、酢酸などの有機酸を用いて、pH5以
下、好ましくは2以下になるように調製される。前記酸
はそれぞれ単独で用いてもよいし、2種以上を混合して
用いてもよい。
This acidic solution is prepared to have a pH of 5 or less, preferably 2 or less, using a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, or phosphoric acid, or an organic acid such as formic acid or acetic acid. The above acids may be used alone or in combination of two or more.

リチウムの溶出処理は、前記酸性溶液中に、原料のLi
 2 TiO3を通常室温において1時間以上、好1し
くけ数日間浸せきし、かきまぜることにょシ行われる。
In the lithium elution treatment, the raw material Li is added to the acidic solution.
2 TiO3 is usually soaked at room temperature for at least 1 hour, preferably for several days, and then stirred.

このようにしてリチウムを溶出させたのち、固形物を通
常用いられている手段にょシ取り出し、水洗後、好1し
くけ70℃以下の温度において乾燥することによシ、所
望の吸着剤が得られる。
After eluting the lithium in this way, the solid material is taken out by a commonly used means, washed with water, and dried preferably at a temperature below 70°C to obtain the desired adsorbent. It will be done.

この吸着剤のX線回折特性を下記に示す。なお、比較上
し7ASTMカードA33 831記載(D Li2T
iO3のX線回折特性を併記する。
The X-ray diffraction characteristics of this adsorbent are shown below. For comparison, 7ASTM card A33 831 (D Li2T
The X-ray diffraction characteristics of iO3 are also shown.

本発明の吸着剤        Li2Ti05(AS
T 33−831) 4.74      強     4.80     
  強4.54       中      4.34
        弱2.46      中     
 2.50        中t、23 巷;春春      中      2.07    
    強1.72      弱      1.9
0        弱1.52      弱    
  1.60       弱1.47中 このように、本発明の吸着剤は、出発原料のLi2Ti
O3とほとんど同様なXa回折特性を示すが、該吸着剤
と原料Li2TiO3のX線回折特性の相違点は、チタ
ンの新規な形態の形成に際して、わずかにピーク位置の
変化がみられることである。
Adsorbent of the present invention Li2Ti05 (AS
T 33-831) 4.74 strong 4.80
Strong 4.54 Medium 4.34
Weak 2.46 Medium
2.50 Middle T, 23rd Street; Spring Spring Middle 2.07
Strong 1.72 Weak 1.9
0 Weak 1.52 Weak
1.60 weak 1.47 In this way, the adsorbent of the present invention has a starting material of Li2Ti
Although it exhibits almost the same Xa diffraction characteristics as O3, the difference between the X-ray diffraction characteristics of the adsorbent and the raw material Li2TiO3 is that there is a slight change in the peak position when a new form of titanium is formed.

発明の効果 本発明の吸着剤は、リチウムの吸着に適した微細孔を有
しており、リチウムに対する選択吸着性に優れ、かつ吸
着速度及び吸着容量が犬きく、しかも毒性がなく、水溶
液中で安定であることから、希薄溶液、例えば海水や地
熱水などから、効率よくリチウムを回収することができ
る。また、本発明の吸着剤は、リチウム以外の有用物質
回収用吸着剤や有害物質除去用吸着剤などとしても用い
ることができる。さらに、本発明の吸着剤として用いら
れるチタン化合物は、電池活性電極材料などとしても使
用することができる。
Effects of the Invention The adsorbent of the present invention has micropores suitable for adsorbing lithium, has excellent selective adsorption for lithium, has excellent adsorption rate and adsorption capacity, is non-toxic, and can be used in aqueous solutions. Because it is stable, lithium can be efficiently recovered from dilute solutions such as seawater and geothermal water. Further, the adsorbent of the present invention can be used as an adsorbent for recovering useful substances other than lithium, an adsorbent for removing harmful substances, and the like. Furthermore, the titanium compound used as the adsorbent of the present invention can also be used as a battery active electrode material.

実施例 次に実施例によシ本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

実施例1 アナタース型含水酸化チタン(表面積200 tr?/
り)と炭酸リチウムとを、Li : Ti原子比が2:
1となるように混合したのち、800℃で4時間加熱処
理して、Li2TiO3を調製した。この加熱処理物1
りを0.2N塩酸溶液3を中に加えて、lO日日間きま
ぜたのち、生成物をろ別し、洗浄後、70℃で乾燥して
吸着剤を調製した。第1表に得られた加熱処理物及び吸
着剤のX線回折特性を示す。なお、比較のために、AS
TMカード33−831記載のLi2TiO3のX線回
折特性を示す。
Example 1 Anatase type hydrated titanium oxide (surface area 200 tr?/
Li) and lithium carbonate at a Li:Ti atomic ratio of 2:
1, and then heat-treated at 800° C. for 4 hours to prepare Li2TiO3. This heat treated product 1
After adding 0.2N hydrochloric acid solution 3 to the mixture and stirring for 10 days, the product was filtered, washed, and dried at 70°C to prepare an adsorbent. Table 1 shows the X-ray diffraction characteristics of the heat-treated product and adsorbent. For comparison, AS
The X-ray diffraction characteristics of Li2TiO3 described in TM Card 33-831 are shown.

