JP2850309B2 - Method for producing lithium adsorbent - Google Patents

Method for producing lithium adsorbent

Info

Publication number
JP2850309B2
JP2850309B2 JP24684789A JP24684789A JP2850309B2 JP 2850309 B2 JP2850309 B2 JP 2850309B2 JP 24684789 A JP24684789 A JP 24684789A JP 24684789 A JP24684789 A JP 24684789A JP 2850309 B2 JP2850309 B2 JP 2850309B2
Authority
JP
Japan
Prior art keywords
lithium
compound
adsorbent
manganese compound
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24684789A
Other languages
Japanese (ja)
Other versions
JPH03106439A (en
Inventor
健太 大井
良孝 宮井
実雄 ▲榊▼原
友伸 西村
守 小野田
純二 隈元
義文 亀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kobe Steel Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP24684789A priority Critical patent/JP2850309B2/en
Publication of JPH03106439A publication Critical patent/JPH03106439A/en
Application granted granted Critical
Publication of JP2850309B2 publication Critical patent/JP2850309B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はリチウム吸着剤の製造方法に関するものであ
り、殊にリチウムに対する選択的吸着性に優れ、且つ吸
着容量および吸着速度が大きく、リチウム希薄溶液中で
安定であって、毒性の少ない安価なリチウム吸着剤の製
造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a lithium adsorbent, and particularly to a method for producing a lithium adsorbent, which is excellent in selective adsorption to lithium, has a large adsorption capacity and a large adsorption speed, and has a low lithium concentration. The present invention relates to a method for producing an inexpensive lithium adsorbent which is stable in a solution and has low toxicity.

[従来の技術] 近年、リチウム金属およびその化合物は、セラミック
ス,電池,吸収型冷媒,医薬品等の広い分野で用いられ
ており、また将来的にも大容量電池,アルミニウム合金
材料,核融合燃料等への利用が期待されており、リチウ
ムの需要は今後ますます増大するものと見込まれてい
る。(「日本鉱業会誌」第97巻、第221頁)。
[Prior Art] In recent years, lithium metal and its compounds have been used in a wide range of fields such as ceramics, batteries, absorption type refrigerants, pharmaceuticals, etc. In the future, large capacity batteries, aluminum alloy materials, fusion fuels, etc. The demand for lithium is expected to increase further in the future. (Journal of the Japan Mining Association, Vol. 97, p. 221).

リチウム金属やその化合物は、主としてスポジュメ
ン,アンブリゴナイト,ペタライト,レビトライト等の
リチウム含有鉱石(リチウム含有量2〜6%)を原料と
して製造したり、或はリチウム濃度の高い塩湖や地下か
ん水(リチウム濃度50〜200ppm)から蒸発法等で回収し
ている。
Lithium metal and its compounds are produced mainly from lithium-containing ores (lithium content 2 to 6%) such as spodumene, ambrigonitite, petalite, levitrite, etc., or salt lakes with high lithium concentration or underground brine ( Lithium concentration of 50 to 200 ppm) is collected by evaporation method.

我国においては上記の様なリチウム含有鉱石が乏し
く、またリチウム含有液からの回収法も確立していな
い。その為リチウム金属やその化合物は全量輸入に依存
しているのが実情である。一方我国の地熱水や温泉水に
はかなりのリチウムを含有するものがあり、また周囲を
とりまく海洋中にも微量のリチウム(0.17ppm)が含ま
れている。こうしたことから、リチウムを含む希薄溶液
からリチウムを効率よく回転する技術の確立が強く望ま
れている。
In Japan, lithium-containing ores as described above are scarce, and a method for recovering from lithium-containing liquid has not been established. Therefore, the fact is that lithium metal and its compounds all depend on imports. On the other hand, some geothermal and hot spring waters in Japan contain considerable amounts of lithium, and the surrounding ocean also contains trace amounts of lithium (0.17 ppm). Therefore, it is strongly desired to establish a technique for efficiently rotating lithium from a dilute solution containing lithium.

