JP2003245542A - Lithium adsorbing agent and method for producing the same, and method for collecting lithium - Google Patents

Lithium adsorbing agent and method for producing the same, and method for collecting lithium

Info

Publication number
JP2003245542A
JP2003245542A JP2002046288A JP2002046288A JP2003245542A JP 2003245542 A JP2003245542 A JP 2003245542A JP 2002046288 A JP2002046288 A JP 2002046288A JP 2002046288 A JP2002046288 A JP 2002046288A JP 2003245542 A JP2003245542 A JP 2003245542A
Authority
JP
Japan
Prior art keywords
lithium
acid
adsorbent
spinel
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002046288A
Other languages
Japanese (ja)
Other versions
JP3937865B2 (en
Inventor
Kazuharu Yoshizuka
和治 吉塚
Katsutoshi Inoue
勝利 井上
Kenji Fukui
健二 福井
Masayuki Yoshio
真幸 芳尾
Hideyuki Noguchi
英行 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2002046288A priority Critical patent/JP3937865B2/en
Publication of JP2003245542A publication Critical patent/JP2003245542A/en
Application granted granted Critical
Publication of JP3937865B2 publication Critical patent/JP3937865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbing agent which practically adsorbs and collects lithium contained in sea water or water in watery environment such as geothermal hot water in a very small amount and has excellent selective adsorption of lithium at high adsorption speed and with large adsorption capacity, and is chemically stable and is repeatedly adsorbed/desorbed, provide a method for producing the same, and a method for collecting lithium using the same. <P>SOLUTION: This lithium adsorbing agent is composed of a λ-shaped manganese oxide obtained from a spinel lithium manganese oxide through the elution of lithium by acid treatment. The method for producing the adsorbing agent comprises firing manganese oxide or lithium hydroxide so as to obtain the spinel lithium manganese oxide, and eluting lithium therefrom through the acid treatment. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、海水や地熱熱水等
の環境水域に微量に含まれるリチウムを選択的に濃縮・
採取するために用いるλ型マンガン酸化物からなるリチ
ウム吸着剤およびそれを製造する方法ならびに該リチウ
ム吸着剤を用いる海水や地熱熱水等環境水域からのリチ
ウム採取方法に関する。
TECHNICAL FIELD The present invention relates to selectively enriching lithium contained in a trace amount in environmental waters such as seawater and geothermal hot water.
The present invention relates to a lithium adsorbent made of λ-type manganese oxide used for collecting, a method for producing the same, and a method for collecting lithium from environmental waters such as seawater and geothermal hot water using the lithium adsorbent.

【0002】[0002]

【従来の技術】海水中には多くの溶存成分があり、その
絶対量の大きさからその溶存成分を採取することが注目
されてきた。海水中の元素量を陸上の推定埋蔵量と比較
すると、大部分の元素について海水中の溶存量の方が大
きいことが知られている。しかしながら、海水中の元素
濃度はきわめて低く、工業的に利用可能なものは限られ
ている。この中で、現在、工業化されているものとし
て、塩化ナトリウム、マグネシウム、臭素、カリウムな
どを挙げることができる。
2. Description of the Related Art There are many dissolved components in seawater, and it has been noted that the dissolved components should be collected based on their absolute size. Comparing the amount of elements in seawater with the estimated reserves on land, it is known that most of the elements have larger dissolved amounts in seawater. However, the elemental concentration in seawater is extremely low and industrially available ones are limited. Among these, sodium chloride, magnesium, bromine, potassium and the like can be mentioned as those currently industrialized.

【0003】リチウム、ウランなどは、海水における溶
存濃度がきわめて低いけれども、その利用価値が高いた
めに工業的に利用可能な採取技術の開発が進められてい
る。リチウムは、大容量電池や航空機用軽合金のための
添加元素また、核融合燃料など将来有望な用途がある。
また、リチウムは、ウランなどに比べると海水中の濃度
が高く、平均0.18ppmであるが、ナトリウム(1
0,000ppm)など高濃度の共存金属を随伴させる
ことなく、リチウムのみを選択的に採取することが必要
である。温泉水等地熱熱水には様々な金属イオンが溶け
込んでおり、特にリチウムイオインは、海水中の溶存濃
度に比し格段に濃度が高く、地熱熱水中の濃度は海水中
のそれの約100倍であり、温泉水等地熱熱水からリチ
ウムを濃縮・採取するシステムも有望な工業的リチウム
採取システムである。
Lithium, uranium, and the like have extremely low dissolved concentrations in seawater, but because of their high utility value, industrially applicable extraction techniques are being developed. Lithium has a promising future application such as a high-capacity battery, an additive element for light alloys for aircraft, and a fusion fuel.
Lithium has a higher concentration in seawater than uranium, which is 0.18 ppm on average, but sodium (1
It is necessary to selectively collect only lithium without accompanying a high-concentration coexisting metal such as 10,000 ppm). Various metal ions are dissolved in geothermal hot water such as hot spring water. Especially, lithium ioin has a much higher concentration than the dissolved concentration in seawater, and the concentration in geothermal hot water is about the same as that in seawater. It is 100 times, and a system for concentrating and collecting lithium from geothermal hot water such as hot spring water is also a promising industrial lithium collection system.

【0004】溶存しているリチウムなど微量成分の実験
室的な採取法として、共沈法、溶媒抽出法、イオン浮選
法、沈殿浮選法、クロマトグラフ法、生物濃縮法など様
々な方法があり、分析化学的分離などに応用されてい
る。しかしながら、工業的に可能性がある方法は、吸着
法のみである。吸着法によって海水中のリチウムを採取
する場合、厖大な量の海水と吸着剤とを接触させる必要
があるので、さらなる高効率の採取技術の開発が望まれ
ている。吸着によるリチウムの採取法として、当初、水
酸化アルミニウムを用いて吸着する方法が注目された
が、実用化にはほど遠い性能であった。
Various methods such as coprecipitation method, solvent extraction method, ion flotation method, precipitation flotation method, chromatographic method, and bioconcentration method are available as laboratory collection methods for trace components such as dissolved lithium. Yes, it has been applied to analytical chemical separation. However, the only industrially feasible method is the adsorption method. When collecting lithium in seawater by the adsorption method, it is necessary to bring a huge amount of seawater into contact with the adsorbent, and therefore development of a more highly efficient collection technique is desired. As a method of collecting lithium by adsorption, a method of adsorbing using aluminum hydroxide was initially noted, but the performance was far from practical use.

【0005】[0005]

【発明が解決しようとする課題】本発明は、海水中或い
は地熱熱水中に含まれるリチウムを工業的に吸着・採取
するための、リチウムに対する選択吸着性に優れるとと
もに吸着速度が高くかつ吸着量の大きいそして、化学的
に安定であり吸着・脱着の繰り返しが可能な吸着剤およ
びその製造方法ならびにそれを用いるリチウムの採取方
法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has an excellent selective adsorption property to lithium for industrially adsorbing and collecting lithium contained in seawater or geothermal hot water, and has a high adsorption rate and adsorption amount. It is an object of the present invention to provide an adsorbent that is large in size, chemically stable, and capable of repeating adsorption / desorption, a method for producing the same, and a method for collecting lithium using the same.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の請求項1に記載の発明は、スピネル型リチウムマンガ
ン酸化物から酸を用いてリチウムを溶離して得られるλ
型マンガン酸化物からなるリチウム吸着剤である。
The invention according to claim 1 for solving the above-mentioned problems is obtained by eluting lithium from a spinel type lithium manganese oxide using an acid.
It is a lithium adsorbent composed of manganese oxide.

