JPH0230737A - Rare earth-transition metallic alloy, its manufacture and target made of rare earth-transition metallic alloy - Google Patents
Rare earth-transition metallic alloy, its manufacture and target made of rare earth-transition metallic alloyInfo
- Publication number
- JPH0230737A JPH0230737A JP17623988A JP17623988A JPH0230737A JP H0230737 A JPH0230737 A JP H0230737A JP 17623988 A JP17623988 A JP 17623988A JP 17623988 A JP17623988 A JP 17623988A JP H0230737 A JPH0230737 A JP H0230737A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- transition metal
- alloy
- dew point
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 229910001092 metal group alloy Inorganic materials 0.000 title abstract 3
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 38
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 30
- 239000001301 oxygen Substances 0.000 claims abstract description 30
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 22
- 239000000843 powder Substances 0.000 claims abstract description 19
- 150000003624 transition metals Chemical class 0.000 claims abstract description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 15
- 239000001257 hydrogen Substances 0.000 claims abstract description 15
- 238000001513 hot isostatic pressing Methods 0.000 claims abstract description 9
- 238000005245 sintering Methods 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 33
- 239000000956 alloy Substances 0.000 claims description 33
- 150000002910 rare earth metals Chemical class 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 14
- 230000001590 oxidative effect Effects 0.000 claims description 14
- 239000002994 raw material Substances 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 20
- 229910052692 Dysprosium Inorganic materials 0.000 abstract description 4
- 229910052688 Gadolinium Inorganic materials 0.000 abstract description 4
- 229910052779 Neodymium Inorganic materials 0.000 abstract description 4
- 229910052771 Terbium Inorganic materials 0.000 abstract description 4
- 238000005477 sputtering target Methods 0.000 abstract description 2
- 230000007704 transition Effects 0.000 abstract 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 230000002745 absorbent Effects 0.000 description 5
- 239000002250 absorbent Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000011449 brick Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000010425 asbestos Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 229910052895 riebeckite Inorganic materials 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 etc. are preferred Inorganic materials 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- XULSCZPZVQIMFM-IPZQJPLYSA-N odevixibat Chemical compound C12=CC(SC)=C(OCC(=O)N[C@@H](C(=O)N[C@@H](CC)C(O)=O)C=3C=CC(O)=CC=3)C=C2S(=O)(=O)NC(CCCC)(CCCC)CN1C1=CC=CC=C1 XULSCZPZVQIMFM-IPZQJPLYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、光磁気記録用として用いられる希土類−遷移
金属合金より構成されて成るスバyタリング用ターゲッ
ト及びその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a subverting target made of a rare earth-transition metal alloy used for magneto-optical recording, and a method for manufacturing the same.
[従来の技術]
Gd、Tb、Dy、Nd等の希土類金属とFe、CO等
の遷移金属よりなるアモルファス磁性薄膜は光磁気記録
用媒体として優れた特性を有しており、光磁気メモリと
して実用化研究が精力的に行なわれている。[Prior art] Amorphous magnetic thin films made of rare earth metals such as Gd, Tb, Dy, and Nd and transition metals such as Fe and CO have excellent properties as magneto-optical recording media and are used in practical applications as magneto-optical memories. Research is being carried out vigorously.
上記のアモルファス磁性薄膜を製造するには、プラスチ
ックあるいはガラス基盤上にスパッタリング法により成
膜するのが一般的である。ここでソースとして用いられ
るターゲラi・とじては、1)FeやCoの板の上に希
土類金属などのチップを配置した複合ターゲット
2)ホットプレスターゲット
3)希土類金属及び遷移金属を所要の配合比に混合、溶
解、鋳造してなる合金ターゲット等が提案されている。In order to manufacture the above-mentioned amorphous magnetic thin film, it is common to form the film on a plastic or glass substrate by a sputtering method. The Targetera i/Toji used as a source here consists of: 1) a composite target in which chips of rare earth metals are placed on a Fe or Co plate; 2) a hot press target; and 3) a required blending ratio of rare earth metals and transition metals. Alloy targets made by mixing, melting, and casting have been proposed.