リチウムを含む希薄溶液からリチウムを回収する技術
の一環として、様々なリチウム吸着剤が提案されている
(例えば特開昭61−171535号,同61−278347号,61−283
341号,同63−80844号等)。これらによれば、リチムウ
化合物とマンガン化合物を粉砕したものやリチウム含有
マンガン酸化物或はリチウム酸化物等を所定温度で加熱
した後、リチムウを酸溶出すところによって優れたリチ
ウム吸着剤が得らることが示されている。
As a part of the technology for recovering lithium from a dilute solution containing lithium, various lithium adsorbents have been proposed (for example, JP-A-61-171535, JP-A-61-278347, and 61-283).
Nos. 341 and 63-80844). According to these, after heating a lithium manganese compound or a manganese compound or a lithium-containing manganese oxide or lithium oxide at a predetermined temperature, an excellent lithium adsorbent can be obtained by eluting the lithium into an acid. It has been shown.

[発明が解決解決しようとする課題] リチウムを含む希薄溶液からリチウムを実用的に吸着
するには、リチウムに対する選択吸着性が優れ、且つ吸
着速度や吸着容量が大きく、また希薄溶液中で安定であ
って毒性も少なく、吸着・脱着の繰り返しが可能であ
り、更に経済面を考慮すると高合成率で得られるリチウ
ム吸着剤の開発が必要である。こうした観点から上記技
術を検討すると、上記リチウム吸着剤には未反応物質が
依然として残存しており、この未反応物質がリチウム吸
着性低下の原因となっており、更に高い吸着性を発揮す
ることが望まれる。
[Problems to be Solved by the Invention] In order to practically adsorb lithium from a dilute solution containing lithium, a selective adsorption property to lithium is excellent, an adsorption speed and an adsorption capacity are large, and the lithium is stable in a dilute solution. It has low toxicity and can be repeatedly adsorbed and desorbed. Further, considering the economic aspect, it is necessary to develop a lithium adsorbent that can be obtained at a high synthesis rate. When the above technology is examined from such a viewpoint, unreacted substances still remain in the lithium adsorbent, and this unreacted substance causes a decrease in lithium adsorptivity. desired.

本発明はこうした技術的課題を解決する為になされた
ものであって、その目的は、リチウム吸着性低下の原因
である未反応物質の残存量を極力低減し、吸着性能を更
に高めるリチウム吸着剤を製造する為の方法を提供する
ことにある。
The present invention has been made to solve such technical problems, and an object of the present invention is to reduce the residual amount of unreacted substances that cause a decrease in lithium adsorptivity as much as possible, and to further enhance the adsorption performance. It is to provide a method for manufacturing the.

[課題を解決する為の手段] 上記目的を達成した本発明とは、リチウム化合物とマ
ンガン化合物を粉砕・混合した後造粒し、該造粒物を35
0℃以上の温度で加熱処理して合成したリチウム含有マ
ンガン化合物から酸を用いてリチウムを溶出する点に要
旨を有するリチウム吸着剤の製造方法である。
[Means for Solving the Problems] The present invention, which has achieved the above-mentioned object, refers to a method in which a lithium compound and a manganese compound are pulverized and mixed, and then granulated.
This is a method for producing a lithium adsorbent having a feature in that lithium is eluted from a lithium-containing manganese compound synthesized by heat treatment at a temperature of 0 ° C. or higher using an acid.

[作用] 本発明者らは、リチウム吸着剤中の未反応物質を極力
低減する手段について様々な角度から検討した。その結
果、リチウム化合物とマンガン化合物を粉砕・混合した
(粉砕と混合の順序は問わない。以下同じ)後の加熱処
理に先立って、上記混合物を造粒しておけば、加熱処理
時における未反応物質の残存量の低減が図れ、吸着性能
のより優れたリチウム吸着剤が得られることを見出し、
ここに本発明を完成した。即ち、本発明者らの研究によ
れば、熱処理に先だってバインダー等によって造粒して
おくことにより、リチウム化合物とマンガン化合物の密
着性を向上させることができ、これによって加熱処理時
における反応性を高め、未反応物質の低減が図れたので
ある。
[Action] The present inventors have studied from various angles a means for reducing unreacted substances in the lithium adsorbent as much as possible. As a result, prior to the heat treatment after the lithium compound and the manganese compound are pulverized and mixed (the order of pulverization and mixing does not matter; the same applies hereinafter), if the mixture is granulated prior to the heat treatment, It has been found that the amount of the remaining substance can be reduced, and a lithium adsorbent having more excellent adsorption performance can be obtained.
Here, the present invention has been completed. That is, according to the study of the present inventors, by performing granulation with a binder or the like prior to heat treatment, the adhesion between the lithium compound and the manganese compound can be improved, thereby increasing the reactivity during the heat treatment. It increased the amount of unreacted substances.

