JP2002282684A - Method for producing porous granular lithium adsorbent - Google Patents

Method for producing porous granular lithium adsorbent

Info

Publication number
JP2002282684A
JP2002282684A JP2001094350A JP2001094350A JP2002282684A JP 2002282684 A JP2002282684 A JP 2002282684A JP 2001094350 A JP2001094350 A JP 2001094350A JP 2001094350 A JP2001094350 A JP 2001094350A JP 2002282684 A JP2002282684 A JP 2002282684A
Authority
JP
Japan
Prior art keywords
lithium
water
porous granular
producing
forming agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001094350A
Other languages
Japanese (ja)
Other versions
JP3550661B2 (en
Inventor
Yoshitaka Miyai
良孝 宮井
Aya Umeno
彩 梅野
Ramesh Chitorakaa
ラメシュ チトラカー
Hirobumi Kano
博文 加納
Kenta Oi
健太 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001094350A priority Critical patent/JP3550661B2/en
Publication of JP2002282684A publication Critical patent/JP2002282684A/en
Application granted granted Critical
Publication of JP3550661B2 publication Critical patent/JP3550661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a lithium adsorbent which is excellent in selective adsorption of lithium, stable in an aqueous solution, and easy of handling efficiently and inexpensively. SOLUTION: The lithium adsorbent is produced by a process in which powdered manganese oxide containing lithium, a powdered water-soluble pore forming agent, and an organic binder are mixed the mixture is granulated, the granules are immersed in water to elute the water-soluble pore forming agent, and contacted with an acidic aqueous solution to elute lithium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムに対する
選択吸着性が優れ、かつ吸着速度及び吸着容量が大き
く、水溶液中で安定で、かつ安価な多孔質粒状リチウム
吸着剤を製造するための新規な方法に関するものであ
る。
The present invention relates to a novel porous granular lithium adsorbent which is excellent in selective adsorption to lithium, has a high adsorption rate and adsorption capacity, is stable in an aqueous solution, and is inexpensive. It is about the method.

【0002】[0002]

【従来の技術】近年、リチウムは、例えばセラミック
ス、グリース、空調用冷媒、医薬品、電池などの原料と
して使用されており、また将来は、大容量電池、アルミ
ニウム合金材料、核融合燃料などの重要な原料である
が、我が国においてはリチウム鉱石資源がなく、リチウ
ム金属やその化合物は全量輸入しているのが現状であ
る。
2. Description of the Related Art In recent years, lithium has been used as a raw material for, for example, ceramics, grease, refrigerants for air conditioning, pharmaceuticals, and batteries. In the future, lithium will be used as an important material for large-capacity batteries, aluminum alloy materials, fusion fuels, and the like. Although it is a raw material, there is no lithium ore resource in Japan, and at present the lithium metal and its compounds are entirely imported.

【0003】一方、海水、地下かん水及び地熱水などに
は微量のリチウムが含まれており、それらからリチウム
を効率よく回収する技術について、以前から研究が続け
られている。そして、これまでそれらリチウムを含む希
薄溶液から該リチウムを回収する方法としては、共沈法
や蒸発法などが提案されているが、これらの方法は、エ
ネルギー面や設備面でコストがかかり、経済的に問題が
あるため、現在では吸着法が主流になりつつある。その
ため、リチウムに対し高い選択吸着性を示し、かつ吸着
速度及び吸着容量の大きい吸着剤の開発が強く要望され
ている。
[0003] On the other hand, seawater, underground brackish water, geothermal water, and the like contain a trace amount of lithium, and research on a technique for efficiently recovering lithium therefrom has been continued. As a method of recovering the lithium from a dilute solution containing the lithium, a coprecipitation method or an evaporation method has been proposed. However, these methods are costly in terms of energy and equipment, and are economical. The adsorption method is now becoming mainstream due to problems in terms of quality. Therefore, there is a strong demand for the development of an adsorbent which exhibits high selective adsorption to lithium and has a large adsorption rate and a large adsorption capacity.

【0004】従来、リチウム吸着剤としては、ヒ酸トリ
ウム[「J.Inorg.Nucl.Chem.」,第
32巻,第1719ページ(1970)]やアンチモン
酸スズ[「Hydrometallurgy」,第12
巻,第83ページ(1984)]などが知られている
が、吸着速度及び吸着量が低く、実用的ではない。
Conventionally, lithium adsorbents include thorium arsenate [“J. Inorg. Nucl. Chem.”, Vol. 32, p. 1719 (1970)] and tin antimonate [“Hydrometallurgy”, twelfth.
Vol. 83, p. 1984] is not practical because the adsorption speed and the adsorption amount are low.

