JPH0232218B2 - - Google Patents

Info

Publication number
JPH0232218B2
JPH0232218B2 JP61207152A JP20715286A JPH0232218B2 JP H0232218 B2 JPH0232218 B2 JP H0232218B2 JP 61207152 A JP61207152 A JP 61207152A JP 20715286 A JP20715286 A JP 20715286A JP H0232218 B2 JPH0232218 B2 JP H0232218B2
Authority
JP
Japan
Prior art keywords
manganese
mno
lithium
strong
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61207152A
Other languages
Japanese (ja)
Other versions
JPS6364919A (en
Inventor
Yoshitaka Myai
Kenta Ooi
Shunsaku Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61207152A priority Critical patent/JPS6364919A/en
Publication of JPS6364919A publication Critical patent/JPS6364919A/en
Publication of JPH0232218B2 publication Critical patent/JPH0232218B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は新規なマンガン化合物及びその製造方
法に関するものである。さらに詳しくいえば、本
発明は、リチウムに対する選択吸着性に優れ、か
つ吸着速度及び吸着容量が極めて大きく、リチウ
ム吸着材料として好適であり、また電池活性電極
材料などとしても有用な新規なマンガン化合物及
びその製造方法に関するものである。 従来の技術 マンガン酸化物は種々の結晶形態が知られてお
り、天然においては、例えば軟マンガン鉱やナス
タイトなどとして存在している。このマンガン酸
化物は、一般に乾電池、バツテリーなどの電気化
学電池における活性カソード物質として用いられ
ており、その代表的な電池としては、例えばマン
ガン酸化物カソードと亜鉛アノードと電解質水溶
液(塩化アンモニウム及び塩化亜鉛を含む水溶
液)とから成るものが知られている。 従来、このような電池用マンガン酸化物は一般
に電解法で調製されているが、最近LiMn2O4
ら調製する方法が提案されている(特公昭58−
34414号公報)。このLiMn2O4から調製したマン
ガン酸化物は電気化学活性を有し、水性電解質の
みならず、非水性電解質においても有効であると
いわれている。 該LiMn2O4はスピネル構造を有し、炭酸リチ
ウムとマンガン酸化物とを、マンガンとリチウム
との原子比が2:1になるような割合で混合し、
800〜900℃の範囲の温度において加熱処理するこ
とにより、あるいは水酸化リチウムと炭酸マンガ
ンなどのリチウム塩・酸化物とマンガン塩・酸化
物との適当な組合せの混合物を500〜900℃の範囲
の温度において加熱処理することにより得られ
る。 ところで、最近リチウムを含有するマンガン酸
化物から調製したマンガン化合物が、リチウム吸
着剤として優れていることが認められ〔化学工業
第686ページ(1985年)〕、希薄溶液からのリチウ
ム採取用吸着剤としての応用が期待されている。
例えば、前記LiMn2O4を酸処理したマンガン化
合物はLiMn2O4とほぼ同様のX線回折特性を有
し、海水中のリチウムの選択吸着性に優れ、その
リチウム平衡吸着量は8.5mg/gで、Li2Oの含有
量に換算すると1.8%になり、リチウム鉱石の約
半分にも達する。 このように、リチウムを含有するマンガン酸化
物から調製されたマンガン化合物は、リチウム吸
着材料や電池活性電極材料などとして有用である
が、高価なリチウムを原料として用いているた
め、コスト高になるのを免れないという問題があ
る。 発明が解決しようとする問題点 本発明の目的は、リチウム吸着材料や電池活性
電極材料などとして有用で、かつ製造コストの低
い新規なマンガン化合物を提供することにある。 問題点を解決するための手段 本発明者らは、先にリチウムよりイオン半径が
わずかに小さいマグネシウムを用いて調製した
MgMn2O4を酸処理することにより、LiMn2O4
ら得られるものとは明らかに異なつたX線回折特
性を示し、しかも同じような物性を有する新規な
マグネシウム化合物を得ることに成功したが、さ
らに研究を重ねた結果、原料としてMg2MnO4
用い、これを酸処理すれば、さらに別の新規なマ
ンガン化合物が得られることを見出し、この知見
に基づいて、本発明をなすに至つた。 すなわち、本発明は、Mg2MnO4の酸処理物か
らなり、かつ主要X線回折ピークの相対強度が 面間隔(Å) 相対強度 (CuKα線照射) 4.75±0.03 強 2.92±0.03 弱 2.49±0.03 強 2.38±0.03 弱 2.06±0.03 弱 1.59±0.03 中 1.46±0.03 中 であるマンガン化合物を提供するものである。 このものは、LiMn2O4の酸処理物及び
MgMn2O4の酸処理物とは明らかに異なつたX線
回折特性を示す新規な化合物であつて、
Mg2MnO4をPH5以下の酸性溶液で処理し、その
中のマグネシウムを溶出させることによつて製造
することができる。 本発明において原料として用いられる
Mg2MnO4は、例えばMgOとMnO2とをモル比で
2:1の割合で混合して、800℃の温度で数日間
加熱処理することにより〔「レビユー・ケミカ
ル・ミネラル(Rev.Chem.Mineral)」第1巻、
第175ページ(1964)〕、あるいはマグネシウムの
水酸化物、酸化物、炭酸塩、重炭酸塩、硝酸塩、
ハロゲン化物などと、マンガンの含水酸化物、酸
化物、炭酸塩、重炭酸塩、硝酸塩、ハロゲン化物
などとを適当な組合せで混合したのち、400℃以
上の温度で加熱処理することにより製造すること
ができる。 このMg2MnO4を、塩酸、硫酸、硝酸、リン酸
などの鉱酸や、ギ酸、酢酸などの有機酸を1種以
上含有し、かつPH5以下、好ましくは1〜3の範
囲に調整された酸性溶液中に浸せきし、通常室温