【0007】請求項2に記載の発明は、λ型マンガン酸
化物が微粒子状又は膜状である請求項1に記載のリチウ
ム吸着剤である。
The invention according to claim 2 is the lithium adsorbent according to claim 1, wherein the λ-type manganese oxide is in the form of fine particles or a film.

【0008】請求項3に記載の発明は、4酸化3マンガ
ンおよび水酸化リチウムを、マンガンとリチウムのモル
比が1.5〜2.5となるように混合・粉砕する工程、
空気雰囲気下に400℃以上の温度域で焼成してスピネ
ル型酸素過剰マンガン酸リチウムを得る工程、および該
スピネル型酸素過剰マンガン酸リチウムを大過剰の酸で
処理しリチウムを溶離する工程を有することを特徴とす
るリチウム吸着剤の製造方法である。
According to a third aspect of the invention, a step of mixing and pulverizing manganese tetraoxide and lithium hydroxide so that the molar ratio of manganese and lithium is 1.5 to 2.5,
Having a step of firing in an air atmosphere at a temperature range of 400 ° C. or higher to obtain spinel-type oxygen-rich lithium manganate, and a step of treating the spinel-type oxygen-rich lithium manganate with a large excess of acid to elute lithium. Is a method for producing a lithium adsorbent.

【0009】請求項4に記載の発明は、4酸化3マンガ
ンおよび水酸化リチウムを混合・粉砕する工程が、マン
ガンとリチウムのモル比を2(マンガン:リチウム=
2:1)とするものである請求項3に記載のリチウム吸
着剤の製造方法である。
In a fourth aspect of the present invention, the step of mixing and pulverizing trimanganese tetraoxide and lithium hydroxide has a molar ratio of manganese to lithium of 2 (manganese: lithium =
The method for producing a lithium adsorbent according to claim 3, wherein the ratio is 2: 1).

【0010】請求項5に記載の発明は、スピネル型酸素
過剰マンガン酸リチウムを得る工程が、空気雰囲気下に
400℃〜450℃の温度域でなされる仮焼成および空
気雰囲気下に475℃〜525℃の温度域でなされる本
焼成の2段階の焼成過程からなるものである請求項3又
は請求項4に記載のリチウム吸着剤の製造方法である。
According to a fifth aspect of the present invention, the step of obtaining spinel-type oxygen-rich lithium manganate is performed in a temperature range of 400 ° C. to 450 ° C. in an air atmosphere and 475 ° C. to 525 in an air atmosphere. The method for producing a lithium adsorbent according to claim 3 or 4, which comprises a two-step firing process of main firing performed in a temperature range of ° C.

【0011】請求項6に記載の発明は、スピネル型酸素
過剰マンガン酸リチウムを大過剰の酸で処理しリチウム
を溶離する工程が、0.1M〜2Mの濃度の酸を用い、
モル比が酸:リチウム=20:1を超える大過剰の酸を
用いるものである請求項3乃至請求項5何れかに記載の
リチウム吸着剤の製造方法である。
According to a sixth aspect of the present invention, the step of treating the spinel type oxygen-rich lithium manganate with a large excess of acid to elute the lithium uses an acid having a concentration of 0.1M to 2M.
The method for producing a lithium adsorbent according to any one of claims 3 to 5, wherein a large excess of acid having a molar ratio of acid: lithium = 20: 1 or more is used.

【0012】請求項7に記載の発明は、スピネル型酸素
過剰マンガン酸リチウムを大過剰の酸で処理しリチウム
を溶離する工程が、0.1M〜2Mの濃度の酸を用い、
モル比が酸:リチウム=40:1以上の大過剰の酸を用
いるものである請求項3乃至請求項6何れかに記載のリ
チウム吸着剤の製造方法である。
According to a seventh aspect of the invention, the step of treating the spinel type oxygen-rich lithium manganate with a large excess of acid to elute the lithium uses an acid having a concentration of 0.1M to 2M.
The method for producing a lithium adsorbent according to any one of claims 3 to 6, wherein a large excess of acid having a molar ratio of acid: lithium = 40: 1 or more is used.

【0013】請求項8に記載の発明は、スピネル型リチ
ウムマンガン酸化物から酸を用いてリチウムを溶離して
得られるλ型マンガン酸化物からなるリチウム吸着剤
を、海水や地熱熱水等の環境水域に含まれるリチウムの
選択的な濃縮に用いることを特徴とするリチウムの採取
方法である。
The invention according to claim 8 provides a lithium adsorbent comprising a λ-type manganese oxide obtained by eluting lithium from a spinel-type lithium manganese oxide with an acid, in an environment such as seawater or geothermal hot water. It is a method of collecting lithium, which is used for selective concentration of lithium contained in water.

【0014】[0014]

【発明の実施の形態】本発明のリチウム吸着剤は層状λ
型二酸化マンガン系吸着剤であり、この組成物はH
で示されるスピネル構造をもっている。このス
ピネル構造が、リチウムイオンに対する特異的選択吸着
性の最重要因子である。この構造の最大の特徴はリチウ
ムイオンの大きさを認識する点にあり、而して、本発明
の、リチウム吸着剤として機能する層状λ型二酸化マン
ガン組成物は、イオンシーブ型のイオン形状記憶型化合
物である。この特徴によって、海水や地熱熱水等環境水
域中の微量成分であるリチウムを、共存するナトリウム
等高濃度の妨害イオンを排除して高い選択性下に採取す
ることが可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION The lithium adsorbent of the present invention has a layered λ
Type manganese dioxide-based adsorbent, the composition of which is H X M
It has a spinel structure represented by n 2 O 4 . This spinel structure is the most important factor for the specific selective adsorption of lithium ions. The greatest feature of this structure is that it recognizes the size of lithium ions. Therefore, the layered λ-type manganese dioxide composition functioning as a lithium adsorbent of the present invention is an ion-sieving ionic shape-memory compound. Is. Due to this feature, it becomes possible to collect lithium, which is a trace component in environmental waters such as seawater and geothermal hot water, with high selectivity by eliminating coexisting high-concentration interfering ions such as sodium.

【0015】本発明の、リチウム吸着剤として機能する
層状λ型二酸化マンガン組成物は、粒径:1μm〜10
0μmの微粒子状或いは膜状を呈している。このスピネ
ル型構造をもつ層状λ型二酸化マンガン組成物は、格子
定数a=7.99Å(±0.00Å)、b=8.04Å
(±0.00Å)、c=8.03Å(±0.00Å)、
α=89.9°(±0.01°)、β=89.7°(±
0.03°)、γ=89.9°(±0.01°)、体
積:515.24Å(σ=0.00029Å)を持
つ立方晶系組成物である。
The layered λ type manganese dioxide composition of the present invention which functions as a lithium adsorbent has a particle size of 1 μm to 10 μm.
It is in the form of fine particles or a film of 0 μm. The layered λ-type manganese dioxide composition having this spinel structure has a lattice constant a = 7.99Å (± 0.00Å), b = 8.04Å
(± 0.00Å), c = 8.03Å (± 0.00Å),
α = 89.9 ° (± 0.01 °), β = 89.7 ° (±
0.03 °), γ = 89.9 ° (± 0.01 °), and volume: 515.24Å 3 (σ = 0.00029Å 3 ).