[発明が解決しようとする課題]
しかし上記1)の複合ターゲットは、チップの数により
組成比が簡単に変えられるので、試作段階としては使い
やすいが、再現性の点で量産には不向きと考えられる。[Problem to be solved by the invention] However, the composite target in 1) above is easy to use in the prototype stage because the composition ratio can be easily changed depending on the number of chips, but it is considered unsuitable for mass production in terms of reproducibility. It will be done.
2)のホットプレスターゲットは、出発原料として粉末
を用い、最近大型のものが製造されているが、これは酸
素含有量が1000 pp11以上あり、安定して良好
な薄膜が得られない。The hot press target (2) uses powder as a starting material and has recently been produced in large sizes, but this has an oxygen content of 1000 pp11 or more, making it difficult to obtain a stable and good thin film.
3)の合金ターゲットは酸素含有量が比較的低い< 5
001)111程度)が、鋳造時の冷却の不均一に起因
する偏析があり、さらに脆いため大型のターゲットを製
造することが困難で量産性に欠ける。3) The alloy target has a relatively low oxygen content < 5
001) about 111), there is segregation due to non-uniform cooling during casting, and furthermore, it is brittle, making it difficult to manufacture large targets and lacking in mass productivity.
これらの課題を解決するためには、粉末冶金法による製
造が最も有利であると考えられており、如何に酸素含有
量を低減させるか、また機械的強度を如何にして向上さ
せるかが新たな課題として残されている。In order to solve these problems, manufacturing using powder metallurgy is considered to be the most advantageous method, and new methods are needed to reduce the oxygen content and improve mechanical strength. This remains an issue.
本発明の技術的課題は、酸素との親和力が強い希土類元
素を多量に含む合金において酸素含有量を低減させ、し
かも機械的強度の高い合金並びにターゲットを提供する
ことにある。本発明のもう一つの技術課題は、このよう
な合金及びターゲットを得るための製造方法を提供する
ことにある。A technical object of the present invention is to reduce the oxygen content in an alloy containing a large amount of rare earth elements that have a strong affinity for oxygen, and to provide an alloy and a target that have high mechanical strength. Another technical object of the present invention is to provide a manufacturing method for obtaining such an alloy and target.
[課題を解決するための手段]
光磁気記録用として用いられる希土類−遷移金属合金並
びにターゲット中に含有される酸素量は、少なければ少
ないほうが好ましい、ターゲット中の酸素含有量とター
ゲットの機械的強度の関係について調べた結果、酸素含
有量が3001)l)TIとしたときに、機械的強度が
大幅に改善されることを知見した。また、酸素含有量が
3000pm以下にするためには、従来の製造方法では
不可能であり、この方法についても知見した。[Means for solving the problem] It is preferable that the amount of oxygen contained in the rare earth-transition metal alloy and target used for magneto-optical recording is as small as possible.The oxygen content in the target and the mechanical strength of the target As a result of investigating the relationship, it was found that mechanical strength was significantly improved when the oxygen content was 3001)l)TI. Furthermore, it is impossible to reduce the oxygen content to 3000 pm or less using conventional manufacturing methods, and this method was also found out.
本発明によれば、実質的に希土類金属及び遷移金属から
成る合金であって、この合金中の酸素含有量が300
ppm以上であることを特徴とする希土類−遷移金属合
金が得られる。According to the present invention, an alloy consisting essentially of rare earth metals and transition metals, wherein the oxygen content in the alloy is 300%
A rare earth-transition metal alloy is obtained, which is characterized in that it has a content of at least ppm.
更に、本発明によれば、上記合金を含むことを特徴とす
るターゲ・ットが得られる。Furthermore, according to the present invention, a target characterized by containing the above alloy is obtained.
本発明によれば、露点−50℃以下の水素雰囲気中で、
1000℃以上の温度で熱処理された希土類金属粉末を
原料とし、この原料と遷移金属粉末を非酸化性雰囲気中
で混合及び焼結することを特徴とする希土類−遷移金属
合金の製造方法が得られる。According to the present invention, in a hydrogen atmosphere with a dew point of -50°C or lower,
A method for producing a rare earth-transition metal alloy is obtained, which uses rare earth metal powder heat-treated at a temperature of 1000° C. or higher as a raw material, and mixes and sinters this raw material and transition metal powder in a non-oxidizing atmosphere. .
