JPH026844A - Synthetic lithium adsorbent and production thereof - Google Patents

Synthetic lithium adsorbent and production thereof

Info

Publication number
JPH026844A
JPH026844A JP15739488A JP15739488A JPH026844A JP H026844 A JPH026844 A JP H026844A JP 15739488 A JP15739488 A JP 15739488A JP 15739488 A JP15739488 A JP 15739488A JP H026844 A JPH026844 A JP H026844A
Authority
JP
Japan
Prior art keywords
lithium
oxide
compd
adsorbent
synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15739488A
Other languages
Japanese (ja)
Other versions
JPH0525540B2 (en
Inventor
Yoshiro Onodera
嘉郎 小野寺
Takashi Iwasaki
孝志 岩崎
Hiromichi Hayashi
拓道 林
Kazuo Torii
一雄 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15739488A priority Critical patent/JPH026844A/en
Publication of JPH026844A publication Critical patent/JPH026844A/en
Publication of JPH0525540B2 publication Critical patent/JPH0525540B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To enhance the ability of a synthetic lithium adsorbent to selectively adsorb lithium from a soln. contg. plural kinds of metal ions by preparing the adsorbent with a lithium compd. represented by a specified general formula. CONSTITUTION:A powdery mixture of a lithium compd. with antimony compound oxide is heated at a prescribed temp. of 500-1,000 deg.C to produce lithium- antimony compd. oxide as starting material. Lithium in the compd. oxide is then leached by washing with an acid soln. to synthesize a synthetic lithium adsorbent represented by a formula Li1-xHxSbO3 (where 0<X<1). The lithium compd. used may be lithium carbonate, nitrate, chloride or oxide. The acid soln. used is preferably a mineral acid soln. of <=1pH such as a hydrochloric acid, sulfuric acid or nitric acid soln.

Description

【発明の詳細な説明】 本発明は種々の金属イオンを含有する溶液から選択的に
リチウムを吸着する新規の合成リチウム吸着剤およびそ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel synthetic lithium adsorbent that selectively adsorbs lithium from solutions containing various metal ions, and a method for producing the same.

リチウムは多くの分野、例えば電池、ガラス、セラミッ
クス、航空機用のAI/L+合金などに用いられている
。将来は核融合燃料、核融合炉の熱の運搬媒体あるいは
冷却剤としての需要が見込まれており、リチウムの消費
量は著しく増大すると考えられている(日本鉱業会誌、
第97巻、221. 1981)。現在リチウムの生産
はアメリカ合衆国が全世界の約70%を占め寡占状態に
あるが、我国はリチウム鉱石資源に乏しく全量を輸入に
依存している。
Lithium is used in many fields, such as batteries, glass, ceramics, and AI/L+ alloys for aircraft. In the future, lithium consumption is expected to increase significantly as demand for fusion fuel, heat transport medium or coolant in fusion reactors is expected (Journal of the Japan Mining Industry Association,
Volume 97, 221. 1981). Currently, the United States has an oligopoly on lithium production, accounting for approximately 70% of the world's production, but Japan lacks lithium ore resources and relies entirely on imports.

しかるに、我国においても海水あるいは比較的豊富に存
在する地熱熱水や温泉水には低濃度ではあるがリチウム
を含有する場合が多く、これらのリチウムを含む希薄溶
液から該リチウムを効率よく回収するための高性能リチ
ウム吸着剤の開発が強く要望されている。
However, even in Japan, seawater or relatively abundant geothermal hot water and hot spring water often contain lithium, albeit at a low concentration, and it is difficult to efficiently recover lithium from dilute solutions containing lithium. There is a strong demand for the development of high-performance lithium adsorbents.

