JPS6362546A - Composite type lithium adsorbent and its production - Google Patents

Composite type lithium adsorbent and its production

Info

Publication number
JPS6362546A
JPS6362546A JP61208720A JP20872086A JPS6362546A JP S6362546 A JPS6362546 A JP S6362546A JP 61208720 A JP61208720 A JP 61208720A JP 20872086 A JP20872086 A JP 20872086A JP S6362546 A JPS6362546 A JP S6362546A
Authority
JP
Japan
Prior art keywords
lithium
adsorbent
adsorption
contg
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61208720A
Other languages
Japanese (ja)
Other versions
JPH0423577B2 (en
Inventor
Yoshitaka Miyai
宮井 良孝
Kenta Oi
健太 大井
Shunsaku Kato
俊作 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61208720A priority Critical patent/JPS6362546A/en
Publication of JPS6362546A publication Critical patent/JPS6362546A/en
Publication of JPH0423577B2 publication Critical patent/JPH0423577B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To increase selective adsorptivity, adsorbing rate and adsorbing capacity for Li and to enhance the recovering efficiency of Li by eluting Mg from heat-treated composite Mn-Al oxide contg. Mg with acid and preparing an Li adsorbent. CONSTITUTION:Composite Mn-Al compd. contg. Mg is pptd. by mixing a soln. contg. Mg ion and a soln. contg. Mn ion and Al ion and regulating pH to >=10. After heating this composite Mn-Al compd. contg. Mg at >=600 deg.C temp., it is treated with an acid soln. of >=3pH to elute Mg and thereby an Li adsorbent is prepared. In case the proportion of Mn incorporated in composite Al-Mn compd. is small, adsorptivity for Li is small and it is increased according to the increase of the proportion of Mn and attains the maximum in case of 1:1. The obtained adsorbent selectively adsorbs Li from a dilute soln. of seawater and geothermal water.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム吸着剤の製造方法に間するものである
。更に詳しく言えば、リチウムに対する逼沢吸着性が優
れ、かつ吸着容量及び吸着速度が大きく、リチウム希薄
溶液中で安定であって、毒性が少なく安価なリチウム吸
着剤の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a lithium adsorbent. More specifically, the present invention relates to a method for producing a lithium adsorbent that has excellent adsorption properties for lithium, has a large adsorption capacity and rate, is stable in a dilute lithium solution, has little toxicity, and is inexpensive.

近年、リチウム金属及びその化合物は、多くの分野、例
えばセラミックス、電池、吸収型冷媒、医薬品などに用
いられており、また将来、大容量電池、アルミニウム合
金材料、核融合燃料などとしての利用が考えられており
、リチウムの需要の著しい増大が見込まれている〔「日
本鉱業会誌」第97巻、第221  ページ〕。
In recent years, lithium metal and its compounds have been used in many fields, such as ceramics, batteries, absorption refrigerants, and pharmaceuticals, and in the future, they are being considered for use in large-capacity batteries, aluminum alloy materials, nuclear fusion fuels, etc. The demand for lithium is expected to increase significantly [Journal of the Japan Mining Association, Vol. 97, p. 221].

前記リチウム金属及びその化合物は、現在上としてスボ
ジュメン、アンブリゴナイト、ベタライト、レビドライ
トなどのリチウム含有鉱石(リチウム含有量2〜6%)
、及びリチウム濃度の高い塩湖や地下かん水(リチウム
濃度50〜200ppm)などを原料として製造されて
いる。  。
The lithium metal and its compounds include lithium-containing ores (lithium content 2-6%) such as subodumene, ambrigonite, betalite, and levidorite.
It is manufactured using raw materials such as salt lakes and underground brine (lithium concentration 50 to 200 ppm), which have high lithium concentrations. .