【0016】以下、本発明のリチウム吸着剤の製造プロ
セスについて、説明する。
The manufacturing process of the lithium adsorbent of the present invention will be described below.

【0017】本発明の、リチウム吸着剤として機能する
層状λ型二酸化マンガン組成物を製造するときに用いる
スピネル型マンガン酸リチウム(一般的組成:LiMn
)は電池材料として知られており、一般的に、酸
化マンガンとリチウム塩の混合物を加熱することによっ
て得られる。その際、酸化マンガンとリチウム塩の混合
割合、焼成温度、時間などを変化させることによって、
様々な組成のものを得ることができる。
Functions as a lithium adsorbent of the present invention
Used when producing a layered λ-type manganese dioxide composition
Spinel type lithium manganate (General composition: LiMn
TwoO Four) Is known as a battery material and is commonly referred to as acid.
By heating the mixture of manganese oxide and lithium salt
Obtained. At that time, mixing manganese oxide and lithium salt
By changing the ratio, firing temperature, time, etc.,
Various compositions can be obtained.

【0018】この実施形態においては、次のようにして
得る。即ち、4酸化3マンガン(Mn)と水酸化
リチウム・1水和物(LiOH・HO)を、マンガン
とリチウムのモル比が1.5:1〜2.5:1、好まし
くは2:1となるように混合・粉砕する。この混合・粉
砕物を、空気雰囲気下400℃〜450℃の温度域で1
時間〜10時間仮焼成する。仮焼成後、仮焼成物を混合
・粉砕し、これを空気雰囲気下に475℃〜525℃の
温度域で1時間〜10時間本焼成する。ここで、一連の
混合・粉砕は、4酸化3マンガン(Mn)に水酸
化リチウムを均一に含浸させるために丁寧に行う必要が
ある。こうして、高純度のスピネル型酸素過剰マンガン
酸リチウム(LiMn4+b)を得ることができ
る。発明者らの知見によれば、本焼成のみで得られるス
ピネル型のマンガン酸リチウムは不純物が多く、これを
酸処理してリチウムを溶離すると結晶構造が崩れ、層状
のλ型二酸化マンガン組成物を得ることが困難となる。
In this embodiment, it is obtained as follows. That is, trimanganese tetraoxide (Mn 3 O 4 ) and lithium hydroxide monohydrate (LiOH.H 2 O) are used, and the molar ratio of manganese to lithium is 1.5: 1 to 2.5: 1, preferably Is mixed and crushed to be 2: 1. This mixed and crushed material is subjected to 1 at a temperature range of 400 ° C to 450 ° C in an air atmosphere.
Temporary baking for 10 hours. After the calcination, the calcinated product is mixed and pulverized, and this is calcinated in an air atmosphere at a temperature range of 475 ° C. to 525 ° C. for 1 hour to 10 hours. Here, it is necessary to carefully perform a series of mixing and pulverization in order to uniformly impregnate trimanganese tetraoxide (Mn 3 O 4 ) with lithium hydroxide. In this way, high-purity spinel-type oxygen-rich lithium manganate (LiMn 2 O 4 + b ) can be obtained. According to the knowledge of the inventors, the spinel type lithium manganate obtained only by the main calcination has many impurities, and when this is acid-treated to elute lithium, the crystal structure collapses, and a layered λ-type manganese dioxide composition is obtained. Hard to get.

【0019】得られたスピネル型酸素過剰マンガン酸リ
チウム(LiMn4+b)を酸処理してλ型二酸化
マンガン組成物を得る。即ち、スピネル型酸素過剰マン
ガン酸リチウムに酸を適用して、イオン交換反応によっ
て、リチウムを溶離する。
The obtained spinel-type lithium with excess oxygen manganate (LiMn 2 O 4 + b ) is acid-treated to obtain a λ-type manganese dioxide composition. That is, an acid is applied to spinel type oxygen-rich lithium manganate to elute lithium by an ion exchange reaction.

【0020】スピネル型酸素過剰マンガン酸リチウムか
ら酸によってリチウムを溶離するに際しては、大過剰の
酸たとえば塩酸、過塩素酸、硝酸等をリチウムと酸のモ
ル比が、1:20超、好ましくはリチウム:酸=1:4
0以上となる過剰の酸でリチウムを溶離する必要があ
る。このときの酸の濃度は、0.1M〜2Mである。2
Mを超える濃度の酸を適用すると、Mnを溶解させて好
ましくない。
When eluting lithium from spinel type oxygen-rich lithium manganate with an acid, a large excess of acid such as hydrochloric acid, perchloric acid, nitric acid, etc. is used, and the molar ratio of lithium to acid exceeds 1:20, preferably lithium. : Acid = 1: 4
It is necessary to elute lithium with an excess acid of 0 or more. The acid concentration at this time is 0.1M to 2M. Two
Applying an acid concentration exceeding M is not preferable because it dissolves Mn.

【0021】前記、大過剰の酸でリチウムを溶離するこ
とによって、マンガンの酸化還元反応を抑えて水素イオ
ンとリチウムイオンのイオン交換反応のみを起こさせる
ことができる。発明者らの知見によれば、酸のモル数:
リチウムのモル数を10:1或いは20:1としてスピ
ネル型酸素過剰マンガン酸リチウムから酸によってリチ
ウムを溶離すると、λ型二酸化マンガンの結晶構造が崩
れてしまう。その理由は、スピネル型酸素過剰マンガン
酸リチウムから酸によってリチウムを溶離する場合、マ
ンガンの酸化還元反応と、水素イオンとリチウムイオン
のイオン交換反応が同時に進行する。その際、高純度の
λ型二酸化マンガンを得るためには、マンガンの価数を
変化させずに、換言すれば酸化還元反応を生ぜしめるこ
となく、可及的に水素イオンとリチウムイオンのイオン
交換反応のみを起こさせる必要がある。而して、リチウ
ムと酸のモル比が、1:20超、好ましくはリチウム:
酸=1:40以上となる過剰の酸でリチウムを溶離する
と、Mnの酸化還元反応を抑えて水素イオンとリチウム
イオンのイオン交換反応のみを生起させ得る。
By eluting lithium with a large excess of the acid, the redox reaction of manganese can be suppressed and only the ion exchange reaction of hydrogen ion and lithium ion can be caused. According to the knowledge of the inventors, the number of moles of acid:
When lithium is eluted from the spinel-type oxygen-rich lithium manganate with an acid with the molar number of lithium being 10: 1 or 20: 1, the crystal structure of λ-type manganese dioxide is destroyed. The reason is that when the lithium is eluted from the spinel type oxygen-rich lithium manganate with an acid, the redox reaction of manganese and the ion exchange reaction of hydrogen ions and lithium ions simultaneously proceed. At that time, in order to obtain high-purity λ-type manganese dioxide, without changing the valence of manganese, in other words, without causing a redox reaction, ion exchange of hydrogen ions and lithium ions should be performed as much as possible. Only the reaction needs to occur. Thus, the molar ratio of lithium to acid is greater than 1:20, preferably lithium:
When lithium is eluted with an excess acid of acid = 1: 40 or more, the redox reaction of Mn can be suppressed and only the ion exchange reaction between hydrogen ions and lithium ions can occur.

