JPS6380844A - Preparation of novel lithium adsorbent - Google Patents

Preparation of novel lithium adsorbent

Info

Publication number
JPS6380844A
JPS6380844A JP22412386A JP22412386A JPS6380844A JP S6380844 A JPS6380844 A JP S6380844A JP 22412386 A JP22412386 A JP 22412386A JP 22412386 A JP22412386 A JP 22412386A JP S6380844 A JPS6380844 A JP S6380844A
Authority
JP
Japan
Prior art keywords
lithium
metal compound
solution
compound
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22412386A
Other languages
Japanese (ja)
Other versions
JPH0459012B2 (en
Inventor
Kenta Oi
健太 大井
Yoshitaka Miyai
宮井 良孝
Shunsaku Kato
俊作 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP22412386A priority Critical patent/JPS6380844A/en
Publication of JPS6380844A publication Critical patent/JPS6380844A/en
Publication of JPH0459012B2 publication Critical patent/JPH0459012B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To improve the selective absorbing property and absorbing capacity to lithium, by a method wherein a metal compound is added to a lithium- containing solution to form a lithium-containing metal compound which is, in turn, heat-treated at 200 deg.C or higher to prepare absorbent. CONSTITUTION:A metal compound is added to a lithium-containing solution to prepare a lithium-containing metal compound which is, in turn, heat-treated at 200 deg.C or higher. Subsequently, the lithium-containing compound is treated with an acid to elute lithium to prepare a lithium absorbent. As the lithium- containing solution, an org. solvent or aqueous solution with pH7 or more containing lithium hydroxide or a lithium salt at concn. of 0.1M or more is pref. As the metal compound added to the lithium-containing solution, oxide of titanium, tin or zirconium is pref.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム吸着剤の製造方法に関するものである
。さらに詳しくいえば、リチウムに対する選択吸着性に
優れ、かつ吸着容量及び吸着速度が大きく、リチウム希
FlVa液中で安定であって、毒性の少ない安価なリチ
ウム吸着剤の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a lithium adsorbent. More specifically, the present invention relates to a method for producing an inexpensive lithium adsorbent that has excellent selective adsorption for lithium, has a large adsorption capacity and adsorption rate, is stable in a dilute lithium FlVa solution, and has little toxicity.

近年、リチウム金属及びその化合物は、多くの分野、例
えばセラミックス、電池、冷媒吸着剤、医薬品などに用
いられており、また将来、大容量電池、アルミニウム合
金材料、核融合燃料などとしての利用が考えられること
から、リチウムの需要の著しい増大が見込まれている〔
「日本鉱業会誌」第97巻、第221ページ〕。
In recent years, lithium metal and its compounds have been used in many fields, such as ceramics, batteries, refrigerant adsorbents, and pharmaceuticals, and are expected to be used in the future as large-capacity batteries, aluminum alloy materials, nuclear fusion fuels, etc. Demand for lithium is expected to increase significantly due to
“Journal of the Japan Mining Association,” Volume 97, Page 221].

前記リチウム金属及びその化合物は、現在上としてスポ
ジューメン、アンブリゴナイト、ペターライト、レビド
ライトなどのリチウム含有鉱石、及びリチウム濃度の高
い塩湖や地下かん水などを原料として製造されている。
The lithium metal and its compounds are currently manufactured using lithium-containing ores such as spodumene, ambrigonite, petalite, and levidolite, and salt lakes and underground brine with high lithium concentration as raw materials.

しかるに、わが国においては、前記のようなリチウム鉱
石資源がなく、リチウム金属やその化合物は全量輸入に
依存しているのが現状である。−方、わが国の地熱水や
温泉水にはかなりのリチウムを含有するものがあり、ま
た周囲をとりまく海洋中にも微量のリチウムが含まれて
いる。したがって、これらのリチウムを含む希薄溶液か
ら該リチウムを効率よく回収する技術を確立することが
強く要望されている。
However, our country does not have the above-mentioned lithium ore resources, and currently relies entirely on imports for lithium metal and its compounds. -On the other hand, some geothermal waters and hot spring waters in Japan contain a considerable amount of lithium, and the surrounding ocean also contains trace amounts of lithium. Therefore, it is strongly desired to establish a technique for efficiently recovering lithium from these dilute solutions containing lithium.