で1時間以上、好ましくは数日間かきまぜて、マ
グネシウムを溶出除去したのち、固形物を水洗
し、好ましくは70℃以下の温度において乾燥する
ことにより、目的のマンガン化合物が得られる。 このマンガン化合物のX線回折特性を下記に示
す。比較としてASTMカードのMg2MnO4及び
LiMn2O4から調製したマンガン化合物(特公昭
58−34414号公報)のX線回折特性を併記する。
INDUSTRIAL APPLICATION FIELD The present invention relates to a novel manganese compound and a method for producing the same. More specifically, the present invention provides a novel manganese compound that has excellent selective adsorption properties for lithium, has an extremely high adsorption rate and adsorption capacity, is suitable as a lithium adsorption material, and is also useful as a battery active electrode material. The present invention relates to a manufacturing method thereof. BACKGROUND OF THE INVENTION Manganese oxides are known to have various crystal forms, and exist naturally as manganese ore, nastite, and the like. This manganese oxide is generally used as an active cathode material in electrochemical cells such as dry batteries and batteries.A typical battery includes, for example, a manganese oxide cathode, a zinc anode, and an aqueous electrolyte solution (ammonium chloride and zinc chloride). An aqueous solution containing Conventionally, such manganese oxide for batteries has generally been prepared by an electrolytic method, but recently a method of preparing it from LiMn 2 O 4 has been proposed (Japanese Patent Publication No. 1983-
Publication No. 34414). Manganese oxide prepared from this LiMn 2 O 4 has electrochemical activity and is said to be effective not only in aqueous electrolytes but also in non-aqueous electrolytes. The LiMn 2 O 4 has a spinel structure, and is made by mixing lithium carbonate and manganese oxide in a ratio such that the atomic ratio of manganese and lithium is 2:1,
By heat treatment at a temperature in the range of 800 to 900℃, or by heating a mixture of an appropriate combination of lithium salts/oxides such as lithium hydroxide and manganese carbonate and manganese salts/oxides at a temperature in the range of 500 to 900℃. Obtained by heat treatment at a certain temperature. By the way, manganese compounds prepared from manganese oxide containing lithium have recently been recognized as being excellent as lithium adsorbents [Kagaku Kogyo, p. 686 (1985)], and have been used as adsorbents for extracting lithium from dilute solutions. is expected to be applied.
For example, the manganese compound obtained by acid-treating LiMn 2 O 4 has almost the same X-ray diffraction characteristics as LiMn 2 O 4 and has excellent selective adsorption of lithium in seawater, with an equilibrium adsorption amount of lithium of 8.5 mg/ The Li 2 O content is 1.8%, which is about half that of lithium ore. As described above, manganese compounds prepared from manganese oxide containing lithium are useful as lithium adsorption materials and battery active electrode materials, but they are expensive because they