また、本発明によれば、露点−50℃以下の水素雰囲気
中で、1000℃以上の温度で熱処理された希土類金属
粉末を原料とし、この原料と遷移金属粉末を非酸化雰囲
気中で混合し、再度露点−50℃如何の水素雰囲気中で
1000°C以上の温度で熱処理した後、焼結すること
を特徴とする希土類−遷移金属合金の製造方法が得られ
る。Further, according to the present invention, rare earth metal powder heat-treated at a temperature of 1000°C or higher in a hydrogen atmosphere with a dew point of -50°C or lower is used as a raw material, and this raw material and transition metal powder are mixed in a non-oxidizing atmosphere, There is obtained a method for producing a rare earth-transition metal alloy, which is characterized in that it is heat-treated again at a temperature of 1000°C or higher in a hydrogen atmosphere with a dew point of -50°C, and then sintered.
更に、本発明によれば、溶解してなる希土類と遷移金属
とを溶解してなる合金鋳塊を非酸化性雰囲気中で粉砕し
、次いで露点−50℃以下の水素雰囲気中で1000℃
以上の温度で熱処理した後、非酸化性雰囲気中で混合し
、焼結することを特徴とする希土類−遷移金属合金の製
造方法。Further, according to the present invention, an alloy ingot formed by melting a rare earth and a transition metal is pulverized in a non-oxidizing atmosphere, and then pulverized at 1000°C in a hydrogen atmosphere with a dew point of -50°C or lower.
A method for producing a rare earth-transition metal alloy, which comprises heat treating at a temperature above, followed by mixing and sintering in a non-oxidizing atmosphere.
本発明によれば、上記した希土類−遷移金属合金の製造
方法で製造された焼結体を熱間静水圧プレス法により、
800℃以上で800気圧以上で処理することを特徴と
する希土類−遷移金属合金の製造方法が得られる。According to the present invention, a sintered body manufactured by the above-described method for manufacturing a rare earth-transition metal alloy is heated using a hot isostatic pressing method.
A method for producing a rare earth-transition metal alloy is obtained, which is characterized by processing at a temperature of 800° C. or higher and a pressure of 800 atmospheres or higher.
すなわち、
1)露点−50°C以下の水素雰囲気中で、1000℃
以上の温度で熱処理された希土類金属粉末を原料とし、
これと遷移金属粉末を非酸化性雰囲気中で混合及び焼結
する方法、
2)露点−50℃以下の水素雰囲気中で、1000°C
以上の温度で熱処理された希土類金属粉末を原料とし、
これと遷移金属合金を非酸化性雰囲気中で混合し、該混
合粉末を再度露点−50°C以下の水素雰囲気中で、1
000°C以上の温度で熱処理した後、焼結する方法、
3)溶解してなる希土類金属と遷移金属台金鋳塊を非酸
化性雰囲気中で粉砕し、次いで露点−50°C以下の水
素雰囲気中で1000℃以上の温度で熱処理した後非酸
化性雰囲気中で混合及び焼結する方法、
により達成される。ここで焼結する方法としては、熱間
静水圧プレス法により、800℃以上、800気圧以上
で処理する方法がi11密度を向上させるのに好ましい
。That is, 1) 1000℃ in a hydrogen atmosphere with a dew point of -50℃ or less
Made from rare earth metal powder heat-treated at temperatures above,
A method of mixing and sintering this and transition metal powder in a non-oxidizing atmosphere, 2) A method of mixing and sintering this with transition metal powder in a hydrogen atmosphere with a dew point of -50°C or less at 1000°C
Made from rare earth metal powder heat-treated at temperatures above,
This and a transition metal alloy were mixed in a non-oxidizing atmosphere, and the mixed powder was heated again in a hydrogen atmosphere with a dew point of -50°C or lower for 1 hour.
