JPH0357814B2 - - Google Patents

Info

Publication number
JPH0357814B2
JPH0357814B2 JP61208719A JP20871986A JPH0357814B2 JP H0357814 B2 JPH0357814 B2 JP H0357814B2 JP 61208719 A JP61208719 A JP 61208719A JP 20871986 A JP20871986 A JP 20871986A JP H0357814 B2 JPH0357814 B2 JP H0357814B2
Authority
JP
Japan
Prior art keywords
lithium
adsorbent
magnesium
acid
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61208719A
Other languages
Japanese (ja)
Other versions
JPS6362545A (en
Inventor
Yoshitaka Myai
Kenta Ooi
Shunsaku Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61208719A priority Critical patent/JPS6362545A/en
Publication of JPS6362545A publication Critical patent/JPS6362545A/en
Publication of JPH0357814B2 publication Critical patent/JPH0357814B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はリチウム吸着剤、その製造方法及びそ
れを用いた希薄溶液からのリチウム回収方法にう
関するものである。さらに詳しくいえば、リチウ
ムに対する選択吸着性に優れ、かつ吸着容量及び
吸着速度が大きく、その上該希薄溶液中で安定で
あつて、毒性の少ない安価なリチウム吸着剤、そ
の製造方法及び前記吸着剤を用いて、リチウムを
含む希薄溶液から該リチウムを効率よく、かつ容
易に回収する方法に関するものである。 近年、リチウム金属及びその化合物は、多くの
分野、例えばセラミツクス、電池、冷媒吸着剤、
医薬品などに用いられており、また将来、大容量
電池、アリミニウム合金材料、核融合燃料などと
しての利用が考えられることから、リチウムの需
要の著しい増大が見込まれている[「日本鉱業会
誌」第97巻、第221ページ]。 前記リチウム金属及びその化合物は、現在主と
してスポジユーメン、アンプリコナイト、ベター
ライト、レピドライトなどのリチウム含有鉱石、
及びリチウム濃度の高い塩湖や地下かん水などを
原料として製造されている。 しかるに、わが国においては、前記のようなリ
チウム鉱石資源がなく、リチウム金属やその化合
物は全量輸入に依存しているが現状である。一
方、わが国の地熱水や温泉水にはかなりのリチウ
ムを含有するものがあり、また周囲をとりまく海
洋中にも微量のリチウムが含まれている。したが
つて、これらのリチウムを含む希薄溶液から該リ
チウムを効率よく回収する技術を確立することが
強く要望されている。 従来の技術 従来、海水などのリチウムを含む希薄溶液から
該リチウムを回収する方法としては、例えば水酸
化アルミニウム共沈法[「日本化学会第43年会、
講演要旨集」、第1240ページ(1981)]、あるい
は無定形水酸化アルミニウム[「海水誌」、第32
巻、第78ページ(1978)、「日本鉱業会誌」、第99
巻、第585ページ(1983)]、金属アルミニウム
[「防錆管理」、第1982巻、第369ページ]、含水酸
化スズ[「日本鉱業会誌」、第99巻、第933ページ
(1983)]を用いる吸着法などが知られている。 しかしながら、これらの方法はリチウムに対す
る吸着容量及び吸着速度が小さいという欠点があ
つて、実用化は困難である。また、ヒ酸ナトリウ
ム[「J.Inorg.Nucl.Chem.」第32巻、第1719ペー
ジ(1970)」、アンチモン酸スズ[「Solvent
Extraction&Ion−Exchange」、第1巻、第97ペ
ージ(1983)]などもリチウム吸着性を示すこと
が報告されているが、実用化するには吸着性の向
上などの課題が残されている。 このほかに、各種のイオンシープ型の吸着剤が
リチウムに対して吸着性を示すことも報告されて
いるが[「Neorgan.Mat.」、第9巻、第1041ペー
ジ(1973)、同誌、第12巻、第1451ページ
(1976)]、該吸着剤の製造条件及び天然水中にお
けるリチウム吸着性などは明確にされておらず、
まだ実用化に至つていない。 発明が解決しようとする問題点 リチウムを含む海水、地熱水、地下かん水など
の希薄溶液から該リチウムを実用的に吸着回収す
るためには、リチウムに対する選択吸着性に優
れ、かつ吸着速度や吸着容量が大きく、その上該
希薄溶液中で安定であつて、毒性が少なく、さら
に吸脱着の繰り返し使用が可能であることが要求
される。 本発明の目的は、このような用件を満足しうる
吸着剤、その製造方法及び該吸着剤を用いて、リ
チウムを含む希薄溶液から該リチウムを極めて効
率よく回収する実用的なリチウム回収方法を提供
することになる。 問題点を解決するための手段 本発明者らは種々研究を重ねた結果、特定の温
度で加熱して、調製されたマグネシウム・マンガ
ン酸化物(Mg6MnO8)のリチウム溶出物が前記
要件を満たしうる吸着剤であり、この吸着剤を用
いることにより、リチウムを含む希薄溶液から該
リチウムを極めて効率よく、容易に回収しうるこ
とを見出し、この知見に基づいて本発明を完成す
るに至つた。 すなわち、本発明は、300〜600℃で加熱して調
製されたMg6MnO8の酸処理生成物から成るリチ
ウム吸着剤、この吸着剤を、マグネシウムとマン
ガンの混合物を300〜600℃の温度において加熱処
理してMg6MnO8を調製したのち、酸で該マグネ
シウムを溶出させることによつて製造する方法、
及びリチウムを吸着分離させたのち、弱酸又は弱
酸性水溶液を用いて該吸着剤に吸着されたリチウ
ムを溶離することによつて、リチウムを回収する
方法を提供するものである。 本発明において、吸着剤の製造に用いるマグネ
シウムとマンガンの混合物は、例えばマグネシウ
ム塩溶液とマンガン塩溶液との混合溶液にアルカ
リ性溶液を加えて得られる沈殿生成物を溶液と分
離することによつて調製されるが、もちろん、こ
のような方法に限定されるものではない。 本発明の吸着剤は、このようにして得られたマ
グネシウムとマンガンの混合物を300〜600℃、好
ましくは300〜500℃の温度で加熱して、
Mg6MnO8を調製したのち、該マグネシウムを酸
で溶出させることによつて得られる。Mg6MnO8
はマグネシウムとマンガンの混合物を300℃以上
の温度で加熱することによつて調製される立方晶
系の結晶である。700℃以上の温度で加熱処理し
て得られるMg6MnO8は不安定で、その酸処理物
はリチウムに対する吸着性能がほとんどみられな
い。500℃以下の温度で加熱調製したものは、マ
グネシウムの溶出が容易であり、そのマグネシウ
ム溶出物は構造が安定でリチウムに対して吸着性
を示した。特に400℃で加熱処理したものは、著
しく大きなリチウム吸着性を示す。また、加熱処
理時間は処理温度によつて異なるが、一般に30分
〜5時間程度で十分である。 このようにして、300〜600℃で加熱して調製さ
れたMg6MnO8から、該マグネシウムを溶出する
のに用いる酸としては、0.05〜1N程度の濃度を
有する塩酸や、硫酸、硝酸などの鉱酸の水溶液が
好適であるが、該マグネシウムを容易に溶出する
ことができ、かつリチウム吸着性能に悪影響を及
ぼさないかぎり、これらに限定されるものではな
い。 このようにして得られた吸着剤は、粉末状で用
いてもよいし、バインダーなどを使用し粒状や繊
維状に成形して用いてもよい。 本発明において用いるリチウムを含む希薄溶液
としては、例えば海水のみならず、地熱水、温泉
水、鉱泉水、天然ガスかん水などの地下かん水、
