JPH0232217B2 - - Google Patents

Info

Publication number
JPH0232217B2
JPH0232217B2 JP61111855A JP11185586A JPH0232217B2 JP H0232217 B2 JPH0232217 B2 JP H0232217B2 JP 61111855 A JP61111855 A JP 61111855A JP 11185586 A JP11185586 A JP 11185586A JP H0232217 B2 JPH0232217 B2 JP H0232217B2
Authority
JP
Japan
Prior art keywords
manganese
mgmn
lithium
strong
manganese compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61111855A
Other languages
Japanese (ja)
Other versions
JPS62270420A (en
Inventor
Yoshitaka Myai
Kenta Ooi
Shunsaku Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61111855A priority Critical patent/JPS62270420A/en
Publication of JPS62270420A publication Critical patent/JPS62270420A/en
Publication of JPH0232217B2 publication Critical patent/JPH0232217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は新規なマンガン化合物及びその製造方
法に関するものである。さらに詳しくいえば、本
発明は、リチウムに対する選択吸着性に優れ、か
つ吸着速度及び吸着容量が極めて大きく、リチウ
ム吸着材料として好適であり、また電池活性電極
材料などとしても有用な新規なマンガン化合物及
びその製造方法に関するものである。 従来の技術 マンガン酸化物は種々の結晶形態が知られてお
り、天然においては、例えば軟マンガン鉱やナス
タイトなどとして存在している。このマンガン酸
化物は、一般に乾電池、バツテリーなどの電気化
学電池における活性カソード物質として用いられ
ており、その代表的な電池としては、例えばマン
ガン酸化物カソードと亜鉛アノードと電解質水溶
液(塩化アンモニウム及び塩化亜鉛を含む水溶
液)とから成るものが知られている。 従来、このような電池用マンガン酸化物は一般
に電解法で調製されているが、最近LiMn2O4
ら調製する方法が提案されている(特公昭58−
34414号公報)。このLiMn2O4から調製したマン
ガン酸化物は電気化学活性を有し、水性電解質の
みならず、非水性電解質においても有効であると
いわれている。 該LiMn2O4はスピネル構造を有し、炭酸リチ
ウムとマンガン酸化物とを、マンガンとリチウム
との原子比が2:1になるような割合で混合し、
800〜900℃の範囲の温度において加熱処理するこ
とにより、あるいは水酸化リチウムと炭酸マンガ
ンなどのリチウム塩・酸化物とマンガン塩・酸化
物との適当な組合わせの混合物を500〜900℃の範
囲の温度において加熱処理することにより得られ
る。 ところで、最近リチウムを含有するマンガン酸
化物から調製したマンガン化合物が、リチウム吸
着材として優れていることが認められ〔化学工
業、第686ページ(1985年)〕、希薄溶液からのリ
チウム採取用吸着材としての応用が期体されてい
る。例えば、前記LiMn2O4を酸処理したマンガ
ン化合物はLiMn2O4とほぼ同等のX線回析特性
を示し、海水中のリチウムの選択吸着性に優れ、
そのリチウム平衡吸着量は8.5mg/gで、Li2O含
量に換算すると1.8%になり、リチウム鉱石の約
半分にも達する。 このように、リチウムを含有するマンガン酸化
物から調製されたマンガン化合物は、リチウム吸
着材料や電池活性電極材料などとして有用である
が、高価なリチウムを原料として用いているた
め、コスト高になるのを免れないという問題があ
る。 発明が解決しようとする問題点 本発明の目的は、リチウム吸着材料や電池活性
電極材料などとして有用で、かつ製造コストの低
い新規なマンガン化合物を提供することにある。 問題点を解決するための手段 本発明者らはこのようなマンガン化合物を開発
するために鋭意研究を重ねた結果、リチウムより
イオン半径がわずかに小さいマグネシウムを用い
て調製したMgMn2O4を酸処理して得られるマン
ガン化合物は、LiMn2O4から得られたマンガン
化合物と明らかに異なつたX線回折特性を示し、
別の物質であるにもかかわらず、それと類似の層
間隔を有し、同じような物性を示すことを見出
し、この知見に基づいて本発明を完成するに至つ
た。 すなわち、本発明は、MgMn2O4の酸処理物か
ら成り、かつ主要X線回折ピークの相対強度が 面間隔(Å) 相対強度 (CuKα線照射) 4.63±0.03 強 2.71±0.03 強 2.42±0.03 強 2.33±0.03 弱 2.00±0.03 中 1.54±0.03 中 であるマンガン化合物を提供するものであり、こ
のものは、MgMn2O4をPH5以下の酸性溶液で処
理し、その中のマグネシウムを溶出させることに
よつて製造することができる。 本発明において原料として用いられる
MgMn2O4は、例えばMgOとMn3O4とをモル比
で3:2の割合で混合して、1100℃の温度で数時
間加熱処理することにより〔「エヌビーエス・モ
ノグラフ(NBS Monograph)」第25巻、、第
10号、第35ページ(1972年)〕、あるいはマグネシ
ウムの水酸化物、酸化物、炭酸塩、重炭酸塩、硝
酸塩、ハロゲン化物などと、マンガンの含水酸化
物、酸化物、炭酸塩、重炭酸塩、硝酸塩、ハロゲ
ン化物などとを適当な組合せで混合したのち、
400℃以上の温度で加熱処理することにより製造
することができる。 このMgMn2O4を、塩酸、硫酸、硝酸、リン酸
などの鉱酸や、ギ酸、酢酸などの有機酸を1種以
上含有し、かつPH5以下、好ましくは1〜3の範
囲に調整された酸性溶液中に浸せきし、通常室温