3) The melted rare earth metal and transition metal base metal ingots are crushed in a non-oxidizing atmosphere, and then heated with hydrogen having a dew point of -50°C or lower. This is achieved by a method of heat treatment at a temperature of 1000° C. or higher in an atmosphere, followed by mixing and sintering in a non-oxidizing atmosphere. As for the sintering method here, a method of processing at 800° C. or higher and 800 atmospheres or higher using a hot isostatic pressing method is preferable in order to improve the i11 density.
ここで、水素雰囲気中で熱処理する目的は、還元による
脱酸素及び水素脆化の促進である。このためには露点が
一50°C以下の水素ガスを使用し、加熱温度は100
0℃以上とする必要がある。水素ガスの露点が一り0℃
〜−40’Cの範囲では酸素含有量が変化せず、−40
℃を超えると逆に酸素含有量が増加する。加熱温度が1
000°C末溝では、還元能力がない。また、熱間静水
圧プレスは焼結密度を99%以上とするためにおこなう
もので、800℃未満、800気圧未満では達成されな
い。Here, the purpose of the heat treatment in a hydrogen atmosphere is to remove oxygen by reduction and promote hydrogen embrittlement. For this purpose, hydrogen gas with a dew point of 150°C or less is used, and the heating temperature is 100°C.
The temperature must be 0°C or higher. The dew point of hydrogen gas is 0℃.
In the range of ~-40'C, the oxygen content does not change, and -40'C
On the contrary, when the temperature exceeds ℃, the oxygen content increases. Heating temperature is 1
At 000°C, there is no reducing ability. Further, hot isostatic pressing is carried out to achieve a sintered density of 99% or more, and cannot be achieved at temperatures below 800° C. and below 800 atm.
本発明においては、希土類金属としては、Gd、Tb、
Dy、Nd等が好ましく、遷移金属としてはF、e、−
C,o−笠が好ましいが、これらに限定されるものでは
ない。In the present invention, rare earth metals include Gd, Tb,
Dy, Nd, etc. are preferred, and transition metals include F, e, -
C, o-kasa is preferred, but not limited thereto.
[実施例1 以下、本発明を実施例に基づき説明する。[Example 1 Hereinafter, the present invention will be explained based on examples.
〈実施例−1〉
第1図は本発明の希土類−遷移金属合金の製造方法を実
施するための装置の熱処理炉の構成を示す断面図である
。<Example-1> FIG. 1 is a sectional view showing the configuration of a heat treatment furnace of an apparatus for carrying out the method for producing a rare earth-transition metal alloy of the present invention.
この図において、アルミナ(Aj20s )チューブ3
内に配置された原料を収容するアルミナ<Aj 20s
)るつぼ6とこのるつぼを載置するアルミナ(Aj□
Os)れんが設けられており、このアルミナれんがは、
水素ガス排水管を有する水冷銅キャップ2に載置されて
いる。このキャップ2を貫通してアルミナれんがを経て
アルミするつぼ底部に達する管内に温度測定用のpt−
pt・8%Rhよりなる熱電対が設けられている。また
アルミナチューブ2の上端部は、水素ガス銅導入管1が
貫通した水冷銅キャップが設けられている。In this figure, alumina (Aj20s) tube 3
Alumina <Aj 20s containing raw materials placed inside
) Crucible 6 and the alumina on which this crucible is placed (Aj□
Os) brick is provided, and this alumina brick is
It is mounted on a water-cooled copper cap 2 with a hydrogen gas drain pipe. There is a PT-2 for temperature measurement inside the tube that passes through this cap 2 and reaches the bottom of the aluminum pot via the alumina brick.
A thermocouple made of pt.8% Rh is provided. Further, the upper end of the alumina tube 2 is provided with a water-cooled copper cap through which the hydrogen gas copper introduction pipe 1 passes.
アルミナチューブは、その周囲に配された発熱体14に
より加熱される。The alumina tube is heated by a heating element 14 placed around it.