従来、リチウムを含む希薄溶液からの該、リチウムの吸
着剤としては、無定形含水酸化アルミニウム(海水誌、
第32巻、  78. 1978)、含水酸化スズ(日
本鉱業会誌、第39巻、  933. 1983)、ア
ンチモン酸スズ(Hydrometallurgy、 
12.83.1984)、層状チタン酸塩(J、 P!
1y、 Chem、、 88.5023.1982)、
二酸化マンガン(日本鉱業会誌、第102巻、  30
7. 1986)、λ型マンガン酸化物(Neorg、
 Mater、9.1041゜1973; 5olv、
 Extr、 Jon Exch、、 5.561.1
987)などが報告されている。
Conventionally, as an adsorbent for lithium from a dilute solution containing lithium, amorphous hydrated aluminum oxide (Kaisui Journal,
Volume 32, 78. 1978), hydrous tin oxide (Journal of the Japan Mining Association, Vol. 39, 933. 1983), tin antimonate (Hydrometallurgy,
12.83.1984), layered titanates (J, P!
1y, Chem, 88.5023.1982),
Manganese dioxide (Journal of the Japan Mining Association, Vol. 102, 30
7. 1986), λ-type manganese oxide (Neorg,
Mater, 9.1041°1973; 5olv,
Extr, Jon Exch, 5.561.1
987) etc. have been reported.

しかしながら、前述の吸着剤はλ型マンガン酸化物を除
いてはいずれも吸着容量がかなり小さいため実用性に乏
しいと考えられる。また、λ型マンガン酸化物において
は80°C以上の高温水溶液中ではその結晶構造が崩壊
して吸着容量が大幅に低下する欠点を存する。
However, all of the above-mentioned adsorbents, except for λ-type manganese oxide, have considerably small adsorption capacities and are therefore considered to be of little practical use. Furthermore, λ-type manganese oxide has the disadvantage that its crystal structure collapses in a high-temperature aqueous solution of 80° C. or higher, resulting in a significant decrease in adsorption capacity.

リチウムを含む海水、地熱熱水及び温泉水など種々の希
薄溶液から該リチウムを実用的に回収するためには、溶
存量の多いナトリウム、カリウム、カルシウム、マグネ
シウムなど他の共存陽イオンよりリチウムに対する選択
性に優れ、しかもその吸着容量が大きく、且つ耐熱性の
高い新規吸着剤の開発が要請されている。
In order to practically recover lithium from various dilute solutions such as seawater, geothermal hot water, and hot spring water containing lithium, it is necessary to select lithium over other coexisting cations such as sodium, potassium, calcium, and magnesium, which have large dissolved amounts. There is a need for the development of a new adsorbent that has excellent properties, a large adsorption capacity, and high heat resistance.

本発明の目的は、前述のような要件を満足しうる実用性
の高い合成リチウム吸着剤およびその製造方法を提供す
ることにある。
An object of the present invention is to provide a highly practical synthetic lithium adsorbent that can satisfy the above-mentioned requirements and a method for producing the same.

本発明者らはリチウム回収に関して長年鋭意研究を重ね
た結果、ある種のりチウム−アンチモン複合酸化物を酸
処理したものが上記目的に適合することを見い出し、新
規の合成リチウム吸着剤およびその製造方法の発明に至
った。
As a result of many years of intensive research into lithium recovery, the present inventors discovered that a certain type of lithium-antimony composite oxide treated with acid is suitable for the above purpose, and developed a new synthetic lithium adsorbent and its manufacturing method. This led to the invention of

すなわち、この発明は一般式Li+−,HxSbOa(
式中のXの値はO<x<1)で表わされる合成リチウム
吸着剤およびその製造方法に関する。
That is, this invention has the general formula Li+-, HxSbOa (
The value of X in the formula relates to a synthetic lithium adsorbent represented by O<x<1) and a method for producing the same.