物は全量輸入に依存しているのが現状である。−方、わ
が国の地熱水や温泉水にはかなりのリチウムを含有する
ものがある。また周囲をとりま< ilW洋中にも微l
のリチウム(0,17ppm)が含まれている。したが
って、これらのリチウムを含む希薄溶液から該リチウム
を効率よく回収する技術を確立することが強く要望され
ている。
Currently, the country is completely dependent on imports. -On the other hand, some geothermal water and hot spring water in Japan contain a considerable amount of lithium. There is also a small amount of water surrounding the surrounding ocean.
of lithium (0.17 ppm). Therefore, it is strongly desired to establish a technique for efficiently recovering lithium from these dilute solutions containing lithium.

従来の技術 従来、海水などのリチウムを含む希薄溶液から該リチウ
ムを回収する方法としては、例えば水酸化アルミニウム
共沈法〔「日本化学会第43年金、講演要旨集IJ、第
1240ページ(+981))−あるいは筈定形水酸化
アルミニウム〔「)m氷詰」、第32巻、第78ページ
(1978) 、r日本鉱業会誌」、第99巻、第58
5ページ(+983)) 、金属アルミニウム〔「防錆
管理」、第1982巻、第369ページ〕、含水酸化ス
ズ〔「日本鉱業会誌」、第99巻、第933る。
Conventional technology Conventionally, as a method for recovering lithium from a dilute solution containing lithium such as seawater, for example, the aluminum hydroxide coprecipitation method ["Chemical Society of Japan 43rd Annual Meeting, Abstracts IJ, p. 1240 (+981) ) - or should be regular shaped aluminum hydroxide [") M Hyozume", Vol. 32, page 78 (1978), r Journal of the Japan Mining Association, Vol. 99, No. 58
5 pages (+983)), metal aluminum ["Rust Prevention Management", Vol. 1982, p. 369], hydrous tin oxide ["Journal of the Japan Mining Association", Vol. 99, p. 933].

また太陽熱で塩湖水や7m水を蒸発し、食塩などを析出
除去した後、リチウム塩を採取する方法などが検討され
ている(Geological 5urvey Pro
fessional Paper  第1005巻、第
79ページ(1976)) 。
In addition, methods are being considered to collect lithium salt after evaporating salt lake water or 7m water using solar heat, precipitating out salt, etc. (Geological 5urvey Pro
1005, page 79 (1976)).

しかしながら、前記の吸着法はリチウムに対する吸着容
量及び吸着速度が小さいという欠点があるし、太陽熱を
利用する蒸発法では莫大な面積と気象条件がそろわなけ
ればならない欠点があり、いずれも実用化は困難である
。また、ヒ酸トリウム(rJ、 lnorg、 Nuc
l、 ChelW、 J第32巻、第1719ページ(
+970)) 、アンチモン酸スズ(rllydrom
etallurgy J第12巻、第83ページ(1り
84))などもリチウム吸着性を示すことが撥きされて
いるが、実用化するには吸着性の向上、脱@法なとの課
題が残されている。
However, the adsorption method described above has the drawback that the adsorption capacity and adsorption rate for lithium is small, and the evaporation method that uses solar heat has the drawback that it requires a huge area and the same weather conditions, making it difficult to put them into practical use. It is. In addition, thorium arsenate (rJ, lnorg, Nuc
L, ChelW, J Volume 32, Page 1719 (
+970)), tin antimonate (rllydrom
etallurgy J Vol. 12, p. 83 (1ri84)) have also been reported to exhibit lithium adsorption properties, but there are still issues to be solved in order to put them into practical use, such as improving adsorption properties and de@ has been done.

このほか各種のイオンシーブ型の吸着剤がリチウムに対
して吸着性を示すことも母告されているが(rNeor
gan、門at、 J 、第9巻、第1041ページム
吸若性なとは明確ζこされておらず、まだ、実用的性能
に至っていない。
In addition, it has been reported that various ion sieve type adsorbents exhibit adsorption properties for lithium (rNeor
Gan, At, J, Volume 9, Page 1041 It has not been clearly demonstrated that it is rejuvenating, and it has not yet reached practical performance.