従来の技術 従来、海水などのリチウムを含む希薄溶液から該リチウ
ムを回収する方法としては、例えば水酸化アルミニウム
共沈法〔「日本化学会第43年金、講演要旨集I」、第
1240ページ(198+) ) 、あるいは無定形水
酸化アルミニウム〔「海水法」、第32巻、第78ペー
ジ(+978)、「日本鉱業会誌」、第99巻、第58
5ページ(1983) )、 金属アルミニウム〔「防
錆管理」、第1982巻、第369ページ〕、含水酸化
スズ〔「日本鉱業会誌」、第99巻、第933ページ(
1983) )を用いろ吸着法などが知られている。
BACKGROUND ART Conventionally, as a method for recovering lithium from a dilute solution containing lithium such as seawater, for example, aluminum hydroxide coprecipitation method ["Chemical Society of Japan 43rd Annual Meeting, Abstracts I", p. 1240 (198+ ) ), or amorphous aluminum hydroxide [Seawater Law, Vol. 32, page 78 (+978); Journal of the Japan Mining Association, Vol. 99, No. 58
5 pages (1983)), metal aluminum ["Rust Prevention Management", Vol. 1982, p. 369], hydrous tin oxide ["Japan Mining Association Journal", vol. 99, p. 933 (
1983) ) is known.

しかしながら、これらの方法はリチウムに対する吸着容
量及び吸着速度が小さいという欠点があって、実用化は
困難である。また、ヒ酸トリウム(rJ、Inorg、
Nucl、Chem、J第32巻、第1719ページ(
+970) J 、アンチモン酸スズ(rsolven
t  Ex−traction & fan−Exch
angeJ 、第1巻、第97ページ(+983) )
などもリチウム吸着性を示すことが報告されているが、
実用化するには吸着性の向上などの課題が残されている
However, these methods have the disadvantage that the adsorption capacity and adsorption rate for lithium are low, making it difficult to put them into practical use. In addition, thorium arsenate (rJ, Inorg,
Nucl, Chem, J Volume 32, Page 1719 (
+970) J, tin antimonate (rsolven
t Ex-traction & fan-exch
angeJ, Volume 1, Page 97 (+983))
It has also been reported that lithium adsorption properties such as
For practical use, issues such as improving adsorption properties remain.

このほかに、各種のイオンシーブ型の吸着剤がリチウム
に対して吸着性を示すことも報告されているが(「Ne
organ、Mat、J 、第9巻、第1041ページ
(+973)、同誌、第12巻、第1451ページ(+
976))、該吸着剤の製造条件及び天然水中における
リチウム吸着性などは明確にされておらず、まだ実用化
に至っていない。
In addition, it has been reported that various ion sieve type adsorbents exhibit adsorption properties for lithium (“Ne
organ, Mat, J, vol. 9, p. 1041 (+973), same magazine, vol. 12, p. 1451 (+
976)), the manufacturing conditions and lithium adsorption properties of this adsorbent in natural water have not been clarified, and it has not yet been put to practical use.

発明が解決しようとする問題点 リチウムを含む海水、地熱水、地下かん水などの希薄溶
液から該リチウムを実用的に吸着回収するためには、リ
チウムに対する選択吸着性に憂れ、脱着の繰り返し使用
が可能であることが要求される。
Problems to be Solved by the Invention In order to practically adsorb and recover lithium from dilute solutions such as seawater, geothermal water, and underground brine containing lithium, there is concern about the selective adsorption of lithium, and repeated desorption is necessary. is required to be possible.

本発明の目的は、このような用件を満足しうる吸着剤の
製造方法を提供することにある。
An object of the present invention is to provide a method for producing an adsorbent that can satisfy such requirements.