で1時間以上、好ましくは数日間かきまぜて、マ
グネシウムを溶出除去したのち、固形物を水洗
し、好ましくは70℃以下の温度において乾燥する
ことにより、目的のマンガン化合物が得られる。 このマンガン化合物のX線回折特性を下記に示
す。比較としてASTMカードのMgMn2O4及び
LiMn2O4から調製したマンガン化合物(特公昭
58−34414号公報)のX線回折特性を併記する。
INDUSTRIAL APPLICATION FIELD The present invention relates to a novel manganese compound and a method for producing the same. More specifically, the present invention provides a novel manganese compound that has excellent selective adsorption properties for lithium, has an extremely high adsorption rate and adsorption capacity, is suitable as a lithium adsorption material, and is also useful as a battery active electrode material. The present invention relates to a manufacturing method thereof. BACKGROUND OF THE INVENTION Manganese oxides are known to have various crystal forms, and exist naturally as manganese ore, nastite, and the like. This manganese oxide is generally used as an active cathode material in electrochemical cells such as dry batteries and batteries.A typical battery includes, for example, a manganese oxide cathode, a zinc anode, and an aqueous electrolyte solution (ammonium chloride and zinc chloride). An aqueous solution containing Conventionally, such manganese oxide for batteries has generally been prepared by an electrolytic method, but recently a method of preparing it from LiMn 2 O 4 has been proposed (Japanese Patent Publication No. 1983-
Publication No. 34414). Manganese oxide prepared from this LiMn 2 O 4 has electrochemical activity and is said to be effective not only in aqueous electrolytes but also in non-aqueous electrolytes. The LiMn 2 O 4 has a spinel structure, and is made by mixing lithium carbonate and manganese oxide in a ratio such that the atomic ratio of manganese and lithium is 2:1,
By heat treatment at a temperature in the range of 800 to 900°C, or a mixture of an appropriate combination of lithium salts/oxides such as lithium hydroxide and manganese carbonate and manganese salts/oxides to a temperature in the range of 500 to 900°C. It can be obtained by heat treatment at a temperature of . By the way, a manganese compound prepared from lithium-containing manganese oxide has recently been recognized as an excellent lithium adsorbent [Kagaku Kogyo, p. 686 (1985)], and has been used as an adsorbent for extracting lithium from dilute solutions. It is currently being used as an application. For example, the manganese compound obtained by acid-treating LiMn 2 O 4 exhibits almost the same X-ray diffraction characteristics as LiMn 2 O 4 and has excellent selective adsorption of lithium in seawater.