【0022】スピネル型酸素過剰マンガン酸リチウムか
ら酸によってリチウムを溶離するに際して用いる酸は鉱
酸が好ましく、塩酸、過塩素酸、硝酸を用いることがで
きる。発明者らの知見によれば、硫酸水溶液を用いる
と、得られるλ型二酸化マンガンの結晶構造が破壊され
るため好ましくない。
The acid used for eluting lithium from the spinel type oxygen-rich lithium manganate with an acid is preferably a mineral acid, and hydrochloric acid, perchloric acid or nitric acid can be used. According to the knowledge of the inventors, the use of an aqueous sulfuric acid solution is not preferable because the crystal structure of the obtained λ-type manganese dioxide is destroyed.

【0023】本発明のリチウム吸着剤製造プロセスによ
って得られる層状のλ型二酸化マンガン組成物を用い
て、たとえば海水中に溶存しているリチウムを選択的に
吸着させて採取するためには、吸着剤をカラムに充填し
て通液状態を良好ならしめるべく、造粒を行うことが必
要である。この実施形態においては、バインダーとして
ポリ塩化ビニルをテトラヒドロフランに溶解させた後、
スターラーで攪拌しながらλ型二酸化マンガン組成物を
投入してしばらく攪拌して気泡が抜けた頃、1:1メタ
ノール水溶液を激しく攪拌しながら一気に投入する。こ
の組成物を減圧濾過した後、蒸留水で洗浄し、たとえば
60℃といった温度下に乾燥する。一晩乾燥した後、篩
い分けし所望のサイズの粒状吸着剤を得る。この粒状吸
着剤の粒径は、150μm〜1mmの範囲で変化させる
ことができる。
In order to selectively adsorb and collect lithium dissolved in seawater using the layered λ-type manganese dioxide composition obtained by the process for producing a lithium adsorbent of the present invention, the adsorbent is used. It is necessary to carry out granulation in order to fill the column with and to improve the liquid passing state. In this embodiment, after dissolving polyvinyl chloride in tetrahydrofuran as a binder,
While stirring with a stirrer, the λ-type manganese dioxide composition is charged and stirred for a while, and when bubbles are removed, a 1: 1 methanol aqueous solution is vigorously stirred and charged all at once. The composition is filtered under reduced pressure, washed with distilled water, and dried at a temperature of 60 ° C., for example. After drying overnight, it is sieved to give a particulate adsorbent of the desired size. The particle size of the particulate adsorbent can be changed within the range of 150 μm to 1 mm.

【0024】[0024]

【実施例】4酸化3マンガン(Mn)と水酸化リ
チウム・1水和物(LiOH・H O)を、マンガンと
リチウムのモル比が2:1となるように、瑪瑙乳鉢にて
15分間混合・粉砕した。得られた混合粉砕物を、空気
雰囲気中425℃に保たれた電気炉にて5時間、仮焼成
を行った。仮焼成物を一旦冷却した後15分間混合・粉
砕し、再び空気雰囲気下、500℃に保たれた電気炉に
て5時間、本焼成を行った。こうしてスピネル型酸素過
剰マンガン酸リチウム(LiMn4+b)を得た。
得られたスピネル型酸素過剰マンガン酸リチウムを、X
線回折によって確認した。
Example: Manganese tetraoxide (Mn)ThreeOFour) And hydroxide
Titanium monohydrate (LiOH ・ H TwoO) with manganese
In an agate mortar so that the molar ratio of lithium is 2: 1
Mix and crush for 15 minutes. The obtained mixed pulverized product is air
Pre-baking for 5 hours in an electric furnace maintained at 425 ° C in the atmosphere
I went. Temporarily calcined product is cooled and then mixed and powdered for 15 minutes
After crushing, it was put in an electric furnace maintained at 500 ° C again in an air atmosphere.
Main firing was performed for 5 hours. Thus, spinel type oxygen
Lithium manganate (LiMnTwoO4 + b) Got.
The resulting spinel-type oxygen-rich lithium manganate was mixed with X
Confirmed by line diffraction.

【0025】このスピネル型酸素過剰マンガン酸リチウ
ム(LiMn4+b)と1.0Mの濃度の塩酸を、
リチウムと酸のモル比が1:40の大過剰の酸で混合
し、24時間攪拌した。この操作を5回繰り返し、目的
とするλ型二酸化マンガン系吸着剤を得た。得られたλ
型二酸化マンガン中のリチウムの含有率は、LiMn
中のリチウムを100%とすると、3.6%のリチ
ウムを含有する、即ち、組成式Li0.036Mn
4+bであった。また、酸素の組成中のb値は0以上で
あることは明らかになっているが、詳細は不明である。
このλ型二酸化マンガンを、X線回折によって確認し
た。
This spinel type oxygen-rich lithium manganate (LiMn 2 O 4 + b ) and hydrochloric acid having a concentration of 1.0 M were
A large excess of acid with a molar ratio of lithium to acid of 1:40 was mixed and stirred for 24 hours. This operation was repeated 5 times to obtain the desired λ-type manganese dioxide-based adsorbent. Obtained λ
The content of lithium in manganese dioxide type is LiMn 2
When the lithium in O 4 is 100%, it contains 3.6% of lithium, that is, the composition formula Li 0.036 Mn 2 O.
It was 4 + b . Further, it has been clarified that the b value in the oxygen composition is 0 or more, but the details are unknown.
This λ-type manganese dioxide was confirmed by X-ray diffraction.

【0026】仮焼成および本焼成によって得られたスピ
ネル型酸素過剰マンガン酸リチウムおよびこれを大過剰
の酸での処理を5回繰り返しリチウムを溶離して得られ
たλ型二酸化マンガンのX線回折パターンを、図1に示
す。図1において、下からスピネル型酸素過剰マンガン
酸リチウム、リチウムのモル数:酸のモル数=1:40
の大過剰の酸による処理回数1回〜5回後の被処理物の
ピークを示す。X線回折パターンによって、所望のスピ
ネル型マンガン酸リチウムであることが確認されまた、
上記大過剰の酸による処理によって、スピネル構造を保
持したまま効果的にリチウムのみが溶離されていること
が確認された。
X-ray diffraction pattern of spinel-type oxygen-rich lithium manganate obtained by calcination and main calcination and λ-type manganese dioxide obtained by eluting lithium by repeating treatment with a large excess of the acid for 5 times. Is shown in FIG. In FIG. 1, from the bottom, spinel-type oxygen-rich lithium manganate, moles of lithium: moles of acid = 1: 40
Shows the peak of the object to be treated after 1 to 5 times of treatment with a large excess of acid. The X-ray diffraction pattern confirmed that it was the desired spinel type lithium manganate, and
It was confirmed that the treatment with the large excess of acid effectively elutes only lithium while keeping the spinel structure.

【0027】たとえば海水中のリチウムの、カラムによ
る吸着分離・採取において通液を容易にすべく、得られ
たλ型二酸化マンガン組成物を造粒した。バインダーと
してポリ塩化ビニル0.1gをテトラヒドロフラン6m
lに完全に溶解させた後、軽く蒸留水で洗浄し乾燥器に
て60℃で乾燥を行った。一晩乾燥した後、篩い分けし
所望のサイズの粒状吸着剤を得た。
For example, the obtained λ-type manganese dioxide composition was granulated to facilitate the passage of lithium in seawater by adsorption separation / collection by a column. Polyvinyl chloride 0.1g as a binder, tetrahydrofuran 6m
After completely dissolving in 1 l, it was lightly washed with distilled water and dried at 60 ° C. in a dryer. After drying overnight, it was sieved to obtain a granular adsorbent of desired size.