第2図は上記した装置へ水素ガスを供給するための水素
ガス精製装置の該略図である。この図において、水素ガ
スボンベ10中のH2ガスは、濃硫酸11で脱水され、
電気炉内により加熱されたPdアスベスト12により1
50〜200℃に加熱され、シリカゲル又は塩化カルシ
ウム吸湿剤13及び五酸化リン吸収剤14により吸収さ
れて炉内へ供給される。このとき、ガスの流量及び露点
は送出口付近に設けられたガス流量計15及び露点計1
6により測定される。FIG. 2 is a schematic diagram of a hydrogen gas purification device for supplying hydrogen gas to the above-described device. In this figure, H2 gas in a hydrogen gas cylinder 10 is dehydrated with concentrated sulfuric acid 11,
1 due to Pd asbestos 12 heated in the electric furnace
It is heated to 50 to 200°C, absorbed by silica gel or calcium chloride absorbent 13 and phosphorus pentoxide absorbent 14, and then supplied into the furnace. At this time, the gas flow rate and dew point are determined by a gas flow meter 15 and a dew point meter 1 provided near the outlet.
6.
第1図、第2図の装置を用いて、次のように希土類−遷
移金属合金を製造した。A rare earth-transition metal alloy was produced in the following manner using the apparatus shown in FIGS. 1 and 2.
Tb、Gd、Nd、Dyの約20市角の塊を第1図に示
す熱処理炉で処理した。試料5をアルミナルツボ6に入
れ、精製された水素ガスを炉上部の導入管1より導入し
、下部より排出させた。温度はアルミナルツボ6の底部
に固定された熱電対8で測定した。水素ガスは第2図に
示す精製装置で不純物を完全に取り除いた。水素ガスボ
ンベ9より取り出された露点−50°C程度のガスは、
濃硫酸10.150〜200℃に加熱されたパラジウム
アスベスト11、吸湿剤12.13を経て酸素及び水分
を除去した。このときの露点は−70℃以下であり、酸
素量は分析の結果検出されなかった。Approximately 20 blocks of Tb, Gd, Nd, and Dy were treated in a heat treatment furnace shown in FIG. Sample 5 was placed in an aluminum crucible 6, and purified hydrogen gas was introduced through the introduction tube 1 at the top of the furnace and discharged from the bottom. The temperature was measured with a thermocouple 8 fixed to the bottom of the aluminum crucible 6. Impurities were completely removed from the hydrogen gas using the purification equipment shown in Figure 2. The gas with a dew point of about -50°C taken out from the hydrogen gas cylinder 9 is
Concentrated sulfuric acid 10. Oxygen and moisture were removed through palladium asbestos 11 heated to 150 to 200°C and moisture absorbent 12.13. The dew point at this time was -70°C or lower, and the amount of oxygen was not detected as a result of analysis.
各希土類金属の熱処理前後の酸素含有量を第1表に示す
、熱処理温度は900〜1200℃とし、保持時間は2
時間とした。The oxygen content of each rare earth metal before and after heat treatment is shown in Table 1.The heat treatment temperature was 900 to 1200℃, and the holding time was 2.
It was time.
以下求日
熱処理時の保持時間としては、本実施例では2時間とし
ているが、1時間以上が好ましく、処理時間とともに酸
素含有量が低下するが、はぼ5時間程度でこの低下は飽
和状態となる。Hereinafter, the holding time during the heliophilic heat treatment is 2 hours in this example, but it is preferably 1 hour or more, and the oxygen content decreases with the treatment time, but this decrease reaches a saturated state after about 5 hours. Become.
各希土類金属とも、熱処理前には塊状で、あったが、熱
処理後には脆化して粉末状となった。Each rare earth metal was in the form of a lump before the heat treatment, but after the heat treatment, it became brittle and powdered.
〈実施例−2〉
実施例−1で得られた希土類粉末と市販の遷移金属粉末
を用いて22at%Tb−Fe組成となるように非酸化
性雰囲気中で混合した。ここで用いたFeの粉末は酸素
含有量が1001]DIに調整されたものを用いている
。この混合粉末をステンレス製の容器に真空封入し10
00°C,1000気圧で熱間静水圧プレス(HIP)
を行なった。処理後ステンレス容器を除去し、直径20
01111、厚さ3市の円盤状ターゲットを作成した。<Example-2> The rare earth powder obtained in Example-1 and commercially available transition metal powder were mixed in a non-oxidizing atmosphere so as to have a composition of 22 at% Tb-Fe. The Fe powder used here had an oxygen content adjusted to 1001]DI. This mixed powder was vacuum sealed in a stainless steel container for 10 minutes.