The equilibrium adsorption amount of lithium is 8.5 mg/g, which is 1.8% when converted to Li 2 O content, which is about half that of lithium ore. As described above, manganese compounds prepared from manganese oxide containing lithium are useful as lithium adsorption materials and battery active electrode materials, but they are expensive because they use expensive lithium as a raw material. There is a problem that cannot be avoided. Problems to be Solved by the Invention An object of the present invention is to provide a novel manganese compound that is useful as a lithium adsorption material, a battery active electrode material, etc., and is inexpensive to produce. Means for Solving the Problems The present inventors have conducted intensive research to develop such a manganese compound, and as a result, we have developed MgMn 2 O 4 prepared using magnesium, which has an ionic radius slightly smaller than that of lithium, in an acid solution. The manganese compound obtained by the treatment shows clearly different X-ray diffraction characteristics from the manganese compound obtained from LiMn 2 O 4 ,
Although they are different materials, they have found that they have similar layer spacing and exhibit similar physical properties, and based on this knowledge, they have completed the present invention. That is, the present invention consists of an acid-treated product of MgMn 2 O 4 , and the relative intensity of the main X-ray diffraction peak is as follows: Interplanar spacing (Å) Relative intensity (CuKα irradiation) 4.63±0.03 strong 2.71±0.03 strong 2.42±0.03 It provides a manganese compound with a strength of 2.33±0.03, a weak 2.00±0.03, a medium of 1.54±0.03, which can be obtained by treating MgMn 2 O 4 with an acidic solution with a pH of 5 or lower and eluting the magnesium therein. It can be manufactured by. Used as a raw material in the present invention
MgMn 2 O 4 can be produced by, for example, mixing MgO and Mn 3 O 4 at a molar ratio of 3:2 and heating the mixture at a temperature of 1100°C for several hours [NBS Monograph]. ”Volume 25,,No.
No. 10, p. 35 (1972)] or hydroxides, oxides, carbonates, bicarbonates, nitrates, halides, etc. of magnesium and hydrated oxides, oxides, carbonates, bicarbonates of manganese. After mixing salts, nitrates, halides, etc. in appropriate combinations,
It can be produced by heat treatment at a temperature of 400°C or higher. This MgMn 2 O 4 is prepared by adding one or more mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and one or more organic acids such as formic acid and acetic acid, and adjusting the pH to 5 or less, preferably in the range of 1 to 3. The target manganese is obtained by immersing it in an acidic solution and stirring it at room temperature for usually at least 1 hour, preferably for several days to elute and remove the magnesium. A compound is obtained. The X-ray diffraction characteristics of this manganese compound are shown below. ASTM card MgMn 2 O 4 and
Manganese compound prepared from LiMn 2 O 4 (Tokuko Sho
58-34414) is also shown.