use expensive lithium as a raw material. There is a problem that cannot be avoided. Problems to be Solved by the Invention An object of the present invention is to provide a novel manganese compound that is useful as a lithium adsorption material, a battery active electrode material, etc., and is inexpensive to produce. Means for Solving the Problems The present inventors previously prepared a compound using magnesium, which has a slightly smaller ionic radius than lithium.
By treating MgMn 2 O 4 with acid, we succeeded in obtaining a new magnesium compound that showed clearly different X-ray diffraction properties from those obtained from LiMn 2 O 4 but also had similar physical properties. As a result of further research, it was discovered that another new manganese compound could be obtained by using Mg 2 MnO 4 as a raw material and treating it with acid.Based on this knowledge, the present invention was made. Ivy. That is, the present invention consists of an acid-treated product of Mg 2 MnO 4 , and the relative intensity of the main X-ray diffraction peak is as follows: Interplanar spacing (Å) Relative intensity (CuKα ray irradiation) 4.75±0.03 Strong 2.92±0.03 Weak 2.49±0.03 The present invention provides a manganese compound having a strength of 2.38±0.03, a strength of 2.06±0.03, a strength of 1.59±0.03, a medium strength of 1.46±0.03. This is an acid-treated product of LiMn 2 O 4 and
A novel compound that exhibits X-ray diffraction characteristics clearly different from that of acid-treated MgMn 2 O 4 ,
It can be produced by treating Mg 2 MnO 4 with an acidic solution having a pH of 5 or lower and eluting the magnesium therein. Used as a raw material in the present invention
Mg 2 MnO 4 can be produced, for example, by mixing MgO and MnO 2 at a molar ratio of 2:1 and heat-treating the mixture at a temperature of 800°C for several days [Rev.Chem. Mineral)” Volume 1,
page 175 (1964)] or magnesium hydroxides, oxides, carbonates, bicarbonates, nitrates,
Manufactured by mixing a halide, etc. with a hydrous oxide, oxide, carbonate, bicarbonate, nitrate, halide, etc. of manganese in an appropriate combination, and then heating the mixture at a temperature of 400°C or higher. Can be done. This Mg 2 MnO 4 is prepared by adding one or more mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and one or more organic acids such as formic acid and acetic acid, and adjusting the pH to 5 or less, preferably in the range of 1 to 3. The target manganese is obtained by immersing the solid in an acidic solution and stirring at room temperature for at least 1 hour, preferably for several days to elute and remove the magnesium. A compound is obtained. The X-ray diffraction characteristics of this manganese compound are shown below. ASTM card Mg 2 MnO 4 and
Manganese compound prepared from LiMn 2 O 4 (Tokuko Sho
58-34414) is also shown.