次に本発明の合成リチウム吸着剤およびその製造方法に
ついて述べる。本発明の合成リチウム吸着剤はLISb
Osの理想組成を有するリチウム−アンチモン複合酸化
物を酸で処理してリチウムを溶出させることにより得ら
れる。原料となるリチウム−アンチモン複合酸化物はリ
チウム化合物とアンチモン酸化物の混合粉末を500°
〜1000°Cの所定温度で加熱処理することにより製
造できる。使用されるリチウム化合物としては、例えば
炭酸塩、硝酸塩、塩化物酸化物などをあげることができ
る。
Next, the synthetic lithium adsorbent of the present invention and its manufacturing method will be described. The synthetic lithium adsorbent of the present invention is LISb
It is obtained by treating a lithium-antimony composite oxide having an ideal composition of Os with an acid to elute lithium. The raw material, lithium-antimony composite oxide, is prepared by heating a mixed powder of lithium compound and antimony oxide at 500°.
It can be manufactured by heat treatment at a predetermined temperature of ~1000°C. Examples of the lithium compounds used include carbonates, nitrates, chloride oxides, and the like.

これらは市販の粉末物をそのまま用いることができる。Commercially available powders can be used as they are.

また、アンチモン酸化物としては、例えば原子価が3価
、4価、5価の市販の粉末状アンチモン酸化物が使用で
きる。リチウムとアンチモンの原子比が1= 1になる
ように上記いずれかのリチウム化合物とアンチモン酸化
物を充分に粉砕混合し、該混合物を500° 〜10G
0°Cの範囲の所定温度で加熱処理することによってL
ISbOsの組成を有するリチウム−アンチモン複合酸
化物が得られる。
Further, as the antimony oxide, for example, commercially available powdered antimony oxides having a valence of 3, 4, or 5 can be used. Thoroughly grind and mix any of the above lithium compounds and antimony oxide so that the atomic ratio of lithium and antimony is 1=1, and heat the mixture at 500° to 10G.
L by heat treatment at a predetermined temperature in the range of 0°C.
A lithium-antimony composite oxide having a composition of ISbOs is obtained.

Ll/Sb比は理想的には1であることが望ましいが0
.5から1.5の間の値は許容される。該複合酸化物を
酸溶液で洗浄処理し、複合酸化物中のリチウムを溶出さ
せることにより本発明の合成リチウム吸着剤が得られる
。リチウムを溶出させるために用いる酸溶液は、酸溶液
であればよいが、望ましくはpH1以下の塩酸、硫酸、
硝酸などの鉱酸溶液がよい。本発明の合成リチウム吸着
剤の生成はX線粉末回折により容易に確認することがで
きる。すなわち、CuKαのX線を用いた場合、2θで
19.8.21.3.32.8および40.7’に特徴
的な回折線が出現し、新規物質であると考えられる。
Ideally, the Ll/Sb ratio is 1, but it is 0.
.. Values between 5 and 1.5 are acceptable. The synthetic lithium adsorbent of the present invention can be obtained by washing the composite oxide with an acid solution and eluting lithium in the composite oxide. The acid solution used to elute lithium may be any acid solution, but preferably hydrochloric acid, sulfuric acid, or
Mineral acid solutions such as nitric acid are preferred. The production of the synthetic lithium adsorbent of the present invention can be easily confirmed by X-ray powder diffraction. That is, when CuKα X-rays are used, characteristic diffraction lines appear at 19.8.21.3.32.8 and 40.7' at 2θ, and it is considered to be a new substance.

本発明の合成リチウム吸着剤を溶液中で用いた場合リチ
ウム吸着容量が大きく、かつリチウム選択性が高く非常
に優れたリチウム吸着特性を示す。
When the synthetic lithium adsorbent of the present invention is used in a solution, it has a large lithium adsorption capacity, high lithium selectivity, and exhibits excellent lithium adsorption properties.

リチウムに対する選択性は出発原料のアンチモン酸化物
のみを上記の製造条件下で処理したものが吸着能を全く
示さないことから、リチウム−アンチモン複合酸化物か
らリチウムを溶出させた本吸着剤特有の吸着能に基づく
ものと考えられる。
Regarding the selectivity for lithium, when only the starting material, antimony oxide, was treated under the above production conditions, it showed no adsorption ability at all. It is thought to be based on Noh.