【0005】また、加熱処理したリチウム含有マンガン
酸化物を酸処理して得られたリチウム吸着剤(特開昭6
1−171535号公報)や、マグネシウムを含むマン
ガン−アルミニウム複合酸化物の加熱処理物からマグネ
シウムを酸で溶出して調製した複合型リチウム吸着剤が
知られ(特開昭63−62546号公報)、これらの吸
着剤は海水からリチウムを選択的に吸着し、吸着量も大
きいという長所はあるが、実用化するには、まだ十分な
性能には達していない。
Further, a lithium adsorbent obtained by subjecting a heat-treated lithium-containing manganese oxide to acid treatment (Japanese Patent Application Laid-Open No.
And a composite lithium adsorbent prepared by eluting magnesium with an acid from a heat-treated manganese-aluminum composite oxide containing magnesium (JP-A-63-62546). These adsorbents have the advantage of selectively adsorbing lithium from seawater and have a large amount of adsorption, but have not yet achieved sufficient performance for practical use.

【0006】さらに、吸着剤とリチウム希薄溶液とを効
果的に吸着処理するために粉末状吸着剤が提案されてい
るが(特許第1888361号)、このものは、粒径が
大きくなると吸着速度が低下し、また吸着性能が不十分
になるという欠点がある。
Further, a powdery adsorbent has been proposed for effectively adsorbing an adsorbent and a dilute lithium solution (Japanese Patent No. 1888361). However, this adsorbent has an increased adsorption speed as the particle size increases. However, there is a disadvantage that the adsorption performance is insufficient.

【0007】したがって、リチウムを含む海水などの希
薄溶液から該リチウムを実用的に吸着回収するための、
リチウムに対する選択吸着性に優れ、かつ吸着速度や吸
着容量が大きく、しかも希薄溶液中で安定である上、希
薄溶液の吸着処理が容易な形状を有する吸着剤の開発が
要望されている。
Therefore, for practically adsorbing and recovering lithium from a dilute solution such as seawater containing lithium,
There is a demand for the development of an adsorbent that has excellent selective adsorption to lithium, has a large adsorption rate and adsorption capacity, is stable in a dilute solution, and has a shape that facilitates the adsorption treatment of a dilute solution.

【0008】[0008]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、リチウムに対する選択吸着性が優れ、吸
着速度及び吸着容量が大きく、水溶液中で安定で、取り
扱いが容易なリチウム吸着剤を効率よく安価に製造する
方法を提供することを目的としてなされたものである。
SUMMARY OF THE INVENTION Under such circumstances, the present invention provides a lithium adsorbent which is excellent in selective adsorption to lithium, has a high adsorption rate and adsorption capacity, is stable in an aqueous solution, and is easy to handle. The object of the present invention is to provide a method for producing an agent efficiently and at low cost.

【0009】[0009]

【課題を解決するための手段】本発明者らは、多孔質粒
状リチウム吸着剤の製造方法について鋭意研究を重ねた
結果、原料としてリチウム含有マンガン酸化物と水溶性
細孔形成剤と有機バインダーを用いて造粒し、この造粒
物から該水溶性細孔形成剤及びリチウムを溶出させるこ
とにより、前記機能を有する多孔質粒状リチウム吸着剤
が効率よく得られ、その目的を達成しうることを見出
し、この知見に基づいて本発明を完成するに至った。
The present inventors have conducted intensive studies on a method for producing a porous granular lithium adsorbent. By using the granulated product and elute the water-soluble pore-forming agent and lithium from the granulated product, a porous granular lithium adsorbent having the above function can be efficiently obtained, and the object can be achieved. The present invention has been completed based on the findings.

【0010】すなわち、本発明は、リチウム含有マンガ
ン酸化物粉末と水溶性細孔形成剤粉末と有機バインダー
とを混合し、造粒したのち、得られた粒状物を水中に投
入し、水溶性細孔形成剤を溶出させ、次いで酸性水溶液
と接触させてリチウムを溶出させることを特徴とする多
孔質粒状リチウム吸着剤の製造方法を提供するものであ
る。
That is, according to the present invention, a lithium-containing manganese oxide powder, a water-soluble pore-forming agent powder and an organic binder are mixed and granulated, and the obtained granules are poured into water to form a water-soluble fine powder. It is intended to provide a method for producing a porous granular lithium adsorbent characterized by eluting a pore-forming agent and then contacting it with an acidic aqueous solution to elute lithium.

【0011】[0011]

【発明の実施の形態】本発明の多孔質粒状リチウム吸着
剤の製造方法においては、原料としてリチウム含有マン
ガン酸化物、水溶性細孔形成剤及び有機バインダーが用
いられる。前記リチウム含有マンガン酸化物としては、
特に制限はないが、例えば、一般式 Li1+xMn2-x4 (式中のxは0≦x<1)で表わされる化合物を用いる
ことができる。このような化合物の好ましいものとして
は、Li1.33Mn1.674やLiMn24などを含むも
のが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a porous granular lithium adsorbent of the present invention, a lithium-containing manganese oxide, a water-soluble pore-forming agent and an organic binder are used as raw materials. As the lithium-containing manganese oxide,
Although there is no particular limitation, for example, a compound represented by the general formula Li 1 + x Mn 2-x O 4 (where x is 0 ≦ x <1) can be used. Preferred examples of such compounds include those containing Li 1.33 Mn 1.67 O 4 and LiMn 2 O 4 .