この様な効果が得られる理由は、次の様に考えること
ができる。即ち、リチウム化合物とマンガン化合物の反
応は、下記(I)式または(II)式によって進行する
が、両者の密着性を向上させることによって、これらの
反応が促進されるものと考えられる。
The reason why such an effect is obtained can be considered as follows. That is, the reaction between the lithium compound and the manganese compound proceeds according to the following formula (I) or (II). It is considered that these reactions are promoted by improving the adhesion between the two.

本発明で用いるリチウム化合物としては、リチウムの
水酸化物,酸化物,炭酸塩,重炭酸塩,ハロゲン化物お
よび硝酸塩等が挙げられ、これらの1種または2種以上
を適当に組み合わせて用いればよい。また本発明で用い
るマンガン化合物としては、マンガンの含水酸化物[Mn
OOH,Mn(OH)等],酸化物,炭酸塩,重炭酸塩,ハロ
ゲン化物および硝酸塩等が挙げられ、これらの1種また
は2種以上を適当に組み合わせて用いればよい。
Examples of the lithium compound used in the present invention include hydroxides, oxides, carbonates, bicarbonates, halides, and nitrates of lithium. One or more of these may be used in an appropriate combination. . The manganese compound used in the present invention includes a manganese hydrate [Mn
OOH, Mn (OH) 2 etc.], oxides, carbonates, bicarbonates, halides, nitrates and the like, and one or more of these may be used in an appropriate combination.

上記のリチウム化合物およびマンガン化合物を、適当
な割合で粉砕・混合した後、適当な溶媒と共に混練し、
好ましくは0.5〜2mmの粒径に造粒する。リチウム化合物
とマンガン化合物の混合比については特に限定するもの
ではないが、マンガンモル数に対するリチウムモル数の
比が0.1〜1.0、望ましくは0.5〜1.0程度となる様に混合
するのが適当である。また混練の際に用いる溶媒として
は、水のみでも造粒は可能であるが、バインダーを用い
るのが好ましい。この様なバインダーとしては例えば、
ポリビニルアルコールやポリビニルクロライド等の合成
高分子、或はセルロースやリグニン等の天然高分子が挙
げられるが、これらに限定されるものではない。一方造
粒する為の手段については従来公知の各種造粒機を用い
て造粒を行なえば良く何ら限定するものではないが、均
質な粒径を有する造粒物が得られるという点から、転動
式または押出し式造粒機を用いる方法が推奨される。
After pulverizing and mixing the above lithium compound and manganese compound at an appropriate ratio, kneading with an appropriate solvent,
Preferably, granulation is performed to a particle size of 0.5 to 2 mm. The mixing ratio of the lithium compound and the manganese compound is not particularly limited, but it is appropriate to mix them so that the ratio of the number of moles of lithium to the number of moles of manganese is 0.1 to 1.0, preferably about 0.5 to 1.0. As a solvent used for kneading, granulation is possible with water alone, but it is preferable to use a binder. Examples of such a binder include:
Examples include, but are not limited to, synthetic polymers such as polyvinyl alcohol and polyvinyl chloride, and natural polymers such as cellulose and lignin. On the other hand, the means for granulation is not particularly limited as long as granulation is carried out using various conventionally known granulators.However, granulation having a uniform particle size can be obtained. The use of a dynamic or extruder granulator is recommended.

本発明の吸着剤は、上記造粒物を350℃以上、好まし
くは400℃以上の温度で加熱処理して合成したリチウム
含有マンガン化合物から、酸を用いてリチウムを溶出す
ることによって得られる。この際の加熱処理温度は上述
の如く350℃以上であることが必要である。これは350℃
未満の温度で加熱処理したものは、リチウム化合物とマ
ンガン化合物の反応が十分に進まず、得られる吸着剤の
吸着性能が著しく低下するからである。また加熱処理時
間は5分〜10時間、望ましくは30分〜6時間程度が適当
である。尚リチウム含有マンガン化合物からリチウムを
溶出する際に用いる酸としては、pH3以下の酸性溶液で
あればよいが、望ましくは0.05M以上の鉱酸がよい。
The adsorbent of the present invention is obtained by eluting lithium using an acid from a lithium-containing manganese compound synthesized by heat-treating the above-mentioned granulated material at a temperature of 350 ° C or higher, preferably 400 ° C or higher. At this time, the heat treatment temperature needs to be 350 ° C. or higher as described above. This is 350 ° C
If the heat treatment is performed at a temperature lower than the above, the reaction between the lithium compound and the manganese compound does not sufficiently proceed, and the adsorption performance of the obtained adsorbent is significantly reduced. The heat treatment time is appropriately from 5 minutes to 10 hours, preferably from about 30 minutes to 6 hours. The acid used for eluting lithium from the lithium-containing manganese compound may be an acidic solution having a pH of 3 or less, and preferably a mineral acid of 0.05 M or more.

以下本発明を実施例によって更に詳細に説明するが、
下記実施例は本発明を限定する性質のものではなく、前
・後記の趣旨に微して設計変更することはいずれも本発
明の技術的範囲に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples.
The following examples are not intended to limit the present invention, and any change in the design in the spirit of the above and below is included in the technical scope of the present invention.

[実施例] 炭酸リチウム(Li2CO3)と酸化水酸化マンガン(MnOO
H)を、Li/Mnモル比が0.6となる様に粉砕・混合した
後、ポリビニルアルコール(PVA2000)1%水溶液をバ
インダーとして、転動式造粒器で0.5〜2mmの粒径からな
る造粒物を製造した。その後該造粒物を第1表に示す条
件で加熱処理を行なった。
[Example] Lithium carbonate (Li 2 CO 3 ) and manganese oxide hydroxide (MnOO)
H) is crushed and mixed so that the Li / Mn molar ratio becomes 0.6, and then granulated with a particle size of 0.5 to 2 mm using a tumbling granulator using a 1% aqueous solution of polyvinyl alcohol (PVA2000) as a binder. Was manufactured. Thereafter, the granulated product was subjected to a heat treatment under the conditions shown in Table 1.

上記加熱処理につき、試料中のLiMn2O4の合成率を調
査したところ、第1図に示す結果が得られた。尚第1図
には、比較例として、造粒処理を行なわずに粉末状のも
のをそのまま加熱処理した場合の合成率についても示し
た。また合成率はいずれも、試料をガス分析して未反応
のLi2CO3を求め、この値と混合原料中のLi2CO3とによっ
て算出した。
When the synthesis rate of LiMn 2 O 4 in the sample was investigated for the above heat treatment, the results shown in FIG. 1 were obtained. FIG. 1 also shows, as a comparative example, the synthesis rate in the case where the powdery material was subjected to heat treatment without granulation. In each case, the synthesis rate was determined by gas analysis of the sample to obtain unreacted Li 2 CO 3 , and using this value and Li 2 CO 3 in the mixed raw material.

第1図から明らかであるが、いずれの温度においても
造粒した試料は、造粒しない試料と比べて合成率が20%
以上増大しているのが認められる。
As is clear from FIG. 1, the sample granulated at any temperature has a synthesis rate of 20% as compared with the sample not granulated.
It is recognized that the number has increased.