製塩かん水、工場廃液などが挙げられる。 本発明においては、リチウムを含む希薄溶液
に、前記のようにして得られた吸着剤を添加し
て、該リチウムを十分に吸着せしめたのち、吸着
剤を該溶液から分離して、弱酸又は弱酸性水溶液
と接触させ、該リチウムを溶離して回収するか、
あるいは、粒状や繊維状に成形した吸着剤を充填
したカラムに、リチウムを含む希薄溶液を通液す
ることによつて、該リチウムを吸着せしめたの
ち、弱酸又は弱酸性水溶液を通液し、該リチウム
を脱着して回収することもできる。 吸着したリチウムの溶離に用いる弱酸又は弱酸
性水溶液については、該リチウムを容易に溶離す
ることができ、かつ吸着剤の性能に悪影響を与え
ないかぎり、特に制限はないが、通常0.05〜1N
の濃度を有する塩酸や、硫酸、硝酸などの水溶液
が好適である。 発明の効果 本発明のリチウム吸着剤は、特定の温度で加熱
調製したMg6MnO8のマグネシウム溶出物から成
るものであつて、リチウムに対する選択性に優
れ、かつ吸着量や吸着速度が大きく、しかも吸、
脱着の繰り返し使用が可能で、その上、水溶液中
で安定であつて、毒性の少ない安価なものであ
る。この吸着剤を用いることにより、リチウムを
含む希薄溶液から該リチウムを極めて効率よく経
済的に回収することができる。 実施例 次に実施例により本発明をさらに詳細に説明す
る。 実施例 1 1M塩化マグネシウム水溶液600mlと1M塩化マ
ンガン水溶液100mlとの混合溶液をかきまぜなが
ら、PH10.5以上になるまでアンモニア水(1:
1)を加えた。さらに30%過酸化水素溶液100ml
を滴加した。生成物を母液中で3日間熟成したの
ち、ろ別し、PH10.5のアンモニア水で数回洗浄し
た。生成物中のマグネシウムとマンガン含量の原
子比は5.8:1であつた。これを200〜800℃で1
時間加熱処理してマグネシウム・マンガン酸化物
を調製した。300℃以上の加熱処理物は、X線回
折試験の結果、いずれもMg6MnO8であることを
確認した。この加熱生成物1gを0.5N塩酸溶液
1中に加えて、25日間かきまぜたのち、生成物
をろ別し、洗浄し、70℃で乾燥した。このように
して得られた各種吸着剤50mgをそれぞれ2の天
然海水中(Li濃度170μg/g)に添加し、7日
間かきまぜたのち、上澄液中のリチウム濃度を定
量してリチウム吸着量を求めた。その結果を第1
表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a lithium adsorbent, a method for producing the same, and a method for recovering lithium from a dilute solution using the same. More specifically, an inexpensive lithium adsorbent that has excellent selective adsorption for lithium, has a large adsorption capacity and adsorption rate, is stable in the dilute solution, and has low toxicity, a method for producing the same, and the adsorbent. The present invention relates to a method for efficiently and easily recovering lithium from a dilute solution containing lithium. In recent years, lithium metal and its compounds have been used in many fields, such as ceramics, batteries, refrigerant adsorbents,
The demand for lithium is expected to increase significantly as it is used in pharmaceuticals and other products, and is expected to be used in large capacity batteries, aluminium alloy materials, nuclear fusion fuels, etc. [Japan Mining Association Journal] Volume 97, page 221]. At present, the lithium metal and its compounds are mainly lithium-containing ores such as sposiumene, ampliconite, betterite, and lepidolite;
It is also manufactured using raw materials such as salt lakes and underground brine that have high lithium concentrations. However, our country does not have the above-mentioned lithium ore resources, and currently relies entirely on imports for lithium metal and its compounds. On the other hand, some geothermal waters and hot spring waters in Japan contain a considerable amount of lithium, and the surrounding ocean also contains trace amounts of lithium. Therefore, it is strongly desired to establish a technique for efficiently recovering lithium from dilute solutions containing lithium. Conventional technology Conventionally, as a method for recovering lithium from a dilute solution containing lithium such as seawater, for example, aluminum hydroxide coprecipitation method ["Chemical Society of Japan 43rd Annual Meeting,
Collection of Lecture Abstracts, p. 1240 (1981)], or amorphous aluminum hydroxide [Seawater Journal, No. 32
Vol. 78 (1978), Journal of the Japan Mining Association, No. 99
Vol. 585, p. 1983 (1983)], metallic aluminum ["Rust Prevention Management", vol. 1982, p. 369], hydrous tin oxide ["Journal of the Japan Mining Association", vol. 99, p. 933 (1983)]. Adsorption methods to be used are known. However, these methods have the disadvantage that the adsorption capacity and adsorption rate for lithium are low, making it difficult to put them into practical use. Also, sodium arsenate ["J.Inorg.Nucl.Chem." Vol. 32, page 1719 (1970)], tin antimonate ["Solvent
