JP3093227B2 - Method for producing positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Info

Publication number
JP3093227B2
JP3093227B2 JP02017988A JP1798890A JP3093227B2 JP 3093227 B2 JP3093227 B2 JP 3093227B2 JP 02017988 A JP02017988 A JP 02017988A JP 1798890 A JP1798890 A JP 1798890A JP 3093227 B2 JP3093227 B2 JP 3093227B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02017988A
Other languages
Japanese (ja)
Other versions
JPH03225753A (en
Inventor
浩平 山本
義久 日野
吉郎 原田
光宏 中村
秀哲 名倉
Original Assignee
富士電気化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電気化学株式会社 filed Critical 富士電気化学株式会社
Priority to JP02017988A priority Critical patent/JP3093227B2/en
Publication of JPH03225753A publication Critical patent/JPH03225753A/en
Application granted granted Critical
Publication of JP3093227B2 publication Critical patent/JP3093227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 《産業上の利用分野》 この発明は非水電解液二次電池の正極活物質を製造す
る方法に関する。
The present invention relates to a method for producing a positive electrode active material of a non-aqueous electrolyte secondary battery.

《従来の技術》 非水電解液二次電池は、負極に金属リチウムまたはそ
の合金を、正極に二酸化マンガンその他の遷移金属の硫
化物,酸化物などからなる活物質を用いた電池であっ
て、これらの材料を用いた電池の放電反応はリチウムイ
オンが正極材料中に移行し、逆に充電反応は正極材料中
のリチウムイオンが負極側に移行し、これら各反応が可
逆的に生ずることで二次電池としての使用が可能となっ
ている。
<< Conventional Technology >> A non-aqueous electrolyte secondary battery is a battery in which lithium metal or an alloy thereof is used for a negative electrode and an active material made of manganese dioxide or another transition metal sulfide or oxide is used for a positive electrode, In a discharge reaction of a battery using these materials, lithium ions move into the positive electrode material, and conversely, in a charge reaction, lithium ions in the positive electrode material move to the negative electrode side, and each of these reactions occurs reversibly. It can be used as a secondary battery.

しかしながら、この種の電池では二次電池として充放
電を繰返すと、次第に放電容量が減少する欠点があっ
た。
However, this type of battery has a disadvantage that the discharge capacity gradually decreases when charge and discharge are repeated as a secondary battery.

これは、放電によって正極中に侵入したリチウムイオ
ンがしだいに外に出にくくなり、充電反応によっても負
極側に戻るリチウムイオンの量が少なくなることによ
る。
This is because the lithium ions that have entered the positive electrode due to the discharge gradually become less likely to go outside, and the amount of lithium ions that return to the negative electrode side also decreases due to the charge reaction.

この種の欠点を除去し、サイクル特性を改善する目的
で従来ではEMD(電解二酸化マンガン)をリチウムとと
もに加熱処理して得られた正極活物質や、例えば特開昭
63−148550号公報に示すように、マンガン化合物から得
られた二酸化マンガンにリチウムイオンをドープし、さ
らにこれを加熱処理した正極活物質を用いている。
For the purpose of eliminating this kind of defect and improving the cycle characteristics, conventionally, a positive electrode active material obtained by heat-treating EMD (electrolytic manganese dioxide) together with lithium, for example, as disclosed in
As shown in JP-A-63-148550, a positive electrode active material is used in which manganese dioxide obtained from a manganese compound is doped with lithium ions, and this is further heat-treated.

このような正極活物質は、二酸化マンガンの結晶構造
中にリチウムが入り込むことなどによって固相中に含ま
れるカリウムイオンやアンモニウムイオンなどの不純物
およびプロトンが除去されるため、比較的サイクル特性
の良好な非水電解液二次電池を得られるとされている。
Such a positive electrode active material has relatively good cycle characteristics because impurities such as potassium ions and ammonium ions and protons contained in the solid phase are removed by, for example, lithium entering the crystal structure of manganese dioxide. It is said that a non-aqueous electrolyte secondary battery can be obtained.

《発明が解決しようとする課題》 しかしながら、実際には以上の正極活物質を用いたと
してもサイクル特性の大幅な改善がみられず、また容量
的にも大きな効果を得られなかった。
<< Problems to be Solved by the Invention >> However, in practice, even if the above-described positive electrode active material was used, no significant improvement in cycle characteristics was observed, and no large effect was obtained in terms of capacity.

この発明は、以上の問題を解決するものであって、従
来の正極活物質を用いた電池よりもさらにサイクル特性
を向上させ、容量増加を図った非水電解液二次電池を提
供することを目的としている。
The present invention has been made to solve the above problems, and provides a non-aqueous electrolyte secondary battery that further improves cycle characteristics than a conventional battery using a positive electrode active material and increases capacity. The purpose is.

