JPH0687970B2 - Lithium adsorbent and method for producing the same - Google Patents

Lithium adsorbent and method for producing the same

Info

Publication number
JPH0687970B2
JPH0687970B2 JP4215392A JP21539292A JPH0687970B2 JP H0687970 B2 JPH0687970 B2 JP H0687970B2 JP 4215392 A JP4215392 A JP 4215392A JP 21539292 A JP21539292 A JP 21539292A JP H0687970 B2 JPH0687970 B2 JP H0687970B2
Authority
JP
Japan
Prior art keywords
lithium
manganese
adsorption
compound
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4215392A
Other languages
Japanese (ja)
Other versions
JPH0631159A (en
Inventor
旗 馮
健太 大井
良孝 宮井
博文 加納
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP4215392A priority Critical patent/JPH0687970B2/en
Publication of JPH0631159A publication Critical patent/JPH0631159A/en
Publication of JPH0687970B2 publication Critical patent/JPH0687970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規なリチウム吸着剤
及びその製造方法に関するものである。さらに詳しくい
えば本発明は、リチウムに対する選択吸着性に優れ、か
つ吸着容量や吸着速度が大きい上、溶液中で極めて安定
であって、毒性の少ない安価なリチウム吸着剤及びこの
ものを効率よく製造する方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a novel lithium adsorbent and a method for producing the same. More specifically, the present invention provides an inexpensive lithium adsorbent which is excellent in selective adsorption to lithium, has a large adsorption capacity and adsorption rate, is extremely stable in a solution, and has low toxicity, and an efficient production method thereof. It is about how to do it.

【0002】[0002]

【従来の技術】近年、リチウム金属及びその化合物は、
多くの分野、例えばセラミックス、電池、冷媒吸着剤、
医薬品などに用いられており、また将来、大容量電池、
アルミニウム合金材料、核融合燃料などとしての利用が
考えられることから、リチウムの需要の著しい増大が見
込まれている(「日本鉱業会誌」第97巻、第221ペ
ージ)。
2. Description of the Related Art In recent years, lithium metal and its compounds have been
In many fields such as ceramics, batteries, refrigerant adsorbents,
It is used for medicines, etc.
Since it can be used as an aluminum alloy material, a fusion fuel, etc., the demand for lithium is expected to increase significantly (“Journal of the Japan Mining Industry” vol. 97, p. 221).

【0003】前記リチウム金属及びその化合物は、現在
主としてスポジューメン、アンブリコナイト、ベターラ
イト、レピドライトなどのリチウム含有鉱石、及びリチ
ウム濃度の高い塩湖や地下かん水などを原料として製造
されている。
The lithium metal and its compound are currently produced mainly from lithium-containing ores such as spodumene, ambriconite, betterlite and lepidrite, and salt lakes and ground brines having a high lithium concentration.

【0004】しかるに、わが国においては、前記のよう
なリチウム鉱石資源が乏しく、リチウム金属やその化合
物は全量輸入に依存しているのが現状である。一方、わ
が国の地熱水や温泉水にはかなりのリチウムを含有する
ものがあり、また周囲をとりまく海洋中にも微量のリチ
ウムが含まれている。したがって、これらのリチウムを
効率よく回収する技術を確立することが強く要望されて
いる。
However, in Japan, the above-mentioned lithium ore resources are scarce, and the current situation is that lithium metal and its compounds are entirely imported. On the other hand, some of Japan's geothermal water and hot spring water contain a considerable amount of lithium, and the surrounding ocean also contains a small amount of lithium. Therefore, it is strongly desired to establish a technique for efficiently recovering these lithium.