第    1    表 加熱処理物(Li2Ti05)のX線回折特性は、AS
TMカード記載のものと極めてよく一致した。
Table 1 The X-ray diffraction characteristics of the heat-treated product (Li2Ti05) are as follows:
It matched extremely well with what was written on the TM card.

また、本発明の吸着剤は、Li2TiO3と比較して、
わずかながら面間隔が変化しているが、元の構造を維持
していることは明らかである。
Furthermore, compared to Li2TiO3, the adsorbent of the present invention has
Although the interplanar spacing has changed slightly, it is clear that the original structure is maintained.

第2表に、これらのチタン化合物のリチウム含量を示す
。本発明の吸着剤は、Li2TiO3よりすチウム含量
が著しく少なく、極めて微細な空隙をもつ新規な吸着剤
であることは明らかである。
Table 2 shows the lithium content of these titanium compounds. It is clear that the adsorbent of the present invention is a novel adsorbent with a significantly lower lithium content than Li2TiO3 and extremely fine voids.

第    2    表 実施例2 実施例1において調製した吸着剤について、0.2M 
NH4Cl−0,2M NH3緩衝溶液(pH8,3)
中における、リチウム、ナトリウム、カリウムの吸着性
を調べた。
Table 2 Example 2 For the adsorbent prepared in Example 1, 0.2M
NH4Cl-0.2M NH3 buffer solution (pH 8.3)
The adsorption properties of lithium, sodium, and potassium were investigated.

すなわち、吸着剤50mgを、それぞれ1 m Mの濃
度でリチウム、ナトリウム及びカリウムを含む緩衝溶液
15ゴに加え、7日間かき筐ぜた。吸着前後のアルカリ
金属イオン濃度を原子吸光法で定量し、吸着率を求めた
。結果を第3表に示す。
That is, 50 mg of the adsorbent was added to 15 g of a buffer solution containing lithium, sodium, and potassium at a concentration of 1 mM each, and stirred for 7 days. The alkali metal ion concentration before and after adsorption was determined by atomic absorption spectrometry to determine the adsorption rate. The results are shown in Table 3.

第    3    表 この結果から、本発明の吸着剤は、リチウム選択吸着性
が優れていることは明らかである。
Table 3 From the results, it is clear that the adsorbent of the present invention has excellent lithium selective adsorption properties.

比較例 アナタース型含水酸化チタンと炭酸リチウムとを、Li
 : Ti原子比が、それぞれ帆5:1、l:lとなる
ように混合したのち、800℃で4時間加熱処理した。
Comparative Example Anatase-type hydrous titanium oxide and lithium carbonate were
: They were mixed so that the Ti atomic ratios were 5:1 and 1:1, respectively, and then heat-treated at 800° C. for 4 hours.

Li: Ti原子比が0.5 : 1の場合、加熱処理
物はルチルとLi1.H”1.6604の混合物となり
、Li : Ti原子比がl二lの場合、加熱処理物は
主にL 1 r 、as T I 1.6s O4とな
った。
When the Li:Ti atomic ratio is 0.5:1, the heat-treated product contains rutile and Li1. When the Li:Ti atomic ratio was 121, the heat-treated product was mainly L 1 r , as T I 1.6s O4.

これらの加熱処理物それぞれ12を0.5N塩酸溶液3
を中に加えて、IO日日間きまぜたのち、生成物をろ別
し、洗浄後70℃で乾燥してチタン化合物を調製した。
12 of each of these heat-treated products was mixed with 3 of a 0.5N hydrochloric acid solution.
After stirring for 10 days, the product was filtered, washed, and dried at 70°C to prepare a titanium compound.

これらチタン化合物それぞれ50■を、実施例2と同じ
緩衝溶液15mt中に加え、7日間かきまぜて、リチウ
ム、ナトリウム、カリウムの吸着性を調べた。その結果
を第4表に示す。
50 μ of each of these titanium compounds were added to 15 mt of the same buffer solution as in Example 2, stirred for 7 days, and the adsorption properties of lithium, sodium, and potassium were examined. The results are shown in Table 4.

第    4    表 この結果から、リチウム選択吸着性を示さないことは明
らかである。
Table 4 From the results, it is clear that lithium selective adsorption is not exhibited.