《課題を解決するための手段》 以上の目的を達成するため、この発明では、電界二酸
化マンガンをH2SO4とNH4 +イオンを含む塩を混合した酸
性溶液中で反応させて得たマンガン化合物をリチウム塩
とともに加熱することによって、Fe(Kα)を用いたX
線回折において、回折角度2θが22゜、35゜、47゜、53
゜、64゜、78゜付近においてピークを有するマンガン、
リチウム、酸素からなる非水電解液二次電池の正極活物
質を製造してなる。
<< Means for Solving the Problems >> In order to achieve the above object, in the present invention, manganese obtained by reacting manganese dioxide in an acidic solution of a mixture of H 2 SO 4 and a salt containing NH 4 + ions By heating the compound with a lithium salt, X using Fe (Kα)
In the line diffraction, the diffraction angles 2θ are 22 °, 35 °, 47 °, 53
Manganese having peaks near ゜, 64 ゜, 78 ゜
A positive electrode active material for a non-aqueous electrolyte secondary battery comprising lithium and oxygen is produced.

《作 用》 以上の構成にあっては、電界二酸化マンガンをH2SO4
とNH4 +イオンを含む塩を混合した酸性溶液中で反応させ
て得たマンガン化合物をリチウム塩とともに加熱するこ
とによってそのX線回折結果から、焼成処理後も格子間
隔が比較的広いとされているα形結晶構造を保持するも
のと考えられ、リチウムイオンの結晶格子内への出入り
が自由となる結果、サイクル特性の向上および容量の増
加につながるものと推察される。
<Operation> In the above configuration, the electric field manganese dioxide is converted to H 2 SO 4
By heating a manganese compound obtained by reacting with a lithium salt together with a lithium salt in an acidic solution in which a salt containing NH 4 + ions and a salt containing NH 4 + ions are mixed, the lattice spacing is considered to be relatively wide even after the calcination treatment. It is supposed that the lithium ion can freely enter and exit the crystal lattice, which leads to an improvement in cycle characteristics and an increase in capacity.

《実 施 例》 次に、この発明の実施例を説明する。<< Embodiment >> Next, an embodiment of the present invention will be described.

実施例 EMD中に含まれる4価のマンガンの全てを3価のマン
ガンに変化させるための処理として800℃で24時間焼成
した。
Example As a treatment for changing all of the tetravalent manganese contained in the EMD to trivalent manganese, baking was performed at 800 ° C. for 24 hours.

一方、NH4 +イオンを含む酸性溶液として、H2SO460ml
を300mlの純水中に溶解した硫酸溶液中に(NH42SO490
gを加えた溶液を準備した。
On the other hand, as an acidic solution containing NH 4 + ions, H 2 SO 4 60 ml
(NH 4 ) 2 SO 4 90 in a sulfuric acid solution in which
A solution to which g was added was prepared.

95〜100℃に加熱したこの溶液300ml中に焼成済みEMD
を30g加え、2時間撹拌を行った。
EMD calcined in 300 ml of this solution heated to 95-100 ° C
Was added and stirred for 2 hours.

撹拌終了後大量の純水で洗浄し、この後105℃で乾燥
を行った。
After completion of the stirring, the resultant was washed with a large amount of pure water, and then dried at 105 ° C.

次に、以上の処理を行ったサンプル10g当りリチウム
塩としてLiOH・H2O2gを乳鉢で混合し、300℃12時間焼成
を行い、マンガン,リチウム,酸素の化合物からなる正
極活物質を得た。
Next, 2 g of LiOH.H 2 O as a lithium salt was mixed in a mortar per 10 g of the sample that had been subjected to the above treatment, and baked at 300 ° C. for 12 hours to obtain a positive electrode active material composed of a compound of manganese, lithium, and oxygen.

また、この正極活物質をX線回折装置によって分析し
たところ、回折角度2θはFe(Kα)を用いたx線回折
において、22゜,35゜,47゜,53゜,64゜,78゜付近にピー
クを示した。
When this cathode active material was analyzed with an X-ray diffractometer, the diffraction angle 2θ was around 22 °, 35 °, 47 °, 53 °, 64 °, 78 ° in x-ray diffraction using Fe (Kα). Shows a peak.

このピークをASTMカードで照合したところ、得られた
化合物中の二酸化マンガンの結晶構造は、比較的格子間
隔の広いとされているα形結晶構造であると判断され
た。なお、この分析結果は、NH4 +処理およびリチウムと
ともに焼成処理を施した後で同一結晶形態を維持するこ
とが確認されている。
When this peak was collated with an ASTM card, the crystal structure of manganese dioxide in the obtained compound was determined to be an α-type crystal structure having a relatively large lattice spacing. The analysis results confirmed that the same crystal form was maintained after the NH 4 + treatment and the calcination treatment with lithium.