【0005】ところで、マンガン酸化物は種々の結晶形
態が知られており、天然においては軟マンガン鉱やナス
タイトなどとして存在している。最近リチウムを含有す
るマンガン酸化物から調製されたマンガン化合物が、リ
チウム吸着剤として優れていることが認められ[「化学
と工業」第686ページ(1985年)]、希薄溶液か
らのリチウム採取用吸着剤としての応用が期待されてい
る。
By the way, various crystal forms of manganese oxide are known, and they exist naturally as soft manganese ore and nastite. Recently, a manganese compound prepared from a lithium-containing manganese oxide has been found to be excellent as a lithium adsorbent ["Chemistry and Industry", page 686 (1985)], and is an adsorption material for extracting lithium from a dilute solution. Application as a drug is expected.

【0006】例えば、LiMn及びLi1.33
Mn1.67を酸処理して得られたマンガン化合物
は、LiMnとほぼ同等のスピネル型構造を有
し、海水中のリチウムの選択吸着性に優れ、そのリチウ
ム平衡吸着量はそれぞれ8.5mg/g及び20mg/
gである。しかしながら、これらの吸着剤は、その調製
工程における酸処理によりマンガンが溶解する欠点があ
って、実用化の障壁となっている。
For example, LiMn 2 O 4 and Li 1.33
The manganese compound obtained by treating Mn 1.67 O 4 with an acid has a spinel structure substantially equivalent to that of LiMn 2 O 4 , has excellent selective adsorption of lithium in seawater, and its lithium equilibrium adsorption amount is 8.5 mg / g and 20 mg / g, respectively
It is g. However, these adsorbents have a drawback that manganese is dissolved by the acid treatment in the preparation process, which is a barrier to practical use.

【0007】リチウムを含む海水、地熱水、地下かん
水、塩湖かん水などの希薄溶液から該リチウムを実用的
に吸着回収するためには、リチウムに対する選択吸着性
に優れ、かつ吸着速度や吸着容量が大きく、その上に希
薄溶液中で安定であって、毒性が少なく、さらに吸脱着
の繰り返し使用が可能であることが要求される。
In order to practically adsorb and recover the lithium from a dilute solution such as seawater, geothermal water, ground brackish water, salt lake brackish water containing lithium, the lithium has excellent selective adsorption to lithium and has an excellent adsorption rate and adsorption capacity. In addition, it is required to be stable in a dilute solution, less toxic, and capable of repeated adsorption and desorption.

【0008】[0008]

【発明が解決しようとする課題】本発明は、その調製工
程における酸処理においてマンガンの溶解量が少ない
上、リチウムに対する選択吸着性に優れ、かつ吸着容量
や吸着速度が大きく、溶液中で極めて安定であって、毒
性の少ない安価なリチウム吸着剤を提供することを目的
としてなされたものである。
DISCLOSURE OF THE INVENTION According to the present invention, the amount of manganese dissolved in the acid treatment in the preparation step is small, the selective adsorption to lithium is excellent, the adsorption capacity and the adsorption rate are large, and it is extremely stable in a solution. In addition, the purpose of the invention is to provide an inexpensive lithium adsorbent having low toxicity.

【0009】[0009]

【課題を解決するための手段】本発明者らは、先に、原
料としてスピネル型のLiMnO、Li1.33Mn
1.67及びMgMnOを用い、これら酸処理
することにより、リチウム選択吸着性の優れたマンガン
酸化物が得られることを見出した。しかしながら、これ
らのマンガン酸化物は、その調製工程における酸処理に
おいてマンガンの溶解量が多いという問題があり、必ず
しも十分に満足しうるものではなかった。
The inventors of the present invention firstly proposed spinel type LiMnO 4 and Li 1.33 Mn as raw materials.
It was found that by using 1.67 O 4 and Mg 2 MnO 4 and treating them with these acids, a manganese oxide excellent in lithium selective adsorption can be obtained. However, these manganese oxides have a problem that a large amount of manganese is dissolved in the acid treatment in the preparation process, and are not always sufficiently satisfactory.