【0028】本発明のλ型マンガン酸化物系リチウム吸
着剤の吸着特性を調べる目的で、以下の試験を行った。
試験1〜5は、303Kに設定した恒温槽で振盪するバ
ッチ法によって行った。水溶液には5mMの濃度のリチ
ウムを含む、pH:8.1に調整した0.1M−塩化ア
ンモニウム−アンモニア緩衝溶液を用いた。このような
水溶液10mlと吸着剤または粒状吸着剤0.02gと
を振盪することにより吸着を行った。
The following tests were conducted for the purpose of investigating the adsorption characteristics of the λ type manganese oxide type lithium adsorbent of the present invention.
Tests 1 to 5 were performed by a batch method of shaking in a thermostat set to 303K. As the aqueous solution, a 0.1 M ammonium chloride-ammonia buffer solution containing 5 mM concentration of lithium and adjusted to pH: 8.1 was used. Adsorption was performed by shaking 10 ml of such an aqueous solution and 0.02 g of the adsorbent or the granular adsorbent.

【0029】試験1 スピネル型酸素過剰マンガン酸リチウム(LiMn
4+b)に対する酸処理回数と、吸着剤によるリチウム
吸着量との関係を調べた。上記条件にて、1回〜5回の
酸処理物のそれぞれに対して試験を行った。その結果
を、表1および図2に示す。表1および図2から明らか
なように、酸による処理回数が4回目、5回目でリチウ
ム吸着量の増加が見られず、5回の酸処理で十分である
ことが確認された。
Test 1 Spinel type oxygen-rich lithium manganate (LiMn 2 O
The relationship between the number of acid treatments for 4 + b ) and the amount of lithium adsorbed by the adsorbent was investigated. Under the above conditions, the test was performed on each of the acid-treated products 1 to 5 times. The results are shown in Table 1 and FIG. As is clear from Table 1 and FIG. 2, no increase in the amount of adsorbed lithium was observed at the 4th and 5th acid treatments, confirming that 5 acid treatments were sufficient.

【0030】[0030]

【表1】 [Table 1]

【0031】試験2 本発明のリチウム吸着剤による吸着速度を調べるため、
吸着量の平衡到達時間を調べた。上記条件にて、振盪時
間を1時間、2時間、5時間、10時間15時間、24
時間に設定して、試験した。試験結果を、表2および図
3に示す。表2および図3から明らかなように、振盪1
時間程度でほぼ平衡に達している。これは、本発明のリ
チウム吸着剤がイオン交換体であることによる。これに
より、本発明のリチウム吸着剤によって、工業的なリチ
ウムの回収を効率的に行い得ることが確認された。
Test 2 To investigate the adsorption rate by the lithium adsorbent of the present invention,
The equilibrium arrival time of the adsorption amount was investigated. Under the above conditions, shaking time is 1 hour, 2 hours, 5 hours, 10 hours 15 hours, 24 hours.
The time was set and tested. The test results are shown in Table 2 and FIG. Shaking 1 as apparent from Table 2 and FIG.
Equilibrium is almost reached in about time. This is because the lithium adsorbent of the present invention is an ion exchanger. From this, it was confirmed that the lithium adsorbent of the present invention can efficiently recover industrial lithium.

【0032】[0032]

【表2】 [Table 2]

【0033】試験3 リチウム吸着に対する、吸着剤のpH依存性を調べた。
上記の条件にて、水溶液の初期pHを6.0、7.0、
8.0、8.3、8.5、8.8、および9.0に設定
して、5時間の振盪を行った。その結果を、表3および
図4に示す。表3および図4から明らかなように、本発
明のリチウム吸着剤が水素イオンを放出してリチウムイ
オンに置換するイオン交換性の吸着剤である処から、ア
ルカリ領域において大きな吸着量を示した。
Test 3 The pH dependency of the adsorbent on lithium adsorption was investigated.
Under the above conditions, the initial pH of the aqueous solution was 6.0, 7.0,
Shaking was performed for 5 hours with settings of 8.0, 8.3, 8.5, 8.8, and 9.0. The results are shown in Table 3 and FIG. As is clear from Table 3 and FIG. 4, since the lithium adsorbent of the present invention is an ion-exchangeable adsorbent that releases hydrogen ions and replaces them with lithium ions, a large adsorption amount was exhibited in the alkaline region.

【0034】[0034]

【表3】 [Table 3]

【0035】試験4 海水からのリチウム採取を考慮して、高濃度のナトリウ
ムイオン存在下での、本発明の吸着剤のリチウムに対す
る選択吸着性を調べた。水溶液として上記緩衝液を用
い、金属濃度は、リチウムを5mMに固定し、共存する
ナトリウムを5mM〜4000mMの範囲内で変化させ
た。試験結果を、表4および図5に示す。表4および図
5から明らかなように、ナトリウム/リチウムが800
倍に達してもリチウム吸着量の変化は見られない。この
ように、本発明のリチウム吸着剤の高い選択吸着性が確
認された。
Test 4 Considering the collection of lithium from seawater, the selective adsorption of lithium of the adsorbent of the present invention in the presence of a high concentration of sodium ion was examined. The above buffer solution was used as an aqueous solution, and the metal concentration was such that lithium was fixed at 5 mM and coexisting sodium was changed within the range of 5 mM to 4000 mM. The test results are shown in Table 4 and FIG. As is clear from Table 4 and FIG. 5, sodium / lithium is 800
No change in the amount of adsorbed lithium is seen even when the number of times reaches double. Thus, the high selective adsorption of the lithium adsorbent of the present invention was confirmed.

【0036】[0036]

【表4】 [Table 4]

【0037】試験5 本発明の実施例における造粒方法によって得られた、吸
着カラム用粒状吸着剤の平衡到達時間を調べた。試験条
件は、試験2におけると同様である。試験結果を、表5
および図6に示す。バインダーであるポリ塩化ビニルの
影響が考えられたが、表5および図6から明らかなよう
に、吸着速度、吸着量の低下は見られず、吸着剤と同程
度の吸着量、吸着速度を有していることが確認された。
本発明のリチウム吸着剤は、性能の低下を招くことなく
粒子のサイズアップを行い得る。
Test 5 The equilibrium arrival time of the granular adsorbent for adsorption columns obtained by the granulation method in the examples of the present invention was examined. The test conditions are the same as in Test 2. The test results are shown in Table 5.
And shown in FIG. The influence of polyvinyl chloride as a binder was considered, but as is clear from Table 5 and FIG. 6, the adsorption rate and the adsorption amount did not decrease, and the adsorption amount and adsorption rate were similar to those of the adsorbent. It was confirmed that
The lithium adsorbent of the present invention can increase the size of particles without causing a decrease in performance.