本発明により得られる吸着剤は、他の金属イオンを含む
海水、地熱熱水および温泉水など低濃度リチウムを含む
溶液からリチウムを選択的に回収するのに好適に使用す
ることができる。
The adsorbent obtained by the present invention can be suitably used to selectively recover lithium from solutions containing low concentrations of lithium, such as seawater, geothermal hot water, and hot spring water containing other metal ions.

次に実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 炭酸リチウム特級試薬1.11gと二酸化アンチモン特
級試薬4.38gを用い、拙シ寺機にて充分に粉砕、混
合したものを出発原料とした。これを電気マツフル炉中
で650°C124時間加熱処理を行った。得られた加
熱生成物を0.5モル塩酸溶液100m1中に入れ50
°Cで3日間反応させリチウムを溶出させた。蒸留水で
洗浄後、50 ’Cで乾燥して本発明製品を得た。
Example 1 1.11 g of a special grade lithium carbonate reagent and 4.38 g of a special grade antimony dioxide reagent were thoroughly ground and mixed using a sushi machine, and this was used as a starting material. This was heat-treated in an electric Matsufuru furnace at 650°C for 124 hours. The heated product obtained was placed in 100 ml of 0.5 molar hydrochloric acid solution and
The reaction was carried out at °C for 3 days to elute lithium. After washing with distilled water, the product was dried at 50'C to obtain a product of the present invention.

本発明製品100mgをpH8,5の金属イオン混合溶
液(0,5モル塩化アンモニウム溶液と0.5モル水酸
化アンモニウム溶液からなるpH8,5のpH緩衝液中
に、それぞれの金属イオン濃度が1ミリモルとなるよう
に特級試薬の塩化リチウム、塩化カリウム、塩化ナトリ
ウム、塩化カルシウムを添加して調製用00m1ととも
に25°Cの恒温水槽中で2週間振とうしたのち、孔径
0.45.tL7nのメンブランフィルタ−で固液を分
離した。液相中の金属イオン濃度を原子吸光法で測定し
、吸着前後の濃度差よりそれぞれの金属イオンの吸着量
を算出した。各金属イオンの選択性を表わす指標の分配
係数は平衡吸着量(mg/+n+)を溶液中の平衡濃度
(mg/ml)で除することにより求められ、リチウム
=3190、ナトリウム=801  カリウム=30お
よびカルシウム=130であり、リチウムに対し優れた
選択性を示すことが判明した。
100 mg of the product of the present invention was added to a mixed metal ion solution of pH 8.5 (a pH buffer solution of pH 8.5 consisting of a 0.5 molar ammonium chloride solution and a 0.5 molar ammonium hydroxide solution, with a concentration of each metal ion of 1 mmol). Add special grade reagents such as lithium chloride, potassium chloride, sodium chloride, and calcium chloride, and shake for 2 weeks in a constant temperature water bath at 25°C with 00ml for preparation, then filter with a membrane filter with a pore size of 0.45.tL7n The solid-liquid was separated at -.The metal ion concentration in the liquid phase was measured by atomic absorption spectrometry, and the adsorption amount of each metal ion was calculated from the difference in concentration before and after adsorption. The partition coefficient is determined by dividing the equilibrium adsorption amount (mg/+n+) by the equilibrium concentration in the solution (mg/ml), and the following formulas are obtained: lithium = 3190, sodium = 801, potassium = 30, and calcium = 130. It was found to exhibit excellent selectivity.

実施例2 実施例1と同様に操作して本発明製品を得た。Example 2 A product of the present invention was obtained in the same manner as in Example 1.

但し、電気マツフル炉中の温度を550℃とした。本発
明製品を用い、実施例1で用いた金属イオン混合溶液か
らのリチウムイオンの吸着平衡到達時間及び平衡吸着量
を25℃、55°C190°Cの各温度で測定した結果
を第1表に示す。
However, the temperature in the electric Matsufuru furnace was 550°C. Table 1 shows the results of measuring the adsorption equilibrium time and equilibrium adsorption amount of lithium ions from the metal ion mixed solution used in Example 1 using the product of the present invention at temperatures of 25°C, 55°C, and 190°C. show.