【0010】本発明者らは、さらに、原料としてリチウ
ムとマンガン以外に第3成分を含有する複合酸化物につ
いても研究を進めた結果、スピネル型構造を有する特定
の組成の複合酸化物を原料として用い、これを酸処理し
てその中のリチウムとマンガン以外の金属とを溶出させ
ることにより、化学的安定性及びリチウム吸着性能に優
れる吸着剤が得られ、しかも該酸処理時にマンガンの溶
解量が少ないことを見出し、この知見に基づいて本発明
を完成するに至った。
The present inventors have further researched on a composite oxide containing a third component in addition to lithium and manganese as a raw material, and as a result, using a composite oxide having a specific composition having a spinel structure as a raw material. By using this, by acid treatment to elute the lithium and metals other than manganese therein, an adsorbent excellent in chemical stability and lithium adsorption performance can be obtained, and the amount of dissolved manganese during the acid treatment is It was found that the number was small, and the present invention was completed based on this finding.

【0011】すなわち、本発明は、一般式 LixMyMnzO4 (I) (式中のMはMg、Zn、Cu、Ni又はCo、x、y
及びzは、それぞれ1≦x<1.33、0<y≦0.5
及び1.5≦z≦1.67の関係を満たす数である)で
表わされるスピネル型構造を示す化合物の酸処理物から
成るリチウム吸着剤を提供するものである。
That is, according to the present invention, the general formula LixMyMnzO 4 (I) (M in the formula is Mg, Zn, Cu, Ni or Co, x, y)
And z are 1 ≦ x <1.33 and 0 <y ≦ 0.5, respectively.
And a number satisfying the relationship of 1.5 ≦ z ≦ 1.67), which is an acid-treated product of a compound having a spinel structure.

【0012】該リチウム吸着剤は、本発明に従えば、前
記一般式(I)で表わされるスピネル型構造を示す化合
物をpH3以下の酸性溶液で処理し、リチウム及び該一
般式(I)におけるMで示される金属を溶出させること
により、製造することができる。
According to the present invention, the lithium adsorbent is obtained by treating the compound having the spinel structure represented by the general formula (I) with an acidic solution having a pH of 3 or less to obtain lithium and M in the general formula (I). It can be produced by eluting the metal represented by.

【0013】本発明において、原料として用いられる一
般式 LixMyMnzO4 (I) (式中のM、x、y、及びzは前記と同じ意味をもつ)
で表わされるスピネル型構造を示す化合物は、例えば炭
酸リチウムと炭酸マンガンとマグネシウム、亜鉛、ニッ
ケル、銅又はコバルトの炭酸塩とを一定の割合で混合し
たのち、通常300℃以上の温度で数時間加熱処理する
ことにより、あるいはリチウムの水酸化物、酸化物、炭
酸水素塩、硝酸塩、ハロゲン化物などとマンガンの水酸
化物、含水酸化物、酸化物、炭酸水素塩、硝酸塩、ハロ
ゲン化物などとマグネシウム、亜鉛、ニッケル、銅又は
コバルトの水酸化物、酸化物、炭酸水素塩、硝酸塩、ハ
ロゲン化物などとを適当に組み合わせて混合したのち、
通常300℃以上の温度で加熱処理することによって製
造することができる。
In the present invention, the general formula LixMyMnzO 4 (I) used as a raw material (M, x, y, and z in the formula have the same meanings as described above)
The compound having a spinel structure represented by is, for example, lithium carbonate, manganese carbonate, and a carbonate of magnesium, zinc, nickel, copper, or cobalt mixed at a constant ratio, and then usually heated at a temperature of 300 ° C. or higher for several hours. By treatment, or lithium hydroxide, oxides, hydrogen carbonates, nitrates, halides and manganese hydroxides, hydrous oxides, oxides, hydrogen carbonates, nitrates, halides and magnesium, After appropriately combining and mixing zinc, nickel, copper or cobalt hydroxide, oxide, hydrogen carbonate, nitrate, halide, etc.,
It can be usually produced by heat treatment at a temperature of 300 ° C. or higher.