問題点を解決するための手段 本発明者らは種々研究を重ねた結果、リチウム含有マン
ガン酸化物または含水酸化物を500’C以上の温度で
望ましくは550℃以上の温度で加熱処理したものが前
記の用件を満たすリチウム吸着剤であることを認め、先
に特許を申請した〔特許出願番号6O−011621)
 、さらに、リチウムを含むチタン、スズ、ジルコニウ
ム、アルミニウム、鉄の化合物、またはリチウムを含む
チタンと池の金属との複合化合物、またはリチウムを含
むマンガンと他の金属との複合化合物の加熱処理物をp
H3以下の酸でリチウムを溶出したものが優れたリチウ
ム吸着性を示すことを認め、本発明をなすに至った。
Means for Solving the Problems As a result of various studies, the present inventors have found that a lithium-containing manganese oxide or a hydrous oxide is heat-treated at a temperature of 500°C or higher, preferably 550°C or higher. Recognizing that it is a lithium adsorbent that satisfies the above requirements, we have previously applied for a patent [Patent application number 6O-011621]
, and further heat-treated compounds of titanium, tin, zirconium, aluminum, and iron containing lithium, or composite compounds of titanium and metals containing lithium, or composite compounds of manganese and other metals containing lithium. p
It was recognized that lithium eluted with an acid of H3 or lower shows excellent lithium adsorption properties, and the present invention was completed.

すなわち、本発明はリチウムイオンを含む溶ンαに該金
属化合物を添加してリチウム含有金属化合物を調製し、
200℃以上の温度で加熱処理したもの、またはリチウ
ム化合物と該金属化合物を粉砕混合し、200℃以上の
温度で反応させたものから、pH3以下の酸性溶液でリ
チウムを溶出させることを特徴とする吸着剤の製造方法
を提供するものである。
That is, the present invention prepares a lithium-containing metal compound by adding the metal compound to a melt α containing lithium ions,
It is characterized by eluting lithium with an acidic solution with a pH of 3 or less from a product that has been heat treated at a temperature of 200°C or higher, or a mixture of a lithium compound and the metal compound and reacted at a temperature of 200°C or higher. A method for producing an adsorbent is provided.

なお、マンガンやチタンと複合させる金属の化合物とし
ては、鉄、スズ、シリコン、アルミニウムなどの化合物
が好ましいが、安定な複合化合物を作る金属であれば、
この限りではない。
In addition, as metal compounds to be combined with manganese and titanium, compounds such as iron, tin, silicon, and aluminum are preferable, but as long as the metals form stable composite compounds,
This is not the case.

リチウム溶液に添加する該金属化合物としては酸化物、
含水酸化物、または有機化合物などが用いられるが、リ
チウム溶液中でリチウムを吸着したり、加水分解して共
沈するものであればこの限りでない。
The metal compound added to the lithium solution includes oxides,
A hydrous oxide or an organic compound may be used, but this is not the case as long as it adsorbs lithium in a lithium solution or co-precipitates by hydrolysis.

また、リチウム化合物と混合する該金属化合物としては
酸化物、水酸化物、炭酸塩、塩化物、硝酸塩、有機金属
化合物などが望ましいが、リチウムと反応するものであ
ればこの限りでない。
The metal compound to be mixed with the lithium compound is preferably an oxide, hydroxide, carbonate, chloride, nitrate, organometallic compound, etc., but is not limited to these as long as it reacts with lithium.

リチウム溶液としては、9117以上のリチウム塩、水
酸化リチウム水溶液あるいは有機溶液が用いられる。
As the lithium solution, a lithium salt of 9117 or higher, an aqueous lithium hydroxide solution, or an organic solution is used.

リチウム化合物としては、炭酸リチウム、水酸化リチウ
ム、酸化リチウム、硝酸リチウム、塩化リチウム、有機
リチウム化合物が用いられる。また、加熱とともに反応
は進み、10分以上は加熱する必要があるが、あまり長
時間加熱しても吸着性に間係はなく、30分から12時
間程度が適当である。
As the lithium compound, lithium carbonate, lithium hydroxide, lithium oxide, lithium nitrate, lithium chloride, and organic lithium compounds are used. Further, the reaction progresses with heating, and it is necessary to heat for 10 minutes or more, but even if heated for too long, there is no effect on the adsorption properties, and about 30 minutes to 12 hours is appropriate.

リチウム含有金属化合物から該リチウムを溶出するのに
用いられる溶液としてはpH3以下の酸性溶液であれば
よいが、望ましくは塩酸、硝酸、硫酸、リン酸なとの鉱
酸がよい。
The solution used to elute the lithium from the lithium-containing metal compound may be any acidic solution with a pH of 3 or less, but mineral acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid are preferably used.