第1表リチウム吸着特性と吸着温度の関係第1表から明
らかなように、本発明製品ではリチウムの吸着平衡に達
する時間は、25°Cで240時間であるが90’Cで
は3時間と吸着温度の上昇に伴い急激に短縮されている
。一方、リチウムの平衡吸着量は25°〜90°Cの測
定温度範囲では殆ど変化が認められず、λ型マンガン酸
化物より耐熱性に優れていることがわかる。
Table 1 Relationship between lithium adsorption characteristics and adsorption temperature As is clear from Table 1, the time required for the product of the present invention to reach lithium adsorption equilibrium is 240 hours at 25°C, but only 3 hours at 90°C. It is rapidly shortening as the temperature rises. On the other hand, the equilibrium adsorption amount of lithium shows almost no change in the measurement temperature range of 25° to 90°C, indicating that it has better heat resistance than λ-type manganese oxide.

比較例1 リチウム化合物を存在させることなく、他は実施例1と
同じ条件で三酸化アンチモンのみを加熱、酸処理、水洗
、乾燥を行い、該乾燥物を用いて実施例1と同じ条件で
吸着実験を行った。その結果、リチウムのみならず他の
金属イオンについても吸着前後の溶液中の濃度変化は全
く認められず、金属イオンの1汲着が起こらないことが
わかった。以上のことから、本発明の製造方法において
、リチウム化合物は、リチウム選択性の著しく高い陽イ
オン吸着特性の発現に大きく寄与していることは明らか
である。
Comparative Example 1 Only antimony trioxide was heated, acid-treated, washed with water, and dried under the same conditions as Example 1 without the presence of a lithium compound, and the dried product was used for adsorption under the same conditions as Example 1. We conducted an experiment. As a result, no change in the concentration of not only lithium but also other metal ions in the solution before and after adsorption was observed, indicating that no single adsorption of metal ions occurred. From the above, it is clear that in the production method of the present invention, the lithium compound greatly contributes to the development of cation adsorption characteristics with extremely high lithium selectivity.

比較例2 実施例1および2の本発明製品と公知の合成法によって
製造したλ型マンガン酸化物を用い、実施例1と同一条
件で行ったリチウム吸着実験の結果の比較を表2に示す
Comparative Example 2 Table 2 shows a comparison of the results of a lithium adsorption experiment conducted under the same conditions as Example 1 using the products of the present invention of Examples 1 and 2 and a λ-type manganese oxide produced by a known synthesis method.

*α(分離係数=リチウムの分配係数/カルシウムの分
配係数)第2表から明らかなように、従来量も優れたリ
チウム吸着剤とされているλ型マンガン酸化物に比べ本
発明製品(実施例2)のリチウムの分配係数の値は約3
47倍と著しく大きい。さらにリチウムについで選択性
の高いカルシウムの影響についてみると、分離係数αの
値は本発明製品(実施例2)の場合60.0であるのに
対し、λ型マンガン酸化物では15.1と小さく、リチ
ウム回収時における共存カルシウムの影響も本発明製品
のほうがはるかに小さいことが明らかである。
*α (Separation coefficient = Partition coefficient of lithium/Partition coefficient of calcium) As is clear from Table 2, the product of the present invention (Example The value of the distribution coefficient of lithium in 2) is approximately 3
It is significantly larger at 47 times. Furthermore, looking at the influence of calcium, which has high selectivity next to lithium, the value of separation coefficient α is 60.0 in the case of the product of the present invention (Example 2), whereas it is 15.1 in the case of the λ-type manganese oxide. It is clear that the influence of coexisting calcium during lithium recovery is also much smaller in the product of the present invention.