Extraction & Ion-Exchange, Volume 1, Page 97 (1983)] have also been reported to exhibit lithium adsorption properties, but issues such as improving adsorption properties remain for practical use. In addition, it has been reported that various ion sheep-type adsorbents exhibit adsorption properties for lithium [``Neorgan.Mat.'', Vol. 9, p. 1041 (1973); Volume 12, page 1451 (1976)], the manufacturing conditions of the adsorbent and its lithium adsorption properties in natural water are not clear;
It has not yet been put into practical use. Problems to be Solved by the Invention In order to practically adsorb and recover lithium from dilute solutions such as seawater, geothermal water, and underground brine containing lithium, it is necessary to have excellent selective adsorption for lithium, and to improve the adsorption rate and adsorption rate. It is required to have a large capacity, be stable in the dilute solution, have low toxicity, and be able to be repeatedly used for adsorption and desorption. The purpose of the present invention is to provide an adsorbent that satisfies these requirements, a method for producing the adsorbent, and a practical lithium recovery method for extremely efficiently recovering lithium from a dilute solution containing lithium. will be provided. Means for Solving the Problems As a result of various studies, the present inventors found that a lithium eluate of magnesium manganese oxide (Mg 6 MnO 8 ) prepared by heating at a specific temperature satisfies the above requirements. The inventors have discovered that lithium can be easily and efficiently recovered from a dilute solution containing lithium by using this adsorbent, and based on this knowledge, they have completed the present invention. . Namely, the present invention provides a lithium adsorbent consisting of an acid-treated product of Mg 6 MnO 8 prepared by heating at 300-600°C, and a lithium adsorbent comprising a mixture of magnesium and manganese at a temperature of 300-600°C. A method of producing Mg 6 MnO 8 by heat treatment and then eluting the magnesium with acid;
The present invention provides a method for recovering lithium by adsorbing and separating lithium and lithium, and then eluting the lithium adsorbed on the adsorbent using a weak acid or a weakly acidic aqueous solution. In the present invention, the mixture of magnesium and manganese used for producing the adsorbent is prepared, for example, by adding an alkaline solution to a mixed solution of a magnesium salt solution and a manganese salt solution and separating the resulting precipitation product from the solution. However, it is of course not limited to this method. The adsorbent of the present invention is produced by heating the magnesium and manganese mixture thus obtained at a temperature of 300 to 600°C, preferably 300 to 500°C.
It is obtained by preparing Mg 6 MnO 8 and then eluting the magnesium with acid. Mg 6 MnO 8
is a cubic crystal that is prepared by heating a mixture of magnesium and manganese at temperatures above 300°C. Mg 6 MnO 8 obtained by heat treatment at a temperature of 700°C or higher is unstable, and its acid-treated product shows almost no adsorption performance for lithium. When prepared by heating at a temperature below 500°C, magnesium was easily eluted, and the magnesium eluted product had a stable structure and exhibited adsorption properties for lithium. In particular, those heat-treated at 400°C exhibit significantly high lithium adsorption properties. Further, the heat