【発明の詳細な説明】[Detailed description of the invention]
本発明は種々の金属イオンを含有する溶液から
選択的にリチウムを吸着する新規の合成リチウム
吸着剤およびその製造方法に関するものである。
リチウムは多くの分野、例えば電池、ガラス、
セラミツクス、航空機用のAl/Li合金などに用
いられている。将来は核融合燃料、核融合炉の熱
の運搬媒体あるいは冷却剤としての需要が見込ま
れており、リチウムの消費量は著しく増大すると
考えられている(日本鉱業会誌、第97巻、221、
1981)。現在リチウムの生産はアメリカ合衆国が
全世界の約70%を占め寡占状態にあるが、我国は
リチウム鉱石資源に乏しく全量に輸入に依存して
いる。
しかるに、我国においても海水あるいは比較的
豊富に存在する地熱熱水や温泉水には低濃度では
あるがリチウムを含有する場合が多く、これらの
リチウムを含む希簿溶液から該リチウムを効率よ
く回収するための高性能リチウム吸着剤の開発が
強く要望されている。
従来、リチウムを含む希簿溶液からの該リチウ
ムの吸着剤としては、無定形含水酸化アルミニウ
ム(海水誌、第32巻、78、1978)、含水酸化スズ
(日本鉱業会誌、第99巻、933、1983)、アンチモ
ン酸スズ(Hydrometallurgy、12、83、1984)、
層状チタン酸塩(J.Phy.Chem.、86、5023、
1982)、二酸化マンガン(日本鉱業会誌、第102
巻、307、1986)、λ型マンガン酸化物(Neorg.
Mater.9、1041、1973;Solv.Extr.Ion Exch.、
5、561、1987)などが報告されている。
しかしながら、前述の吸着剤はλ型マンガン酸
化物を除いてはいずれも吸着容量がかなり小さい
ため実用性に乏しいと考えられる。また、λ型マ
ンガン酸化物においては80℃以上の高温水溶液中
ではその結晶構造を崩壊して吸着容量が大幅に低
下する欠点を有する。
リチウムを含む海水、地熱熱水及び温泉水など
種々の希簿溶液から該リチウムを実用的に回収す
るためには、溶存量の多いナトリウム、カリウ
ム、カルシウム、マグネシウムなど他の共存陽イ
オンよりリチウムに対する選択性に優れ、しかも
その吸着容量が大きく、且つ耐熱性の高い新規吸
着剤の開発が要請されている。
本発明と目的は、前述のような要件を満足しう
る実用性の高い合成リチウム吸着剤およびその製
造方法を提供することにある。
本発明者らはリチウム回収に関して長年鋭意研
究を重ねた結果、ある種のリチウム−アンチモン
複合酸化物を酸処理したものが上記目的に適合す
ることを見い出し、新規の合成リチウム吸着剤お
よびその製造方法の発明に至つた。
すなわち、この発明は一般式Li1-xHxSbO3(式
中のxの値は0<x<1である)で表わされる合
成リチウム吸着剤およびその製造方法に関する。
次に本発明の合成リチウム吸着剤およびその製
造方法について述べる。本発明の合成リチウム吸
着剤はLiSbO3の理想組成を有するリチウム−ア
ンチモン複合酸化物を酸で処理してリチウムを溶
出させることにより得られる。原料となるリチウ
ム−アンチモン複合酸化物はリチウム化合物とア
ンチモン酸化物の混合粉末を500°〜1000℃の所定
温度で加熱処理することにより製造できる。使用
されるリチウム化合物としては、例えば炭酸塩、
硝酸塩、塩化物酸化物などをあげることができ
る。これらは市販の粉末物をそのまま用いること
ができる。また、アンチモン酸化物としては、例
えば原子価3価、4価、5価の市販の粉末状アン
チモン酸化物が使用できる。リチウムとアンチモ
ンの原子比が1:1になるように上記いずれかの
リチウム化合物とアンチモン酸化物を充分に粉砕
混合し、該混合物を500°〜1000℃の範囲の所定温
度で加熱処理することによつてLiSbO3の組成を
有するリチウム−アンチモン複合酸化物が得られ
る。Li/Sb比が理想的には1であることが望ま
しいが0.5から1.5の間の値は許容される。該複合
酸化物を酸溶液で洗浄処理し、複合酸化物中のリ
チウムを溶出させることにより本発明の合成リチ
ウム吸着剤が得られる。リチウムを溶出させるた
めに用いる酸溶液は、酸溶液であればよいが、望
ましくはPH1以下の塩酸、硫酸、硝酸などの鉱酸
溶液がよい。本発明の合成リチウム吸着剤の生成
はX線粉末回折により容易に確認することができ
る。すなわち、CuKαのX線を用いた場合、2θで
19.8、21.3、32.8および40.7°に特徴的な回折線が
出現し、新規物質であると考えられる。
本発明の合成リチウム吸着剤を溶液中で用いた
場合リチウム吸着容量が大きく、かつリチウム選
択性が高く非常に優れたリチウム吸着特性を示
す。リチウムに対する選択性は出発原料のアンチ
モン酸化物のみを上記の製造条件下で処理したも
のが吸着能を全く示さないことから、リチウム−
アンチモン複合酸化物からリチウムを溶出させた
本吸着剤特有の吸着能に基づくものと考えられ
る。
本発明により得られる吸着剤は、他の金属イオ
ンを含む海水、地熱熱水および温泉水など低濃度
リチウムを含む溶液からリチウムを選択的に回収
するのに好適に使用することができる。
次に実施例によつて本発明をさらに詳細に説明
する。
実施例 1
炭酸リチウム特級試薬1.11gと三酸化アンチモ
ン特級試薬4.38gを用い、擂潰機にて充分に粉
砕、混合したものを出発原料とした。これを電気
マツフル炉中で650℃、24時間加熱処理を行つた。
得られた加熱生成物を0.5モル塩酸溶液100ml中に
入れ50℃で3日間反応させリチウムを溶出させ
た。蒸留水で洗浄後、50℃で乾燥して本発明製品
を得た。
本発明製品100mgをPH8.5の金属イオン混合溶液
(0.5モル塩化アンモニウム溶液と0.5モル水酸化
アンモニウム溶液からなるPH8.5のPH緩衝液中に、
それぞれの金属イオン濃度が1ミリモルとなるよ
うに特級試薬の塩化リチウム、塩化カリウム、塩
化ナトリウム、塩化カルシウムを添加して調製)
100mlとともに25℃の恒温水槽中で2週間振とう
したのち、孔径0.45μmのメンブランフイルター
で固液を分離した。液相中の金属イオン濃度を原
子吸光法で測定し、吸着前後の濃度差よりそれぞ
れの金属イオンの吸着量を算出した。各金属イオ
ンの選択性を表わす指標の分配係数は平衝吸着量
(mg/ml)を溶液中の平衝濃度(mg/ml)で除す
ることにより求められ、リチウム=3190、ナトリ
ウム=80、カリウム=30およびカルシウム=130
であり、リチウムに対し優れた選択性を示すこと
が判明した。
実施例 2
実施例1と同様に操作して本発明製品を得た。
但し、電気マツフル炉中の温度を550℃とした。
本発明製品を用い、実施例1で用いた金属イオン
混合溶液からのリチウムイオンの吸着平衝到達時
間及び平衝吸着量を25℃、55℃、90℃の各温度で
測定した結果を第1表に示す。
The present invention relates to a novel synthetic lithium adsorbent that selectively adsorbs lithium from solutions containing various metal ions, and a method for producing the same. Lithium is used in many fields, such as batteries, glass,
Used in ceramics, Al/Li alloys for aircraft, etc. In the future, demand for lithium is expected to be used as a fusion fuel, a heat transport medium or a coolant in fusion reactors, and the consumption of lithium is expected to increase significantly (Journal of the Japan Mining Industry Association, Vol. 97, 221,
1981). Currently, the United States has an oligopoly on lithium production, accounting for approximately 70% of the world's production, but Japan lacks lithium ore resources and is completely dependent on imports. However, even in Japan, seawater or relatively abundant geothermal hot water and hot spring water often contain lithium, albeit at a low concentration, and it is difficult to efficiently recover lithium from these dilute solutions containing lithium. There is a strong need to develop high-performance lithium adsorbents for this purpose. Conventionally, as adsorbents for lithium from dilute solutions containing lithium, amorphous hydrated aluminum oxide (Kaisui Journal, Vol. 32, 78, 1978), hydrated tin oxide (Japan Mining Industry Journal, Vol. 99, 933, 1983), tin antimonate (Hydrometallurgy, 12, 83, 1984),
Layered titanates (J.Phy.Chem., 86, 5023,
1982), Manganese Dioxide (Journal of the Japan Mining Association, No. 102)
Vol. 307, 1986), λ-type manganese oxide (Neorg.
Mater.9, 1041, 1973;Solv.Extr.Ion Exch.,
5, 561, 1987) have been reported. However, all of the above-mentioned adsorbents, except for λ-type manganese oxide, have considerably small adsorption capacities and are therefore considered to be of little practical use. In addition, λ-type manganese oxide has the disadvantage that its crystal structure collapses in a high-temperature aqueous solution of 80° C. or higher, resulting in a significant decrease in adsorption capacity. In order to practically recover lithium from various dilute solutions such as seawater, geothermal hot water, and hot spring water, it is necessary to recover lithium from other coexisting cations such as sodium, potassium, calcium, and magnesium, which have large dissolved amounts. There is a need for the development of new adsorbents that have excellent selectivity, large adsorption capacity, and high heat resistance. An object of the present invention is to provide a highly practical synthetic lithium adsorbent that can satisfy the above-mentioned requirements and a method for producing the same. As a result of many years of intensive research into lithium recovery, the present inventors discovered that a certain type of lithium-antimony composite oxide treated with acid is suitable for the above purpose, and developed a new synthetic lithium adsorbent and its manufacturing method. This led to the invention of That is, the present invention relates to a synthetic lithium adsorbent represented by the general formula Li 1-x H x SbO 3 (the value of x in the formula is 0<x<1) and a method for producing the same. Next, the synthetic lithium adsorbent of the present invention and its manufacturing method will be described. The synthetic lithium adsorbent of the present invention is obtained by treating a lithium-antimony composite oxide having an ideal composition of LiSbO 3 with an acid to elute lithium. The raw material lithium-antimony composite oxide can be produced by heat-treating a mixed powder of a lithium compound and antimony oxide at a predetermined temperature of 500° to 1000°C. Examples of the lithium compounds used include carbonates,
Examples include nitrates, chloride oxides, etc. Commercially available powders can be used as they are. Further, as the antimony oxide, for example, trivalent, tetravalent, and pentavalent commercially available powdered antimony oxides can be used. Any of the above lithium compounds and antimony oxide are thoroughly ground and mixed so that the atomic ratio of lithium and antimony is 1:1, and the mixture is heat-treated at a predetermined temperature in the range of 500 ° C to 1000 ° C. Thus, a lithium-antimony composite oxide having a composition of LiSbO 3 is obtained. Ideally, the Li/Sb ratio is 1, but values between 0.5 and 1.5 are acceptable. The synthetic lithium adsorbent of the present invention can be obtained by washing the composite oxide with an acid solution and eluting lithium in the composite oxide. The acid solution used to elute lithium may be any acid solution, but preferably a mineral acid solution such as hydrochloric acid, sulfuric acid, or nitric acid having a pH of 1 or less. The production of the synthetic lithium adsorbent of the present invention can be easily confirmed by X-ray powder diffraction. In other words, when using CuKα X-rays, at 2θ
Characteristic diffraction lines appear at 19.8, 21.3, 32.8 and 40.7°, and it is considered to be a new substance. When the synthetic lithium adsorbent of the present invention is used in a solution, it has a large lithium adsorption capacity, high lithium selectivity, and exhibits excellent lithium adsorption properties. The selectivity for lithium was determined by the fact that when only the starting material, antimony oxide, was treated under the above production conditions, it showed no adsorption ability at all.
This is thought to be due to the unique adsorption ability of this adsorbent, which elutes lithium from antimony composite oxide. The adsorbent obtained by the present invention can be suitably used to selectively recover lithium from solutions containing low concentrations of lithium, such as seawater, geothermal hot water, and hot spring water containing other metal ions. Next, the present invention will be explained in more detail with reference to Examples. Example 1 1.11 g of a special grade lithium carbonate reagent and 4.38 g of a special grade antimony trioxide reagent were thoroughly ground and mixed using a crusher, and the resulting mixture was used as a starting material. This was heat-treated in an electric Matsufuru furnace at 650°C for 24 hours.
The heated product obtained was placed in 100 ml of 0.5 molar hydrochloric acid solution and reacted at 50°C for 3 days to elute lithium. After washing with distilled water, the product was dried at 50°C to obtain a product of the present invention. 100 mg of the product of the present invention was added to a mixed metal ion solution of PH 8.5 (PH buffer solution of PH 8.5 consisting of a 0.5 molar ammonium chloride solution and a 0.5 molar ammonium hydroxide solution).
(Prepared by adding special grade reagents lithium chloride, potassium chloride, sodium chloride, and calcium chloride so that the concentration of each metal ion is 1 mmol)
After shaking with 100 ml in a constant temperature water bath at 25°C for two weeks, the solid and liquid were separated using a membrane filter with a pore size of 0.45 μm. The metal ion concentration in the liquid phase was measured by atomic absorption spectrometry, and the amount of each metal ion adsorbed was calculated from the difference in concentration before and after adsorption. The partition coefficient, which is an index representing the selectivity of each metal ion, is obtained by dividing the equilibrium adsorption amount (mg/ml) by the equilibrium concentration in the solution (mg/ml), lithium = 3190, sodium = 80, Potassium = 30 and Calcium = 130
It was found that the material showed excellent selectivity for lithium. Example 2 A product of the present invention was obtained in the same manner as in Example 1.
However, the temperature in the electric Matsufuru furnace was 550°C.
Using the product of the present invention, the adsorption equilibrium time and equilibrium adsorption amount of lithium ions from the metal ion mixed solution used in Example 1 were measured at temperatures of 25°C, 55°C, and 90°C. Shown in the table.
【表】
第1表から明らかなように、本発明製品ではリ
チウムの吸着平衝に達する時間は、25℃で240時
間であるが90℃では3時間と吸着温度の上昇に伴
い急激に短縮されている。一方、リチウムの平衝
吸着量は25°〜90℃の測定温度範囲では殆ど変化
が認められず、λ型マンガン酸化物より耐熱性に
優れていることがわかる。
比較例 1
リチウム化合物を存在させることなく、他は実
施例1と同じ条件で三酸化アンチモンのみを加
熱、酸処理、水洗、乾燥を行い、該乾燥物を用い
て実施例1と同じ条件で吸着実験を行つた。その
結果、リチウムのみならず他の金属イオンについ
ても吸着前後の溶液中の濃度変化は全く認められ
ず、金属イオンの吸着が起こらないことがわかつ
た。以上のことから、本発明の製造方法におい
て、リチウム化合物は、リチウム選択性の著しく
高い陽イオン吸着特性の発現に大きく寄与してい
ることは明らからである。
比較例 2
実施例および2の本発明製品と公知の合成法に
よつて製造したλ型マンガン酸化物を用い、実施
例1と同一条件で行つたりリチウム吸着実験の結
果の比較を表2に示す。[Table] As is clear from Table 1, the time required for the product of the present invention to reach adsorption equilibrium for lithium is 240 hours at 25°C, but rapidly shortens to 3 hours at 90°C as the adsorption temperature rises. ing. On the other hand, the equilibrium adsorption amount of lithium shows almost no change in the measurement temperature range of 25° to 90°C, indicating that it has better heat resistance than λ-type manganese oxide. Comparative Example 1 Only antimony trioxide was heated, acid-treated, washed with water, and dried under the same conditions as Example 1 without the presence of a lithium compound, and the dried product was used for adsorption under the same conditions as Example 1. I conducted an experiment. As a result, no change in the concentration of not only lithium but also other metal ions in the solution before and after adsorption was observed, indicating that no adsorption of metal ions occurred. From the above, it is clear that in the production method of the present invention, the lithium compound greatly contributes to the development of cation adsorption characteristics with extremely high lithium selectivity. Comparative Example 2 Table 2 shows a comparison of the results of a lithium adsorption experiment conducted under the same conditions as Example 1 using the products of the present invention in Examples and 2 and λ-type manganese oxide produced by a known synthesis method. show.
【表】
第2表から明らかなように、従来最も優れたリ
チウム吸着剤とされているλ型マンガン酸化物に
比べ本発明製品(実施例2)のリチウムの分配係
数の値は約3.7倍と著しく大きい。さらにリチウ
ムについで選択性の高いカルシウムの影響につい
てみると、分離係数αの値は本発明製品(実施例
2)の場合60.0であるのに対し、λ型マンガン酸
化物では15.1と小さく、リチウム回収時における
共存カルシウムの影響を本発明製品のほうがはる
かに小さいことが明らかである。
このように本発明の合成リチウム吸着剤は選択
性、吸着容量および耐熱性のいずれの点において
も従来のものよりも優れていることは明らかであ
る。[Table] As is clear from Table 2, the lithium distribution coefficient value of the product of the present invention (Example 2) is approximately 3.7 times that of λ-type manganese oxide, which is conventionally considered the best lithium adsorbent. significantly larger. Furthermore, looking at the influence of calcium, which has high selectivity next to lithium, the value of separation coefficient α is 60.0 for the product of the present invention (Example 2), while it is as small as 15.1 for the λ-type manganese oxide, indicating that lithium recovery It is clear that the product of the present invention has a much smaller influence of coexisting calcium. Thus, it is clear that the synthetic lithium adsorbent of the present invention is superior to conventional ones in all aspects of selectivity, adsorption capacity, and heat resistance.