次に、400℃で加熱処理した試料(試料番号2)を、
0.2N−HC1で洗浄してリチウムを溶出させた後風乾して
リチウム吸着剤を得た。一方上記試料を乳鉢で粉砕した
もの(試料番号2′)と、造粒を行なわないで、400℃
で4時間加熱処理したもの(試料番号7)につき、上記
と同様にして酸でリチウムを溶出させてリチウム吸着剤
を得た。これらの各吸着剤1gを模擬かん水([Li]=13
0ppm)250mlに浸漬して室温で7日間静置した後、吸着
剤中のリチウムを定量してリチウム吸着量を測定した。
その結果を第2表に示す。
Next, the sample heated at 400 ° C. (Sample No. 2)
After washing with 0.2N-HC1 to elute lithium, the mixture was air-dried to obtain a lithium adsorbent. On the other hand, the above sample was crushed in a mortar (sample No. 2 '), and 400 ° C without granulation.
For 4 hours (sample No. 7), lithium was eluted with an acid in the same manner as above to obtain a lithium adsorbent. 1 g of each of these adsorbents was simulated with brine ([Li] = 13
(0 ppm), immersed in 250 ml and allowed to stand at room temperature for 7 days, and then the amount of lithium in the adsorbent was quantified to determine the amount of lithium adsorbed.
Table 2 shows the results.

第2表から明らかであるが、造粒して得られた試料を
粉末化して得られた吸着剤は、造粒せず製造した吸着剤
よりも吸着量が10%以上向上しているのがよく分かる。
It is clear from Table 2 that the adsorbent obtained by pulverizing the sample obtained by granulation has an adsorption amount improved by 10% or more than the adsorbent manufactured without granulation. I understand well.

[発明の効果] 以上述べた如く本発明によれば、加熱処理の前に原料
を造粒することによって、リチウム化合物とマンガン化
合物の接触度合を高めて反応性を向上させることがで
き、より吸着性能に優れたリチウム吸着剤が実現でき
た。
[Effect of the Invention] As described above, according to the present invention, by granulating the raw material before the heat treatment, the degree of contact between the lithium compound and the manganese compound can be increased, and the reactivity can be improved. A lithium adsorbent with excellent performance was realized.

【図面の簡単な説明】[Brief description of the drawings]

第1図は加熱温度とLiMn2O4合成率の関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between the heating temperature and the LiMn 2 O 4 synthesis rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲榊▼原 実雄 香川県高松市花の宮町2丁目3番3号 工業技術院四国工業技術試験所内 (72)発明者 西村 友伸 兵庫県神戸市灘区篠原伯母野山町2―3 ―1 (72)発明者 小野田 守 兵庫県三木市緑が丘町東1―14―8 (72)発明者 隈元 純二 兵庫県神戸市東灘区北青木2―10―E 6706 (72)発明者 亀岡 義文 兵庫県神戸市垂水区高丸7―3―3― 334 (56)参考文献 特開 昭61−283341(JP,A) 特開 昭62−83035(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01J 20/04 C01G 45/00──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor ▲ Mio Sakakihara 2-3-3 Hananomiyacho, Takamatsu City, Kagawa Prefecture Inside the Industrial Technology Research Institute, Shikoku (72) Inventor Toshinobu Nishimura Kobe, Hyogo Prefecture 2-3-1 Shinohara Amo Noyama-cho, Nada-ku (72) Inventor Mamoru Onoda 1-1-4-8, Midorigaoka-cho, Miki City, Hyogo Prefecture (72) Inventor Junji Kumamoto 2-10-E 6706 Kita-Aoki, Higashinada-ku, Kobe City, Hyogo Prefecture (72) Inventor Yoshifumi Kameoka 7-3-3-334 Takamaru, Tarumi-ku, Kobe-shi, Hyogo (56) References JP-A-61-283341 (JP, A) JP-A-62-83035 (JP, A) (58) ) Field surveyed (Int. Cl. 6 , DB name) B01J 20/04 C01G 45/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム化合物とマンガン化合物を粉砕・
混合した後造粒し、該造粒物を350℃以上の温度で加熱
処理して合成したリチウム含有マンガン化合物から、酸
を用いてリチウムを溶出することを特徴とするリチウム
吸着剤の製造方法。
A lithium compound and a manganese compound are crushed.
A method for producing a lithium adsorbent, comprising mixing and granulating the mixture, and heat-treating the granulated product at a temperature of 350 ° C. or more to elute lithium from the lithium-containing manganese compound using an acid.
【請求項2】リチウム化合物としては、水酸化物,酸化
物,炭酸塩,重炭酸塩,ハロゲン化物および硝酸塩より
なる群から選択される1種または2種以上を用いる請求
項(1)に記載の製造方法。
2. The method according to claim 1, wherein the lithium compound is one or more selected from the group consisting of hydroxides, oxides, carbonates, bicarbonates, halides and nitrates. Manufacturing method.
【請求項3】マンガン化合物としては、含水酸化物,酸
化物,炭酸塩,重炭酸塩,ハロゲン化物および硝酸塩よ
りなる群から選択される1種または2種以上を用いる請
求項(1)または(2)に記載の製造方法。
3. The method according to claim 1, wherein the manganese compound is at least one selected from the group consisting of hydrated oxides, oxides, carbonates, bicarbonates, halides and nitrates. The production method according to 2).
【請求項4】酸としてはpH3以下の酸性溶液を用いる請
求項(1)〜(3)のいずれかに記載の製造方法。
4. The method according to claim 1, wherein an acidic solution having a pH of 3 or less is used as the acid.
JP24684789A 1989-09-21 1989-09-21 Method for producing lithium adsorbent Expired - Lifetime JP2850309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24684789A JP2850309B2 (en) 1989-09-21 1989-09-21 Method for producing lithium adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24684789A JP2850309B2 (en) 1989-09-21 1989-09-21 Method for producing lithium adsorbent