Hot isostatic pressing (HIP) at 00°C and 1000 atm.
I did it. After treatment, remove the stainless steel container and reduce the diameter to 20 mm.
01111, a disk-shaped target with a thickness of 3 cm was prepared.
このときの密度は理論密度比99.99%で、酸素含有
量は250 ppnであった。The density at this time was 99.99% of the theoretical density ratio, and the oxygen content was 250 ppn.
〈実施例−3〉
実施例−2の途中工程で得られたTb−Fe混合金粉末
、第1図及び第2図に示した装置を用いて、露点−70
°C以下、1200℃で2時間熱処理した。このときの
酸素含有量は90 +)I)lまで低下した9次いで実
施例−2と同じ条件でHIP処理し、ターゲットを作成
した。このときの密度は理論密度比99.99%で、酸
素含有量は140DDIIであった。<Example 3> The Tb-Fe mixed gold powder obtained in the intermediate step of Example 2 was heated to a dew point of -70 using the apparatus shown in FIGS. 1 and 2.
It was heat-treated at 1200°C for 2 hours. At this time, the oxygen content was reduced to 90+)I)l.9 Then, HIP treatment was performed under the same conditions as in Example-2 to create a target. The density at this time was 99.99% of the theoretical density ratio, and the oxygen content was 140DDII.
〈実施例−4〉
カルシアルツボを用いて22at%T b −F eの
組成を有する溶湯を得、これを水冷銅鋳型に鋳造した。<Example 4> A molten metal having a composition of 22 at% Tb-Fe was obtained using a calcia crucible, and this was cast into a water-cooled copper mold.
得られな鋳塊を非酸化性雰囲気中で粉砕し、第1図及び
第2図に示した装置を用いて、露点−70°C以下、1
200℃で2時間熱処理した。The resulting ingot was pulverized in a non-oxidizing atmosphere and heated to a temperature of -70°C or below with a dew point of -70°C or less using the equipment shown in Figures 1 and 2.
Heat treatment was performed at 200°C for 2 hours.
溶解後の酸素量は300 ppIであったが、熱処理後
には100 pl)lにまで低下していた。The amount of oxygen after dissolution was 300 ppI, but it decreased to 100 pl) after heat treatment.
次いで実施例−2と同じ条件でHIP処理し、ターゲッ
トを作成した。このときの密度は理論密度比99.99
%で、酸素含有量は170 ppnであった。Next, HIP treatment was performed under the same conditions as in Example-2 to create a target. The density at this time is the theoretical density ratio of 99.99
% and the oxygen content was 170 ppn.
〈実施例−5〉
22at%Tb−Feの組成を有し、酸素含有量を10
00.500,300,140p1)lである、3X1
0X100 (市3)のブロックを作成し、これらの抗
折強度を調べた。酸素含有量が1000 pI)Iのば
あいの抗折強度を100としたときの結果を第2表に示
す。<Example-5> It has a composition of 22 at% Tb-Fe and an oxygen content of 10
00.500,300,140p1)l, 3X1
Blocks of 0x100 (City 3) were created and their bending strengths were examined. Table 2 shows the results when the bending strength is set as 100 when the oxygen content is 1000 pI).
[発明の効果]
本発明の希土類−遷移金属合金は機械的強度が大きくス
パッタリング用ターゲットとして実用上好ましいもので
ある。また低酸素濃度の本発明によれば、高純度水素ガ
ス中で熱処理することにより酸素含有量の低い希土類−
遷移金属合金及びターゲットを得ることができる。さら
に高密度化を図るために、本発明の希土類−遷移金属の
製造方法においては熱間静水圧プレスにより焼結するこ
とで、高密度の希土類−遷移金属を得ることができる。[Effects of the Invention] The rare earth-transition metal alloy of the present invention has high mechanical strength and is practically preferable as a sputtering target. Furthermore, according to the present invention, which has a low oxygen concentration, rare earth metals with a low oxygen content can be produced by heat treatment in high-purity hydrogen gas.