【0038】[0038]

【表5】 [Table 5]

【0039】試験6 図7に示す中圧セラミックスポンプ(送液ポンプ)2を
用いて溶液の供給を行う、吸着カラムクロマトグラフィ
ーによるリチウムとナトリウムの吸着分離を行った。こ
のリチウムとナトリウムの吸着分離装置は高濃度の塩酸
を用いるため、洗浄用のポンプを装備している。吸着カ
ラム1として、直径:5mm、全長:100mmの耐圧
カラムを用い、流通液をフラクションコレクター3にて
所定の時間にサンプリングした。図7において、11は
粒状吸着剤、12はガラスビーズ、13はコットンであ
る。
Test 6 Lithium and sodium were adsorbed and separated by adsorption column chromatography in which a solution was supplied using a medium pressure ceramics pump (liquid feeding pump) 2 shown in FIG. This lithium / sodium adsorption / separation device uses a high-concentration hydrochloric acid, and is therefore equipped with a washing pump. A pressure resistant column having a diameter of 5 mm and a total length of 100 mm was used as the adsorption column 1, and the flowing liquid was sampled by the fraction collector 3 at a predetermined time. In FIG. 7, 11 is a granular adsorbent, 12 is glass beads, and 13 is cotton.

【0040】吸着カラムクロマトグラフィーによるリチ
ウムの吸着分離を、次のようにして行った。カラムに充
填する粒状吸着剤0.5gを予め蒸留水に一晩浸漬して
膨潤させ、図7に示すカラムに充填した。次に、金属を
含まない、pH:8.1に調整した0.1M塩化アンモ
ニウム・アンモニア緩衝溶液を3時間通液した。その
後、リチウム、ナトリウムを塩化物としてそれぞれ40
ppmの濃度で含む上記緩衝溶液を供給し、出口液のリ
チウム、ナトリウムの濃度を測定した。然る後、金属を
含まない、pH:8.1に調整した0.1M塩化アンモ
ニウム・アンモニア緩衝溶液を3時間通液し、粒状吸着
剤表面の洗浄を行い、続けて蒸留水を1時間通液した。
溶離操作として、1M塩酸を供給し出口液を上記と同様
に測定した。なお、粒状吸着剤の体積は1.18cm
で、吸着/溶離ともに流量は0.33ml/分で溶液を
供給した。
The adsorption separation of lithium by adsorption column chromatography was performed as follows. 0.5 g of the granular adsorbent to be packed in the column was preliminarily immersed in distilled water overnight for swelling, and then packed in the column shown in FIG. Next, a 0.1 M ammonium chloride-ammonia buffer solution containing no metal and adjusted to pH: 8.1 was passed for 3 hours. Then, use lithium and sodium as chlorides to 40
The above buffer solution containing a concentration of ppm was supplied, and the concentrations of lithium and sodium in the outlet liquid were measured. After that, a 0.1 M ammonium chloride / ammonia buffer solution containing no metal and adjusted to pH: 8.1 is passed for 3 hours to wash the surface of the granular adsorbent, and then distilled water is passed for 1 hour. Liquor
As an elution operation, 1 M hydrochloric acid was supplied and the outlet liquid was measured in the same manner as above. The volume of the granular adsorbent was 1.18 cm 3.
The solution was supplied at a flow rate of 0.33 ml / min for both adsorption and elution.

【0041】試験結果を、表6および図8に示す。ま
た、溶離試験の結果を、表7および図9に示す。
The test results are shown in Table 6 and FIG. The results of the elution test are shown in Table 7 and FIG.

【0042】[0042]

【表6】 [Table 6]

【0043】[0043]

【表7】 [Table 7]

【0044】図9に示すように、溶離過程において、リ
チウムを最大3000ppm、ナトリウムを4ppm含
む溶離液を得た。即ち、リチウム/ナトリウムのモル比
として2300倍に達する選択吸着性を示した。このよ
うに、高い選択吸着性を以てリチウムを高濃度に分離・
濃縮することに成功した。
As shown in FIG. 9, an eluent containing a maximum of 3000 ppm of lithium and 4 ppm of sodium was obtained in the elution process. That is, it showed a selective adsorptivity reaching a molar ratio of lithium / sodium of 2300 times. In this way, lithium is separated into high concentrations with high selective adsorption.
Succeeded in concentrating.

【0045】[0045]

【発明の効果】本発明の層状λ型二酸化マンガン組成物
からなるリチウム吸着剤又はそれを造粒した粒状吸着剤
は、リチウムイオンの大きさを認識するイオンシーブ型
のイオン形状記憶型化合物である処から、リチウムイオ
ンに対する特異的選択性を有しリチウムに対する選択吸
着性に優れる。
INDUSTRIAL APPLICABILITY The lithium adsorbent comprising the layered λ type manganese dioxide composition of the present invention or the granular adsorbent obtained by granulating the lithium adsorbent is an ion sieve type ionic shape memory compound that recognizes the size of lithium ions. Therefore, it has a specific selectivity for lithium ions and an excellent selective adsorption property for lithium.

【0046】請求項3乃至請求項7に記載の発明によれ
ば、高純度の層状λ型二酸化マンガン組成物からなるリ
チウム吸着剤を製造することができる。また、このプロ
セスによって得られた層状λ型二酸化マンガン組成物か
らなるリチウム吸着剤を用いるリチウム採取方法によれ
ば、海水中或いは地熱熱水中の微量溶存リチウムを高い
効率下に採取できる。
According to the inventions of claims 3 to 7, a lithium adsorbent comprising a highly pure layered λ-type manganese dioxide composition can be produced. Further, according to the lithium extraction method using the lithium adsorbent composed of the layered λ-type manganese dioxide composition obtained by this process, a small amount of dissolved lithium in seawater or geothermal water can be extracted with high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリチウム吸着剤の中間生成物であるス
ピネル型リチウムマンガン酸化物およびこれを1回乃至
5回酸で処理(リチウムを溶離)した被処理物のX線回
折パターンを示すグラフ
FIG. 1 is a graph showing an X-ray diffraction pattern of a spinel-type lithium manganese oxide which is an intermediate product of a lithium adsorbent of the present invention and an object to be treated which has been treated with acid 1 to 5 times (eluting lithium)

【図2】スピネル型リチウムマンガン酸化物に対する酸
処理回数とリチウム吸着量の関係を示すグラフ
FIG. 2 is a graph showing the relationship between the number of acid treatments and the amount of lithium adsorbed on spinel-type lithium manganese oxide.

【図3】振盪時間とリチウム吸着量の関係を示すグラフFIG. 3 is a graph showing the relationship between shaking time and lithium adsorption amount.

【図4】リチウム吸着に対する吸着剤のpH依存性を示
すグラフ
FIG. 4 is a graph showing the pH dependence of an adsorbent on lithium adsorption.

【図5】ナトリウムイオン存在下での吸着剤のリチウム
に対する選択性の試験結果を示すグラフ
FIG. 5 is a graph showing the test results of the selectivity of the adsorbent for lithium in the presence of sodium ions.

【図6】粒状吸着剤の平衡到達時間を示すグラフFIG. 6 is a graph showing an equilibrium arrival time of a granular adsorbent.

【図7】本発明の一実施例に係わる吸着カラムクロマト
グラフィーによるリチウムとナトリウムの吸着分離装置
を示すブロック図
FIG. 7 is a block diagram showing an adsorption separation device for lithium and sodium by adsorption column chromatography according to an embodiment of the present invention.

【図8】本発明の一実施例に係わる吸着カラムクロマト
グラフィーによるリチウムとナトリウムの吸着分離の結
果を示すグラフ
FIG. 8 is a graph showing the results of adsorption separation of lithium and sodium by adsorption column chromatography according to an example of the present invention.