【0014】このようにして得られた前記一般式(I)
で表わされるスピネル型構造を示す化合物を、塩酸、硫
酸、硝酸、リン酸などの鉱酸や、ギ酸、酢酸などの有機
酸を1種以上含有し、かつpH3以下に調整された酸性
溶液中に浸せきし、通常室温で1時間以上、好ましくは
数日間かきまぜて、リチウムと前記一般式(I)におけ
るMで示される金属とを溶出除去したのち、固形物を水
洗し、好ましくは70℃以下の温度にて乾燥することに
より、所望のマンガン化合物から成るリチウム吸着剤が
得られる。
The above-mentioned general formula (I) thus obtained
The compound having a spinel structure represented by is added to an acidic solution containing at least one mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, or an organic acid such as formic acid or acetic acid and adjusted to pH 3 or less. After immersing and stirring at room temperature for at least 1 hour, preferably for several days to elute and remove lithium and the metal represented by M in the general formula (I), the solid matter is washed with water, preferably at 70 ° C or lower. By drying at a temperature, a lithium adsorbent composed of the desired manganese compound is obtained.

【0015】このようにして得られたマンガン化合物か
ら成るリチウム吸着剤は、原料である前記一般式(I)
で表わされる化合物と類似したスピネル型構造のX線回
折パターンを示す。該吸着剤と原料の一般式(I)で表
わされる化合物のX線回折特性の相違点は、マンガンの
新規な形態の形成に際して、わずかにピーク位置の変化
及びピーク強度の変化がみられることである。
The lithium adsorbent composed of the manganese compound thus obtained is the above-mentioned general formula (I) as a raw material.
10 shows an X-ray diffraction pattern of a spinel structure similar to the compound represented by. The difference in the X-ray diffraction characteristics of the adsorbent and the compound represented by the general formula (I) is that a slight change in the peak position and a change in the peak intensity are observed in the formation of a new form of manganese. is there.

【0016】本発明における前記酸処理においては、原
料としてLiMn、Li1.33Mn1.67及びM
MnOを用いる場合に比べて、マンガンの溶解性
が極めて低い。
In the acid treatment of the present invention, LiMn 2 O 4 , Li 1.33 Mn 1.67 O 4 and M are used as raw materials.
The solubility of manganese is extremely low as compared with the case of using g 2 MnO 4 .

【0017】[0017]

【発明の効果】本発明吸着剤は、その調製工程における
酸処理の際にマンガンの溶解量が極めて少なく、化学的
に安定である上、リチウムの吸着に適した微細孔を有し
ており、リチウムに対する選択吸着性に優れ、かつ吸着
速度及び吸着容量が極めて大きい。また、該吸着剤は毒
性がなく、かつ酸性及びアルカリ性溶液中で安定であっ
て、吸着剤中の吸着リチウム濃度はリチウム含有鉱石な
みになり、希薄溶液、例えば海水や地熱水や塩湖かん水
などから、リチウムを効率よく経済的に回収することが
できる。さらに、本発明吸着剤として用いられるマンガ
ン化合物は電池活性電極材料などとして使用することも
できる。
INDUSTRIAL APPLICABILITY The adsorbent of the present invention has an extremely small amount of manganese dissolved during the acid treatment in its preparation step, is chemically stable, and has fine pores suitable for lithium adsorption. It has excellent selective adsorption to lithium, and has an extremely high adsorption rate and adsorption capacity. Further, the adsorbent is non-toxic and stable in acidic and alkaline solutions, and the adsorbed lithium concentration in the adsorbent is similar to that of lithium-containing ore, and dilute solutions such as seawater, geothermal water and salt lake brine are used. Thus, lithium can be efficiently and economically recovered. Further, the manganese compound used as the adsorbent of the present invention can also be used as a battery active electrode material or the like.

【0018】[0018]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0019】実施例1 1M硝酸マグネシウム水溶液100mlと1M硝酸マン
ガン水溶液300mlとの混合液をかきまぜながら、p
H10.5〜pH11.5の範囲になるまで約1M水酸
化リチウム溶液を添加した。生成物をろ別し、水で数回
洗浄した。これに1M水酸化リチウム溶液200mlを
添加し、3時間沸騰させたのち、80℃で一晩乾燥し
た。これを600℃で8時間加熱処理してLiMg0.5
Mn1.5を調製した。この加熱生成物10gを0.
5M硝酸溶液1リットル中に加えて、2日間かきまぜた
のち、生成物をろ別、洗浄し、70℃で乾燥してマンガ
ン化合物を調製した。表1に得られた加熱生成物及びマ
ンガン化合物のX線回折特性を示す。
Example 1 While stirring a mixed solution of 100 ml of 1M magnesium nitrate aqueous solution and 300 ml of 1M manganese nitrate aqueous solution, p
About 1M lithium hydroxide solution was added until H10.5 to pH 11.5 range. The product was filtered off and washed several times with water. 200 ml of 1M lithium hydroxide solution was added thereto, and the mixture was boiled for 3 hours and then dried at 80 ° C. overnight. This is heat-treated at 600 ° C. for 8 hours to obtain LiMg 0.5.
Mn 1.5 O 4 was prepared. 10 g of this heated product was
The mixture was added to 1 liter of a 5M nitric acid solution, and the mixture was stirred for 2 days, then the product was separated by filtration, washed, and dried at 70 ° C. to prepare a manganese compound. Table 1 shows the X-ray diffraction characteristics of the obtained heating product and manganese compound.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例において調製したLiMg0.5Mn
1.5のX線回折特性はASTMカード記載のものと
極めてよく一致した。また、本発明のLiMg0.5Mn
1.5を酸処理して調製したマンガン化合物はLiM
0.5Mn1.5と比較して、わずかながら面間隔が小
さくなっているが、元の構造を維持していることは明ら
かである。表2にこれらのマンガン化合物の化学分析値
を示す。
LiMg 0.5 Mn prepared in the examples
The X-ray diffraction characteristics of 1.5 O 4 matched very well with those described in the ASTM card. In addition, LiMg 0.5 Mn of the present invention
Manganese compound prepared by acid treatment of 1.5 O 4 is LiM
Although the interplanar spacing is slightly smaller than that of g 0.5 Mn 1.5 O 4 , it is clear that the original structure is maintained. Table 2 shows the chemical analysis values of these manganese compounds.

【0022】[0022]

【表2】 [Table 2]

【0023】本実施例で調製したLiMg0.5Mn1.5
の化学分析値はほぼ理論的に一致した。本発明のマン
ガン化合物はLiMg0.5Mn1.5よりリチウム及び
マグネシウム含量が著しく少なく、組成の異なる新規な
化合物である。
LiMg 0.5 Mn 1.5 O prepared in this example
The chemical analysis values of 4 were almost theoretically in agreement. The manganese compound of the present invention is a novel compound having a significantly lower lithium and magnesium content than LiMg 0.5 Mn 1.5 O 4 and different compositions.