treatment time varies depending on the treatment temperature, but generally about 30 minutes to 5 hours is sufficient. The acids used to elute the magnesium from Mg 6 MnO 8 prepared by heating at 300 to 600°C include hydrochloric acid with a concentration of about 0.05 to 1N, sulfuric acid, nitric acid, etc. An aqueous solution of mineral acid is preferred, but is not limited thereto as long as the magnesium can be easily eluted and does not adversely affect lithium adsorption performance. The adsorbent thus obtained may be used in powder form, or may be formed into granules or fibers using a binder or the like. Examples of the dilute solution containing lithium used in the present invention include not only seawater but also geothermal water, hot spring water, mineral spring water, underground brine such as natural gas brine,
Examples include salt manufacturing brine and factory waste liquid. In the present invention, the adsorbent obtained as described above is added to a dilute solution containing lithium to sufficiently adsorb the lithium, and then the adsorbent is separated from the solution and Contact with an acidic aqueous solution to elute and recover the lithium, or
Alternatively, the lithium is adsorbed by passing a dilute solution containing lithium through a column filled with an adsorbent shaped into particles or fibers, and then a weak acid or weakly acidic aqueous solution is passed through the column to adsorb the lithium. Lithium can also be recovered by desorption. The weak acid or weakly acidic aqueous solution used to elute the adsorbed lithium is not particularly limited as long as it can easily elute the lithium and does not adversely affect the performance of the adsorbent, but it is usually 0.05 to 1N.
An aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, etc. having a concentration of . Effects of the Invention The lithium adsorbent of the present invention is composed of a magnesium eluate of Mg 6 MnO 8 prepared by heating at a specific temperature, and has excellent selectivity for lithium, and has a large adsorption amount and rate. Sucking,
It can be used repeatedly by desorption, is stable in aqueous solution, has low toxicity, and is inexpensive. By using this adsorbent, lithium can be recovered very efficiently and economically from a dilute solution containing lithium. Examples Next, the present invention will be explained in more detail with reference to Examples. Example 1 While stirring a mixed solution of 600ml of 1M magnesium chloride aqueous solution and 100ml of 1M manganese chloride aqueous solution, add ammonia water (1:
1) was added. Further 100ml of 30% hydrogen peroxide solution
was added dropwise. After aging the product in the mother liquor for 3 days, it was filtered and washed several times with aqueous ammonia at pH 10.5. The atomic ratio of magnesium to manganese content in the product was 5.8:1. 1 at 200-800℃
Magnesium-manganese oxide was prepared by heat treatment for a period of time. As a result of an X-ray diffraction test, it was confirmed that all of the heat-treated products at 300° C. or higher were Mg 6 MnO 8 . 1 g of this heated product was added to 0.5N hydrochloric acid solution 1 and after stirring for 25 days, the product was filtered off, washed and dried at 70°C. 50 mg of each type of adsorbent thus obtained was added to each of the two natural seawaters (Li concentration 170 μg/g), stirred for 7 days, and then the lithium concentration in the supernatant was determined to determine the amount of lithium adsorbed. I asked for it. The result is the first
Shown in the table.