発明が解決しようとする問題点 リチウムを含む海水、地熱水、地下かん水などの希薄溶
液から該リチウムを実用的に吸着回収するためには、リ
チウムに対する選択吸着性に優れ、かつ吸着速度及び吸
着容量が大きく、その上該希薄溶)α中で安定であって
、毒性が少なく、更に吸着・脱着の繰り返しが可能であ
る吸着剤の開発が必要である。
Problems to be Solved by the Invention In order to practically adsorb and recover lithium from dilute solutions such as seawater, geothermal water, and underground brine containing lithium, it is necessary to have excellent selective adsorption for lithium, and to improve the adsorption rate and adsorption rate. It is necessary to develop an adsorbent that has a large capacity, is stable in the dilute solution α, has low toxicity, and is capable of repeated adsorption and desorption.

本発明の目的は、このような要件を満足しうる吸で剤の
製造方法を提供することにある。
An object of the present invention is to provide a method for producing a breath absorbent that can satisfy these requirements.

問題点を解決するための手段 本発明者らは種々の吸着剤の合成研究を重ねた結果、マ
グネシウムを含有するマンガン−アルミニウム複合化合
物を加熱処理した後、酸処理してすリチウム吸着剤であ
ることを認め、本発明をするに至った。 !口ち、マグ
ネシウムを含有するマンガン−アルミニウム複合化合物
%600℃以上の温度で加熱した後、pH3以下の酸溶
澄て処理してマグネシウムを溶出してyA製した吸着剤
は優れたリチウム選択吸着性を示した。
Means for Solving the Problems As a result of repeated research on the synthesis of various adsorbents, the inventors of the present invention have developed a lithium adsorbent by heat-treating a manganese-aluminum composite compound containing magnesium and then acid-treating it. Recognizing this fact, we have come up with the present invention. ! Manganese-aluminum composite compound containing magnesium% The adsorbent made by yA, which is heated at a temperature of 600°C or higher and treated with an acid solution at pH 3 or lower to elute magnesium, has excellent lithium selective adsorption properties. showed that.

本発明において用いるマグネシウムを含有するマンガン
−アルミニウム複合化合物は特定の方法でXl!l製し
たものではなく、各種の方法で調製したものが使用可能
である。
The magnesium-containing manganese-aluminum composite compound used in the present invention can be prepared by a specific method. It is possible to use products prepared by various methods, rather than products made by a manufacturer.

例えば、マグネシウムイオンを含む溶液とマンガンイオ
ンとアルミニウムイオンを含有する溶液を混合し、pH
10以上に調整して共沈させる共沈法、マグネシウムイ
オンを含む溶液に酸化マンガン等のマンガン酸化物と水
酸化アルミニウム等の75ルミニウム化合物CZ加して
、マグネシウムを吸着させる吸着法、水酸化マグネシウ
ム等のマグネシウム化合物と水酸化酸化マンガンと水酸
化アルミニウム等の化合物を一定割合で混合する混−リ
去等が使用できる。
For example, by mixing a solution containing magnesium ions, a solution containing manganese ions, and aluminum ions, the pH
A coprecipitation method in which the magnesium oxide is adjusted to 10 or more and coprecipitated, an adsorption method in which manganese oxide such as manganese oxide and a 75-luminium compound CZ such as aluminum hydroxide are added to a solution containing magnesium ions to adsorb magnesium, and magnesium hydroxide. A method such as mixing by mixing a magnesium compound such as hydroxide, manganese oxide, aluminum hydroxide, etc. in a fixed ratio can be used.

アルミニウムーマンガン複合化合物中のマンガンの割合
が少ない場合、リチウム吸着性は低いが、マンガンの割
合が増すにつれてリチウム吸着性が増し、1:lで最大
となり、更に割合を増すと逆に低下し、複合効果がある
ことが認められた。
When the proportion of manganese in the aluminum-manganese composite compound is small, the lithium adsorption is low, but as the proportion of manganese increases, the lithium adsorption increases, reaching a maximum at 1:l, and conversely decreases as the proportion increases further. It was recognized that there were multiple effects.

マグネシウム含有マンガン−アルミニウム複合化合物の
加熱処理温度は600℃以上が、望ましくは750℃以
上が必要である。
The heat treatment temperature of the magnesium-containing manganese-aluminum composite compound needs to be 600°C or higher, preferably 750°C or higher.

加熱とともに急激に結晶化反応は進むが、少なくとも1
0分以上は必要であり、望ましくは1時間以上は必要で
ある。
The crystallization reaction rapidly progresses with heating, but at least 1
0 minutes or more is required, and desirably 1 hour or more is required.

加熱処理物からのマグネシウムの溶出はpH3以上の弱
酸溶液で数時間以上、望ましくは1日以上処理すること
によって達成できる。溶出するのに用いる酸としてはp
H3以下の酸性溶液であればよいが、望ましくは塩酸、
硫酸、硝酸、リン酸などの鉱酸がよい。
Elution of magnesium from the heat-treated product can be achieved by treating it with a weak acid solution having a pH of 3 or more for several hours or more, preferably for one day or more. The acid used for elution is p.
Any acidic solution of H3 or less may be sufficient, but preferably hydrochloric acid,
Mineral acids such as sulfuric acid, nitric acid, and phosphoric acid are good.

本発明の方法で製造した吸着剤は海水及び地熱水などの
希薄溶液からリチウムを選択的に吸着し発明の効果 本発明の方法で調製したマグネシウム含有マンガン酸化
物から製造した吸着剤はミクロボアな多く持ち、リチウ
ムに対する退択吸着性が優れ、かつ吸着速度及び吸着容
量が極めて大きく、しかも毒性がなく、水溶液中で安定
であり、吸着剤中のリチウム濃度は鉱石なみになり、末
法で製造した吸着剤を用いることにより、希iiiαか
ら該リチウムを極めて効率よく経済的に回収することが
できる。これらのマグネシウムをドーピングした吸着剤
では、イオン半径がマグネシウムイオンとリチウムイオ
ンとはほぼ等しいものの、水和エネルギーはマグネシウ
ムの方が大きいためにリチウムが選択的に吸着されるも
のと思われる。
The adsorbent produced by the method of the present invention selectively adsorbs lithium from dilute solutions such as seawater and geothermal water, and the adsorbent produced from the magnesium-containing manganese oxide prepared by the method of the present invention has micropores. It has a large amount of lithium, has excellent regressive adsorption properties for lithium, has an extremely high adsorption rate and adsorption capacity, is non-toxic, is stable in aqueous solution, has a lithium concentration in the adsorbent that is similar to ore, and is manufactured using a powder method. By using an adsorbent, the lithium can be recovered from dilute iiiα very efficiently and economically. In these adsorbents doped with magnesium, although the ionic radii of magnesium ions and lithium ions are almost equal, hydration energy of magnesium is larger, and therefore lithium is thought to be selectively adsorbed.

実施例 次に実施例により本発明を更に詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

町方tpグリ 1 水酸化酸化マンガン2.20 g、水酸化アルミニウム
1.96g及び水酸化マグネシウム1.46 gを粉砕
混合した後、550−1150℃の所定温度で1時間加
熱処理した。この加熱生成物のIgltO,IN塩酸5
001中に10日間漫;賃してマグネシウムを溶出させ
た後、水洗、風乾して吸着剤■lした。
Machikata TP Guri 1 2.20 g of manganese hydroxide oxide, 1.96 g of aluminum hydroxide, and 1.46 g of magnesium hydroxide were pulverized and mixed, and then heat-treated at a predetermined temperature of 550-1150°C for 1 hour. This heating product IgltO, IN hydrochloric acid 5
001 for 10 days to elute magnesium, then washed with water and air-dried to prepare an adsorbent.

このようにして得られた吸着剤30mgを塩化リチウム
水溶潰(リチウム濃度6.2ppm、 p 148.5
)25ml中に加えて7日間かきまぜた後、1凍液中の
リチウム濃度を定量してリチウム吸着量を算出した。5
50〜1150℃の各温度で調製した吸着剤について吸
着量を測定した結果を表1に示す。これらの吸着剤のリ
チウム吸着量は加熱温度が高くなるにつれて増大し、8
50〜1050℃でほぼ一定になり、リチウム吸着率は
99%、分配係′F18.5XIO’に達した。更に高
温の1150℃で加熱して調製した吸着剤は逆に吸着性
能が低下する傾向が認められた。なお、ここでの分配係
数は溶液中の平衡金属イオン濃度と吸着剤に吸着された
金属イオン濃度の比て勇アリ、次式で表されるものであ
る。
30 mg of the adsorbent thus obtained was dissolved in lithium chloride water (lithium concentration 6.2 ppm, p 148.5
) After stirring for 7 days, the lithium concentration in each frozen solution was determined and the amount of lithium adsorbed was calculated. 5
Table 1 shows the results of measuring the amount of adsorption for adsorbents prepared at various temperatures from 50 to 1150°C. The amount of lithium adsorbed by these adsorbents increases as the heating temperature increases, and 8
It became almost constant between 50 and 1050°C, and the lithium adsorption rate reached 99% and the distribution coefficient 'F18.5XIO'. Furthermore, it was observed that the adsorbent prepared by heating at a higher temperature of 1150° C. had a tendency to have a lower adsorption performance. Note that the distribution coefficient here is the ratio of the equilibrium metal ion concentration in the solution to the metal ion concentration adsorbed on the adsorbent, and is expressed by the following equation.

二1 征1 +1 表1 加熱温度とリチウム吸着性 二実方15fグリ 2 Jj実施例1で:A羨した吸着剤50mgを天然1a水
2−一′ L中に加えて7日間かきまぜた後、1澄液中のリチウム
濃度を定量し、リチウム吸着量を算出した結果、表2に
示したようにリチウム吸y 率は最高で65%で、吸着
量は4.4mg/gで、この吸着剤は海表2  i1m
水中におけるリチウム吸着性・迷中のリチウムに対し大
きな吸着性を示し、零発゛明の吸着剤は優れたリチウム
吸着剤であること(1明らかである。
21 Seki1 +1 Table 1 Heating temperature and lithium adsorption property 2 Jj In Example 1: 50 mg of the adsorbent was added to 2-1' L of natural 1a water and stirred for 7 days, 1. As a result of quantifying the lithium concentration in the clear liquid and calculating the lithium adsorption amount, as shown in Table 2, the lithium absorption rate was 65% at the maximum, and the adsorption amount was 4.4 mg/g. is sea level 2 i1m
It is clear that the adsorbent from Zero is an excellent lithium adsorbent as it shows great adsorption ability for lithium in water and stray lithium.

実施例3 水酸化酸化マンガン、水酸化アルミニウム及び水酸1ヒ
マグネシウムを1々の割合で混合粉砕し、950℃で1
時間加熱処理した。それぞれの生成物1gを0.I N
塩酸水溶液500 ml中ζどO日間浸;スしてマグネ
シウムを溶出した後、水洗、風乾して各種の吸着剤を調
製した。これらの吸着剤各30mgを塩化リチウム溶液
(リチウム濃度6.2ppm、 pH8,5)25m 
l中に加えて7日間かきまぜた後、上Pt液中のリチウ
ム濃度を1lll定してリチウム吸着ffiを算出した
。その結果、第3表に示したように0ずれの吸着剤とも
高いリチウム吸着性を示した。特りこN。
Example 3 Manganese hydroxide oxide, aluminum hydroxide and monomagnesium hydroxide were mixed and pulverized at 950°C.
Heat treated for hours. 0.0 g of each product. IN
Magnesium was eluted by immersion in 500 ml of aqueous hydrochloric acid solution for 1 day, followed by washing with water and air drying to prepare various adsorbents. 30 mg of each of these adsorbents was added to 25 m of lithium chloride solution (lithium concentration 6.2 ppm, pH 8.5).
After stirring for 7 days, the lithium concentration in the upper Pt solution was determined to calculate the lithium adsorption ffi. As a result, as shown in Table 3, both the adsorbents with zero deviation showed high lithium adsorption properties. Especially Riko N.

17の混合比率(モル比)1 : 1 : tのもの力
<優れたリチウム吸着性を示し、本発明の吸着剤b1優
れたリチウム吸着性を有することは明らかである。
It is clear that the adsorbent b1 of the present invention has excellent lithium adsorption properties, with the mixing ratio (molar ratio) of 1:17 being 1:1:t<excellent lithium adsorption properties.

第3表 実施例4 実施fill 3で調整した吸着剤50mgを海水2L
中に添加し、7日間かきまぜたのち、上ン登ン夜中のI
Jチウム濃度を泗定してリチウム吸着量を求めた。
Table 3 Example 4 50 mg of the adsorbent prepared in Example 4 was added to 2 L of seawater.
After stirring for 7 days,
The lithium adsorption amount was determined by determining the J thium concentration.

第4表に示すように海水からもリチウムを通訳nつに吸
着することは明らか−Jある。特ζこMn:Al力S1
:1第    4    表 のものが最も憂れた吸着性を示した。
As shown in Table 4, it is clear that lithium is adsorbed from seawater as well. Special ζko Mn: Al force S1
:1 Those in Table 4 showed the most worrying adsorption properties.

二〇のように本発明の方法で製造した吸着剤カイ優れた
リチウム吸着性を示し、本発明の製造方V去が優れてい
ることは明らかである。
As shown in No. 20, the adsorbent produced by the method of the present invention exhibits excellent lithium adsorption properties, and it is clear that the method of the present invention is superior.

特許出願人  工業技術院長 飯 塚 幸 三指定代理
人  工業技術院四国工業技ifi試験所長蕾  破 
 和  彦
Patent applicant: Director of the Agency of Industrial Science and Technology Yukio Iizuka Designated agent: Director of the Shikoku Industrial Technology IFI Testing Center, the Agency of Industrial Science and Technology Hajime Tsubaki
Kazuhiko

Claims (1)

【特許請求の範囲】 1 マグネシウムを含むマンガン−アルミニウム複合酸
化物の加熱処理物からマグネシウムを酸で溶出して調製
したリチウム吸着剤。 2 マグネシウムを含むマンガン−アルミニウム複合酸
化物を600℃以上温度で加熱した後、酸処理してマグ
ネシウムを溶出させることを特徴とするリチウム吸着剤
の製造方法。 3 リチウムを溶出させるために用いる酸としてはpH
3以下の溶液であることを特徴とする特許請求範囲第2
項記載のリチウム吸着剤の製造方法。
[Scope of Claims] 1. A lithium adsorbent prepared by eluting magnesium from a heat-treated manganese-aluminum composite oxide containing magnesium with an acid. 2. A method for producing a lithium adsorbent, which comprises heating a manganese-aluminum composite oxide containing magnesium at a temperature of 600° C. or higher and then treating it with an acid to elute the magnesium. 3 The pH of the acid used to elute lithium is
Claim 2, characterized in that the solution is 3 or less.
A method for producing a lithium adsorbent as described in Section 1.
JP61208720A 1986-09-03 1986-09-03 Composite type lithium adsorbent and its production Granted JPS6362546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208720A JPS6362546A (en) 1986-09-03 1986-09-03 Composite type lithium adsorbent and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208720A JPS6362546A (en) 1986-09-03 1986-09-03 Composite type lithium adsorbent and its production

Publications (2)

Publication Number Publication Date
JPS6362546A true JPS6362546A (en) 1988-03-18
JPH0423577B2 JPH0423577B2 (en) 1992-04-22

Family

ID=16560965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208720A Granted JPS6362546A (en) 1986-09-03 1986-09-03 Composite type lithium adsorbent and its production

Country Status (1)

Country Link
JP (1) JPS6362546A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160063A (en) * 1989-11-16 1991-07-10 Kubota Corp Polyethylene powder for corrosion-resistant coating and preparation thereof
WO1996017682A1 (en) * 1994-12-07 1996-06-13 M And K Patent Company, Inc. Acid contacted enhanced adsorbent particle and method of making and using therefor
US5948726A (en) * 1994-12-07 1999-09-07 Project Earth Industries, Inc. Adsorbent and/or catalyst and binder system and method of making therefor
US5955393A (en) * 1995-04-21 1999-09-21 Project Earth Industries, Inc. Enhanced adsorbent and room temperature catalyst particle and method of making therefor
US5985790A (en) * 1994-12-07 1999-11-16 Project Earth Industries, Inc. Method of making acid contacted enhanced aluminum oxide adsorbent particle
US6342191B1 (en) 1994-12-07 2002-01-29 Apyron Technologies, Inc. Anchored catalyst system and method of making and using thereof
CN106824304A (en) * 2017-01-04 2017-06-13 潍坊学院 A kind of preparation method of titanium-based lithium ion extraction material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334116A (en) * 1976-09-11 1978-03-30 Toyo Tire & Rubber Co Ltd Flexible joint for hume pipes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334116A (en) * 1976-09-11 1978-03-30 Toyo Tire & Rubber Co Ltd Flexible joint for hume pipes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160063A (en) * 1989-11-16 1991-07-10 Kubota Corp Polyethylene powder for corrosion-resistant coating and preparation thereof
WO1996017682A1 (en) * 1994-12-07 1996-06-13 M And K Patent Company, Inc. Acid contacted enhanced adsorbent particle and method of making and using therefor
US5948726A (en) * 1994-12-07 1999-09-07 Project Earth Industries, Inc. Adsorbent and/or catalyst and binder system and method of making therefor
US5985790A (en) * 1994-12-07 1999-11-16 Project Earth Industries, Inc. Method of making acid contacted enhanced aluminum oxide adsorbent particle
US6338830B1 (en) 1994-12-07 2002-01-15 Apyron Technologies, Inc. Absorbent and/or catalyst and binder system and method of making and using therefor
US6342191B1 (en) 1994-12-07 2002-01-29 Apyron Technologies, Inc. Anchored catalyst system and method of making and using thereof
US5955393A (en) * 1995-04-21 1999-09-21 Project Earth Industries, Inc. Enhanced adsorbent and room temperature catalyst particle and method of making therefor
CN106824304A (en) * 2017-01-04 2017-06-13 潍坊学院 A kind of preparation method of titanium-based lithium ion extraction material

Also Published As

Publication number Publication date
JPH0423577B2 (en) 1992-04-22

Similar Documents

Publication Publication Date Title
Miyai et al. Recovery of lithium from seawater using a new type of ion-sieve adsorbent based on MgMn2O4
Heidari et al. Selective adsorption of lithium ions from Urmia Lake onto aluminum hydroxide
JPS6362546A (en) Composite type lithium adsorbent and its production
JPS61283342A (en) Lithium adsorbent and its preparation
KR100972140B1 (en) Method for synthesis of lithium manganese oxide by hydroysis and solvent-exchange process and preparation of ion-exchange type lithium adsorbent using the lithium manganese oxide
SASAKI et al. Ion-exchange properties of hydrous titanium dioxide with a fibrous form obtained from potassium dititanate
JPS60153940A (en) Adsorbent of dissolved fluorine ion
JPH0626661B2 (en) Granular lithium adsorbent and lithium recovery method using the same
JP3321602B2 (en) Selective lithium separating agent and method for producing the same
JPH0222698B2 (en)
JPH024442A (en) High performance lithium adsorbent and its preparation
CN111135794B (en) Alumina modified expanded graphite adsorbent and preparation method and application thereof
JP3412003B2 (en) Novel lithium adsorbent and method for producing the same
JPS61278347A (en) Production of li adsorbent
JP2001157838A (en) Method for preparing lithium adsorbent
JPH0459012B2 (en)
JPH0230737B2 (en) RICHIUMUKYUCHAKUZAINOSHINSEIZOHOHO
JPH01203039A (en) Adsorbent indicating new lithium selectivity and manufacture thereof
Rashid et al. Synthesis, characterization and sorption characteristics of a fibrous organic—inorganic composite material
JP2775412B2 (en) Lithium isotope separating agent
JPH0687970B2 (en) Lithium adsorbent and method for producing the same
JPS6346009B2 (en)
JPS61283339A (en) Preparation of new lithium adsorbent
JPH026844A (en) Synthetic lithium adsorbent and production thereof
JPS62270420A (en) Novel manganese compound and production thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term