【表】 このように、本発明のマンガン化合物は
LiMn2O4からのマンガン化合物とは明らかに異
なり、出発原料のMg2MnO4とほとんど同様なX
線回折特性を示すものである。 このマンガン化合物と原料Mg2MnO4のX線回
折特性の相違点は、マンガンの新規な形態の形成
に際して格子の収縮を示し、わずかにピーク位置
の変化がみられることである。 また、本発明のマンガン化合物は面間隔1.46Å
及び2.92Åに回折ピークを示し、LiMn2O4から調
製したマンガン酸化物とは微細構造の異なつた化
合物である。 さらに、本発明のマンガン化合物は、化学分析
の結果、マグネシウム含有率が10重量%以下であ
り、原料のMg2MnO4の理論マグネシウム含有率
29.0重量%と異なることから、Mg2MnO4とは組
成の異なる全く新規な物質と認められる。 発明の効果 本発明のマンガン化合物はリチウム吸着に適し
た層間隔を有しており、リチウムに対する選択吸
着性が優れ、かつ吸着速度及び吸着容量が極めて
大きく、しかも毒性がなく、水溶液中で安定であ
り、吸着剤中のリチウム濃度はリチウム含有鉱石
なみになり、希薄溶液、例えば海水や地熱水から
効率よく経済的に該リチウムを回収することがで
きる。 また、該マンガン化合物は電池活性電極材料と
しても有用である。 実施例 次に実施例により本発明を詳細に説明する。 実施例 1 1M塩化マグネシウム水溶液200mlと1M塩化マ
ンガン水溶液100mlとの混合溶液をかきまぜなが
ら、PH10.5以上になるまでアンモニア水(1:
1)を加え、さらに30%過酸化水素溶液100mlを
添加した。生成物を母液中で3日間熟成したの
ち、ろ別し、PH10.5のアンモニア水で数回洗浄し
た。生成物中のマグネシウムとマンガン含量の原
子比は2:1であつた。これを800℃で1時間加
熱処理してMg2MnO4を調製した。この加熱生成
物1gを0.5N塩酸溶液1中に加えて、30日間
かきまぜたのち、生成物をろ別、洗浄し、70℃で
乾燥してマンガン化合物を調製した。第1表に得
られた加熱生成物及びマンガン化合物のX線回折
特性を示す。なお、比較のためにASTMカード
19−773記載のMg2MnO4のX線回折特性を示す。
[Table] Thus, the manganese compound of the present invention
Obviously different from the manganese compound from LiMn 2 O 4 and almost similar to the starting material Mg 2 MnO 4
It shows line diffraction characteristics. The difference between the X-ray diffraction characteristics of this manganese compound and the raw material Mg 2 MnO 4 is that the lattice shrinks when a new form of manganese is formed, and a slight change in the peak position is observed. In addition, the manganese compound of the present invention has a lattice spacing of 1.46 Å.
This compound shows a diffraction peak at 2.92 Å and has a fine structure different from that of manganese oxide prepared from LiMn 2 O 4 . Furthermore, as a result of chemical analysis, the manganese compound of the present invention has a magnesium content of 10% by weight or less, and the theoretical magnesium content of the raw material Mg 2 MnO 4
29.0% by weight, it is recognized as a completely new substance with a different composition from Mg 2 MnO 4 . Effects of the Invention The manganese compound of the present invention has a layer spacing suitable for lithium adsorption, has excellent selective adsorption for lithium, has an extremely high adsorption rate and adsorption capacity, is non-toxic, and is stable in an aqueous solution. The lithium concentration in the adsorbent is comparable to that of lithium-containing ores, and the lithium can be efficiently and economically recovered from dilute solutions, such as seawater or geothermal water. The manganese compounds are also useful as battery active electrode materials. Examples Next, the present invention will be explained in detail by examples. Example 1 While stirring a mixed solution of 200ml of 1M magnesium chloride aqueous solution and 100ml of 1M manganese chloride aqueous solution, add ammonia water (1:
1) was added, and then 100 ml of 30% hydrogen peroxide solution was added. After aging the product in the mother liquor for 3 days, it was filtered and washed several times with aqueous ammonia at pH 10.5. The atomic ratio of magnesium and manganese content in the product was 2:1. This was heat-treated at 800° C. for 1 hour to prepare Mg 2 MnO 4 . 1 g of this heated product was added to 0.5N hydrochloric acid solution 1 and stirred for 30 days, and then the product was filtered, washed, and dried at 70°C to prepare a manganese compound. Table 1 shows the X-ray diffraction characteristics of the heated product and manganese compound obtained. For comparison, ASTM card
19-773 shows the X-ray diffraction characteristics of Mg 2 MnO 4 .