【表】 本発明のマンガン化合物は文献未載の新規物質
であつて、出発原料のMgMn2O4と同様なX線回
折特性を示し、スピネル構造を有している。 このマンガン化合物と原料MgMn2O4のX線回
折特性の相違点は、マンガンの新規な形態の形成
に際して格子の収縮を示し、わずかにピーク位置
の変化がみられることである。 また、本発明のマンガン化合物は面間隔2.71Å
に強い回折ピークを示し、LiMn2O4から調製し
たマンガン酸化物とは微細構造の異なつた化合物
である。 さらに、本発明のマンガン化合物は、化学分析
の結果、マグネシウム含有率が1重量%以下であ
り、原料のMgMn2O4の理論マグネシウム含有率
12.3重量%と異なることから、MgMn2O4とは組
成の異なる全く新規な物質と認められる。 発明の効果 本発明のマンガン化合物はリチウム吸着に適し
た層間隔を有しており、リチウムに対する選択吸
着性が優れ、かつ吸着速度及び吸着容量が極めて
大きく、しかも毒性がなく、水溶液中で安定であ
り、吸着剤中のリチウム濃度はリチウム含有鉱石
なみになり、希薄溶液、例えば海水や地熱水から
効率よく経済的に該リチウムを回収することがで
きる。 また、該マンガン化合物は電池活性電極材料と
しても有用である。 実施例 次に実施例により本発明を詳細に説明する。 実施例 1 水酸化マグネシウム1.17gと水酸化マンガン
3.52gを粉砕混合し、空気中で950℃で1時間加
熱処理した。この加熱生成物1gを0.1M塩酸水
溶液1中に加えて、10日間かきまぜたのち、固
形物をろ別、水洗し、70℃で乾燥してマンガン化
合物を調製した。第1表に得られた加熱生成物及
びマンガン化合物のX線回折特性を示す。なお、
比較のためにASTMカード23−392記載の
MgMn2O4のX線回折特性を示す。
[Table] The manganese compound of the present invention is a new substance that has not been described in any literature, exhibits X-ray diffraction characteristics similar to those of the starting material MgMn 2 O 4 , and has a spinel structure. The difference between the X-ray diffraction characteristics of this manganese compound and the raw material MgMn 2 O 4 is that the lattice shrinks when a new form of manganese is formed, and a slight change in the peak position is observed. In addition, the manganese compound of the present invention has a lattice spacing of 2.71 Å.
It shows a strong diffraction peak in , and has a different microstructure from manganese oxide prepared from LiMn 2 O 4 . Furthermore, as a result of chemical analysis, the manganese compound of the present invention has a magnesium content of 1% by weight or less, and the theoretical magnesium content of the raw material MgMn 2 O 4
Since it differs from MgMn 2 O 4 by 12.3% by weight, it is recognized as a completely new substance with a different composition from MgMn 2 O 4 . Effects of the Invention The manganese compound of the present invention has a layer spacing suitable for lithium adsorption, has excellent selective adsorption for lithium, has an extremely high adsorption rate and adsorption capacity, is non-toxic, and is stable in an aqueous solution. The lithium concentration in the adsorbent is comparable to that of lithium-containing ores, and the lithium can be efficiently and economically recovered from dilute solutions, such as seawater or geothermal water. The manganese compounds are also useful as battery active electrode materials. Examples Next, the present invention will be explained in detail by examples. Example 1 Magnesium hydroxide 1.17g and manganese hydroxide
3.52g was pulverized and mixed, and heat treated in air at 950°C for 1 hour. 1 g of this heated product was added to 0.1 M aqueous hydrochloric acid solution 1 and stirred for 10 days, and then the solid matter was filtered off, washed with water, and dried at 70° C. to prepare a manganese compound. Table 1 shows the X-ray diffraction characteristics of the heated product and manganese compound obtained. In addition,
For comparison, ASTM card 23-392
The X-ray diffraction characteristics of MgMn 2 O 4 are shown.