その後常法に従いこの正極活物質85重量部とアセチレ
ンブラック10重量部,テフロンパウダー5重量部を均一
になるまで混合し、直径15mm,厚さ0.7mmのペレット状の
正極を成形し、これをCR2016タイプの電池に組み込ん
だ。
Thereafter, 85 parts by weight of the positive electrode active material, 10 parts by weight of acetylene black, and 5 parts by weight of Teflon powder are mixed until uniform to form a pellet-shaped positive electrode having a diameter of 15 mm and a thickness of 0.7 mm. Built-in type battery.

比較例1 従来と同様に、EMDに水酸化リチウムを加えて焼成処
理を施した正極活物質を用い、その後実施例1と同様の
組成の正極を成形し、同タイプの電池に組み込んだ。
Comparative Example 1 In the same manner as in the prior art, a positive electrode active material obtained by adding lithium hydroxide to EMD and performing a calcination treatment was used. Thereafter, a positive electrode having the same composition as in Example 1 was formed and incorporated into a battery of the same type.

比較例2 二酸化マンガンとして、Mn(NO3の溶液に過硫酸
アンモニウムを加えて二酸化マンガンを作製し、その後
比較例1と同様の焼成処理を施した後正極を成形し、同
タイプの電池に組み込んだ。なお、以上のマンガン化合
物から得られる二酸化マンガンの結晶形態は比較的格子
間隔の広いα形とされているが、分析した結果、焼成処
理後は明確にα形とは一致していなかった。
Comparative Example 2 As manganese dioxide, manganese dioxide was prepared by adding ammonium persulfate to a solution of Mn (NO 3 ) 2 and then subjected to the same calcination treatment as in Comparative Example 1 to form a positive electrode. Incorporated. The morphology of the manganese dioxide obtained from the above manganese compound is considered to be the α-form having a relatively large lattice spacing, but as a result of analysis, it did not clearly coincide with the α-form after the calcination treatment.

比較例3 二酸化マンガンとして過マンガン酸カリウム溶液に塩
酸を加え析出した二酸化マンガンを用いた。
Comparative Example 3 As manganese dioxide, manganese dioxide precipitated by adding hydrochloric acid to a potassium permanganate solution was used.

なお、マンガン化合物から得られた二酸化マンガンの
結晶形態はδ形とされているが、焼成処理後の分析結果
では比較例2とは逆にα形となることが認められてい
る。
The crystal form of manganese dioxide obtained from the manganese compound is δ-form, but the analysis result after the calcination treatment shows that the manganese dioxide becomes α-form contrary to Comparative Example 2.

その後は比較例1,2と同手順で正極を作成し、同タイ
プの電池に組み込んだ。
Thereafter, a positive electrode was prepared in the same procedure as in Comparative Examples 1 and 2, and was incorporated into a battery of the same type.

次に、実施例の電池と比較例1〜3の電池とのサイク
ル特性を比較したところ第1図に示す結果を得られた。
Next, when the cycle characteristics of the battery of the example and the batteries of Comparative Examples 1 to 3 were compared, the results shown in FIG. 1 were obtained.

なお、測定方法としては、初期電圧を3.5V終止電圧を
2.4Vに設定し、定電流を流した状態での終止電圧までの
時間を測定し、本発明品の初測定時における終止電圧ま
での時間を100%として50サイクルまでプロットした。
As a measurement method, the initial voltage is 3.5V
The time until the cut-off voltage was set at a constant current of 2.4 V was measured, and the time to the cut-off voltage at the time of the first measurement of the product of the present invention was set to 100% and plotted up to 50 cycles.

そして、このグラフからも明らかなように、本発明の
電池容量が初度の90%程度に容量低下し、その後平行状
態を保つのに対し、比較品の場合にはそのいずれもが初
度において本発明品の容量を下回り、その後50サイクル
まで容量が直線的に漸減することが確認された。
As is clear from this graph, the battery capacity of the present invention is reduced to about 90% of the initial capacity and then kept in a parallel state. It was confirmed that the volume fell below the volume of the product, and then the volume gradually decreased until 50 cycles.

またこのことは、NH4 +イオンを含む酸性溶液中で処理
すること自体はどのような作用をもたらすかは解明され
てはいないものの、この種の処理を施すことによって格
子間隔が比較的広いとされているα形結晶構造を焼成処
理後も保持するものと考えられ、リチウムイオンの結晶
格子内への出入りが自由となる結果、サイクル特性の向
上し、容量の増加につながるものと推察される。
Also, it is not clear what effect the treatment in an acidic solution containing NH 4 + ions itself has, but it is clear that the lattice spacing is relatively wide by performing this kind of treatment. It is considered that the α-type crystal structure is maintained even after the sintering treatment, and as a result, lithium ions can freely enter and exit the crystal lattice, thereby improving cycle characteristics and leading to an increase in capacity. .