【表】 実施例において調製したMg2MnO4のX線回折
特性はASTMカード記載ものと極めてよく一致
した。 また、本発明のMg2MnO4を酸処理して調製し
たマンガン化合物はMg2MnO4と比較して、わず
かながら面間隔が小さくなつているが、元の構造
を維持していることは明らかである。 第2表にこれらのマンガン化合物の化学分析値
を示す。
[Table] The X-ray diffraction characteristics of Mg 2 MnO 4 prepared in the examples were in excellent agreement with those described in the ASTM card. Furthermore, although the manganese compound prepared by acid-treating Mg 2 MnO 4 of the present invention has a slightly smaller interplanar spacing compared to Mg 2 MnO 4 , it is clear that it maintains its original structure. It is. Table 2 shows the chemical analysis values of these manganese compounds.

【表】 本実験で調製したMg2MnO4の化学分析値はほ
ぼ理論値に一致した。本発明のマンガン化合物は
Mg2MnO4よりマグネシウム含量が著しく少な
く、組成の異なる新規な化合物である。 実施例 2 1M塩化マグネシウム水溶液200mlと1M塩化マ
ンガン水溶液100mlとの混合溶液をかきまぜなが
ら、PH10.5になるまでアンモニア水(1:1)を
加え、さらに30%過酸化水素溶液100mlを添加し
た。生成物を母液中で3日間熟成したのち、ろ別
し、PH10.5のアンモニア水で数回洗浄した。生成
物中のマグネシウムとマンガン含量の原子比は
2:1であつた。これを500℃で1時間加熱処理
してMg2MnO4を調製した。この加熱処理物1g
を0.1M硝酸溶液1中に加えて、5日間かきま
ぜたのち、生成物をろ別・洗浄し、乾燥した。生
成物のX線回折特性を第3表に示す。得られたマ
ンガン化合物は実施例1と同様にわずかに収縮が
認められたが、Mg2MnO4と同様の構造を有して
いることは明らかである。これらの化合物の化学
分析結果を第4表に示す。
[Table] The chemical analysis values of Mg 2 MnO 4 prepared in this experiment almost agreed with the theoretical values. The manganese compound of the present invention is
It is a new compound with a significantly lower magnesium content than Mg 2 MnO 4 and a different composition. Example 2 While stirring a mixed solution of 200 ml of 1M aqueous magnesium chloride solution and 100 ml of 1M aqueous manganese chloride solution, aqueous ammonia (1:1) was added until the pH reached 10.5, and then 100 ml of 30% hydrogen peroxide solution was added. After aging the product in the mother liquor for 3 days, it was filtered and washed several times with aqueous ammonia at pH 10.5. The atomic ratio of magnesium and manganese content in the product was 2:1. This was heat-treated at 500° C. for 1 hour to prepare Mg 2 MnO 4 . 1g of this heat-treated product
was added to 0.1M nitric acid solution 1, stirred for 5 days, and the product was filtered, washed, and dried. The X-ray diffraction properties of the product are shown in Table 3. Although slight shrinkage was observed in the obtained manganese compound as in Example 1, it is clear that it has a structure similar to Mg 2 MnO 4 . The chemical analysis results of these compounds are shown in Table 4.

【表】【table】

【表】【table】

【表】 本発明のマグネシウム化合物はMg2MnO4とは
組成の異なる新規な化合物であることは明らかで
ある。 実施例 3 実施例1及び2において調製したマンガン化合
物について海水中におけるリチウム吸着性を調べ
た。すなわち、マンガン化合物50mgを海水2に
加え、7日間かきまぜた。吸着前後の海水中のリ
チウム濃度を原子吸光法で定量し、リチウム吸着
量を求めた。結果を第5表に示す。 この結果から本発明のマンガン化合物は海水中
のリチウムを約4万倍に濃縮しており、リチウム
吸着性が優れていることは明らかである。
[Table] It is clear that the magnesium compound of the present invention is a novel compound with a composition different from Mg 2 MnO 4 . Example 3 The lithium adsorption properties of the manganese compounds prepared in Examples 1 and 2 in seawater were investigated. That is, 50 mg of a manganese compound was added to seawater 2 and stirred for 7 days. The lithium concentration in seawater before and after adsorption was determined by atomic absorption spectrometry to determine the amount of lithium adsorbed. The results are shown in Table 5. From these results, it is clear that the manganese compound of the present invention concentrates lithium in seawater approximately 40,000 times, and has excellent lithium adsorption properties.