【0012】これらのリチウム含有マンガン酸化物は公
知であり、従来知られている任意の方法、例えば、炭酸
リチウムや硝酸リチウムなどのリチウム化合物と、水酸
化酸化マンガンや炭酸マンガンなどのマンガン化合物を
所定の割合で混合し、350℃以上の温度で数時間程度
加熱処理する固相反応法により、調製することができ
る。
These lithium-containing manganese oxides are known. For example, a lithium compound such as lithium carbonate or lithium nitrate and a manganese compound such as manganese hydroxide oxide or manganese carbonate can be prepared by any known method. , And heat-treated at a temperature of 350 ° C. or more for about several hours.

【0013】また、水溶性細孔形成剤としては、アルカ
リ金属のハロゲン化物、炭酸塩、炭酸水素塩、硝酸塩、
硫酸塩及びリン酸塩のような水溶性無機塩が好ましい
が、その他の水溶性発泡剤も用いることができる。これ
らは1種を単独で用いてもよいし、2種以上を組み合わ
せて用いてもよい。
The water-soluble pore-forming agents include alkali metal halides, carbonates, bicarbonates, nitrates, and the like.
Water-soluble inorganic salts such as sulfates and phosphates are preferred, but other water-soluble blowing agents can be used. One of these may be used alone, or two or more may be used in combination.

【0014】本発明においては、前記のリチウム含有マ
ンガン酸化物及び水溶性細孔形成剤は、それぞれ粉末の
形態で用いられる。リチウム含有マンガン酸化物粉末の
粒径としては、特に制限はないが、平均粒径が通常0.
1〜10μm、好ましくは1〜10μmの範囲にあるも
のが有利である。水溶性細孔形成剤の粒径は、得られる
多孔質粒状リチウム吸着剤の細孔径の点から、好ましく
は0.1〜100μmの範囲、より好ましくは1〜10
0μmの範囲である。また、平均粒径は、通常1〜70
μm、好ましくは10〜50μmの範囲である。
In the present invention, each of the lithium-containing manganese oxide and the water-soluble pore-forming agent is used in the form of a powder. The particle size of the lithium-containing manganese oxide powder is not particularly limited, but the average particle size is usually 0.1.
Those having a range of 1 to 10 μm, preferably 1 to 10 μm are advantageous. The particle size of the water-soluble pore-forming agent is preferably in the range of 0.1 to 100 µm, more preferably 1 to 10 from the viewpoint of the pore size of the obtained porous granular lithium adsorbent.
The range is 0 μm. The average particle size is usually 1 to 70.
μm, preferably in the range of 10 to 50 μm.

【0015】次に、有機バインダーとしては特に制限は
ないが、熱可塑性樹脂が好ましい。この熱可塑性樹脂と
しては、例えばポリ塩化ビニル、アクリロニトリル系共
重合体、ポリスルホン、ポリアミドイミド、ポリエステ
ル、アセチルセルロースなどが挙げられる。これらは1
種を単独で用いてもよいし、2種以上を組み合わせて用
いてもよいが、これらの中で、特にポリ塩化ビニルが好
適である。
The organic binder is not particularly limited, but is preferably a thermoplastic resin. Examples of the thermoplastic resin include polyvinyl chloride, acrylonitrile copolymer, polysulfone, polyamideimide, polyester, acetylcellulose and the like. These are 1
The seeds may be used alone or two or more kinds may be used in combination. Among them, polyvinyl chloride is particularly preferable.

【0016】この有機バインダーは溶液として用いられ
る。この有機バインダー溶液の調製に使用される溶媒と
しては、前記熱可塑性樹脂を溶解しうる有機溶媒、例え
ばN,N‐ジメチルホルムアミド、アセトニトリル、ア
セトンシアンヒドリンなどが挙げられる。これらは単独
で用いてもよいし、2種以上を組み合わせて用いてもよ
い。
This organic binder is used as a solution. Examples of the solvent used for preparing the organic binder solution include organic solvents capable of dissolving the thermoplastic resin, such as N, N-dimethylformamide, acetonitrile, and acetone cyanohydrin. These may be used alone or in combination of two or more.

【0017】有機バインダー溶液の調製に、このような
有機溶媒を用いる場合、前記水溶性細孔形成剤として
は、塩化ナトリウム及び塩化カリウムが好適である。例
えば、温度10〜30℃におけるN,N‐ジメチルホル
ムアミドに対する塩化カリウムの溶解度は1〜2mg/
100g程度であり、塩化ナトリウムの溶解度は3〜5
mg/100g程度であって、極めて難溶性である。一
方、水に対する溶解度は、いずれも27g/100g以
上であり、易溶性である。有機バインダー溶液における
有機バインダーの濃度としては、通常5〜20質量%の
範囲内で選ばれる。
When such an organic solvent is used for preparing the organic binder solution, sodium chloride and potassium chloride are preferred as the water-soluble pore-forming agent. For example, the solubility of potassium chloride in N, N-dimethylformamide at a temperature of 10 to 30 ° C is 1 to 2 mg /
The solubility of sodium chloride is about 3 to 5
It is about mg / 100 g, and is extremely poorly soluble. On the other hand, the solubility in water is 27 g / 100 g or more in each case, and it is easily soluble. The concentration of the organic binder in the organic binder solution is usually selected within the range of 5 to 20% by mass.

【0018】本発明方法においては、まず前記のリチウ
ム含有マンガン酸化物粉末と水溶性細孔形成剤粉末と有
機バインダーとを混合して造粒用組成物を調製する。こ
の際、各成分の使用割合については、水溶性細孔形成剤
粉末は、リチウム含有マンガン酸化物粉末100質量部
当り、好ましくは1〜50質量部、より好ましくは2〜
20質量部の範囲で選ばれる。一方、有機バインダー
は、リチウム含有マンガン酸化物粉末100質量部当
り、2〜40質量部、好ましくは10〜30質量部の範
囲内で選ばれる。
In the method of the present invention, first, a lithium-containing manganese oxide powder, a water-soluble pore-forming agent powder and an organic binder are mixed to prepare a granulation composition. At this time, as for the use ratio of each component, the water-soluble pore-forming agent powder is preferably 1 to 50 parts by mass, more preferably 2 to 100 parts by mass per 100 parts by mass of the lithium-containing manganese oxide powder.
It is selected in the range of 20 parts by mass. On the other hand, the organic binder is selected within the range of 2 to 40 parts by mass, preferably 10 to 30 parts by mass per 100 parts by mass of the lithium-containing manganese oxide powder.

【0019】このようにして調製された混合物を、ゆっ
くりかきまぜられている凝固液中に徐々に滴下し、球状
に凝固させて造粒する。この際、凝固液としては、有機
バインダー中の有機溶媒に対し相容性を有するが、有機
バインダー及び水溶性細孔形成剤を実質上溶解しないも
のを用いることができる。このような凝固液としては、
例えば水とエチルアルコールとの等容量混合物などを挙
げることができる。このようにして形成された粒状物の
粒径は、通常0.5〜8mm、好ましくは1〜5mmの
範囲である。
The mixture thus prepared is gradually dropped into a slowly stirred coagulating liquid, and is coagulated into a sphere and granulated. At this time, as the coagulating liquid, a liquid which has compatibility with the organic solvent in the organic binder but does not substantially dissolve the organic binder and the water-soluble pore-forming agent can be used. As such a coagulating liquid,
For example, an equal volume mixture of water and ethyl alcohol can be used. The particle size of the granular material thus formed is usually in the range of 0.5 to 8 mm, preferably 1 to 5 mm.

【0020】次いで、この粒状物を水中に投入して、該
粒状物中に含まれている水溶性細孔形成剤を溶出させ
る。この溶出操作は、該細孔形成剤が、実質上全部溶出
するまで繰り返し行うことができる。この溶出操作によ
り、多孔質粒状物が形成される。
Next, the granules are put into water to elute the water-soluble pore-forming agent contained in the granules. This elution operation can be repeated until the pore-forming agent is substantially completely eluted. By this elution operation, a porous granular material is formed.

【0021】次に、このようにして得られた多孔質粒状
物に酸性水溶液を接触させて、リチウムを溶出させる。
上記酸性水溶液としては、塩酸、硫酸、硝酸などの鉱酸
を含む、pH3以下の弱酸性水溶液が好ましい。このリ
チウムの溶出処理は、通常数時間以上、好ましくは2日
間以上行うのがよい。このようにしてリチウムの溶出処
理を行ったのち、十分に洗浄し、さらに乾燥処理するこ
とにより、多孔質粒状リチウム吸着剤が得られる。
Next, an acidic aqueous solution is brought into contact with the porous granules thus obtained to elute lithium.
As the acidic aqueous solution, a weakly acidic aqueous solution containing a mineral acid such as hydrochloric acid, sulfuric acid, and nitric acid and having a pH of 3 or less is preferable. This lithium elution treatment is usually performed for several hours or more, preferably for two days or more. After performing the elution treatment of lithium in this way, by sufficiently washing and further drying, a porous granular lithium adsorbent can be obtained.

【0022】このようにして得られた多孔質粒状リチウ
ム吸着剤は、通常内部まで0.1μm以上の細孔が多数
形成されており、水分子(直径0.28nm)やリチウ
ムイオン(直径0.146nm)が容易に吸着サイトと
接触できる構造を有している。
The porous granular lithium adsorbent thus obtained usually has a large number of pores of 0.1 μm or more formed inside, and water molecules (diameter 0.28 nm) and lithium ions (diameter 0. 8 nm). 146 nm).

【0023】この多孔質粒状リチウム吸着剤は、蜂の巣
状形態を保っており、該粒状吸着剤の内部までリチウム
イオンが短時間に浸透できる。したがって、吸着速度が
大きく効果的にイオン交換が進行でき、海水のようなリ
チウム希薄溶液からでも吸着速度は大きい。
This porous granular lithium adsorbent maintains a honeycomb shape, and lithium ions can permeate into the particulate adsorbent in a short time. Accordingly, the adsorption rate is large and the ion exchange can proceed effectively, and the adsorption rate is high even from a lithium-dilute solution such as seawater.

【0024】[0024]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明はこれらの例によってなんら限定され
るものではない。
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0025】実施例 水酸化酸化マンガンと炭酸リチウムを用いてリチウムと
マンガンの混合物(モル比8:10)を調製した。これ
を粉砕したのち、るつぼにとり、400℃で4時間加熱
処理して、リチウム含有マンガン酸化物を合成した。こ
のものはX線分析の結果、Li1.33Mn1.674相が形
成されていることが確認された。
Example A mixture of lithium and manganese (molar ratio: 8:10) was prepared using manganese hydroxide and lithium carbonate. After pulverized, the mixture was placed in a crucible and heat-treated at 400 ° C. for 4 hours to synthesize a lithium-containing manganese oxide. As a result of X-ray analysis, it was confirmed that a Li 1.33 Mn 1.67 O 4 phase was formed.

【0026】このリチウム含有マンガン酸化物10g
に、水溶性細孔形成剤として、塩化カリウム(平均粒径
28μm、粒子径1.5〜100μm)0.50gを加
え、混合機を用いて30分間混合した。その混合物を1
0分割してそれぞれの組成中の塩化カリウムを定量した
結果、その混合比は4.7〜5.4質量%で均一性が認
められた。
10 g of this lithium-containing manganese oxide
To the mixture was added 0.50 g of potassium chloride (average particle size: 28 μm, particle size: 1.5 to 100 μm) as a water-soluble pore-forming agent, and the mixture was mixed using a mixer for 30 minutes. The mixture is 1
As a result of quantifying potassium chloride in each composition by dividing it into 0 parts, the mixture ratio was 4.7 to 5.4% by mass and uniformity was recognized.

【0027】ポリ塩化ビニル(重合度680)2.5g
を33mlのN,N‐ジメチルホルムアミドに溶解した
のち、これに上記で得られた混合物10gを加え、さら
に混合してスラリーを調製した。
2.5 g of polyvinyl chloride (degree of polymerization 680)
Was dissolved in 33 ml of N, N-dimethylformamide, 10 g of the mixture obtained above was added thereto, and the mixture was further mixed to prepare a slurry.

【0028】このスラリーをろ斗の下端に細管(内径1
mm)を取り付けたものに移し入れた。下部の凝固液
(水とエチルアルコールの等容混合液)400ml中へ
毎分100〜150滴の速度で滴下した。凝固液は約1
60rpmで撹拌し、試料に回転運動を与えながら、球
状体に凝固させて造粒した。すなわち、ポリ塩化ビニル
の溶媒であるN,N‐ジメチルホルムアミドは多量の凝
固液と溶解混合するが、ポリ塩化ビニルは凝固液には不
溶性であるため固形物となり、有機バインダーとしての
役割を果す。
This slurry is placed at the lower end of a funnel in a thin tube (with an inner diameter of 1).
mm). The solution was dropped at a rate of 100 to 150 drops per minute into 400 ml of the lower coagulating liquid (a mixture of equal volumes of water and ethyl alcohol). Coagulation liquid is about 1
The mixture was stirred at 60 rpm, and solidified into a spherical body and granulated while giving rotational movement to the sample. That is, N, N-dimethylformamide, which is a solvent for polyvinyl chloride, is dissolved and mixed with a large amount of coagulation liquid, but polyvinyl chloride is insoluble in the coagulation liquid and becomes a solid, thus serving as an organic binder.

【0029】次に、この粒状物(粒径2.5〜3.5m
m)10gを蒸溜水1リットルに入れ、撹拌して細孔形
成剤の塩化カリウムを溶出させた。1日後、新しい水1
リットルと取り替え、このような処理を3回繰り返した
結果、塩化カリウムの溶出率は98%に達した。この処
理により多孔質粒状物を調製することができた。
Next, the granules (particle size: 2.5 to 3.5 m)
m) 10 g was placed in 1 liter of distilled water and stirred to elute potassium chloride as a pore-forming agent. One day later, new water 1
The treatment was repeated three times, and the elution rate of potassium chloride reached 98%. By this treatment, a porous granular material could be prepared.

【0030】この多孔質粒状物5gを0.5モル/リッ
トル濃度の塩酸溶液1リットル中に入れ、2日間浸漬し
てリチウムを溶出させた。それを分離したのち、水洗、
乾燥(70℃)して多孔質粒状リチウム吸着剤を製造し
た。
5 g of this porous granular material was placed in 1 liter of a 0.5 mol / liter hydrochloric acid solution and immersed for 2 days to elute lithium. After separating it, wash with water,
After drying (70 ° C.), a porous granular lithium adsorbent was produced.

【0031】前記多孔質粒状物及び多孔質粒状リチウム
吸着剤の表面部と断面部について走査電子顕微鏡で観察
した。その結果、いずれも1〜100μm程度の細孔と
考えられる黒色の点が無数観察された。その分布は均質
であり、本発明により粒状体内部まで多孔構造が形成さ
れていることが認められた。
The surface and cross section of the porous granular material and porous granular lithium adsorbent were observed with a scanning electron microscope. As a result, countless black points, which are considered to be pores of about 1 to 100 μm, were observed. The distribution was homogeneous, and it was confirmed that a porous structure was formed up to the inside of the granular material according to the present invention.

【0032】前記多孔質粒状リチウム吸着剤(粒径2.
5〜3.5mm)を内径2cmのカラムに入れ、天然海
水(リチウム濃度170ppb)を空間速度400h-1
の条件で通水した。吸着時間15日及び30日でのリチ
ウム吸着量は5mg/g及び8mg/gであった。
The porous granular lithium adsorbent (particle size: 2.
5 to 3.5 mm) in a column having an inner diameter of 2 cm, and natural seawater (lithium concentration 170 ppb) at a space velocity of 400 h -1.
Water was passed under the following conditions. The lithium adsorption amounts at the adsorption time of 15 days and 30 days were 5 mg / g and 8 mg / g.

【0033】比較例 実施例と同じリチウム含有マンガン酸化物を用い、かつ
水溶性細孔形成剤を使用しなかったこと以外は、実施例
に準拠して粒状リチウム吸着剤を製造した。この粒状吸
着剤(粒径2.5〜3.5mm)について、天然海水を
用いて実施例と同様な条件で吸着実験を行った。吸着時
間15日及び30日でのリチウム吸着量は2mg/g及
び4mg/gであった。
Comparative Example A granular lithium adsorbent was produced according to the example except that the same lithium-containing manganese oxide as in the example was used and no water-soluble pore-forming agent was used. About this granular adsorbent (particle diameter of 2.5 to 3.5 mm), an adsorption experiment was performed using natural seawater under the same conditions as in the example. The lithium adsorption amounts at adsorption times of 15 days and 30 days were 2 mg / g and 4 mg / g.

【0034】実施例のように多孔化処理を行った吸着剤
は無処理吸着剤に比べてリチウム吸着量は大きく、その
吸着速度は約2倍に向上した。このように本発明の多孔
質粒状リチウム吸着剤は優れた性能を示した。このこと
から、本発明の多孔質粒状リチウム吸着剤は、海水のよ
うな低濃度リチウム溶液から容易にリチウムを回収でき
ることは明らかである。
The adsorbent which has been subjected to the porous treatment as in the example has a larger lithium adsorption amount than the untreated adsorbent, and the adsorption speed is improved about twice. Thus, the porous granular lithium adsorbent of the present invention showed excellent performance. From this, it is clear that the porous granular lithium adsorbent of the present invention can easily recover lithium from a low-concentration lithium solution such as seawater.

【0035】[0035]

【発明の効果】本発明方法で製造した多孔質粒状リチウ
ム吸着剤は、吸着剤内部まで無数の微細孔構造を保って
いるため、吸着速度及び吸着容量が極めて大きく、しか
もリチウムに対する選択吸着性に優れ、水溶液中で安定
であり、実用的な吸着剤である。本発明に係る多孔質粒
状リチウム吸着剤を用いることにより、希薄溶液から該
リチウムを極めて効率よく経済的に回収することができ
る。
The porous granular lithium adsorbent produced by the method of the present invention maintains an infinite number of microporous structures inside the adsorbent, so that the adsorption speed and the adsorption capacity are extremely large, and the selective adsorbability to lithium is improved. Excellent, stable in aqueous solution, and practical. By using the porous granular lithium adsorbent according to the present invention, the lithium can be extremely efficiently and economically recovered from a dilute solution.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 チトラカー ラメシュ 香川県高松市林町2217番14 経済産業省産 業技術総合研究所四国工業技術研究所内 (72)発明者 加納 博文 香川県高松市林町2217番14 経済産業省産 業技術総合研究所四国工業技術研究所内 (72)発明者 大井 健太 香川県高松市林町2217番14 経済産業省産 業技術総合研究所四国工業技術研究所内 Fターム(参考) 4G066 AA13A AA14D AA26A AA26B AA32A AA33A AA34D AA43A AA47A AA50A AA53A AC15D BA22 CA45 DA07 FA03 FA11 FA12 FA21 FA22 FA26 FA34 FA37  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Chitracar Ramesh 22217-14, Hayashi-cho, Takamatsu-shi, Kagawa Prefecture Within Shikoku Institute of Industrial Technology, National Institute of Advanced Industrial Science and Technology (72) Inventor Hirofumi Kano Hayashi-cho, Takamatsu-shi, Kagawa 2217-14 Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology (Shikoku Industrial Technology Research Institute) Reference) 4G066 AA13A AA14D AA26A AA26B AA32A AA33A AA34D AA43A AA47A AA50A AA53A AC15D BA22 CA45 DA07 FA03 FA11 FA12 FA21 FA22 FA26 FA34 FA37

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有マンガン酸化物粉末と水溶
性細孔形成剤粉末と有機バインダーとを混合し、造粒し
たのち、得られた粒状物を水中に投入し、水溶性細孔形
成剤を溶出させ、次いで酸性水溶液と接触させてリチウ
ムを溶出させることを特徴とする多孔質粒状リチウム吸
着剤の製造方法。
1. A method comprising mixing a lithium-containing manganese oxide powder, a water-soluble pore-forming agent powder, and an organic binder, granulating the mixture, and pouring the obtained granules into water to form a water-soluble pore-forming agent. A method for producing a porous granular lithium adsorbent, which comprises eluted and then contacted with an acidic aqueous solution to elute lithium.
【請求項2】 リチウム含有マンガン酸化物が、一般式 Li1+xMn2-x4 (式中のxは0≦x<1)で表わされる化合物である請
求項1記載の多孔質粒状リチウム吸着剤の製造方法。
2. The porous granular material according to claim 1, wherein the lithium-containing manganese oxide is a compound represented by a general formula: Li 1 + x Mn 2-x O 4 (where x is 0 ≦ x <1). A method for producing a lithium adsorbent.
【請求項3】 水溶性細孔形成剤が水溶性無機塩である
請求項1又は2記載の多孔質粒状リチウム吸着剤の製造
方法。
3. The method for producing a porous granular lithium adsorbent according to claim 1, wherein the water-soluble pore-forming agent is a water-soluble inorganic salt.
【請求項4】 水溶性無機塩がアルカリ金属のハロゲン
化物、炭酸塩、炭酸水素塩、硝酸塩、硫酸塩及びリン酸
塩の中から選ばれた少なくとも1種である請求項3記載
の多孔質粒状リチウム吸着剤の製造方法。
4. The porous granular material according to claim 3, wherein the water-soluble inorganic salt is at least one selected from halides, carbonates, bicarbonates, nitrates, sulfates and phosphates of alkali metals. A method for producing a lithium adsorbent.
【請求項5】 水溶性細孔形成剤粉末の使用割合が、リ
チウム含有マンガン酸化物粉末100質量部当り、1〜
50質量部の範囲で選ばれる請求項1ないし4のいずれ
かに記載の多孔質粒状リチウム吸着剤の製造方法。
5. The use ratio of the water-soluble pore-forming agent powder is 1 to 100 parts by mass of the lithium-containing manganese oxide powder.
The method for producing a porous granular lithium adsorbent according to any one of claims 1 to 4, which is selected in a range of 50 parts by mass.
【請求項6】 有機バインダーが、熱可塑性樹脂である
請求項1ないし5のいずれかに記載の多孔質粒状リチウ
ム吸着剤の製造方法。
6. The method for producing a porous granular lithium adsorbent according to claim 1, wherein the organic binder is a thermoplastic resin.
【請求項7】 熱可塑性樹脂が、ポリ塩化ビニルである
請求項6記載の多孔質粒状リチウム吸着剤の製造方法。
7. The method for producing a porous granular lithium adsorbent according to claim 6, wherein the thermoplastic resin is polyvinyl chloride.
【請求項8】 有機バインダーの使用割合が、リチウム
含有マンガン酸化物100質量部当り、2〜40質量部
の範囲で選ばれる請求項1ないし7のいずれかに記載の
多孔質粒状リチウム吸着剤の製造方法。
8. The porous particulate lithium adsorbent according to claim 1, wherein the proportion of the organic binder used is selected in the range of 2 to 40 parts by mass per 100 parts by mass of the lithium-containing manganese oxide. Production method.
JP2001094350A 2001-03-28 2001-03-28 Method for producing porous granular lithium adsorbent Expired - Lifetime JP3550661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001094350A JP3550661B2 (en) 2001-03-28 2001-03-28 Method for producing porous granular lithium adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001094350A JP3550661B2 (en) 2001-03-28 2001-03-28 Method for producing porous granular lithium adsorbent

Publications (2)

Publication Number Publication Date
JP2002282684A true JP2002282684A (en) 2002-10-02
JP3550661B2 JP3550661B2 (en) 2004-08-04

Family

ID=18948561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001094350A Expired - Lifetime JP3550661B2 (en) 2001-03-28 2001-03-28 Method for producing porous granular lithium adsorbent

Country Status (1)

Country Link
JP (1) JP3550661B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896054B1 (en) 2006-11-20 2009-05-07 한국지질자원연구원 Ion-exchange type lithium adsorbent using ceramic filter and method for preparing the same
KR100896053B1 (en) 2007-11-16 2009-05-07 한국지질자원연구원 Ion-exchange type lithium adsorbent using narrow weaved fabric filter and method for preparing the same
CN102935299A (en) * 2012-09-29 2013-02-20 上海空间电源研究所 Method for extracting lithium ions by manganese oxide adsorbing material
WO2014046359A1 (en) * 2012-09-24 2014-03-27 한국지질자원연구원 Ion-exchange manganese oxide lithium adsorbent using porous structure, and method for preparing same
CN108435143A (en) * 2018-04-23 2018-08-24 陕西省膜分离技术研究院有限公司 A kind of high-hydrophilic adsorbent, preparation and the application of absorption rubidium ion or lithium ion
CN108435142A (en) * 2018-04-23 2018-08-24 陕西省膜分离技术研究院有限公司 A kind of granular ion crossover adsorbent, preparation and the application of absorption rubidium or lithium
JP2018159060A (en) * 2017-03-22 2018-10-11 東ソー株式会社 Polyvinyl chloride resin porous bead and production method thereof
KR102059860B1 (en) * 2018-12-05 2019-12-27 한국지질자원연구원 Porous absorbent granule and method for producing the same
CN113996274A (en) * 2021-11-09 2022-02-01 万华化学集团股份有限公司 Porous composite lithium adsorbent and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101388916B1 (en) * 2012-11-01 2014-04-25 충남대학교산학협력단 Preparation of highly porous adsorptive ball particle for the adsorption of lithium using carbonization process

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896054B1 (en) 2006-11-20 2009-05-07 한국지질자원연구원 Ion-exchange type lithium adsorbent using ceramic filter and method for preparing the same
KR100896053B1 (en) 2007-11-16 2009-05-07 한국지질자원연구원 Ion-exchange type lithium adsorbent using narrow weaved fabric filter and method for preparing the same
WO2014046359A1 (en) * 2012-09-24 2014-03-27 한국지질자원연구원 Ion-exchange manganese oxide lithium adsorbent using porous structure, and method for preparing same
CN102935299A (en) * 2012-09-29 2013-02-20 上海空间电源研究所 Method for extracting lithium ions by manganese oxide adsorbing material
CN102935299B (en) * 2012-09-29 2015-09-30 上海空间电源研究所 A kind of method using manganese oxide sorbing material to extract lithium ion
JP2018159060A (en) * 2017-03-22 2018-10-11 東ソー株式会社 Polyvinyl chloride resin porous bead and production method thereof
JP7095326B2 (en) 2017-03-22 2022-07-05 東ソー株式会社 Polyvinyl chloride resin porous beads and their manufacturing method
CN108435142A (en) * 2018-04-23 2018-08-24 陕西省膜分离技术研究院有限公司 A kind of granular ion crossover adsorbent, preparation and the application of absorption rubidium or lithium
CN108435142B (en) * 2018-04-23 2020-11-13 陕西省膜分离技术研究院有限公司 Granular ion exchange type adsorbent, preparation and application of granular ion exchange type adsorbent in adsorbing rubidium or lithium
CN108435143B (en) * 2018-04-23 2020-11-13 陕西省膜分离技术研究院有限公司 High-hydrophilicity adsorbent, preparation and application of adsorbent in adsorbing rubidium ions or lithium ions
CN108435143A (en) * 2018-04-23 2018-08-24 陕西省膜分离技术研究院有限公司 A kind of high-hydrophilic adsorbent, preparation and the application of absorption rubidium ion or lithium ion
KR102059860B1 (en) * 2018-12-05 2019-12-27 한국지질자원연구원 Porous absorbent granule and method for producing the same
CN113996274A (en) * 2021-11-09 2022-02-01 万华化学集团股份有限公司 Porous composite lithium adsorbent and preparation method thereof
CN113996274B (en) * 2021-11-09 2023-10-13 万华化学集团股份有限公司 Porous composite lithium adsorbent and preparation method thereof

Also Published As

Publication number Publication date
JP3550661B2 (en) 2004-08-04

Similar Documents

Publication Publication Date Title
JP3883491B2 (en) Method for producing lithium concentrate from aqueous solution containing lithium
CN109266851B (en) Method for extracting lithium through magnetic microporous lithium adsorbent
JPH0688277A (en) Lithium recovering method and electrode used therefor
CN108525636B (en) Adsorbent for rapid adsorption and desorption, preparation and application in lithium/rubidium adsorption
WO2011058841A1 (en) Method for producing lithium adsorbent, lithium adsorbent, starting materials for lithium adsorbent, lithium concentration method, and lithium concentration device
JP3550661B2 (en) Method for producing porous granular lithium adsorbent
CN109078602B (en) Magnetic microporous lithium adsorbent and preparation method and application thereof
EP4119684A1 (en) Orthosilicate-based adsorbent and selective metal adsorption from brines using orthosilicate-based adsorbent
JP2020193130A (en) Method for producing lithium hydroxide
JP3937865B2 (en) Method for producing lithium adsorbent
JP3706842B2 (en) Adsorption method of lithium ion from aqueous solution containing lithium by adsorbent
CN113509910B (en) Preparation method of metal ferricyanide adsorbent particles for liquid rubidium and cesium resource extraction
JP3210956B2 (en) Granular lithium adsorbent and method for producing the same
JPH0626661B2 (en) Granular lithium adsorbent and lithium recovery method using the same
Zhao et al. One-pot granulation of cross-linked PVA/LMO for efficient lithium recovery from gas field brine
WO2011115742A1 (en) Methods of producing metal oxides, a method of producing adsorption media including the same, and a precursor of an active component including the metal oxide
JPS60153940A (en) Adsorbent of dissolved fluorine ion
JP3646156B2 (en) Film-like lithium adsorbing material, method for producing the same, and method for recovering lithium using the same
JP2013188716A (en) Magnetic adsorbent
JP3412003B2 (en) Novel lithium adsorbent and method for producing the same
JP4637737B2 (en) Regeneration method of boron adsorbent
KR100896054B1 (en) Ion-exchange type lithium adsorbent using ceramic filter and method for preparing the same
JP2001224957A (en) Agent for selectively separating lithium and its manufacturing method
CN115945179B (en) Low-solution-loss high-adsorption capacity salt lake lithium-extracting boron-extracting adsorption material and preparation method thereof
JPH105585A (en) Lithium ion adsorbing agent

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3550661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term