Transition metal alloys and targets can be obtained. In order to further increase the density, in the rare earth-transition metal manufacturing method of the present invention, a high-density rare earth-transition metal can be obtained by sintering by hot isostatic pressing.
第1図は本発明を実施する為の熱処理炉の断面図、第2
図は本発明を実施する為の水素ガス精製装置の概略図で
ある。
図中1は水素ガス管、2は水冷鋼キャップ、3はAjx
osチューブ、4は発熱体、5は希土類試料、6はAj
zOiるつぼ、7はAj20iれんが、8は熱転対、9
は水素ガス排水管、10はH2ガスボンベ、11は濃硫
酸、12はPdアスベスト、13は吸湿剤、14は吸湿
剤、15はガス流量計、16は露点計である。
第1図
H2ガス導入
↓Figure 1 is a sectional view of a heat treatment furnace for carrying out the present invention, Figure 2 is a sectional view of a heat treatment furnace for carrying out the present invention.
The figure is a schematic diagram of a hydrogen gas purification apparatus for carrying out the present invention. In the figure, 1 is a hydrogen gas pipe, 2 is a water-cooled steel cap, and 3 is an Ajx
os tube, 4 is a heating element, 5 is a rare earth sample, 6 is Aj
zOi crucible, 7 is Aj20i brick, 8 is thermocouple, 9
10 is a hydrogen gas drain pipe, 10 is a H2 gas cylinder, 11 is concentrated sulfuric acid, 12 is Pd asbestos, 13 is a moisture absorbent, 14 is a moisture absorbent, 15 is a gas flow meter, and 16 is a dew point meter. Figure 1 H2 gas introduction ↓
Claims (1)
って、該合金中の酸素含有量が300ppm以下である
ことを特徴とする希土類−遷移金属合金。 2、請求項1記載の合金を含むことを特徴とするターゲ
ット。 3、露点−50℃以下の水素雰囲気中で、 1000℃以上の温度で熱処理された希土類金属粉末を
原料とし、該原料と遷移金属粉末を非酸化性雰囲気中で
混合及び焼結することを特徴とする希土類−遷移金属合
金の製造方法。 4、露点−50℃以下の水素雰囲気中で、 粉末を原料とし、該原料と遷移金属粉末を非酸化性雰囲
気中で混合し、再度露点−50℃以下の水素雰囲気中で
、1000℃以上の温度で熱処理した後、焼結すること
を特徴とする希土類−遷移金属合金の製造方法。 5、希土類金属と遷移金属とを溶解してなる合金鋳塊を
非酸化性雰囲気中で粉砕し、次いで露点−50℃以下の
水素雰囲気中で1000℃以上の温度で熱処理した後非
酸化性雰囲気中で混合し、焼結することを特徴とする希
土類−遷移金属合金の製造方法。 6、請求項3、4及び5のいずれかに記載の希土類−遷
移金属合金の製造方法により製造された焼結体を熱間静
水圧プレス法により、800℃以上で800気圧以上で
処理することを特徴とする希土類−遷移金属合金の製造
方法。[Scope of Claims] 1. A rare earth-transition metal alloy, which is an alloy consisting essentially of a rare earth metal and a transition metal, characterized in that the oxygen content in the alloy is 300 ppm or less. 2. A target comprising the alloy according to claim 1. 3. A rare earth metal powder heat-treated at a temperature of 1000°C or higher in a hydrogen atmosphere with a dew point of -50°C or lower is used as a raw material, and the raw material and transition metal powder are mixed and sintered in a non-oxidizing atmosphere. A method for producing a rare earth-transition metal alloy. 4. Using the powder as a raw material, mix the raw material and transition metal powder in a non-oxidizing atmosphere in a hydrogen atmosphere with a dew point of -50°C or lower, and then heat the powder at a temperature of 1000°C or higher in a hydrogen atmosphere with a dew point of -50°C or lower. 1. A method for producing a rare earth-transition metal alloy, which comprises heat-treating at a high temperature and then sintering. 5. An alloy ingot made by melting rare earth metals and transition metals is crushed in a non-oxidizing atmosphere, and then heat-treated at a temperature of 1000°C or higher in a hydrogen atmosphere with a dew point of -50°C or lower, followed by a non-oxidizing atmosphere. 1. A method for producing a rare earth-transition metal alloy, the method comprising mixing and sintering in a rare earth-transition metal alloy. 6. Processing the sintered body produced by the method for producing a rare earth-transition metal alloy according to any one of claims 3, 4, and 5 at a temperature of 800° C. or higher and 800 atm or higher using a hot isostatic pressing method. A method for producing a rare earth-transition metal alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17623988A JPH0230737A (en) | 1988-07-16 | 1988-07-16 | Rare earth-transition metallic alloy, its manufacture and target made of rare earth-transition metallic alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17623988A JPH0230737A (en) | 1988-07-16 | 1988-07-16 | Rare earth-transition metallic alloy, its manufacture and target made of rare earth-transition metallic alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0230737A true JPH0230737A (en) | 1990-02-01 |