Claims (1)

【特許請求の範囲】 1 Li_2TiO_3の酸処理物であつて、リチウム
選択性を示し、かつ次に示すX線回折ピークを有する吸
着剤。 面間隔(Å):相対強度 4.74±0.03:強 4.54±0.03:中 2.46±0.05:中 1.93±0.05:中 1.72±0.03:弱 1.52±0.03:弱 2 Li_2TiO_3をpH5以下の酸性溶液で処理
し、その中のリチウムを溶出させることを特徴とする、
特許請求の範囲第1項記載の吸着剤の製造方法。
[Scope of Claims] 1. An adsorbent that is an acid-treated product of Li_2TiO_3, exhibits lithium selectivity, and has the following X-ray diffraction peak. Planar spacing (Å): Relative strength 4.74±0.03: Strong 4.54±0.03: Medium 2.46±0.05: Medium 1.93±0.05: Medium 1.72±0. 03: Weak 1.52 ± 0.03: Weak 2 Li_2TiO_3 is treated with an acidic solution of pH 5 or less to elute the lithium therein.
A method for producing an adsorbent according to claim 1.
JP2827188A 1988-02-08 1988-02-08 Adsorbent indicating new lithium selectivity and manufacture thereof Granted JPH01203039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2827188A JPH01203039A (en) 1988-02-08 1988-02-08 Adsorbent indicating new lithium selectivity and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2827188A JPH01203039A (en) 1988-02-08 1988-02-08 Adsorbent indicating new lithium selectivity and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH01203039A true JPH01203039A (en) 1989-08-15
JPH0525541B2 JPH0525541B2 (en) 1993-04-13

Family

ID=12243920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2827188A Granted JPH01203039A (en) 1988-02-08 1988-02-08 Adsorbent indicating new lithium selectivity and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01203039A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682296A (en) * 2013-08-16 2014-03-26 东莞上海大学纳米技术研究院 Preparation method for nanoscale lithium titanate material with high specific capacity
WO2018203522A1 (en) * 2017-05-01 2018-11-08 テイカ株式会社 Power storage device composition, power storage device separator using power storage device composition, and power storage device
CN110474122A (en) * 2019-07-25 2019-11-19 湖南邦普循环科技有限公司 A kind of method and the lithium ion sieve preparing lithium ion sieve using LiMn2O4 waste material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682296A (en) * 2013-08-16 2014-03-26 东莞上海大学纳米技术研究院 Preparation method for nanoscale lithium titanate material with high specific capacity
WO2018203522A1 (en) * 2017-05-01 2018-11-08 テイカ株式会社 Power storage device composition, power storage device separator using power storage device composition, and power storage device
JPWO2018203522A1 (en) * 2017-05-01 2020-05-14 テイカ株式会社 Power storage device composition, power storage device separator using the power storage device composition, and power storage device
US11302993B2 (en) 2017-05-01 2022-04-12 Tayca Corporation Power storage device composition, power storage device separator using power storage device composition, and power storage device
CN110474122A (en) * 2019-07-25 2019-11-19 湖南邦普循环科技有限公司 A kind of method and the lithium ion sieve preparing lithium ion sieve using LiMn2O4 waste material

Also Published As

Publication number Publication date
JPH0525541B2 (en) 1993-04-13

Similar Documents

Publication Publication Date Title
JP4958293B2 (en) Adsorbent for bromate ion
JPS61283342A (en) Lithium adsorbent and its preparation
KR100972140B1 (en) Method for synthesis of lithium manganese oxide by hydroysis and solvent-exchange process and preparation of ion-exchange type lithium adsorbent using the lithium manganese oxide
JPH01203039A (en) Adsorbent indicating new lithium selectivity and manufacture thereof
JPH024442A (en) High performance lithium adsorbent and its preparation
JPS6362546A (en) Composite type lithium adsorbent and its production
JP3388406B2 (en) Method for producing lithium adsorbent
KR20140001077A (en) Lithium-manganese complex oxides, lithium-manganese adsorption precursor and method for preparing the same, and lithium adsorbent using the same
JP3321602B2 (en) Selective lithium separating agent and method for producing the same
JP3876308B2 (en) Method for producing lithium-manganese composite oxide
JPH04305018A (en) Compound of h2ti5o11-nh2o having monoclinic layer structure and its production
JP4015212B2 (en) Ion exchanger
JP3412003B2 (en) Novel lithium adsorbent and method for producing the same
JPS6380844A (en) Preparation of novel lithium adsorbent
JP2000325779A (en) Composite lithium adsorbent and manufacture thereof
US20230278024A1 (en) Method of manufacturing inorganic ion exchanger for the selective extraction of lithium from lithium-containing natural and technological brines
JPH0326334A (en) Recovery agent of lithium and its production
JPH026844A (en) Synthetic lithium adsorbent and production thereof
JPS6362545A (en) Lithium adsorbent and its production and recovering method for lithium by using same
JPS62270420A (en) Novel manganese compound and production thereof
JPS6346009B2 (en)
JP2775412B2 (en) Lithium isotope separating agent
JPH0631159A (en) Adsorbent for litium and production therefor
JP2683312B2 (en) Potassium selective adsorbent and method for producing the same
JP2003119028A (en) Method of producing lithium-manganese compound oxide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term