Claims (1)

【特許請求の範囲】 1)一般式Li_1_−_xH_xSbO_3(式中の
xの値は0<x<1である)で表わされる合成リチウム
吸着剤。 2)リチウムとアンチモンの複合酸化物から酸でリチウ
ムを溶出することを特徴とする特許請求の範囲第1項記
載の一般式で表わされる合成リチウム吸着剤の製造方法
[Claims] 1) A synthetic lithium adsorbent represented by the general formula Li_1_-_xH_xSbO_3 (the value of x in the formula is 0<x<1). 2) A method for producing a synthetic lithium adsorbent represented by the general formula according to claim 1, which comprises eluting lithium from a composite oxide of lithium and antimony with an acid.
JP15739488A 1988-06-24 1988-06-24 Synthetic lithium adsorbent and production thereof Granted JPH026844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15739488A JPH026844A (en) 1988-06-24 1988-06-24 Synthetic lithium adsorbent and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15739488A JPH026844A (en) 1988-06-24 1988-06-24 Synthetic lithium adsorbent and production thereof

Publications (2)

Publication Number Publication Date
JPH026844A true JPH026844A (en) 1990-01-11
JPH0525540B2 JPH0525540B2 (en) 1993-04-13

Family

ID=15648674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15739488A Granted JPH026844A (en) 1988-06-24 1988-06-24 Synthetic lithium adsorbent and production thereof

Country Status (1)

Country Link
JP (1) JPH026844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283217A (en) * 1988-09-19 1990-03-23 Mitsuo Abe Method for synthesizing monoclinic antimonic acid and method for selective separaiton of lithium using the same
CN107128955A (en) * 2017-05-15 2017-09-05 李陇岗 A kind of method that lithium carbonate is extracted from thermal water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283217A (en) * 1988-09-19 1990-03-23 Mitsuo Abe Method for synthesizing monoclinic antimonic acid and method for selective separaiton of lithium using the same
JPH059374B2 (en) * 1988-09-19 1993-02-04 Mitsuo Abe
CN107128955A (en) * 2017-05-15 2017-09-05 李陇岗 A kind of method that lithium carbonate is extracted from thermal water

Also Published As

Publication number Publication date
JPH0525540B2 (en) 1993-04-13

Similar Documents

Publication Publication Date Title
WO2017215011A1 (en) Ion sieve material, preparation method therefor and using method thereof
Chitrakar et al. Synthetic inorganic ion exchange materials XLVII. Preparation of a new crystalline antimonic acid HSbO3. O. 12H2O
JPH024442A (en) High performance lithium adsorbent and its preparation
SASAKI et al. Ion-exchange properties of hydrous titanium dioxide with a fibrous form obtained from potassium dititanate
JPH026844A (en) Synthetic lithium adsorbent and production thereof
Jain et al. Ion-exchange behaviour of copper ferricyanide: Application of ion-exchange column to the separation of Cs
JPS6362546A (en) Composite type lithium adsorbent and its production
Donaldson et al. 321. Basic tin (II) chloride
JPH0626662B2 (en) Lithium recovery agent and method for producing the same
Jain et al. Selective separation of copper (II) on a cobalt hexacyanoferrate (III) ion-exchange column
JP2001224957A (en) Agent for selectively separating lithium and its manufacturing method
JPH04305018A (en) Compound of h2ti5o11-nh2o having monoclinic layer structure and its production
JPH01203039A (en) Adsorbent indicating new lithium selectivity and manufacture thereof
JPH0218906B2 (en)
JP2004002097A (en) Manufacturing method for lithium/manganese double oxide
EP0022620B1 (en) Aluminophosphorous compound, process for producing same and its use
JPH105585A (en) Lithium ion adsorbing agent
JPH0357814B2 (en)
JPH01310737A (en) Adsorbent for lithium and manufacture thereof
JP2775412B2 (en) Lithium isotope separating agent
RU2681633C1 (en) Method of obtaining granulated aluminosilicate adsorbent for cleaning of aqueous media from cesium cations
De et al. Synthetic inorganic ion-exchangers. XIX. Preparation, properties, and ion-exchange behavior of lanthanum antimonate
JP2000325779A (en) Composite lithium adsorbent and manufacture thereof
De et al. Studies on synthetic inorganic ion exchangers—V: Preparation, properties and ion-exchange behaviour of amorphous and crystalline thorium tungstate
JP2850309B2 (en) Method for producing lithium adsorbent

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term