Family
ID=16010074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17623988A Pending JPH0230737A (en) | 1988-07-16 | 1988-07-16 | Rare earth-transition metallic alloy, its manufacture and target made of rare earth-transition metallic alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0230737A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6380844A (en) * | 1986-09-22 | 1988-04-11 | Agency Of Ind Science & Technol | Preparation of novel lithium adsorbent |
WO2002063052A1 (en) * | 2001-02-07 | 2002-08-15 | Tdk Corporation | Method for preparing sintered product, sintered product and magnetostriction material |
-
1988
- 1988-07-16 JP JP17623988A patent/JPH0230737A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6380844A (en) * | 1986-09-22 | 1988-04-11 | Agency Of Ind Science & Technol | Preparation of novel lithium adsorbent |
JPH0459012B2 (en) * | 1986-09-22 | 1992-09-21 | Kogyo Gijutsuin | |
WO2002063052A1 (en) * | 2001-02-07 | 2002-08-15 | Tdk Corporation | Method for preparing sintered product, sintered product and magnetostriction material |
US7470334B2 (en) | 2001-02-07 | 2008-12-30 | Tdk Corporation | Method for preparing sintered product, sintered product and magnetostriction material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4824481A (en) | Sputtering targets for magneto-optic films and a method for making | |
JPH03500188A (en) | Method for producing oxide dispersion hardened sintered alloy | |
CA2380629C (en) | Process for producing oxide-dispersion strengthened platinum material | |
JPS62290857A (en) | Metal half-finished product and its production | |
US2964397A (en) | Copper-boron alloys | |
CN111957911B (en) | Heat preservation power adjusting method during neodymium iron boron smelting and casting | |
JPH0230737A (en) | Rare earth-transition metallic alloy, its manufacture and target made of rare earth-transition metallic alloy | |
JPH0549730B2 (en) | ||
JP2988021B2 (en) | High strength target material for forming magneto-optical recording thin films with low magnetic permeability | |
Karasek | Fabrication of target foils by rolling techniques | |
JPH0784656B2 (en) | Alloy target for magneto-optical recording | |
JPH0119448B2 (en) | ||
JPS5935642A (en) | Production of mo alloy ingot | |
JPH05453B2 (en) | ||
JPWO2003040421A1 (en) | Alloy for Sm-Co magnet, its manufacturing method, sintered magnet and bonded magnet | |
JPS63274764A (en) | Alloy target for magneto-optical recording | |
RU2061949C1 (en) | Process of preparation of samples of placer and cathode gold | |
Fanlong et al. | Hydration resistance of Y2O3 doped CaO and its application to melting titanium alloys | |
CN118527669B (en) | Samarium-iron alloy powder preparation method based on mixed molten salt | |
JPH01242733A (en) | Manufacture of alloy powder for rare earth metal-transition metal target and manufacture of rare earth metal-transition metal target | |
JPS62188735A (en) | Manufacture of tini alloy wire or plate | |
JPS6350469A (en) | Manufacture of alloy target for sputtering | |
JPH1046208A (en) | Production of ti-ni base alloy sintered body | |
JPH0119449B2 (en) | ||
JPS6256543A (en) | Manufacture of sintered compact of rare-earth alloy |