Publications (2)

Publication Number Publication Date
JPH03106439A JPH03106439A (en) 1991-05-07
JP2850309B2 true JP2850309B2 (en) 1999-01-27

Family

ID=17154598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24684789A Expired - Lifetime JP2850309B2 (en) 1989-09-21 1989-09-21 Method for producing lithium adsorbent

Country Status (1)

Country Link
JP (1) JP2850309B2 (en)

Also Published As

Publication number Publication date
JPH03106439A (en) 1991-05-07

Similar Documents

Publication Publication Date Title
JP2003245542A (en) Lithium adsorbing agent and method for producing the same, and method for collecting lithium
JPH032010B2 (en)
JP3550661B2 (en) Method for producing porous granular lithium adsorbent
JP2850309B2 (en) Method for producing lithium adsorbent
JP3210956B2 (en) Granular lithium adsorbent and method for producing the same
US3970553A (en) Heavy metal adsorbent process
JPH0423577B2 (en)
JP3321602B2 (en) Selective lithium separating agent and method for producing the same
JPH024442A (en) High performance lithium adsorbent and its preparation
JP3412003B2 (en) Novel lithium adsorbent and method for producing the same
JP2997783B2 (en) Method for producing lithium adsorbent
US10625239B2 (en) Porous mixed metal oxy-hydroxides and method of preparation
JPH0230738B2 (en) SHINRICHIUMUKYUCHAKUZAINOSEIZOHOHO
JP3756770B2 (en) Aromatic hydroxy compound adsorbent and use thereof
JPH0626662B2 (en) Lithium recovery agent and method for producing the same
JPH0230737B2 (en) RICHIUMUKYUCHAKUZAINOSHINSEIZOHOHO
JPH01203039A (en) Adsorbent indicating new lithium selectivity and manufacture thereof
JPS61278347A (en) Production of li adsorbent
JPH0687970B2 (en) Lithium adsorbent and method for producing the same
JPS6380844A (en) Preparation of novel lithium adsorbent
Bortun et al. Synthesis, Sorptive Properties and Application of Spherically Granulated Titanium and Zirconium Hydroxophosphates
JPH0659391B2 (en) Lithium isotope separation agent and method for separating lithium isotope using the same
JPH03245839A (en) Preparation of lithium adsorbent
CN116947076A (en) Lithium extraction method of carbonate raw halogen
JPH0618638B2 (en) Adsorbent for potassium and rubidium and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term