【0024】実施例2 1M硝酸亜鉛水溶液100mlと1M硝酸マンガン水溶
液300mlとの混合液をかきまぜながら、pH10.
5〜pH11.5の範囲になるまで約1M水酸化リチウ
ム溶液を添加した。生成物をろ別し、水で数回洗浄し
た。これに1M水酸化リチウム溶液200mlを添加
し、3時間沸騰させたのち、80℃で一晩乾燥した。こ
れを400℃で8時間加熱処理してLiZn0.5Mn1.5
を調製した。この加熱生成物10gを2M硝酸溶液
1リットル中に加えて、2日間かきまぜたのち、生成物
をろ別、洗浄し、70℃で乾燥してマンガン化合物を調
製した。表3に得られた加熱生成物及びマンガン化合物
のX線回折特性を示す。
Example 2 While stirring a mixed solution of 100 ml of 1M zinc nitrate aqueous solution and 300 ml of 1M manganese nitrate aqueous solution, the pH was adjusted to 10.
About 1M lithium hydroxide solution was added until it was in the range of 5 to pH 11.5. The product was filtered off and washed several times with water. 200 ml of 1M lithium hydroxide solution was added thereto, and the mixture was boiled for 3 hours and then dried at 80 ° C. overnight. This was heat-treated at 400 ° C. for 8 hours to obtain LiZn 0.5 Mn 1.5.
O 4 was prepared. 10 g of this heated product was added to 1 liter of a 2M nitric acid solution, and the mixture was stirred for 2 days, then the product was separated by filtration, washed, and dried at 70 ° C. to prepare a manganese compound. Table 3 shows the X-ray diffraction characteristics of the obtained heating product and manganese compound.

【0025】[0025]

【表3】 [Table 3]

【0026】実施例において調製したLiZn0.5Mn
1.5のX線回折特性はASTMカード記載のものと
ほぼ一致した。また、本発明のLiZn0.5Mn1.5
を酸処理して調製したマンガン化合物はLiZn0.5
1.5と比較して、わずかながら面間隔が小さくな
っているが、元の構造を維持していることは明らかであ
る。表4にこれらのマンガン化合物の化学分析値を示
す。
LiZn 0.5 Mn prepared in the examples
The X-ray diffraction characteristics of 1.5 O 4 were almost the same as those described in the ASTM card. In addition, LiZn 0.5 Mn 1.5 O 4 of the present invention
Manganese compound prepared by acid treatment is LiZn 0.5 M
Although the interplanar spacing is slightly smaller than that of n 1.5 O 4 , it is clear that the original structure is maintained. Table 4 shows the chemical analysis values of these manganese compounds.

【0027】[0027]

【表4】 [Table 4]

【0028】本実施例で調製したLiZn0.5Mn1.5
の化学分析値はほぼ理論的に一致した。本発明のマン
ガン化合物はLiZn0.5Mn1.5よりリチウム及び
亜鉛含量が著しく少なく、組成の異なる新規な化合物で
ある。
LiZn 0.5 Mn 1.5 O prepared in this example
The chemical analysis values of 4 were almost theoretically in agreement. The manganese compound of the present invention has a significantly lower lithium and zinc content than LiZn 0.5 Mn 1.5 O 4 and is a novel compound having a different composition.

【0029】実施例3 実施例1及び2で加熱処理物を酸処理する際に、マンガ
ンの溶解率について調べた。すなわち、酸処理生成物と
酸処理溶液をろ別し、ろ液中のマンガン濃度を原子吸光
法で定量した。その定量値と加熱処理物の化学分析値か
らマンガンの溶解率を求めた。結果を表5に示す。
Example 3 When the heat-treated products were treated with an acid in Examples 1 and 2, the dissolution rate of manganese was examined. That is, the acid-treated product and the acid-treated solution were separated by filtration, and the manganese concentration in the filtrate was quantified by the atomic absorption method. The dissolution rate of manganese was obtained from the quantitative value and the chemical analysis value of the heat-treated product. The results are shown in Table 5.

【0030】[0030]

【表5】 注1) 炭酸リチウムと炭酸マンガンとの混合物(Li
/Mn原子比=0.8)を400℃、4時間加熱処理し
て調製したもの。
[Table 5] Note 1) A mixture of lithium carbonate and manganese carbonate (Li
/ Mn atomic ratio = 0.8) prepared by heating at 400 ° C. for 4 hours.

【0031】この表から分かるように、実施例1及び2
の加熱処理物は従来のリチウムマンガン酸化物に比べて
酸処理時のマンガン溶解率から5倍以上低く、得られた
吸着剤は化学的に極めて安定であることが分かる。
As can be seen from this table, Examples 1 and 2
Compared with the conventional lithium manganese oxide, the heat-treated product of 5 was lower than the dissolution rate of manganese at the time of acid treatment by 5 times or more, and it is understood that the obtained adsorbent is chemically extremely stable.