発明の効果 本発明の方法で調製した該リチウム含有金属化合物から
製造した吸着剤はミクロボアを多く持ち、リチウムに対
する選択吸着性が優れ、かつ吸着速度及び吸着容量が大
きく、しかも毒性がなく、水溶液中で安定であり、末法
で製造した吸着剤を用いることにより、希薄溶液から該
リチウムを極めて効率よく経済的に回収することができ
る。
Effects of the Invention The adsorbent produced from the lithium-containing metal compound prepared by the method of the present invention has many micropores, has excellent selective adsorption for lithium, has high adsorption rate and adsorption capacity, is non-toxic, and has a high adsorption capacity in aqueous solution. By using an adsorbent produced by a powder method, the lithium can be recovered very efficiently and economically from a dilute solution.

実施例 次に実施例により本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

実施例1 】Nの水酸化リチウム水溶液に、金属化合物、または金
属含水酸化物を5日間浸せきしたのち、沈殿物をろ別し
て60℃で乾燥し、これを510℃で4時間加熱処理し
た。次いで0.25N硝酸で洗浄してリチウムを溶出さ
せたのち水洗し、風乾して吸着剤を得た。
Example 1 A metal compound or a metal hydrated oxide was immersed in an aqueous solution of N lithium hydroxide for 5 days, and then the precipitate was filtered off and dried at 60°C, followed by heat treatment at 510°C for 4 hours. Next, lithium was eluted by washing with 0.25N nitric acid, followed by washing with water and air drying to obtain an adsorbent.

このようにして得られた吸着剤0.05 gを7ppm
のリチウムイオンを含む溶液(pH9)IOmLに添加
し、−週間娠とうしたのち上澄み溶液のリチウム濃度を
定量し、リチウム吸着量を算出した。その結果、第1表
に示すように、チタン、スズ、ジルコニウムの含水酸化
物を原料としたもの、およびチタンを含む複合含水酸化
物、マンガンを含む複会合フに諭(1・嘲ル原t?1.
か士、C乃h5り千つムロ巧差件を示した。
0.05 g of the adsorbent thus obtained was added to 7 ppm.
was added to 10 mL of a solution (pH 9) containing lithium ions, and after gestation for - weeks, the lithium concentration of the supernatant solution was determined, and the amount of lithium adsorbed was calculated. As a result, as shown in Table 1, it was found that products made from hydrous oxides of titanium, tin, and zirconium, composite hydrous oxides containing titanium, and complex composites containing manganese (1. ?1.
Kashi, C no h5, showed the difference between Chitsumura and Takumi.

第1表 、                  +     
 ム    ニ  3含水酸化チタン(ルチル型)95 含水酸化チタン(アナタース型)    90含水酸化
チタン(無定形)50 チタン−鉄複合金水酸化物     70(T i :
Fe−4:2) チタン−鉄複合金水酸(ヒ物     35(Ti :
Fe=2:4) 水酸化酸(ヒ鉄           O活性アルミナ
           0含水酸化スズ       
    22チタン−マンガン複合金水酸化物  90
(Ti :Mn:1:1) マンガン−鉄複合金水酸化物    60(Mn:Fe
=1:I) マンガン−アルミニウム複合    75含水酸化物 
(Mn:Al=1:l) 7パゝ゛ルコニ ム 実施例2 炭酸リチウムと金属酸化物または金属含水酸化物を混合
し、1150℃で4時間加熱処理した。その後、リチウ
ム含有金属酸化物をIN硝酸で酸処理して、リチウムを
溶出したのち水洗し、風乾して吸着剤を得た。
Table 1, +
Muni 3 Hydrous titanium oxide (rutile type) 95 Hydrous titanium oxide (anatase type) 90 Hydrous titanium oxide (amorphous) 50 Titanium-iron composite gold hydroxide 70 (T i :
Fe-4:2) Titanium-iron composite gold hydroxide (arsenic 35 (Ti:
Fe=2:4) Hydroxylic acid (arsenic O activated alumina O hydrated tin oxide
22 Titanium-manganese composite gold hydroxide 90
(Ti:Mn:1:1) Manganese-iron composite gold hydroxide 60 (Mn:Fe
=1:I) Manganese-aluminum composite 75 hydrated oxide
(Mn:Al=1:l) 7Pylconium Example 2 Lithium carbonate and a metal oxide or metal hydrate were mixed and heat treated at 1150°C for 4 hours. Thereafter, the lithium-containing metal oxide was acid-treated with IN nitric acid to elute lithium, washed with water, and air-dried to obtain an adsorbent.