【表】 この表から明らかなように、300〜600℃で加熱
処理したものは、リチウム吸着性を示すことが分
る。 実施例 2 実施例1における試料No.3(加熱温度400℃)の
ものについて、酸処理時間を変えた場合のリチウ
ム吸着性を調べた。その結果、第2表に示すよう
に、酸処理時間が長くなるにつれて、リチウム吸
着性が増大し、酸処理時間20日で得られた吸着剤
が最高の吸着性を示し、さらに酸処理時間が長く
なると吸着性能が低下する傾向が認められた。
[Table] As is clear from this table, those heat-treated at 300 to 600°C exhibit lithium adsorption properties. Example 2 Regarding sample No. 3 (heating temperature: 400° C.) in Example 1, the lithium adsorption properties were investigated when the acid treatment time was changed. As a result, as shown in Table 2, as the acid treatment time increased, the lithium adsorption increased, and the adsorbent obtained with the acid treatment time of 20 days showed the highest adsorption ability, and the It was observed that the adsorption performance tended to decrease as the length increased.

【表】 実施例 3 実施例2において、吸着性能が最も優れていた
試料No.10(リチウム吸着量3.2mg/g)0.5gを
0.05N塩酸溶液50ml中に入れて、室温で5時間保
つてリチウムの脱着を行つた結果、脱着率は90%
を示し、該吸着剤から容易に脱着できることが認
められた。
[Table] Example 3 In Example 2, 0.5 g of sample No. 10 (lithium adsorption amount 3.2 mg/g), which had the best adsorption performance, was
Lithium was desorbed by placing it in 50ml of 0.05N hydrochloric acid solution and keeping it at room temperature for 5 hours, and the desorption rate was 90%.
It was confirmed that the adsorbent could be easily desorbed from the adsorbent.