【0032】実施例4 実施例1及び2において調製したマンガン化合物につい
て海水中におけるリチウム吸着性を調べた。すなわち、
マンガン化合物50mgを海水5リットル(リチウム濃
度0.17ppm)に加え、7日間かきまぜた。吸着前
後の海水中のリチウム濃度を原子吸光法で定量し、リチ
ウム吸着量を求めた。結果を表6に示す。
Example 4 With respect to the manganese compounds prepared in Examples 1 and 2, lithium adsorption in seawater was examined. That is,
50 mg of a manganese compound was added to 5 liters of seawater (lithium concentration 0.17 ppm), and the mixture was stirred for 7 days. The lithium concentration in seawater before and after adsorption was quantified by atomic absorption spectrometry to determine the amount of lithium adsorbed. The results are shown in Table 6.

【0033】[0033]

【表6】 [Table 6]

【0034】この結果から、本発明のマンガン化合物は
海水中のリチウムを約4万倍に濃縮しており、リチウム
吸着性が優れていることは明らかである。
From these results, it is clear that the manganese compound of the present invention concentrated lithium in seawater about 40,000 times, and was excellent in lithium adsorption.

【0035】実施例5 実施例1及び2において調製したマンガン化合物につい
て塩湖かん水中におけるリチウム吸着性を調べた。すな
わち、マンガン化合物100mgを塩湖かん水20ml
(リチウム濃度200ppm)に加え、1日間かきまぜ
た。吸着前後の海水中のリチウム濃度を原子吸光法で定
量し、リチウム吸着量を求めた。結果を表7に示す。
Example 5 The manganese compounds prepared in Examples 1 and 2 were examined for lithium adsorption in salt lake brine. That is, 100 mg of manganese compound is added to 20 ml of salt lake brine.
(Lithium concentration 200 ppm) and stirred for 1 day. The lithium concentration in seawater before and after adsorption was quantified by atomic absorption spectrometry to determine the amount of lithium adsorbed. The results are shown in Table 7.

【0036】[0036]

【表7】 [Table 7]

【0037】この結果から、本発明のマンガン化合物は
塩湖かん水中のリチウムに対し、高い吸着性を示し、優
れたリチウム吸着剤であることは明らかである。
From these results, it is clear that the manganese compound of the present invention exhibits a high adsorptivity for lithium in salt lake brine and is an excellent lithium adsorbent.

フロントページの続き (72)発明者 加納 博文 香川県高松市花ノ宮町二丁目3番3号 工 業技術院四国工業技術試験所内 (56)参考文献 特開 昭62−83035(JP,A) 特公 平3−57814(JP,B2)Front Page Continuation (72) Inventor Hirofumi Kano 2-3-3 Hananomiya-cho, Takamatsu City, Kagawa Prefecture Shikoku Industrial Technology Laboratory, Institute of Industrial Technology (56) Reference JP 62-83035 (JP, A) JP Flat 3-57814 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式 LixMyMnzO4 (式中のMはMg、Zn、Cu、Ni又はCo、x、y
及びzは、それぞれ1≦x<1.33、0<y≦0.5
及び1.5≦z≦1.67の関係を満たす数である)で
表わされるスピネル型構造を示す化合物の酸処理物から
成るリチウム吸着剤。
1. The general formula LixMyMnzO 4 (where M is Mg, Zn, Cu, Ni or Co, x, y).
And z are 1 ≦ x <1.33 and 0 <y ≦ 0.5, respectively.
And a number satisfying the relationship of 1.5 ≦ z ≦ 1.67), which is a spinel type structure.
【請求項2】 一般式 LixMyMnzO4 (式中のMはMg、Zn、Cu、Ni又はCo、x、y
及びzは、それぞれ1≦x<1.33、0<y≦0.5
及び1.5≦z≦1.67の関係を満たす数である)で
表わされるスピネル型構造を示す化合物をpH3以下の
酸性溶液で処理し、リチウム及び該一般式におけるMで
示される金属を溶出させることを特徴とするリチウム吸
着剤の製造方法。
2. The general formula LixMyMnzO 4 (where M is Mg, Zn, Cu, Ni or Co, x, y).
And z are 1 ≦ x <1.33 and 0 <y ≦ 0.5, respectively.
And a compound satisfying the relationship of 1.5 ≦ z ≦ 1.67) having a spinel structure is treated with an acidic solution having a pH of 3 or less to elute lithium and the metal represented by M in the general formula. A method for producing a lithium adsorbent, comprising:
JP4215392A 1992-07-21 1992-07-21 Lithium adsorbent and method for producing the same Expired - Lifetime JPH0687970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4215392A JPH0687970B2 (en) 1992-07-21 1992-07-21 Lithium adsorbent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4215392A JPH0687970B2 (en) 1992-07-21 1992-07-21 Lithium adsorbent and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0631159A JPH0631159A (en) 1994-02-08
JPH0687970B2 true JPH0687970B2 (en) 1994-11-09