吸着剤のリチウム吸着量と実施例1と同様に測定した。The amount of lithium adsorbed by the adsorbent was measured in the same manner as in Example 1.

その結果、第2表に示すようにチタンの複合化合物、マ
ンガンの複合化合物が良好なリチウム吸着性を示した。
As a result, as shown in Table 2, the titanium composite compound and the manganese composite compound exhibited good lithium adsorption properties.

第2表 リ      ム ロ    ワラ  qLi2CO3
+ TiO2+ MnO290(3,8g)   (4
,5g)  (4,5g)Li2CO3+  TiO2
+  AI(Otl)3       20(3,8g
)  (4,5g)  (4,0g)Li2CO3+ 
 TiO2+  Fe00)1         5(
3,8g)  (4,5g)(4,5g)Li2CO3
+ TlO210 (3,8g)    (4,5g) Li2CO3+  Fe(OH)3         
    0(0,8g)       (3g) Li2CO3+  MnO2+  Al(OH)3  
     80(3,8g)  (4,5g)  (4
,0g)Li2CO3+  MnO2+  Fe(OH
)3       653、   q       、
         4.5一実施例3 1Nの水酸化リチウム水溶潰に含水酸化チタンを5日間
浸せきしたのち、沈殿物をろ別して60℃で乾燥し、こ
れを300.410.510.620℃で4時間加熱処
理したのち、0.25 N 1酸で洗浄してリチウムを
溶出させたのち水洗し、風乾して吸着剤を得た。
Table 2 Limulus qLi2CO3
+ TiO2+ MnO290 (3.8g) (4
,5g) (4,5g)Li2CO3+ TiO2
+ AI (Otl) 3 20 (3.8g
) (4,5g) (4,0g)Li2CO3+
TiO2+ Fe00)1 5(
3.8g) (4.5g) (4.5g) Li2CO3
+ TlO210 (3,8g) (4,5g) Li2CO3+ Fe(OH)3
0 (0,8g) (3g) Li2CO3+ MnO2+ Al(OH)3
80 (3,8g) (4,5g) (4
,0g) Li2CO3+ MnO2+ Fe(OH
)3 653, q,
4.5-Example 3 Hydrous titanium oxide was immersed in 1N lithium hydroxide water for 5 days, the precipitate was filtered out and dried at 60°C, and this was heated at 300.410.510.620°C for 4 hours. After the treatment, lithium was eluted by washing with 0.25 N 1 acid, followed by water washing and air drying to obtain an adsorbent.

吸着剤のリチウム吸着量を実施例1と同様に測定した。The amount of lithium adsorbed by the adsorbent was measured in the same manner as in Example 1.

その結果、第3表のように高温で処理したものほどリチ
ウム吸着性が高い傾向が認められた。本発明の吸着剤が
優れたリチウム吸着性を示すことは明らかである。
As a result, as shown in Table 3, there was a tendency for the lithium adsorption properties to be higher for those treated at higher temperatures. It is clear that the adsorbent of the present invention exhibits excellent lithium adsorption properties.

第3表 試料    加熱温度 リチウム吸着率+10 含水酸化チタン  300     20(ルチル型)
4+037 含水酸化チタン  300     10(アナタース
型)   410      15含水酸化チタン  
3000 (無定形)     410      5特許出願人
  工業技術院長 飯 塚 幸 三指定代理人  工業
技術院四国工業技術試験所管  披  1口  彦
Table 3 Sample Heating temperature Lithium adsorption rate +10 Hydrous titanium oxide 300 20 (Rutile type)
4+037 Hydrous titanium oxide 300 10 (anatase type) 410 15 Hydrous titanium oxide
3000 (Amorphous) 410 5 Patent Applicant: Director of the Agency of Industrial Science and Technology Yukio Iizuka Designated Agent: Agency of Industrial Science and Technology, Shikoku Industrial Technology Testing Agency Hiko Hitsuguchi

Claims (1)