【表】【table】

Claims (1)

【特許請求の範囲】 1 Mg2MnO4の酸処理物であつて、かつ次に示
すX線回折ピークの相対強度を有するマンガン化
合物。 面間隔(Å) 相対強度 (CuKα線照射) 4.75±0.03 強 2.92±0.03 弱 2.49±0.03 強 2.38±0.03 弱 2.06±0.03 強 1.59±0.03 中 1.46±0.03 中 2 Mg2MnO4をPH5以下の酸性溶液で処理し、
その中のマグネシウムを溶出させることを特徴と
する、次に示すX線回折ピークの相対強度を有す
るマンガン化合物の製造方法。 面間隔(Å) 相対強度 (CuKα線照射) 4.75±0.03 強 2.92±0.03 弱 2.49±0.03 強 2.38±0.03 弱 2.06±0.03 強 1.59±0.03 中 1.46±0.03 中 3 PH5以下の酸性溶液が鉱酸及び有機酸の中か
ら選ばれた少なくとも1種を含有するものである
特許請求の範囲第2項記載の方法。
[Scope of Claims] 1. A manganese compound which is an acid-treated product of Mg 2 MnO 4 and has the following relative intensity of the X-ray diffraction peak. Planar spacing (Å) Relative intensity (CuKα irradiation) 4.75±0.03 Strong 2.92±0.03 Weak 2.49±0.03 Strong 2.38±0.03 Weak 2.06±0.03 Strong 1.59±0.03 Medium 1.46±0.03 Medium 2 Mg 2 MnO 4 acidified with PH5 or less treated with a solution;
A method for producing a manganese compound having the following relative intensity of an X-ray diffraction peak, the method comprising eluting magnesium therein. Plane spacing (Å) Relative intensity (CuKα irradiation) 4.75±0.03 strong 2.92±0.03 weak 2.49±0.03 strong 2.38±0.03 weak 2.06±0.03 strong 1.59±0.03 medium 1.46±0.03 medium 3 Acidic solutions with PH5 or less are mineral acids and The method according to claim 2, which contains at least one selected from organic acids.
JP61207152A 1986-09-02 1986-09-02 Novel manganese compound and production thereof Granted JPS6364919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61207152A JPS6364919A (en) 1986-09-02 1986-09-02 Novel manganese compound and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61207152A JPS6364919A (en) 1986-09-02 1986-09-02 Novel manganese compound and production thereof

Publications (2)

Publication Number Publication Date
JPS6364919A JPS6364919A (en) 1988-03-23
JPH0232218B2 true JPH0232218B2 (en) 1990-07-19

Family

ID=16535079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61207152A Granted JPS6364919A (en) 1986-09-02 1986-09-02 Novel manganese compound and production thereof

Country Status (1)

Country Link
JP (1) JPS6364919A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2789732B2 (en) * 1989-11-10 1998-08-20 松下電器産業株式会社 Method of manufacturing enamel substrate for circuit
CN108251918B (en) * 2018-01-09 2020-05-12 哈尔滨理工大学 MgMn2O4Nanofiber electrode material and preparation method thereof

Also Published As

Publication number Publication date
JPS6364919A (en) 1988-03-23

Similar Documents

Publication Publication Date Title
Thackeray et al. Electrochemical extraction of lithium from LiMn2O4
CN103991908B (en) By the method for cation doping regulation and control lithium ion sieve stability
JP4128627B2 (en) Method for producing lithium manganese oxide spinel
JPH0578142B2 (en)
JP2004502629A5 (en)
GB2244701A (en) Manganese oxide compound
KR100972140B1 (en) Method for synthesis of lithium manganese oxide by hydroysis and solvent-exchange process and preparation of ion-exchange type lithium adsorbent using the lithium manganese oxide
JPH0232218B2 (en)
JPH0232217B2 (en)
JP3388406B2 (en) Method for producing lithium adsorbent
JPH01235158A (en) Nonaqueous secondary battery
JPS6362546A (en) Composite type lithium adsorbent and its production
JPS6090827A (en) Permanganic acid process for manufacturing manganese dioxide from manganous salt
JP3321602B2 (en) Selective lithium separating agent and method for producing the same
JP2847417B2 (en) Manganese dioxide for lithium adsorption and method for producing the same
JP2711624B2 (en) Production method of α-manganese dioxide
JPS6059657A (en) Manganese dioxide electrode material rechargeable
JPH02283621A (en) New manganese compound and production thereof
JP3101708B2 (en) Method for producing lithium manganate thin film
JP3093227B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH0525541B2 (en)
JPH0687970B2 (en) Lithium adsorbent and method for producing the same
JPS6133622B2 (en)
JP2004002097A (en) Manufacturing method for lithium/manganese double oxide
JP3170587B2 (en) Spinel-type lithium manganese oxide and method for producing manganese oxide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term