《発明の効果》 以上実施例によって詳細に説明したように、この発明
によって製造された正極活物質を用いた非水電解液二次
電池にあっては、従来の正極を用いたものに比べて充放
電サイクル特性および容量が向上するので、この種の非
水電解液二次電池を実用化する上で有益である。
<< Effects of the Invention >> As described in detail in the above examples, in the non-aqueous electrolyte secondary battery using the positive electrode active material manufactured according to the present invention, compared with the conventional one using the positive electrode Since the charge / discharge cycle characteristics and capacity are improved, this type of non-aqueous electrolyte secondary battery is useful for practical use.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明によって製造された正極活物質を用いた
と比較例の電池のサイクル特性を比較したグラフであ
る。
FIG. 1 is a graph comparing the cycle characteristics of the batteries of the comparative example and the battery using the cathode active material manufactured according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 光宏 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (72)発明者 名倉 秀哲 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (56)参考文献 特開 昭63−148550(JP,A) 特開 平3−74054(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/50 H01M 4/58 H01M 4/02 H01M 10/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsuhiro Nakamura 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (72) Inventor Hidenori Nakura 5-36-11 Shimbashi, Minato-ku, Tokyo (56) References JP-A-63-148550 (JP, A) JP-A-3-74054 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/50 H01M 4/58 H01M 4/02 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電界二酸化マンガンをH2SO4とNH4 +イオン
を含む塩を混合した酸性溶液中で反応させて得たマンガ
ン化合物をリチウム塩とともに加熱することによって、
Fe(Kα)を用いたX線回折において、回折角度2θが
22゜、35゜、47゜、53゜、64゜、78゜付近においてピー
クを有するマンガン、リチウム、酸素からなる非水電解
液二次電池の正極活物質を製造する方法。
1. A manganese compound obtained by reacting manganese dioxide in an acidic solution in which a salt containing H 2 SO 4 and NH 4 + ions are mixed, and heating the manganese compound together with a lithium salt,
In X-ray diffraction using Fe (Kα), the diffraction angle 2θ is
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising manganese, lithium, and oxygen having peaks around 22 °, 35 °, 47 °, 53 °, 64 °, and 78 °.
JP02017988A 1990-01-30 1990-01-30 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Expired - Fee Related JP3093227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02017988A JP3093227B2 (en) 1990-01-30 1990-01-30 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02017988A JP3093227B2 (en) 1990-01-30 1990-01-30 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH03225753A JPH03225753A (en) 1991-10-04
JP3093227B2 true JP3093227B2 (en) 2000-10-03

Family

ID=11959105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02017988A Expired - Fee Related JP3093227B2 (en) 1990-01-30 1990-01-30 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3093227B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106725520A (en) * 2016-12-31 2017-05-31 中国科学院苏州生物医学工程技术研究所 The signal processing method system of brain blood oxygen detection
CN112792086A (en) * 2019-11-14 2021-05-14 西南科技大学 Method for harmless treatment of electric field reinforced electrolytic manganese slag

Also Published As

Publication number Publication date
JPH03225753A (en) 1991-10-04

Similar Documents

Publication Publication Date Title
JP4128627B2 (en) Method for producing lithium manganese oxide spinel
JP5158787B2 (en) NOVEL TITANIUM OXIDE, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME AS ACTIVE MATERIAL
JP2729176B2 (en) Method for producing LiM3 + O2 or LiMn2O4 and LiNi3 + O2 for cathode material of secondary battery
JP3067531B2 (en) Positive electrode active material of non-aqueous electrolyte secondary battery and battery using the same
JP3702353B2 (en) Method for producing positive electrode active material for lithium battery and lithium battery
JPH04270125A (en) Manganese oxide compound
JP6986879B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JPH10316431A (en) Lithium-nickel complex oxide and its production, and active substance of cathod for lithium secondary battery
JPH08277118A (en) Preparation of lithium interlayer compound
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JP2001332258A (en) Composite oxide material for electrode, its manufacturing method and cell therewith
JPH10270044A (en) High capacity limn2o4 secondary battery cathode compound preparing method
JP2001114521A (en) Trimanganese tetraoxide and method for its production
JP3093227B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4066102B2 (en) Method for producing lithium manganese composite oxide
JP3086297B2 (en) Non-aqueous solvent secondary battery
JPH0778611A (en) Preparation of positive electrode for lithium secondary battery
JP4234334B2 (en) Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP3110740B2 (en) Method for producing positive electrode active material of non-aqueous electrolyte secondary battery
JPH06310145A (en) Manufacture of nickel acid lithium for lithium secondary battery
JP3818753B2 (en) Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery
JP2575993B2 (en) Non-aqueous electrolyte secondary battery
JP2001026424A (en) Lithium-manganese oxide
JPH0722020A (en) Manufacture of lithium-manganese composite oxide and application thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees