JP4637737B2 - Regeneration method of boron adsorbent - Google Patents

Regeneration method of boron adsorbent Download PDF

Info

Publication number
JP4637737B2
JP4637737B2 JP2005363042A JP2005363042A JP4637737B2 JP 4637737 B2 JP4637737 B2 JP 4637737B2 JP 2005363042 A JP2005363042 A JP 2005363042A JP 2005363042 A JP2005363042 A JP 2005363042A JP 4637737 B2 JP4637737 B2 JP 4637737B2
Authority
JP
Japan
Prior art keywords
boron
adsorbent
water
regenerating
boron adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005363042A
Other languages
Japanese (ja)
Other versions
JP2007160271A (en
Inventor
利夫 四元
晴彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kaisui Co Ltd
Original Assignee
Nihon Kaisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kaisui Co Ltd filed Critical Nihon Kaisui Co Ltd
Priority to JP2005363042A priority Critical patent/JP4637737B2/en
Publication of JP2007160271A publication Critical patent/JP2007160271A/en
Application granted granted Critical
Publication of JP4637737B2 publication Critical patent/JP4637737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ホウ素の吸着剤として使用済みの高ホウ素含有のホウ素吸着剤の再生方法に関する。   The present invention relates to a method for regenerating a high boron-containing boron adsorbent used as a boron adsorbent.

水にはホウ素が含まれる場合があり、ホウ素は自然界にも広く分布しており、海水や火山地帯の地下水、温泉水等にも含まれることがある。最近、排水などに係わる公共用水域および地下水の水質汚濁に係る人の健康の保護に関する環境基準項目として、ホウ素およびフッ素が追加された。ホウ素は、植物の成育にとって必須の元素であるが、過剰に存在すると植物の成長に悪影響を及ぼすことがわかってきている。さらに、人体に対しても、必ずしも明確でないが、低濃度でさえも継続摂取した場合に生殖機能の低下等の健康障害を引き起す可能性が指摘されており、このため既に国内でもWHO世界保健機構の条例により0.5〜2mg/l以下という排水中許容濃度を制定しているところもある。   The water may contain boron. Boron is widely distributed in nature and may be contained in seawater, volcanic groundwater, hot spring water, and the like. Recently, boron and fluorine have been added as environmental standard items for the protection of human health related to water pollution in public water areas and groundwater related to drainage. Boron is an essential element for the growth of plants, but it has been found that excessive amounts have an adverse effect on plant growth. Furthermore, although it is not necessarily clear for the human body, it has been pointed out that it may cause health problems such as decreased reproductive function when continuously ingested even at low concentrations. There is a place that establishes an allowable concentration in wastewater of 0.5 to 2 mg / l or less according to the regulations of the mechanism.

我国でも平成14年5月29日に「土壌汚染対策法」が公布され、平成15年2月15日より施行された。この対策法の対象となる物質にホウ素があげられ、その第5条に土壌含有基準は土壌1kgにつき400mg以下であること、土壌溶出量基準は検液1lにつき1mg以下であること、土壌環境基準は検液1lにつき1mg以下という厳しい基準が定められた。ホウ素の環境基準として1mg/l以下が告示され、施行されたため、これらのホウ素を含む工場排水、ごみ焼却場洗煙排水、地熱発電排水等の排水中のホウ素除去処理が必要となってきている。   In Japan, the “Soil Contamination Countermeasures Law” was promulgated on May 29, 2002 and came into effect on February 15, 2003. Boron is one of the substances subject to this countermeasure, and Article 5 of them states that the soil content standard is 400 mg or less per 1 kg of soil, the soil elution amount standard is 1 mg or less per 1 liter of test solution, and the soil environment standard A strict standard of 1 mg or less per liter of test solution was established. Since 1 mg / l or less has been announced and implemented as an environmental standard for boron, boron removal from wastewater such as industrial wastewater, waste incineration sewage wastewater, and geothermal power generation wastewater containing these boron has become necessary. .

これまで、ホウ素含有排水を処理する方法としては、硫酸アルミニウムや消石灰等を除去剤として該排水に添加することにより不溶性沈殿として除去する方法、ホウ素選択性キレート樹脂または希土類水酸化化合物含有物等の吸着剤により吸着させる方法、逆浸透膜により処理する方法等が知られている。それぞれに利点があるが、これらの除去剤、吸着剤の再生方法に適当なものがなく汎用されるに至っていないのが現状である。   Up to now, as a method for treating boron-containing wastewater, a method of removing it as an insoluble precipitate by adding aluminum sulfate or slaked lime to the wastewater as a remover, a boron-selective chelate resin or a rare earth hydroxide compound-containing material, etc. A method of adsorbing with an adsorbent, a method of treating with a reverse osmosis membrane, and the like are known. Although each has advantages, there is no suitable method for regenerating these removers and adsorbents, and they have not been widely used.

ホウ素選択性キレート樹脂の代表樹脂であるN−メチルグルカミン基を有するホウ素選択吸着樹脂からなる吸着材は、是非とも再生使用が望まれており、特許文献1(特開2003−094051号公報)には、N−メチルグルカミン基を有するホウ素選択吸着樹脂に吸着したホウ素を鉱酸により溶離後、NaOH溶液を通液して、該ホウ素選択吸着樹脂を遊離型に変換する再生処理を行うに際し、NaOH溶液の通液量を、前記NaOH溶液の通液後、洗浄及び逆洗浄を行った状態で前記ホウ素選択吸着樹脂を取り囲む溶液のpHが7.5〜8.5になるように制御することを特徴とするホウ素選択吸着樹脂の再生方法が提案されている。しかしながら、前述の操作を行うことは容易でないため、使用するにあたり大きな問題となってしまっている。   An adsorbent made of a boron selective adsorption resin having an N-methylglucamine group, which is a representative resin of a boron-selective chelate resin, is definitely desired to be recycled, and Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-094051). In the case of performing a regeneration treatment in which boron adsorbed on a boron selective adsorption resin having an N-methylglucamine group is eluted with a mineral acid and then passed through an NaOH solution to convert the boron selective adsorption resin into a free form. The pH of the NaOH solution is controlled so that the pH of the solution surrounding the boron selective adsorption resin is 7.5 to 8.5 after washing and back washing after the NaOH solution is passed. A method for regenerating a boron selective adsorption resin characterized by the above has been proposed. However, since it is not easy to perform the above-mentioned operation, it has become a big problem in use.

そして、その前記方法の改良方法として特許文献2(特開2002−233864号公報)には、ホウ素を含む排水を処理して得られたN−メチルグルカミン基を有するホウ素選択吸着樹脂に鉱酸を通液してホウ素溶離液を回収するに当たり、該回収を行う期間を少なくとも2以上に分割し、夾雑物の少ない期間を溶離液のpHの変動により定めて溶離液のみをホウ素回収用溶液とすることを特徴とするホウ素選択吸着樹脂から溶離されるホウ素含有溶離液の処理方法や、特許文献3(特開2003−326251号公報)の水酸化物イオンと反応することで水酸化物として沈殿を生じる金属と、ホウ素と、を含有する溶液中からホウ素を除去する方法であって、前記水酸化物イオンと反応することで水酸化物として沈殿を生じる金属と、ホウ素とを含有する溶液をアルカリ性にすることで、当該溶液中の金属を水酸化物として沈殿せしめ、当該溶液中から金属を除去するための沈殿工程と、吸着材を用いて、沈殿工程終了後の溶液中のホウ素を吸着するためのホウ素吸着工程と、酸溶液を用いて、前記ホウ素が吸着している吸着材からホウ素を溶離するためのホウ素溶離工程と、アルカリ溶液を用いて、前記ホウ素が溶離された吸着材をホウ素吸着工程で使用可能な吸着材とするための吸着材再生 工程とを有し、前記吸着材は、少なくともOH基を2つ以上有し、水に不溶であり、ホウ素を吸着する性質を有しており、かつ、酸溶液により吸着したホウ素を溶離し、アルカリ溶液によりホウ素の吸着が可能な吸着材に再生される性質を有する有機化合物であることを特徴とするホウ素除去方法がある。しかし、使用方法の違いがあり利点はあるが、pH調整煩雑の欠点は解消していない。   As an improved method of the above method, Patent Document 2 (Japanese Patent Laid-Open No. 2002-233864) discloses a mineral acid on a boron selective adsorption resin having an N-methylglucamine group obtained by treating waste water containing boron. In recovering the boron eluent by passing the solution, the period for performing the recovery is divided into at least two, and the period during which there is less impurities is determined by the pH fluctuation of the eluent, and only the eluent is used as the boron recovery solution. A method for treating a boron-containing eluent eluted from a boron selective adsorption resin, characterized in that it precipitates as a hydroxide by reacting with a hydroxide ion of Patent Document 3 (Japanese Patent Laid-Open No. 2003-326251) A method of removing boron from a solution containing a metal that produces succinate and boron, a metal that precipitates as a hydroxide by reacting with the hydroxide ions, By making the solution containing elemental alkaline, the metal in the solution is precipitated as a hydroxide, and a precipitation step for removing the metal from the solution and using an adsorbent, after the completion of the precipitation step A boron adsorption step for adsorbing boron in the solution of the solution, a boron elution step for eluting boron from the adsorbent on which the boron is adsorbed using an acid solution, and an boron solution using the alkaline solution And an adsorbent regeneration step for making the adsorbent eluted with adsorbent usable in the boron adsorption step, the adsorbent has at least two OH groups and is insoluble in water, It is an organic compound having a property of adsorbing boron, eluting boron adsorbed by an acid solution, and regenerating into an adsorbent capable of adsorbing boron by an alkaline solution. Ho There is an element removal method. However, although there are differences in usage and advantages, the disadvantage of complicated pH adjustment has not been solved.

そこで吸着剤の中でも、前記欠点がなく、ホウ素吸着剤により吸着させる方法は、注目されるところではある。その吸着剤再生方法について特許文献4(特開昭59−132986号公報)には、前記N−メチルグルカミン基を有するホウ素選択吸着樹脂からなる特殊樹脂吸着材の再生方法の酸による脱離する方法とは逆のアルカリ水溶液を用いてホウ素を脱離する再生方法が記載されている。しかし、この方法では再生時のホウ素の吸着が緩やかに起こることが確認されており、吸着剤よりホウ素を洗い出すのに大量の水を必要としなければならない問題があった。   Therefore, among the adsorbents, a method of adsorbing with a boron adsorbent without the above-described drawbacks is attracting attention. Regarding the adsorbent regeneration method, Patent Document 4 (Japanese Patent Laid-Open No. 59-132986) discloses that the regeneration method of the special resin adsorbent comprising the boron selective adsorption resin having the N-methylglucamine group is desorbed by acid. A regeneration method is described in which boron is eliminated using an alkaline aqueous solution opposite to the method. However, in this method, it has been confirmed that the adsorption of boron at the time of regeneration occurs slowly, and there is a problem that a large amount of water is required to wash out boron from the adsorbent.

また、前記方法の改良方法に特許文献5(特開2004−057870号公報)に、ホウ素含有水を希土類元素の水酸化物を担持した造粒体と接触させて、ホウ素を吸着除去する吸着工程と、ホウ素を吸着した造粒体をアルカリ水溶液と接触させて、ホウ素を脱離する脱離工程を有するホウ素含有水の処理方法において、造粒体をアルカリ水溶液と接触させる前に、又は、接触させた後に、造粒体を強酸水溶液と接触させる中和酸処理工程を有することを特徴とするホウ素含有水の処理方法が、提案されている。この方法は、該造粒体のホウ素吸着性能を低下させることなく、安定して処理を続けることができるホウ素含有水の処理方法を提供するけれども強酸処理工程を有する操作が、酸が多すぎればホウ素脱離に影響し酸が少なければ粒子状吸着剤内部も含めて前記方法の改良が不十分になるのでその操作が複雑である意味でpH調整の煩雑さの欠点があり、その排水の初期から完了までのpHも排水基準でpH=7〜8を守らねばならない調整も煩雑である。   Further, as an improved method of the above method, Patent Document 5 (Japanese Patent Application Laid-Open No. 2004-057870) discloses an adsorption step in which boron-containing water is brought into contact with a granule carrying a rare earth element hydroxide to adsorb and remove boron. And a boron-containing water treatment method having a desorption step of desorbing boron by bringing the granulated body adsorbing boron into contact with an alkaline aqueous solution, or before contacting the granulated body with the alkaline aqueous solution A method for treating boron-containing water, characterized by having a neutralizing acid treatment step in which the granulated body is brought into contact with a strong acid aqueous solution after being made, has been proposed. Although this method provides a treatment method for boron-containing water that can continue the treatment stably without deteriorating the boron adsorption performance of the granulated body, if the operation having a strong acid treatment step has too much acid, If there is little acid that affects boron desorption, the improvement of the method including the inside of the particulate adsorbent becomes insufficient, so there is a disadvantage of complicated pH adjustment in the sense that the operation is complicated, and the initial stage of the drainage Adjustment from which pH = 7 to 8 must be maintained on the basis of drainage is also complicated.

しかも、再生操作上、前述の問題点が解消されておらず、該ホウ素を吸着した希土類元素の水酸化物を担持した造粒体をアルカリ性水溶液でホウ素を脱離し、その後大量の水で該造粒体を洗浄した後でも該造粒体から少しずつホウ素が漏れ出すことが分かり、排出基準である10mg/lを下回るところまで水洗を行うと、かなりの時間を要することとなっていた。また、時間がかかるだけでなく通水に要する水の量もかなりの量必要となり、この再生時に使用した水は高濃度のホウ素溶液であるため、膨大な量の排水を処理するために余計な手間がかかることになってしまう。つまり、かなり大量の洗浄水で長時間(例えば5時間以上、通水倍率15倍以上)かけて洗浄しても残存吸着ホウ素が止め処なく溶出することが分かり、溶出が止まるまで吸着操作を行うことができない。   In addition, the above-mentioned problems have not been solved in the regenerating operation, and the granule supporting the rare earth element hydroxide adsorbed with boron is desorbed with an alkaline aqueous solution, and then the granulation is performed with a large amount of water. Even after washing the granules, it was found that boron leaked out from the granules little by little, and it took a considerable amount of time to carry out water washing to below the discharge standard of 10 mg / l. In addition to the time required, a considerable amount of water is required to pass water, and the water used at the time of regeneration is a high-concentration boron solution, so it is extraneous to treat a huge amount of wastewater. It will take time and effort. In other words, it can be seen that the remaining adsorbed boron elutes without stopping even if it is washed for a long time (for example, 5 hours or more and the water flow rate is 15 times or more) with a large amount of washing water, and the adsorption operation is performed until the elution stops. I can't.

そこで対策としてアルカリ脱離後に、前述の該造粒体を取り出して少量の強酸で中和することが考えられるが、なぜかその造粒体内部まで中和され難いらしく、短時間や長時間の中和ではやはり少しずつホウ素が排水中に漏れ出すことは止められず前述の大量の洗浄水の場合と変わらない欠点があることが分かった。
特開2003−094051号公報 特開2002−233864号公報 特開2003−326251号公報 特開昭59−132986号公報 特開2004−057870号公報
Therefore, it is conceivable to take out the granulated product and neutralize it with a small amount of strong acid after alkali removal as a countermeasure. However, it seems difficult to neutralize the granulated product for some reason. It was found that neutralization cannot prevent boron from leaking into the waste water little by little, and has the same disadvantage as the large amount of washing water described above.
JP 2003-094051 A JP 2002-233864 A JP 2003-326251 A JP 59-132986 A JP 2004-057870 A

本発明は、こうした実情の下に、ホウ素吸着剤として使用済みの高濃度にホウ素を吸着したホウ素吸着剤を本来のホウ素吸着能を殆ど低下させることなく、再生時に問題となっていたホウ素の溶出を短時間で抑えることが可能なホウ素吸着剤の再生方法を提供することを目的とするものである。   Under such circumstances, the present invention is a boron adsorbent which has been used as a boron adsorbent and has adsorbed boron at a high concentration. It is an object of the present invention to provide a method for regenerating a boron adsorbent capable of suppressing the above in a short time.

本発明者等は上記課題を鋭意研究し、ホウ素吸着剤として使用済みのホウ素吸着剤をアルカリ水性溶液で処理した後、さらに、アルカリ土類金属塩又はアンモニウム塩の1種以上からなる化合物により処理することが前記課題の解決に極めて有効なことを見出して、本発明に到達した。   The present inventors diligently researched the above problems, and after treating a boron adsorbent used as a boron adsorbent with an alkaline aqueous solution, it was further treated with a compound comprising at least one of an alkaline earth metal salt or an ammonium salt. As a result, the present invention has been found.

すなわち、本発明は下記(1)〜(7)に係わる。
(1)使用済みの希土類元素水酸化物及び/又は含水酸化物を含有するホウ素吸着剤をアルカリ水性溶液と接触させて、ホウ素を所定の濃度域まで脱離後、アルカリ土類金属塩の1種以上からなる化合物の水溶液と接触させることを特徴とするホウ素吸着剤の再生方法。
(2)該濃度域が、10〜1000mg/lであることを特徴とする前記(1)記載のホウ素吸着剤の再生方法。
(3)該アルカリ土類金属塩が塩化マグネシウムであることを特徴とする前記(1)または(2)記載のホウ素吸着剤の再生方法。
)該ホウ素吸着剤が、平均2次粒子径0.2〜25ミクロンmの希土類元素水酸化物及び/又は含水酸化物の集合体の粒状体であってその粒状体表面に高分子濃度の高い層を有することを特徴とする前記(1)〜()のホウ素吸着剤の再生方法。
)使用済みの希土類元素水酸化物及び/又は含水酸化物を含有するホウ素吸着剤を有するホウ素吸着剤充填容器内にアルカリ性溶液を通水後、アルカリ土類金属塩の1種以上からなる化合物を加えた、ホウ素含有液を通水倍率15倍以下で通水して該含有水容量当たりのホウ素濃度を10mg/l以下にすることを特徴とするホウ素吸着剤の再生方法。
)該ホウ素含有剤が、排水処理用であることを特徴とする前記(1)〜(5)のホウ素吸着剤の再生方法。
That is, the present invention relates to the following (1) to (7).
(1) a boron adsorbent containing spent rare earth hydroxides and / or hydrated oxide is contacted with an alkaline aqueous solution, after elimination of boron to a predetermined concentration range, the first alkaline earth metal salts A method for regenerating a boron adsorbent, comprising contacting with an aqueous solution of a compound comprising at least species.
(2) The method for regenerating a boron adsorbent according to (1), wherein the concentration range is 10 to 1000 mg / l.
(3) (1) or (2) reproducing the method of the boron adsorbent, wherein the said alkaline earth metal salt is magnesium chloride.
( 4 ) The boron adsorbent is an aggregate of rare earth element hydroxides and / or hydrated oxides having an average secondary particle size of 0.2 to 25 microns, and has a polymer concentration on the surface of the granules. The method for regenerating a boron adsorbent according to any one of (1) to ( 3 ) above, comprising a high layer.
( 5 ) After passing an alkaline solution into a boron adsorbent-filled container having a boron adsorbent containing a used rare earth element hydroxide and / or a hydrated oxide, it is composed of one or more alkaline earth metal salts. A method for regenerating a boron adsorbent, comprising adding a compound and passing a boron-containing liquid at a water flow rate of 15 times or less so that the boron concentration per volume of the contained water is 10 mg / l or less.
( 6 ) The method for regenerating a boron adsorbent according to any one of (1) to (5), wherein the boron-containing agent is for wastewater treatment.

本発明の再生方法により、高濃度にホウ素が吸着されたホウ素吸着剤を本来のホウ素吸着能を殆ど低下させずに、再生処理の際のホウ素溶出を短時間で抑えて、ホウ素吸着剤を回復させることができ、しかもその再生処理の際に排水中に基準を超えてホウ素が漏れ出すことなく、ホウ素吸着剤を再生することができる。   By the regeneration method of the present invention, the boron adsorbent in which boron is adsorbed at a high concentration hardly recovers the boron adsorbent during the regeneration process in a short time without substantially reducing the original boron adsorption capacity and recovers the boron adsorbent. In addition, the boron adsorbent can be regenerated without the boron leaking beyond the standard in the waste water during the regeneration process.

本発明について、以下具体的に説明する。
本発明に使用するホウ素吸着剤は、高分子樹脂と希土類元素水酸化物及び/又は含水酸化物との混合物粒子体であり、その粒子体表面には高濃度の薄い多孔質の該高分子樹脂層がある吸着剤である。
その混合物粒子体は、希土類元素水酸化物及び/又は含水酸化物を高分子樹脂100重量部当たり600重量部以上の割合で含有している。この希土類元素含有重量が600重量部より少ないとホウ素吸着量が少なくて、該ホウ素吸着剤を再生しても従来技術水準の吸着性を越えられない。
The present invention will be specifically described below.
The boron adsorbent used in the present invention is a mixture particle of a polymer resin and a rare earth element hydroxide and / or a hydrated oxide, and the surface of the particle has a high concentration of thin porous polymer resin. Adsorbent with a layer.
The mixture particles contain rare earth element hydroxide and / or hydrated oxide at a ratio of 600 parts by weight or more per 100 parts by weight of the polymer resin. When the rare earth element content is less than 600 parts by weight, the amount of boron adsorbed is small, and even if the boron adsorbent is regenerated, the adsorptivity of the prior art level cannot be exceeded.

この混合物粒子体の形状は粒子状で水が通過出来る形の成型体でも良い。これら混合物を通水に支障なくカラムなどに充填して用いることができる構造形状であればよい。網状成型体でも本発明の目的に合えば良い。また、ほぼ均一な丸い粒状体であれば、平均粒径0.2mm〜5.0mmが好ましく用いられる。粒径0.2mm以下では充填密度が高くなって通水抵抗が高くなり再生作業性が劣り易いし、5.0mm以上では、再生用の水または特定水溶液と粒状体の単位時間当たりの接触面積が少なくなり易く結果としてホウ素吸着能回復が遅くなり易い。   The mixture particles may be in the form of particles and shaped so that water can pass through. Any structure may be used as long as the mixture can be filled in a column or the like without causing any trouble in passing water. A net-like molded body may satisfy the object of the present invention. Moreover, if it is a substantially uniform round granular body, the average particle diameter of 0.2 mm-5.0 mm is used preferably. If the particle size is 0.2 mm or less, the packing density becomes high and the water flow resistance becomes high, and the regeneration workability tends to be inferior. As a result, recovery of boron adsorption ability tends to be slow.

また、本発明吸着剤の混合粒子体の好ましい内部断面構造は、図7に模式的に示すごとく高分子樹脂の多孔質のスキン層が形成されており、また、粒子表面に近い部分に内部より極めて濃度の高い高分子樹脂の層がある構造であり、中心部には空洞部があり、その空洞部から表面方向に放射状の細い空隙があり、該樹脂濃度の高い表面層の内部近傍には、細かい空隙孔が内部よりも密に多数存在している断面構造が好ましい。理由は定かでないがこの構造が再生状態を極めて良好にしていることと推定される。   In addition, a preferable internal cross-sectional structure of the adsorbent mixed particle body of the present invention is that a porous skin layer of a polymer resin is formed as schematically shown in FIG. It has a structure with a polymer resin layer with a very high concentration, with a cavity in the center, radial thin voids from the cavity toward the surface, and in the vicinity of the inside of the surface layer with a high resin concentration. A cross-sectional structure in which a large number of fine voids are present densely than the inside is preferable. Although the reason is not clear, it is presumed that this structure makes the reproduction state very good.

本発明の高分子樹脂とは、アニオン交換樹脂やキレート系樹脂よりも耐熱性があって水に溶出しない耐水性を持つ有機高分子重合体樹脂や天然高分子またはこれら樹脂の誘導体である。その数平均分子量は500以上好ましくは2000以上あれば良い。分子量が低すぎたり水溶性親水性樹脂では溶出する点で好ましくなく、高温度では溶出が更に大きくなり耐熱性も少ない。   The polymer resin of the present invention is an organic polymer resin, a natural polymer, or a derivative of these resins that has higher heat resistance than an anion exchange resin or a chelate resin and does not elute into water. The number average molecular weight may be 500 or more, preferably 2000 or more. The molecular weight is too low or the water-soluble hydrophilic resin is not preferable in terms of elution, and the elution is further increased and the heat resistance is low at a high temperature.

好ましい樹脂として、アセタール化ポリビニルアルコール系樹脂、ポリフッ化ビニリデン系樹脂、ポリテトラフルオロエチレン系樹脂等のフッ素樹脂などを挙げることができる。例えばポリフッ化ビニリデン樹脂、ポリフッ化ビニリデン6フッ化プロピレン共重合樹脂は、希土類元素水酸化物及び/又は含水酸化物を高濃度に含有させ易く、耐水性、耐薬品性に優れ好ましい樹脂といえる。またポリテトラフルオロエチレン樹脂やその(共)重合体も同様である。その他、耐水性に優れた有機高分子や天然高分子及びその誘導体も、本発明の目的に合った有用な樹脂といえる。   Preferable resins include fluorine resins such as acetalized polyvinyl alcohol resins, polyvinylidene fluoride resins, polytetrafluoroethylene resins, and the like. For example, a polyvinylidene fluoride resin and a polyvinylidene fluoride hexafluoride propylene copolymer resin can be said to be preferable because they can easily contain a rare earth element hydroxide and / or a hydrated oxide at a high concentration and are excellent in water resistance and chemical resistance. The same applies to polytetrafluoroethylene resin and its (co) polymer. In addition, organic polymers having excellent water resistance, natural polymers, and derivatives thereof can be said to be useful resins that meet the object of the present invention.

本発明の希土類元素水酸化物及び/又は含水酸化物とは、1991年元素の周期表による3(3A)族の希土類元素であって、スカンジウムSc、イットリウムY、ランタノイド元素、ランタンLa、セリウムCe、プラセオジウムPr、ネオジウムNd、プロメチウムPm、サマリウムSm、ユウロピウムEu、カドリニウムGd、テルビウムTb、ジスプロシウムDy、ホルミウムHo、エルビウムEr、ツリウムTm、イッテルビウムYb、ルテチウムLuの水酸化物である。なかでも本発明の目的に合致して好ましい元素はCeであり、4価のCeが好ましい。これら希土類元素水酸化物及び/又は含水酸化物の混合体も有用である。   The rare earth element hydroxide and / or hydrated oxide of the present invention is a 3 (3A) group rare earth element according to the periodic table of elements of 1991, and is scandium Sc, yttrium Y, lanthanoid element, lanthanum La, cerium Ce. , Praseodymium Pr, neodymium Nd, promethium Pm, samarium Sm, europium Eu, cadmiumium Gd, terbium Tb, dysprosium Dy, holmium Ho, erbium Er, thulium Tm, ytterbium Yb, lutetium Lu. Among these, Ce is a preferable element in accordance with the object of the present invention, and tetravalent Ce is preferable. Mixtures of these rare earth element hydroxides and / or hydrated oxides are also useful.

本発明の希土類元素水酸化物及び/又は含水酸化物には水を含有すると尚好ましく、この含水量と、従来不可能と思われていた高分子樹脂100重量部当たり600重量部以上という従来水準(樹脂100重量部当たり400重量部)をはるかに超えて希土類元素水酸化物及び/又は含水酸化物を高含量で含有する技術によって作られる、ホウ素吸着剤の吸着性能は、従来技術の2〜4倍の驚くべき値を示す。   The rare earth element hydroxide and / or hydrated oxide of the present invention preferably contains water, and this moisture content is a conventional level of 600 parts by weight or more per 100 parts by weight of a polymer resin, which has been considered impossible. The adsorption performance of boron adsorbents made by a technology containing a high content of rare earth element hydroxide and / or hydrated oxide far exceeding (400 parts by weight per 100 parts by weight of resin) 4 times astonishing value.

その理由は定かでないが、含水することにより希土類元素水酸化物及び/又は含水酸化物の流動性がよくなり樹脂との適当な混合が行われることと、水が2次凝集している希土類元素水酸化物及び/又は含水酸化物を適度の粒径にする作用と、その2次粒子の空隙を作って適度のホウ素含有水との接触を可能にすること、及び水酸化物が酸化物に戻ることを防止し結果としてホウ素吸着能が高まっているものと推定される。   The reason for this is not clear, but the water content improves the fluidity of the rare earth element hydroxide and / or the hydrous oxide, so that appropriate mixing with the resin is performed, and the rare earth element in which the water is secondarily aggregated The effect of making the hydroxide and / or hydroxide a suitable particle size, creating voids in the secondary particles to allow contact with moderate boron-containing water, and the hydroxide into the oxide It is presumed that the boron adsorption ability is increased as a result of preventing the return.

この含水率を測定する方法は、含水希土類元素水酸化物及び/又は含水酸化物をルツボに入れ、800℃の高温に1時間放置してその蒸発分を処理前の希土類元素水酸化物及び/又は含水酸化物量で除した値を含水率で表現する。   This moisture content is measured by placing a hydrous rare earth element hydroxide and / or a hydrous oxide in a crucible and leaving it at a high temperature of 800 ° C. for 1 hour, and then evaporating the evaporated rare earth element hydroxide and / or Or the value which remove | divided with the amount of hydrated oxide is expressed by the moisture content.

この希土類元素水酸化物及び/又は含水酸化物の2次粒子は、平均粒径0.01〜0.1ミクロンmの1次粒子の凝集体であり、該2次粒子の平均粒径は0.2〜25ミクロンmが良く0.5〜10.0ミクロンmが好ましい。2ミクロンm以下では樹脂混合で包まれてホウ素含有水との接触が不足することがあり、15ミクロンm以上では樹脂との混合が良くないことがある。   The secondary particles of the rare earth element hydroxide and / or hydrated oxide are aggregates of primary particles having an average particle diameter of 0.01 to 0.1 μm, and the average particle diameter of the secondary particles is 0. 2 to 25 microns is preferable, and 0.5 to 10.0 microns is preferable. If it is 2 microns or less, it may be wrapped with resin mixing and contact with the boron-containing water may be insufficient, and if it is 15 microns or more, mixing with the resin may be poor.

本発明の再生方法において、ホウ素をアルカリ脱離後に加えるアルカリ土類金属塩又はアンモニウム塩の1種以上からなる化合物(以下添加剤という)とは、好ましくはマグネシウム、カルシウム、ストロンチウム、バリウム、ルビジウム、セシウム等の金属の塩酸、硝酸、硫酸等の塩又はアンモニウムの塩酸、硝酸、硫酸等の塩である。中でも、塩化カルシウム、塩化アンモニウム、硝酸アンモニウム、塩化マグネシウムが比較的短時間でpHを中性域まで変化させることが可能であり、本発明の目的に合致してより好ましい。   In the regeneration method of the present invention, the compound consisting of one or more of alkaline earth metal salt or ammonium salt (hereinafter referred to as additive) to which boron is added after alkali elimination is preferably magnesium, calcium, strontium, barium, rubidium, It is a salt of a metal such as cesium such as hydrochloric acid, nitric acid or sulfuric acid, or a salt of ammonium such as hydrochloric acid, nitric acid or sulfuric acid. Among these, calcium chloride, ammonium chloride, ammonium nitrate, and magnesium chloride can change the pH to a neutral range in a relatively short time, and are more preferable in conformity with the object of the present invention.

該アルカリ土類金属塩又はアンモニウム塩の1種以上からなる化合物の添加量は、水性溶液濃度で10g/l以下であれば良く、好ましくは5g/l以下である。含水塩の場合は含水を省いた質量計算になる。   The amount of the compound consisting of one or more of the alkaline earth metal salt or ammonium salt may be 10 g / l or less, preferably 5 g / l or less in terms of aqueous solution concentration. In the case of a hydrated salt, the mass calculation is performed without the hydrated content.

ホウ素用吸着剤の再生は、アルカリ水性溶液で吸着剤からホウ素を脱離させた後、アルカリ土類金属塩又はアンモニウム塩の1種以上からなる化合物を濃度10g/l以下含有する水性溶液を通水倍率3〜15の範囲で通液することにより行なう。上記の塩類水溶液は、再生工程のアルカリ水性溶液によるホウ素の脱離の直後に通液しても良いし、再生工程の終了後に実液とともに通液しても良い。この操作により、通常通水倍率3〜5、より確実には通水倍率3〜10の範囲で通液することにより該含有水容量当たりのホウ素濃度を10mg/l以下にすることが可能である。   The regeneration of the adsorbent for boron is carried out by removing boron from the adsorbent with an alkaline aqueous solution and then passing an aqueous solution containing a compound composed of at least one of an alkaline earth metal salt or an ammonium salt at a concentration of 10 g / l or less. It is carried out by passing the liquid at a water magnification in the range of 3-15. The aqueous salt solution may be passed immediately after the elimination of boron by the alkaline aqueous solution in the regeneration step, or may be passed along with the actual solution after the regeneration step. By this operation, it is possible to reduce the boron concentration per volume of contained water to 10 mg / l or less by passing the liquid normally within the range of 3 to 5 and more surely 3 to 10. .

この添加剤の作用効果は、どのような機構により発現するものであるかは定かでないが、樹脂内に残留したアルカリと反応して速やかにpHを中性域まで下げ、脱離するホウ素量を抑えているものと推察される。
尚、使用済みの吸着剤とは、例えばホウ素を吸着剤1l当たり5g以上吸着している吸着剤である。また、アルカリ水性溶液でホウ素を低濃度に脱離するとは、pH=12以上好ましくはpH=13以上のアルカリ水性溶液で、ホウ素を吸着している吸着剤を洗浄することであり、このアルカリ処理により吸着されていたホウ素は吸着剤より脱離し、吸着剤1l当たりのホウ素吸着量を例えば1g以下、好ましくは0.5g以下まで脱離することができる。
また、本発明に使用するアルカリ水性溶液は、例えば、水酸化ナトリウムの水溶液が好ましい。
尚本発明の方法で再生されたホウ素吸着剤は、他の回分式、固定床式、流動床式、移動床式、浸透圧式、逆浸透圧式、共沈式方法と併用しても吸着能を活性化維持させ好ましい。
It is not clear what mechanism the effect of this additive is manifested, but it reacts with the alkali remaining in the resin to quickly lower the pH to the neutral range, thereby reducing the amount of boron released. It is inferred that it is suppressed.
The used adsorbent is, for example, an adsorbent that adsorbs 5 g or more of boron per 1 l of adsorbent. Further, desorbing boron to a low concentration with an alkaline aqueous solution is to wash the adsorbent adsorbing boron with an alkaline aqueous solution having a pH = 12 or more, preferably pH = 13 or more. The boron adsorbed by the above can be desorbed from the adsorbent, and the amount of boron adsorbed per liter of the adsorbent can be desorbed to, for example, 1 g or less, preferably 0.5 g or less.
Moreover, the aqueous alkaline solution used in the present invention is preferably an aqueous solution of sodium hydroxide, for example.
The boron adsorbent regenerated by the method of the present invention has an adsorption capacity even when used in combination with other batch, fixed bed, fluidized bed, moving bed, osmotic, reverse osmotic, and coprecipitation methods. It is preferable to maintain the activation.

以下に本発明の実施例、比較例を示す。
文中のSVとは、空塔速度(スペースヴェロシテイ)であり、吸着剤当たりの通水量であり、吸着剤1l当たりの水の通水速度のことである。例えばSV=20の場合は、20l/hrで通水したことを言う。
また、通水倍率とは、吸着剤容量当たり何倍の水を流したかを意味するもので、例えば、1lの吸着剤で通水倍率200というと、水を200l流したことを言う。
飽和吸着量とは、特定濃度のホウ素溶液で吸着剤にそのホウ素を吸着させた場合の最大どれだけ吸着出来るかを示す値で、ホウ素濃度により変わる。
Examples of the present invention and comparative examples are shown below.
The SV in the sentence is the superficial velocity (space velocity), the amount of water flow per adsorbent, and the water flow rate per liter of adsorbent. For example, when SV = 20, it means that water was passed at 20 l / hr.
Further, the water flow rate means how many times the amount of water has flowed per adsorbent volume. For example, when the water flow rate is 200 with 1 l of adsorbent, it means that 200 l of water has flowed.
The saturated adsorption amount is a value indicating the maximum amount of adsorption when boron is adsorbed to the adsorbent with a boron solution of a specific concentration, and varies depending on the boron concentration.

(実施例1、比較例1、実施例2、比較例2)
水道水にHBO試薬1級を溶解して(初期)濃度200mg/lにした液を作製しpH=7を確認した。以下これを水道水ホウ素含有液という。また、純水にHBO試薬1級を溶解して(初期)濃度200mg/lにした液を作製しpH=7を確認した。以下これを純水ホウ素含有液という。別に、水酸化セリウムを70℃低温乾燥機で水分率20重量%にして含水酸化セリウム粉末を得た。この粉末とフッ化ビニリデンと6フッ化プロピレンの共重合体樹脂とを溶媒N−メチル−2−ピロリドンに分散させて分散液を得た。次いでこの分散液を造粒機で樹脂100重量部に対して含水酸化セリウム700重量部の割合になる丸みのある平均粒径0.70mmの粒子体(造粒体)を得た。この粒子体の表面には該樹脂の高濃度の層があった。以下この粒子をREAD−Bという。
(Example 1, Comparative Example 1, Example 2, Comparative Example 2)
A solution was prepared by dissolving H 3 BO 3 reagent grade 1 in tap water to a (initial) concentration of 200 mg / l, and pH = 7 was confirmed. This is hereinafter referred to as tap water boron-containing liquid. Further, a solution was prepared by dissolving H 3 BO 3 reagent grade 1 in pure water to an (initial) concentration of 200 mg / l, and pH = 7 was confirmed. Hereinafter, this is referred to as pure water boron-containing liquid. Separately, a cerium hydroxide-containing powder was obtained with cerium hydroxide at a moisture content of 20% by weight with a low-temperature dryer at 70 ° C. This powder, a copolymer resin of vinylidene fluoride and propylene hexafluoride were dispersed in a solvent N-methyl-2-pyrrolidone to obtain a dispersion. Next, a rounded particle body (granulated body) having an average particle diameter of 0.70 mm having a ratio of 700 parts by weight of hydrous cerium hydroxide to 100 parts by weight of the resin was obtained from this dispersion using a granulator. There was a high concentration layer of the resin on the surface of the particles. Hereinafter, these particles are referred to as READ-B.

再生条件検討
1.概要
再生時の水洗時に実液(ホウ素を含有した被処理液を言う)を通水してホウ素の挙動に影響があるかどうか確認する。
下表の水洗Iとは、実液に満たされて高濃度ホウ素吸着した吸着剤粒子体層に通水して水置換する水洗処理を言う。
アルカリとは、水洗Iのあとの吸着剤をpH=13以上のアルカリ溶液(水酸化ナトリウム水溶液)を通水してホウ素脱離させることを言う。
水洗IIとは、ホウ素をpH=13以上のアルカリ溶液で脱離した後の、吸着剤粒子体の水洗洗浄を言う。
Bとはホウ素である。
塩類水溶液とは、アルカリ土類金属塩、アンモニウム塩の水溶液で、実施例では図に示すように、塩化カルシウム、塩化マグネシウムの水溶液を使用した。
Examination of regeneration conditions Outline Check whether the behavior of boron is affected by passing an actual liquid (referred to as a treatment liquid containing boron) during washing with water during regeneration.
The water washing I in the table below refers to a water washing treatment in which water is replaced by passing through an adsorbent particle layer filled with a real liquid and adsorbed with high concentration boron.
The term “alkali” means that the adsorbent after the washing I is passed through an alkali solution (aqueous sodium hydroxide solution) having a pH of 13 or more to desorb boron.
Washing II refers to washing and washing of the adsorbent particles after boron is desorbed with an alkaline solution having a pH of 13 or higher.
B is boron.
The aqueous salt solution is an aqueous solution of alkaline earth metal salt or ammonium salt. In the examples, as shown in the figure, aqueous solutions of calcium chloride and magnesium chloride were used.

2.実験内容
カラムは1塔運転(樹脂量15ml)、樹脂はREAD−Bを使用。
(1)準備:飽和吸着カラムの作成
B濃度200mg/l、pH=7の液を3l/hrでカラムに通水し、出口濃度が200mg/lになった時点を吸着の飽和とした。この飽和吸着したカラムを使って試験を行う。
(2)実験:影響因子の調査
アルカリ金属塩、アルカリ土類金属塩又はアンモニウム塩等、B濃度200mg/lの液に影響を及ぼすと考えられる因子を加え、再生及び通水を行い、ホウ素の挙動について確認した。
再生条件は表1の通りであり、サンプリングは10min毎に試験管で行なった。
上記因子を加える方法として、(ア)再生工程の水洗IIの段階で水洗を行いながら同時に上記塩類の水溶液を通液する方法と(イ)水洗I、アルカリ処理、及び水洗IIからなる再生工程の終了後に上記の塩類の水溶液を通液する方法の2種類を採用した。
上記再生工程、及び塩類水溶液通液終了後、引き続き実液(B濃度200mg/l、pH=7)の通液を実施した。
2. Details of experiment The column uses one tower (resin amount: 15 ml) and the resin is READ-B.
(1) Preparation: Creation of a saturated adsorption column A solution having a B concentration of 200 mg / l and pH = 7 was passed through the column at 3 l / hr, and the time when the outlet concentration reached 200 mg / l was regarded as saturation of adsorption. The test is performed using this saturated adsorption column.
(2) Experiment: Investigation of influencing factors Add factors considered to affect B concentration 200mg / l such as alkali metal salt, alkaline earth metal salt or ammonium salt, regenerate and pass water, The behavior was confirmed.
The regeneration conditions are as shown in Table 1, and sampling was performed in a test tube every 10 min.
As a method of adding the above factors, (a) a method of passing an aqueous solution of the above-mentioned salts while washing with water at the stage of washing II in the regeneration step, and (b) a regeneration step comprising washing I, alkali treatment, and washing II. Two methods of passing the aqueous solution of the above-mentioned salts after completion were adopted.
After completion of the regeneration step and passage of the aqueous salt solution, the actual solution (B concentration 200 mg / l, pH = 7) was passed through.

Figure 0004637737
Figure 0004637737

3.結果
図1〜4において、縦軸はカラムから排出される液中のホウ素含有量を示し(対数目盛)、横軸は通水倍率を示す。通水倍率0までが再生工程を表している。図1,2では水洗II工程中に塩類水溶液を通液し、図3,4では再生工程終了後に塩類水溶液を通液した。
なお、アルカリ処理後、ホウ素濃度上昇しているが、これはアルカリ処理により吸着剤から脱離したホウ素がカラムから排出されたことを示している。
上記(ア)の場合は、図1〜2に示すように、ホウ素溶出量が排出基準の10mg/lを下回るまでの時間を見ると、塩化カリウムや塩化ナトリウムを添加した場合では、従来技術である塩類を入れない場合との比較で時間短縮効果が見られない。一方、塩化カルシウムを添加した場合は、時間短縮効果が確認された。以上より、塩化カルシウムが比較的早くホウ素溶出を食い止め、溶出量を排出基準値である10mg/l以下に出来ることが分かった。
3. Result In FIGS. 1-4, a vertical axis | shaft shows the boron content in the liquid discharged | emitted from a column (logarithmic scale), and a horizontal axis shows a water flow rate. The water flow magnification up to 0 represents the regeneration process. In FIGS. 1 and 2, a salt aqueous solution was passed during the water washing II step, and in FIGS. 3 and 4, a salt aqueous solution was passed after the regeneration step was completed.
The boron concentration increased after the alkali treatment, which indicates that boron desorbed from the adsorbent by the alkali treatment was discharged from the column.
In the case of the above (a), as shown in FIGS. 1 and 2, when the time until the boron elution amount falls below 10 mg / l of the emission standard, when potassium chloride or sodium chloride is added, Compared to the case where some salts are not added, the time shortening effect is not seen. On the other hand, when calcium chloride was added, the time shortening effect was confirmed. From the above, it was found that calcium chloride stopped boron elution relatively quickly, and the elution amount could be made 10 mg / l or less, which is the emission standard value.

上記(イ)の場合は、図3〜4に示すように、ホウ素溶出量が排出基準の10mg/lを下回るまでの時間を見ると、塩酸を添加した場合では、従来技術である塩類を入れない場合との比較で時間短縮効果が見られない。一方、塩化カルシウムや塩化マグネシウムを添加した場合は、時間短縮効果が確認された。以上より、塩化カルシウムの他、塩化マグネシウムでも比較的早くホウ素溶出を食い止め、溶出量を排出基準値である10mg/l以下に出来ることが分かった。また、塩化カルシウムについては、添加量が多い方が時間短縮効果があることも分かった。
また、上記(ア)及び(イ)の方法で再生された再生後ホウ素吸着剤のpH変化を調べたのが、図5〜6である。塩化カルシウムや塩化マグネシウムを通水液に加えた場合、通水倍率の早い段階、即ち短時間でpHが中性域に近づくことが分かる。
In the case of (b) above, as shown in FIGS. 3 to 4, when the time until the boron elution amount falls below 10 mg / l of the emission standard, when hydrochloric acid is added, the conventional salt is added. There is no time reduction effect compared to the case without it. On the other hand, when calcium chloride or magnesium chloride was added, the time shortening effect was confirmed. From the above, it has been found that in addition to calcium chloride, magnesium chloride can also stop boron elution relatively quickly, and the elution amount can be reduced to 10 mg / l or less, which is the emission standard value. In addition, as for calcium chloride, it was also found that a larger amount added has a time shortening effect.
Further, FIGS. 5 to 6 show changes in pH of the post-regeneration boron adsorbent regenerated by the methods (a) and (b). It can be seen that when calcium chloride or magnesium chloride is added to the water solution, the pH approaches the neutral range at an early stage of the water flow rate, that is, in a short time.

以上実施例で示したように、本発明の再生方法によれば、高濃度ホウ素含有のホウ素吸着剤の再生を本来のホウ素吸着能を殆ど低下させることなく、短時間で回復させることができ、しかも処理の際、排水中に基準を超えてホウ素が漏れ出すことがなく、ホウ素吸着剤の再生を行うことができる。   As shown in the examples above, according to the regeneration method of the present invention, regeneration of a boron adsorbent containing high concentration boron can be recovered in a short time without substantially reducing the original boron adsorption capacity, Moreover, during the treatment, the boron adsorbent can be regenerated without the boron leaking beyond the standard in the waste water.

本発明の再生方法は、ホウ素を含む工場排水、ごみ焼却場洗煙排水、地熱発電排水等の排水中のホウ素除去処理に利用可能である。   The regeneration method of the present invention can be used for removing boron in wastewater such as industrial wastewater containing boron, waste incineration smoke washing wastewater, and geothermal power generation wastewater.

は、ホウ素用吸着剤再生工程の水洗IIを行いながら、塩類水溶液を通液した場合の通液(通水)倍率とホウ素の溶出量との関係図である。FIG. 5 is a diagram showing the relationship between the flow rate (water flow rate) and the boron elution amount when a salt aqueous solution is passed while performing water washing II in the boron adsorbent regeneration step. は、図1の初期段階の拡大図である。FIG. 2 is an enlarged view of the initial stage of FIG. 1. は、ホウ素用吸着剤再生工程の終了後に塩類水溶液を通液した場合の通液(通水)倍率とホウ素の溶出量との関係図である。FIG. 5 is a graph showing the relationship between the rate of passing (water passing) and the amount of boron eluted when an aqueous salt solution is passed after the completion of the boron adsorbent regeneration step. は、図3の初期段階の拡大図である。FIG. 4 is an enlarged view of the initial stage of FIG. 3. は、ホウ素用吸着剤再生工程の水洗IIを行いながら塩類水溶液を通液した場合の通液(通水)倍率経時変化とpH変化との関係図である。These are the relational figures of the passage time (water flow) magnification time-dependent change and pH change at the time of passing aqueous salt solution, performing the water washing II of the boron adsorbent regeneration process. は、ホウ素用吸着剤再生工程の終了後に塩類水溶液を通液した場合の通液(通水)倍率経時変化とpH変化との関係図である。These are the relationship diagrams of the passage time (water passage) magnification time-dependent change and pH change at the time of passing salt aqueous solution after completion | finish of the adsorption agent reproduction | regeneration process for boron. は、本発明の希土類化合物と樹脂との混合粒子体断面図である。These are sectional drawings of a mixed particle body of the rare earth compound of the present invention and a resin.

Claims (6)

使用済みの希土類元素水酸化物及び/又は含水酸化物を含有するホウ素吸着剤をアルカリ水性溶液と接触させて、ホウ素を所定の濃度域まで脱離後、アルカリ土類金属塩の1種以上からなる化合物の水性溶液と接触させることを特徴とするホウ素吸着剤の再生方法。 A boron adsorbent containing a used rare earth element hydroxide and / or hydrated oxide is brought into contact with an alkaline aqueous solution, boron is desorbed to a predetermined concentration range, and then from one or more of alkaline earth metal salts. A method for regenerating a boron adsorbent, comprising contacting with an aqueous solution of the compound. 該濃度域が、10〜1000mg/lであることを特徴とする請求項1のホウ素吸着剤の再生方法。 The method for regenerating a boron adsorbent according to claim 1, wherein the concentration range is 10 to 1000 mg / l. 該アルカリ土類金属塩が塩化マグネシウムであることを特徴とする請求項1または2のホウ素吸着剤の再生方法。 Reproducing method according to claim 1 or 2 boron adsorbent, characterized in that the alkaline earth metal salt is magnesium chloride. 該ホウ素吸着剤が、平均2次粒子径0.2〜25ミクロンmの希土類元素水酸化物及び/又は含水酸化物の集合体の粒状体であってその粒状体表面に高分子濃度の高い層を有することを特徴とする請求項1〜3のいずれか一つに記載のホウ素吸着剤の再生方法。 The boron adsorbent is an aggregate of rare earth element hydroxides and / or hydrated oxides having an average secondary particle diameter of 0.2 to 25 microns, and a layer having a high polymer concentration on the surface of the granules The method for regenerating a boron adsorbent according to any one of claims 1 to 3, wherein: 使用済みの希土類元素水酸化物及び/又は含水酸化物を含有するホウ素吸着剤を有するホウ素吸着剤充填容器内にアルカリ水性溶液を通水後、アルカリ土類金属塩の1種以上からなる化合物を加えた、ホウ素含有液を通水倍率15倍以下で通水して該含有水容量当たりのホウ素濃度を10mg/l以下にすることを特徴とするホウ素吸着剤の再生方法。 After passing an alkaline aqueous solution into a boron adsorbent-filled container having a boron adsorbent containing a used rare earth element hydroxide and / or a hydrous oxide, a compound comprising at least one alkaline earth metal salt is added. A method for regenerating a boron adsorbent, wherein the boron-containing liquid is passed at a water magnification ratio of 15 times or less so that the boron concentration per volume of the contained water is 10 mg / l or less. 該ホウ素含有剤が、排水処理用であることを特徴とする請求項1〜のいずれか一つに記載のホウ素吸着剤の再生方法。 The method for regenerating a boron adsorbent according to any one of claims 1 to 5 , wherein the boron-containing agent is for wastewater treatment.
JP2005363042A 2005-12-16 2005-12-16 Regeneration method of boron adsorbent Active JP4637737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005363042A JP4637737B2 (en) 2005-12-16 2005-12-16 Regeneration method of boron adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005363042A JP4637737B2 (en) 2005-12-16 2005-12-16 Regeneration method of boron adsorbent

Publications (2)

Publication Number Publication Date
JP2007160271A JP2007160271A (en) 2007-06-28
JP4637737B2 true JP4637737B2 (en) 2011-02-23

Family

ID=38243772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005363042A Active JP4637737B2 (en) 2005-12-16 2005-12-16 Regeneration method of boron adsorbent

Country Status (1)

Country Link
JP (1) JP4637737B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252143B2 (en) * 2013-12-04 2017-12-27 栗田工業株式会社 Recycling method of boron adsorbent
US10040033B2 (en) 2013-12-13 2018-08-07 Toray Industries, Inc. Multilayer separation membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012190A (en) * 1983-07-04 1985-01-22 Asahi Chem Ind Co Ltd Method for separating and removing borate ion in seawater, salt water or bittern water
JP2004057870A (en) * 2002-07-25 2004-02-26 Tohoku Electric Power Co Inc Treating method of boron-containing water
JP2004330012A (en) * 2003-05-01 2004-11-25 Shin Nihon Salt Co Ltd Boron adsorbing agent and manufacturing method therefor
JP2005288363A (en) * 2004-04-01 2005-10-20 Nihon Kaisui:Kk Arsenic adsorbent and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012190A (en) * 1983-07-04 1985-01-22 Asahi Chem Ind Co Ltd Method for separating and removing borate ion in seawater, salt water or bittern water
JP2004057870A (en) * 2002-07-25 2004-02-26 Tohoku Electric Power Co Inc Treating method of boron-containing water
JP2004330012A (en) * 2003-05-01 2004-11-25 Shin Nihon Salt Co Ltd Boron adsorbing agent and manufacturing method therefor
JP2005288363A (en) * 2004-04-01 2005-10-20 Nihon Kaisui:Kk Arsenic adsorbent and production method therefor

Also Published As

Publication number Publication date
JP2007160271A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
Zhang et al. Sustainable treatment of desulfurization wastewater by ion exchange and bipolar membrane electrodialysis hybrid technology
JP4126399B2 (en) Iron oxyhydroxide production method and iron oxyhydroxide adsorbent
Qing et al. Simply synthesized sodium alginate/zirconium hydrogel as adsorbent for phosphate adsorption from aqueous solution: Performance and mechanisms
EP0191893B1 (en) Process for adsorption treatment of dissolved fluorine
US7947861B2 (en) Methods of removing a constituent from a feed stream using adsorption media
Gore et al. Nanofibers of resorcinol–formaldehyde for effective adsorption of As (III) ions from mimicked effluents
Huang et al. Facile synthesis of sodium lignosulfonate/polyethyleneimine/sodium alginate beads with ultra-high adsorption capacity for Cr (VI) removal from water
JPH0445213B2 (en)
Du et al. Enhanced phosphate removal by using La-Zr binary metal oxide nanoparticles confined in millimeter-sized anion exchanger
JP5136735B2 (en) Method for removing toxic substances in exudate from final disposal site for stable industrial waste
Li et al. Rapid and selective harvest of low-concentration phosphate by La (OH) 3 loaded magnetic cationic hydrogel from aqueous solution: Surface migration of phosphate from–N+ (CH3) 3 to La (OH) 3
WO2008038624A1 (en) Coated particles, process for production thereof, cation adsorbents, and water treatment system
JP2004330012A (en) Boron adsorbing agent and manufacturing method therefor
CA2986717C (en) Adsorbent for adsorbing iodine compounds and/or antimony, method for preparing said adsorbent, and method and apparatus for treating radioactive waste liquid by using said adsorbent
Zong et al. Preparation of a ternary composite based on water caltrop shell derived biochar and gelatin/alginate for cadmium removal from contaminated water: Performances assessment and mechanism insight
JP4637737B2 (en) Regeneration method of boron adsorbent
US8664150B2 (en) Methods of producing adsorption media including a metal oxide
JP2005288363A (en) Arsenic adsorbent and production method therefor
JPH022612B2 (en)
JP3210956B2 (en) Granular lithium adsorbent and method for producing the same
Liu et al. Integrated fabrication of CMC@ UiO-66–NH 2@ PEI composite adsorbents for efficient batch and dynamic phosphate capture
JP2005028312A (en) Fluorine adsorbent and its manufacturing method
CN112844333B (en) Preparation method of organic phosphine doped polyvinyl alcohol chitosan composite sphere
JP2006036995A (en) Soil conditioner and use thereof
WO2004096433A1 (en) Adsorbent and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151203

Year of fee payment: 5

R150 Certificate of patent or registration of utility model

Ref document number: 4637737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250