【表】 実施例において調製したMgMn2O4のX線回折
特性はASTMカード記載のものと極めてよく一
致した。また、本発明のMgMn2O4を酸処理して
調製したマンガン化合物はMgMn2O4と比較し
て、わずかながら面間隔が小さくなつているが、
スピネル構造を維持していることは明らかであ
る。 第2表にこれらのマンガン化合物の化学分析値
を示す。
[Table] The X-ray diffraction characteristics of MgMn 2 O 4 prepared in the examples were in excellent agreement with those described in the ASTM card. In addition, the manganese compound prepared by acid treatment of MgMn 2 O 4 of the present invention has a slightly smaller interplanar spacing compared to MgMn 2 O 4 ;
It is clear that the spinel structure is maintained. Table 2 shows the chemical analysis values of these manganese compounds.

【表】 本実験で調製したMgMn2O4の化学分析値はほ
ぼ理論的に一致した。本発明のマンガン化合物は
MgMn2O4よりマグネシウム含量が著しく少な
く、組成の異なる新規な化合物である。 実施例 2 1M塩化マグネシウム水溶液150mlと1M塩化マ
ンガン水溶液200mlとの混合溶液をかきまぜなが
ら、PH10.5になるまでアンモニア水(1:1)を
加えた。生成物を母液中で3日間熟成したのち、
ろ別し、PH10.5のアンモニア水で数回洗浄した。
生成物中のマンガンとマグネシウム含量の原子比
は2:0.8であつた。これを700℃で1時間加熱処
理してMgMn2O4を調製した。この加熱処理物1
gを0.1M硝酸溶液1中に加えて、5日間かき
まぜたのち、生成物をろ別・洗浄し、乾燥した。 生成物のX線回折特性を第3表に示す。得られ
たマンガン化合物は実施例1と同様にわずかに収
縮が認められたが、MgMn2O4と同様の構造を有
していることは明らかである。これらの化合物の
化学分析結果を第4表に示す。
[Table] The chemical analysis values of MgMn 2 O 4 prepared in this experiment were almost in agreement with the theory. The manganese compound of the present invention is
It is a new compound with a significantly lower magnesium content than MgMn 2 O 4 and a different composition. Example 2 While stirring a mixed solution of 150 ml of 1M aqueous magnesium chloride solution and 200 ml of 1M aqueous manganese chloride solution, aqueous ammonia (1:1) was added until the pH reached 10.5. After aging the product in the mother liquor for 3 days,
It was filtered and washed several times with aqueous ammonia at pH 10.5.
The atomic ratio of manganese and magnesium content in the product was 2:0.8. This was heat-treated at 700° C. for 1 hour to prepare MgMn 2 O 4 . This heat treated product 1
g was added to 0.1M nitric acid solution 1, and after stirring for 5 days, the product was filtered, washed, and dried. The X-ray diffraction properties of the product are shown in Table 3. Although slight shrinkage was observed in the obtained manganese compound as in Example 1, it was clear that it had the same structure as MgMn 2 O 4 . The chemical analysis results of these compounds are shown in Table 4.

【表】【table】

【表】 本発明のマグネシウム化合物はMgMn2O4とは
組成の異なる新規な化合物であることは明らかで
ある。 実施例 3 実施例1及び2において調製したマンガン化合
物について海水中におけるリチウム吸着性を調べ
た。すなわち、マンガン化合物50mgを海水2に
加え、7日間かきまぜたのち、吸着前後の海水中
のリチウム濃度を原子吸光法で定量し、リチウム
吸着量を求めた。結果を第5表に示す。 この結果から本発明のマンガン化合物は海水中
のリチウムを約4万倍に濃縮しており、リチウム
吸着性が優れていることは明らかである。
[Table] It is clear that the magnesium compound of the present invention is a novel compound with a composition different from MgMn 2 O 4 . Example 3 The lithium adsorption properties of the manganese compounds prepared in Examples 1 and 2 in seawater were investigated. That is, 50 mg of the manganese compound was added to seawater 2, stirred for 7 days, and then the lithium concentration in the seawater before and after adsorption was determined by atomic absorption spectrometry to determine the amount of lithium adsorbed. The results are shown in Table 5. From these results, it is clear that the manganese compound of the present invention concentrates lithium in seawater approximately 40,000 times, and has excellent lithium adsorption properties.

【表】【table】

Claims (1)