【特許請求の範囲】 1 リチウムを含有した金属化合物を酸処理し、リチウ
ムを溶出させることを特徴とするリチウム吸着剤の製造
方法 2 リチウムを含む溶液に金属化合物を添加し、リチウ
ムを含む金属化合物を調製した後、200℃以上の温度
で加熱処理して調製したリチウム含有金属化合物を用い
ることを特徴とする特許請求範囲第1項記載のリチウム
吸着剤の製造方法 3 リチウム含有溶液に添加する金属化合物がチタン、
スズ、ジルコニウム、鉄、アルミニウムの酸化物、含水
酸化物または有機化合物及びこれらの金属とマンガンあ
るいはチタンとの複合酸化物、含水酸化物であることを
特徴とする特許請求範囲第2項記載のリチウム吸着剤の
製造方法 4 リチウムを含む溶液がリチウム濃度0.1M以上の
水酸化リチウムあるいはリチウム塩の有機溶液あるいは
pH7以上の水溶液であることを特徴とする特許請求範
囲第2項記載のリチウム吸着剤の製造方法 5 リチウム化合物と金属化合物を粉砕混合した後、2
00℃以上の温度で加熱処理して調製したリチウム含有
金属化合物を用いることを特徴とする特許請求範囲第1
項記載のリチウム吸着剤の製造方法 6 リチウム化合物及び金属化合物が酸化物、水酸化物
、含水酸化物、塩化物、硝酸塩、炭酸塩または有機化合
物であることを特徴とする特許請求範囲第5項記載のリ
チウム吸着剤の製造方法 7 リチウム含有化合物からリチウムを溶出させるため
に用いる溶液として、pH3以下の酸性溶液であること
を特徴とする特許請求範囲第1項記載のリチウム吸着剤
の製造方法
[Claims] 1. A method for producing a lithium adsorbent, characterized in that a metal compound containing lithium is treated with an acid to elute lithium. 2. A method for producing a lithium adsorbent, which is characterized by adding a metal compound to a solution containing lithium, and producing a metal compound containing lithium. Method 3 for producing a lithium adsorbent according to claim 1, which uses a lithium-containing metal compound prepared by preparing and then heat-treating at a temperature of 200° C. or higher Metal added to a lithium-containing solution The compound is titanium,
The lithium according to claim 2, which is an oxide, hydrated oxide, or organic compound of tin, zirconium, iron, or aluminum, or a composite oxide or hydrated oxide of these metals and manganese or titanium. Adsorbent Manufacturing Method 4 The lithium adsorbent according to claim 2, wherein the lithium-containing solution is an organic solution of lithium hydroxide or lithium salt with a lithium concentration of 0.1 M or more, or an aqueous solution with a pH of 7 or more. Manufacturing method 5 After pulverizing and mixing the lithium compound and the metal compound, 2
Claim 1, characterized in that a lithium-containing metal compound prepared by heat treatment at a temperature of 00°C or higher is used.
6. Method for producing a lithium adsorbent according to Claim 5, wherein the lithium compound and the metal compound are oxides, hydroxides, hydrous oxides, chlorides, nitrates, carbonates, or organic compounds. Method 7 for producing a lithium adsorbent as described in Claim 1, wherein the solution used to elute lithium from a lithium-containing compound is an acidic solution with a pH of 3 or less.
JP22412386A 1986-09-22 1986-09-22 Preparation of novel lithium adsorbent Granted JPS6380844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22412386A JPS6380844A (en) 1986-09-22 1986-09-22 Preparation of novel lithium adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22412386A JPS6380844A (en) 1986-09-22 1986-09-22 Preparation of novel lithium adsorbent

Publications (2)

Publication Number Publication Date
JPS6380844A true JPS6380844A (en) 1988-04-11
JPH0459012B2 JPH0459012B2 (en) 1992-09-21

Family

ID=16808901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22412386A Granted JPS6380844A (en) 1986-09-22 1986-09-22 Preparation of novel lithium adsorbent

Country Status (1)