Family

ID=16671559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4215392A Expired - Lifetime JPH0687970B2 (en) 1992-07-21 1992-07-21 Lithium adsorbent and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0687970B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003363A1 (en) * 2012-06-27 2014-01-03 Lee Sang Ro Lithium-manganese composite oxide, precursor for lithium-manganese adsorbent, preparation method therefor, and lithium adsorbent using same
US20200391177A1 (en) * 2018-04-20 2020-12-17 Sumitomo Metal Mining Co., Ltd. Method for producing precursor of lithium adsorbent

Also Published As

Publication number Publication date
JPH0631159A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
JPH0688277A (en) Lithium recovering method and electrode used therefor
KR100972140B1 (en) Method for synthesis of lithium manganese oxide by hydroysis and solvent-exchange process and preparation of ion-exchange type lithium adsorbent using the lithium manganese oxide
JPS61283342A (en) Lithium adsorbent and its preparation
CN110240178B (en) Selective molecular adsorption sieve and preparation method thereof
JP2002282684A (en) Method for producing porous granular lithium adsorbent
JPH0687970B2 (en) Lithium adsorbent and method for producing the same
JPH0626661B2 (en) Granular lithium adsorbent and lithium recovery method using the same
JP3321602B2 (en) Selective lithium separating agent and method for producing the same
KR20140001123A (en) Lithium-manganese complex oxides, lithium-manganese adsorption precursor and method for preparing the same, and lithium adsorbent using the same
JP3388406B2 (en) Method for producing lithium adsorbent
US4645532A (en) Production of fine spherical copper powder
JP3412003B2 (en) Novel lithium adsorbent and method for producing the same
JP6568700B2 (en) Hydrogen manganate and lithium manganate and methods for producing them
JP4000370B2 (en) Method for removing nitrate ions from various anion-containing aqueous solutions and method for recovering nitrate ions
JP2847417B2 (en) Manganese dioxide for lithium adsorption and method for producing the same
KR100569863B1 (en) Method for preparing of ion-exchange type nano-lithium manganese oxide powder adsorbent by gel process
JPH0525541B2 (en)
JP2997783B2 (en) Method for producing lithium adsorbent
JPH0232218B2 (en)
JPS6362545A (en) Lithium adsorbent and its production and recovering method for lithium by using same
JP2850309B2 (en) Method for producing lithium adsorbent
JPH06106031A (en) Lithium isotope separating agent and separation of lithium isotope using the same
JPS6380844A (en) Preparation of novel lithium adsorbent
JP2003119028A (en) Method of producing lithium-manganese compound oxide
JPS61278347A (en) Production of li adsorbent

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term