【図9】本発明の一実施例に係わる吸着カラムクロマト
グラフィーによるリチウムとナトリウムの溶離試験の結
果を示すグラフ
FIG. 9 is a graph showing the results of an elution test of lithium and sodium by adsorption column chromatography according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 カラム 11 粒状吸着剤 12 ガラスビーズ 13 コットン 2 送液ポンプ 3 フラクションコレクター 1 column 11 Granular adsorbent 12 glass beads 13 cotton 2 Liquid feed pump 3 fraction collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芳尾 真幸 佐賀県佐賀市本庄町本庄592番29号 (72)発明者 野口 英行 佐賀県佐賀群諸富町徳富1684号 Fターム(参考) 4D017 AA01 BA11 CA05 CB01 4D024 AA05 AB15 BA14 BB01 BB05 4G048 AA04 AB02 AB05 AC08 AD02 AD03 AD06 AE05 4G066 AA13A AA26B AC15D CA45 DA07 FA01 FA11 FA22 FA26 FA34 FA37 5H050 AA19 BA05 BA15 CA09 GA05 GA10 GA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masao Yoshio             592-29 Honjo, Honjo-cho, Saga City, Saga Prefecture (72) Inventor Hideyuki Noguchi             1684 Tokutomi, Morotomi Town, Saga Group, Saga Prefecture F-term (reference) 4D017 AA01 BA11 CA05 CB01                 4D024 AA05 AB15 BA14 BB01 BB05                 4G048 AA04 AB02 AB05 AC08 AD02                       AD03 AD06 AE05                 4G066 AA13A AA26B AC15D CA45                       DA07 FA01 FA11 FA22 FA26                       FA34 FA37                 5H050 AA19 BA05 BA15 CA09 GA05                       GA10 GA14

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 スピネル型リチウムマンガン酸化物から
酸を用いてリチウムを溶離して得られるλ型マンガン酸
化物からなるリチウム吸着剤。
1. A lithium adsorbent comprising a λ-type manganese oxide obtained by eluting lithium from a spinel-type lithium manganese oxide with an acid.
【請求項2】 λ型マンガン酸化物が微粒子状又は膜状
である請求項1に記載のリチウム吸着剤。
2. The lithium adsorbent according to claim 1, wherein the λ-type manganese oxide is in the form of fine particles or a film.
【請求項3】 4酸化3マンガンおよび水酸化リチウム
を、マンガンとリチウムのモル比が1.5〜2.5とな
るように混合・粉砕する工程、空気雰囲気下に400℃
以上の温度域で焼成してスピネル型酸素過剰マンガン酸
リチウムを得る工程、および該スピネル型酸素過剰マン
ガン酸リチウムを大過剰の酸で処理しリチウムを溶離す
る工程を有することを特徴とするリチウム吸着剤の製造
方法。
3. A step of mixing and pulverizing trimanganese tetraoxide and lithium hydroxide so that the molar ratio of manganese to lithium is 1.5 to 2.5, and 400 ° C. in an air atmosphere.
Lithium adsorption characterized by having a step of firing in the above temperature range to obtain spinel type oxygen-rich lithium manganate and a step of treating the spinel type oxygen-rich lithium manganate with a large excess of acid to elute lithium Method of manufacturing agent.
【請求項4】 4酸化3マンガンおよび水酸化リチウム
を混合・粉砕する工程が、マンガンとリチウムのモル比
を2(マンガン:リチウム=2:1)とするものである
請求項3に記載のリチウム吸着剤の製造方法。
4. The lithium according to claim 3, wherein the step of mixing and pulverizing trimanganese tetraoxide and lithium hydroxide sets the molar ratio of manganese to lithium to 2 (manganese: lithium = 2: 1). Method for producing adsorbent.
【請求項5】 スピネル型酸素過剰マンガン酸リチウム
を得る工程が、空気雰囲気下に400℃〜450℃の温
度域でなされる仮焼成および空気雰囲気下に475℃〜
525℃の温度域でなされる本焼成の2段階の焼成過程
からなるものである請求項3又は請求項4に記載のリチ
ウム吸着剤の製造方法。
5. The step of obtaining spinel type oxygen-rich lithium manganate is performed in a temperature range of 400 ° C. to 450 ° C. in an air atmosphere and 475 ° C. in an air atmosphere.
The method for producing a lithium adsorbent according to claim 3 or 4, which comprises a two-step firing process of main firing performed in a temperature range of 525 ° C.
【請求項6】 スピネル型酸素過剰マンガン酸リチウム
を大過剰の酸で処理しリチウムを溶離する工程が、0.
1M〜2Mの濃度の酸を用い、モル比が酸:リチウム=
20:1を超える大過剰の酸を用いるものである請求項
3乃至請求項5何れかに記載のリチウム吸着剤の製造方
法。
6. A step of treating spinel-type oxygen-rich lithium manganate with a large excess of acid to elute lithium,
An acid having a concentration of 1M to 2M is used, and a molar ratio of acid: lithium =
The method for producing a lithium adsorbent according to claim 3, wherein a large excess of acid exceeding 20: 1 is used.
【請求項7】 スピネル型酸素過剰マンガン酸リチウム
を大過剰の酸で処理しリチウムを溶離する工程が、0.
1M〜2Mの濃度の酸を用い、モル比が酸:リチウム=
40:1以上の大過剰の酸を用いるものである請求項3
乃至請求項6何れかに記載のリチウム吸着剤の製造方
法。
7. A step of treating spinel-type oxygen-rich lithium manganate with a large excess of acid to elute lithium,
An acid having a concentration of 1M to 2M is used, and a molar ratio of acid: lithium =
4. Use of a large excess of acid of 40: 1 or more.
7. The method for producing a lithium adsorbent according to claim 6.
【請求項8】 スピネル型リチウムマンガン酸化物から
酸を用いてリチウムを溶離して得られるλ型マンガン酸
化物からなるリチウム吸着剤を、海水や地熱熱水等の環
境水域に含まれるリチウムの選択的な濃縮に用いること
を特徴とするリチウムの採取方法。
8. A lithium adsorbent comprising a λ-type manganese oxide obtained by eluting lithium from a spinel-type lithium manganese oxide with an acid is selected as a lithium adsorbent contained in environmental waters such as seawater and geothermal hot water. A method for collecting lithium, which is used for effective concentration.
JP2002046288A 2002-02-22 2002-02-22 Method for producing lithium adsorbent Expired - Lifetime JP3937865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002046288A JP3937865B2 (en) 2002-02-22 2002-02-22 Method for producing lithium adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002046288A JP3937865B2 (en) 2002-02-22 2002-02-22 Method for producing lithium adsorbent

Publications (2)

Publication Number Publication Date
JP2003245542A true JP2003245542A (en) 2003-09-02
JP3937865B2 JP3937865B2 (en) 2007-06-27

Family

ID=28659753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002046288A Expired - Lifetime JP3937865B2 (en) 2002-02-22 2002-02-22 Method for producing lithium adsorbent

Country Status (1)