Country Link
JP (1) JPS6380844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288511A (en) * 2007-05-21 2008-11-27 Sony Chemical & Information Device Corp Anisotropic conductive film
CN108079936A (en) * 2018-01-13 2018-05-29 天津市职业大学 A kind of phosphate type lithium ion sieve filler and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855084A (en) * 1981-09-25 1983-04-01 Mitsubishi Electric Corp Forming device for ionic water
JPS59195525A (en) * 1983-04-18 1984-11-06 Agency Of Ind Science & Technol Recovering method of lithium from aqueous dilute solution
JPS6171835A (en) * 1984-09-14 1986-04-12 Agency Of Ind Science & Technol Lithium adsorbent, preparation thereof and lithium recovery method using said adsorbent
JPS61278347A (en) * 1985-06-04 1986-12-09 Agency Of Ind Science & Technol Production of li adsorbent
JPH0230738A (en) * 1988-07-20 1990-02-01 Kawasaki Steel Corp Steel plate for direct one treatment enameling having excellent resistance to fault of bubble and black spot
JPH0230737A (en) * 1988-07-16 1990-02-01 Tokin Corp Rare earth-transition metallic alloy, its manufacture and target made of rare earth-transition metallic alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855084A (en) * 1981-09-25 1983-04-01 Mitsubishi Electric Corp Forming device for ionic water
JPS59195525A (en) * 1983-04-18 1984-11-06 Agency Of Ind Science & Technol Recovering method of lithium from aqueous dilute solution
JPS6171835A (en) * 1984-09-14 1986-04-12 Agency Of Ind Science & Technol Lithium adsorbent, preparation thereof and lithium recovery method using said adsorbent
JPS61278347A (en) * 1985-06-04 1986-12-09 Agency Of Ind Science & Technol Production of li adsorbent
JPH0230737A (en) * 1988-07-16 1990-02-01 Tokin Corp Rare earth-transition metallic alloy, its manufacture and target made of rare earth-transition metallic alloy
JPH0230738A (en) * 1988-07-20 1990-02-01 Kawasaki Steel Corp Steel plate for direct one treatment enameling having excellent resistance to fault of bubble and black spot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288511A (en) * 2007-05-21 2008-11-27 Sony Chemical & Information Device Corp Anisotropic conductive film
CN108079936A (en) * 2018-01-13 2018-05-29 天津市职业大学 A kind of phosphate type lithium ion sieve filler and preparation method thereof
CN108079936B (en) * 2018-01-13 2020-07-21 天津市职业大学 Phosphate type lithium ion sieve filler and preparation method thereof

Also Published As

Publication number Publication date
JPH0459012B2 (en) 1992-09-21

Similar Documents

Publication Publication Date Title
Chitrakar et al. Synthetic inorganic ion exchange materials XLVII. Preparation of a new crystalline antimonic acid HSbO3. O. 12H2O
JPS61283342A (en) Lithium adsorbent and its preparation
JPS6380844A (en) Preparation of novel lithium adsorbent
KR101574847B1 (en) Lithium-manganese complex oxides, lithium-manganese adsorption precursor and method for preparing the same, and lithium adsorbent using the same
JPH024442A (en) High performance lithium adsorbent and its preparation
JP2001157838A (en) Method for preparing lithium adsorbent
JP2001224957A (en) Agent for selectively separating lithium and its manufacturing method
JPS61171535A (en) Lithium adsorbent, its preparation and recovery of lithium using said adsorbent
JPH0357814B2 (en)
JP4469948B2 (en) Ammonium ion adsorbent and method for removing ammonium ion
JP3412003B2 (en) Novel lithium adsorbent and method for producing the same
JP3876308B2 (en) Method for producing lithium-manganese composite oxide
JPH0448495B2 (en)
JP2000325779A (en) Composite lithium adsorbent and manufacture thereof
JPH0525541B2 (en)
JP4072624B2 (en) Specific alkali metal ion adsorbent and method for producing high purity lithium or high purity cesium
JP4572309B2 (en) Specific alkali metal ion adsorbent and method for producing high purity lithium or high purity cesium
JP2850309B2 (en) Method for producing lithium adsorbent
JPS6322180B2 (en)
JPH0230737B2 (en) RICHIUMUKYUCHAKUZAINOSHINSEIZOHOHO
JPS58117499A (en) Method of fixing cesium in water solution
JP2003119028A (en) Method of producing lithium-manganese compound oxide
JPH0626662B2 (en) Lithium recovery agent and method for producing the same
JPS6172623A (en) Method of recovering lithium from diluted solution
JP2005296773A (en) Nitrate ion adsorbent, method for producing the same, method for removing nitrate ion by using the same, and method for recovering nitrate ion by using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term