【特許請求の範囲】 1 MgMn2O4の酸処理物であつて、かつ次に示
すX線回折ピークの相対強度を有するマンガン化
合物。 面間隔(Å) 相対強度 (CuKα線照射) 4.63±0.03 強 2.71±0.03 強 2.42±0.03 強 2.33±0.03 弱 2.00±0.03 中 1.54±0.03 中 2 MgMn2O4をPH5以下の酸性溶液で処理し、
その中のマグネシウムを溶出させることを特徴と
する、次に示すX線回折ピークの相対強度を有す
るマンガン化合物の製造方法。 面間隔(Å) 相対強度 (CuKα線照射) 4.63±0.03 強 2.71±0.03 強 2.42±0.03 強 2.33±0.03 弱 2.00±0.03 中 1.54±0.03 中 3 PH5以下の酸性溶液が鉱酸及び有機酸の中か
ら選ばれた少なくとも1種を含有するものである
特許請求の範囲第2項記載の方法。
[Scope of Claims] 1. A manganese compound which is an acid-treated product of MgMn 2 O 4 and has the following relative intensity of the X-ray diffraction peak. Plane spacing (Å) Relative intensity (CuKα irradiation) 4.63±0.03 Strong 2.71±0.03 Strong 2.42±0.03 Strong 2.33±0.03 Weak 2.00±0.03 Medium 1.54±0.03 Medium 2 MgMn 2 O 4 was treated with an acidic solution with a pH of 5 or less. ,
A method for producing a manganese compound having the following relative intensity of an X-ray diffraction peak, the method comprising eluting magnesium therein. Planar spacing (Å) Relative intensity (CuKα irradiation) 4.63±0.03 strong 2.71±0.03 strong 2.42±0.03 strong 2.33±0.03 weak 2.00±0.03 medium 1.54±0.03 medium 3 Acidic solutions with PH5 or less are present in mineral acids and organic acids. The method according to claim 2, which contains at least one selected from the following.
JP61111855A 1986-05-15 1986-05-15 Novel manganese compound and production thereof Granted JPS62270420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61111855A JPS62270420A (en) 1986-05-15 1986-05-15 Novel manganese compound and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61111855A JPS62270420A (en) 1986-05-15 1986-05-15 Novel manganese compound and production thereof

Publications (2)

Publication Number Publication Date
JPS62270420A JPS62270420A (en) 1987-11-24
JPH0232217B2 true JPH0232217B2 (en) 1990-07-19

Family

ID=14571849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61111855A Granted JPS62270420A (en) 1986-05-15 1986-05-15 Novel manganese compound and production thereof

Country Status (1)

Country Link
JP (1) JPS62270420A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0581290B1 (en) * 1992-07-29 1999-07-07 Tosoh Corporation Novel manganese oxides, production thereof, and use thereof
CN108079936B (en) * 2018-01-13 2020-07-21 天津市职业大学 Phosphate type lithium ion sieve filler and preparation method thereof

Also Published As

Publication number Publication date
JPS62270420A (en) 1987-11-24

Similar Documents

Publication Publication Date Title
Thackeray et al. Electrochemical extraction of lithium from LiMn2O4
JP4128627B2 (en) Method for producing lithium manganese oxide spinel
EP0581290B1 (en) Novel manganese oxides, production thereof, and use thereof
JP3356295B2 (en) Manganese oxide compounds
AU2019395190B2 (en) Production method for lithium-containing solution
JPH0578142B2 (en)
US4388210A (en) High surface area lead oxide composite and method for making the same
JPH06227820A (en) New manganese oxide and its production and application
JPH0232217B2 (en)
JPH0232218B2 (en)
JPH10340726A (en) Manufacture of positive active material for lithium secondary battery and battery using the same
JPH0778611A (en) Preparation of positive electrode for lithium secondary battery
JP2711624B2 (en) Production method of α-manganese dioxide
JPH01235158A (en) Nonaqueous secondary battery
JPS6090827A (en) Permanganic acid process for manufacturing manganese dioxide from manganous salt
JP2847417B2 (en) Manganese dioxide for lithium adsorption and method for producing the same
JPH02283621A (en) New manganese compound and production thereof
JPS6059657A (en) Manganese dioxide electrode material rechargeable
JP3101708B2 (en) Method for producing lithium manganate thin film
JP2835436B2 (en) Method for producing lithium-doped α-manganese dioxide
JP3093227B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH01203039A (en) Adsorbent indicating new lithium selectivity and manufacture thereof
CN86105859A (en) Particulate manganese dioxide composites and preparation method thereof
JP2003119028A (en) Method of producing lithium-manganese compound oxide
JP3170587B2 (en) Spinel-type lithium manganese oxide and method for producing manganese oxide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term