Claims (1)

【特許請求の範囲】 1 300〜600℃で加熱して調製したMg6MnO8
酸処理生成物から成るリチウム吸着剤。 2 マグネシウムとマンガンのモル比が12:2〜
1のものを、300〜600℃の温度において加熱処理
してMg6MnO8を調製したのち、これを酸で処理
して、マグネシウムを溶出させることを特徴とす
るリチウム吸着剤の製造方法。 3 リチウムを含む希薄溶液中に、300〜600℃の
温度で加熱して調製されたMg6MnO8のマグネシ
ウム溶出物から成る吸着剤を加え、リチウムを吸
着分離させたのち、弱酸又は弱酸性水溶液を用い
て前記吸着剤に吸着されたリチウムを溶離するこ
とを特徴とする希薄溶液からのリチウム回収方
法。
[Claims] 1. A lithium adsorbent comprising an acid-treated product of Mg 6 MnO 8 prepared by heating at 300 to 600°C. 2 Molar ratio of magnesium and manganese is 12:2 ~
1. A method for producing a lithium adsorbent, which comprises heat-treating lithium adsorbent 1 at a temperature of 300 to 600°C to prepare Mg 6 MnO 8 , and then treating this with an acid to elute magnesium. 3. Add an adsorbent consisting of a magnesium eluate of Mg 6 MnO 8 prepared by heating at a temperature of 300 to 600°C to a dilute solution containing lithium, adsorb and separate lithium, and then add a weak acid or a weak acidic aqueous solution. A method for recovering lithium from a dilute solution, characterized in that lithium adsorbed on the adsorbent is eluted using a method of recovering lithium from a dilute solution.
JP61208719A 1986-09-03 1986-09-03 Lithium adsorbent and its production and recovering method for lithium by using same Granted JPS6362545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208719A JPS6362545A (en) 1986-09-03 1986-09-03 Lithium adsorbent and its production and recovering method for lithium by using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208719A JPS6362545A (en) 1986-09-03 1986-09-03 Lithium adsorbent and its production and recovering method for lithium by using same

Publications (2)

Publication Number Publication Date
JPS6362545A JPS6362545A (en) 1988-03-18
JPH0357814B2 true JPH0357814B2 (en) 1991-09-03

Family

ID=16560948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208719A Granted JPS6362545A (en) 1986-09-03 1986-09-03 Lithium adsorbent and its production and recovering method for lithium by using same

Country Status (1)

Country Link
JP (1) JPS6362545A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732830A (en) * 2017-01-04 2017-05-31 潍坊学院 A kind of preparation method of the manganese titanium-based lithium ion extraction material of magnesium
CN106824302A (en) * 2017-01-04 2017-06-13 潍坊学院 A kind of preparation method of the titanium-based lithium ion extraction material of magnesium
CN106732829A (en) * 2017-01-04 2017-05-31 潍坊学院 A kind of preparation method of manganese aluminium base lithium ion extraction material

Also Published As

Publication number Publication date
JPS6362545A (en) 1988-03-18

Similar Documents

Publication Publication Date Title
JPH032010B2 (en)
JP2003245542A (en) Lithium adsorbing agent and method for producing the same, and method for collecting lithium
JPH0222698B2 (en)
JPH0357814B2 (en)
JPH0626661B2 (en) Granular lithium adsorbent and lithium recovery method using the same
JPH0423577B2 (en)
JP3321602B2 (en) Selective lithium separating agent and method for producing the same
JPH024442A (en) High performance lithium adsorbent and its preparation
Ho et al. Adsorption on inorganic materials: VII. Hydrous tin oxide and SnO2-filled carbon
JP3412003B2 (en) Novel lithium adsorbent and method for producing the same
JPS61278347A (en) Production of li adsorbent
JPH0459012B2 (en)
JPH0230737B2 (en) RICHIUMUKYUCHAKUZAINOSHINSEIZOHOHO
JPS6322180B2 (en)
JP2850309B2 (en) Method for producing lithium adsorbent
JPS61283339A (en) Preparation of new lithium adsorbent
JPH0659391B2 (en) Lithium isotope separation agent and method for separating lithium isotope using the same
JP2641239B2 (en) Silver adsorbent and method of using the same
JPH01310737A (en) Adsorbent for lithium and manufacture thereof
JPH0525541B2 (en)
JPH0525540B2 (en)
JPH0626660B2 (en) New manufacturing method of lithium adsorbent
JPS6172623A (en) Method of recovering lithium from diluted solution
JPS621578B2 (en)
JPS58156530A (en) Recovering method of lithium from gerothermal water and brine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term