Country Link
JP (1) JP3937865B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021132A (en) * 2004-07-08 2006-01-26 National Institute Of Advanced Industrial & Technology Ammonium ion adsorbent and ammonium ion removing method
JP2011038869A (en) * 2009-08-10 2011-02-24 Kobelco Eco-Solutions Co Ltd Method of measuring lithium ion concentration and method and apparatus for manufacturing lithium salts by utilizing the same
WO2011058841A1 (en) * 2009-11-10 2011-05-19 財団法人北九州産業学術推進機構 Method for producing lithium adsorbent, lithium adsorbent, starting materials for lithium adsorbent, lithium concentration method, and lithium concentration device
JP2012504190A (en) * 2008-09-29 2012-02-16 韓国地質資源研究院 Lithium recovery device using separation membrane reservoir, lithium recovery method using the same, and lithium adsorption / desorption system using the same
WO2015037734A1 (en) * 2013-09-13 2015-03-19 Koyanaka Hideki Tritium adsorbent, method for separating tritium from within water, and method for regenerating tritium adsorbent
CN104525094A (en) * 2015-01-09 2015-04-22 重庆工商大学 Preparation method of manganese oxide ion sieve adsorbent and precursor thereof
JP2015116551A (en) * 2013-12-19 2015-06-25 国立研究開発法人産業技術総合研究所 Lithium-manganese-iron complex oxide for lithium recovering agent, lithium recovering agent comprising the same, and lithium recovery method using the lithium recovering agent
WO2016178437A1 (en) * 2015-05-07 2016-11-10 株式会社フォワードサイエンスラボラトリ Membrane electrode for absorbing tritium and method for recovering tritium
JP2017051942A (en) * 2015-05-07 2017-03-16 株式会社フォワードサイエンスラボラトリ Tritium absorption electrode film and recovery method of tritium
CN111527046A (en) * 2017-12-22 2020-08-11 株式会社Posco Preparation method of lithium phosphate, preparation method of lithium hydroxide and preparation method of lithium carbonate
CN115301196A (en) * 2022-04-27 2022-11-08 南京工业大学 Titanium-doped modified manganese-based lithium ion sieve and preparation method thereof
WO2024027044A1 (en) * 2022-08-04 2024-02-08 成都开飞高能化学工业有限公司 Preparation method for high-adsorption-capacity granular aluminum salt lithium extraction adsorbent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5209147B2 (en) 2010-04-22 2013-06-12 春男 上原 Lithium recovery apparatus and method thereof
US20200391177A1 (en) 2018-04-20 2020-12-17 Sumitomo Metal Mining Co., Ltd. Method for producing precursor of lithium adsorbent

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021132A (en) * 2004-07-08 2006-01-26 National Institute Of Advanced Industrial & Technology Ammonium ion adsorbent and ammonium ion removing method
JP2012504190A (en) * 2008-09-29 2012-02-16 韓国地質資源研究院 Lithium recovery device using separation membrane reservoir, lithium recovery method using the same, and lithium adsorption / desorption system using the same
JP2011038869A (en) * 2009-08-10 2011-02-24 Kobelco Eco-Solutions Co Ltd Method of measuring lithium ion concentration and method and apparatus for manufacturing lithium salts by utilizing the same
JP5700338B2 (en) * 2009-11-10 2015-04-15 公益財団法人北九州産業学術推進機構 Lithium adsorbent production method, lithium concentration method, and lithium concentration apparatus
WO2011058841A1 (en) * 2009-11-10 2011-05-19 財団法人北九州産業学術推進機構 Method for producing lithium adsorbent, lithium adsorbent, starting materials for lithium adsorbent, lithium concentration method, and lithium concentration device
JPWO2015037734A1 (en) * 2013-09-13 2017-03-02 古屋仲 秀樹 Tritium adsorbent, method for separating tritium from water, and method for regenerating tritium adsorbent
WO2015037734A1 (en) * 2013-09-13 2015-03-19 Koyanaka Hideki Tritium adsorbent, method for separating tritium from within water, and method for regenerating tritium adsorbent
JP2015116551A (en) * 2013-12-19 2015-06-25 国立研究開発法人産業技術総合研究所 Lithium-manganese-iron complex oxide for lithium recovering agent, lithium recovering agent comprising the same, and lithium recovery method using the lithium recovering agent
CN104525094A (en) * 2015-01-09 2015-04-22 重庆工商大学 Preparation method of manganese oxide ion sieve adsorbent and precursor thereof
WO2016178437A1 (en) * 2015-05-07 2016-11-10 株式会社フォワードサイエンスラボラトリ Membrane electrode for absorbing tritium and method for recovering tritium
JP2017051942A (en) * 2015-05-07 2017-03-16 株式会社フォワードサイエンスラボラトリ Tritium absorption electrode film and recovery method of tritium
CN111527046A (en) * 2017-12-22 2020-08-11 株式会社Posco Preparation method of lithium phosphate, preparation method of lithium hydroxide and preparation method of lithium carbonate
US11655150B2 (en) 2017-12-22 2023-05-23 Posco Co., Ltd Preparation method for lithium phosphate, preparation method for lithium hydroxide, and preparation method for lithium carbonate
CN115301196A (en) * 2022-04-27 2022-11-08 南京工业大学 Titanium-doped modified manganese-based lithium ion sieve and preparation method thereof
WO2024027044A1 (en) * 2022-08-04 2024-02-08 成都开飞高能化学工业有限公司 Preparation method for high-adsorption-capacity granular aluminum salt lithium extraction adsorbent

Also Published As

Publication number Publication date
JP3937865B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP2535748B2 (en) Lithium recovery method
Chitrakar et al. Synthesis of iron-doped manganese oxides with an ion-sieve property: lithium adsorption from Bolivian brine
JP2003245542A (en) Lithium adsorbing agent and method for producing the same, and method for collecting lithium
JP5700338B2 (en) Lithium adsorbent production method, lithium concentration method, and lithium concentration apparatus
CN102784624A (en) Preparation method and use of carbon coated magnetic adsorption material
Yoshizuka et al. Selective recovery of lithium from seawater using a novel MnO2 type adsorbent
CN108928880B (en) Method for treating wastewater containing radioactive elements
JP3706842B2 (en) Adsorption method of lithium ion from aqueous solution containing lithium by adsorbent
JP3550661B2 (en) Method for producing porous granular lithium adsorbent
JPH032010B2 (en)
JPS60153940A (en) Adsorbent of dissolved fluorine ion
JPH0626661B2 (en) Granular lithium adsorbent and lithium recovery method using the same
Reich et al. Structural and compositional variation of zeolite 13X in lithium sorption experiments using synthetic solutions and geothermal brine
JPS61171535A (en) Lithium adsorbent, its preparation and recovery of lithium using said adsorbent
JP3321602B2 (en) Selective lithium separating agent and method for producing the same
JPH0423577B2 (en)
CN113041988A (en) Titanium-based lithium ion sieve and preparation method and application thereof
JPH024442A (en) High performance lithium adsorbent and its preparation
Maheria et al. Studies on kinetics, thermodynamics and sorption characteristics of an inorganic ion exchanger-Titanium phosphate towards Pb (II), Bi (III) and Th (IV)
JP3412003B2 (en) Novel lithium adsorbent and method for producing the same
CN110918050A (en) Zeolite material adsorbent and preparation method thereof
CN113713788B (en) Intercalation type manganese thiophosphite material and preparation method and application thereof
JPH0357814B2 (en)
CN116947076A (en) Lithium extraction method of carbonate raw halogen
JP2850309B2 (en) Method for producing lithium adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3937865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term