JP2005288363A - Arsenic adsorbent and production method therefor - Google Patents

Arsenic adsorbent and production method therefor Download PDF

Info

Publication number
JP2005288363A
JP2005288363A JP2004108704A JP2004108704A JP2005288363A JP 2005288363 A JP2005288363 A JP 2005288363A JP 2004108704 A JP2004108704 A JP 2004108704A JP 2004108704 A JP2004108704 A JP 2004108704A JP 2005288363 A JP2005288363 A JP 2005288363A
Authority
JP
Japan
Prior art keywords
arsenic
rare earth
water
earth element
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004108704A
Other languages
Japanese (ja)
Inventor
Hiroaki Kurosawa
浩章 黒澤
Haruhiko Ito
晴彦 伊藤
Toshio Yotsumoto
利夫 四元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON KAISUI KK
Nihon Kaisui Co Ltd
Original Assignee
NIHON KAISUI KK
Nihon Kaisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON KAISUI KK, Nihon Kaisui Co Ltd filed Critical NIHON KAISUI KK
Priority to JP2004108704A priority Critical patent/JP2005288363A/en
Priority to KR1020057017919A priority patent/KR100698672B1/en
Priority to CN200480011614.4A priority patent/CN1780692B/en
Priority to PCT/JP2004/006091 priority patent/WO2004096433A1/en
Publication of JP2005288363A publication Critical patent/JP2005288363A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an adsorbent with a drastic improvement in performance of adsorbing arsenic as compared with those of conventional adsorbents, with which water contaminated with arsenic can be purified in large quantities at high speed, treated water containing low-concentration arsenic can be efficiently purified, adsorption activity can be retained for a long period of time so as to enable easy maintenance, and in addition, neither adsorbent nor resin components are eluted. <P>SOLUTION: The arsenic adsorbent comprises a rare earth element hydroxide and a high-molecular resin which coats the surface of the hydroxide, wherein the rare earth element hydroxide has a central void and micropores surrounding the central void and the high-molecular resin, which coats the surface of the hydroxide, constitutes a porous skin layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水中の砒素の吸着剤として使用可能な希土類元素水酸化物と高分子樹脂からなる砒素吸着剤、その製造方法およびその用途に関する。   The present invention relates to an arsenic adsorbent comprising a rare earth element hydroxide and a polymer resin that can be used as an adsorbent for arsenic in water, a method for producing the same, and a use thereof.

自然条件下や工場廃液廃水により湖沼や河川、及び地下水における水質悪化、特に有害な重金属化合物による土壌と水質汚染が認識されている。重金属化合物の中でも特に問題とされているのが砒素である。土壌汚染の原因物質のうち、砒素は、風雨や地下水の浸透などによって溶出し、二次的環境水質汚染を引き起こすことが心配される。特に、地中の砒素は、5価の砒酸イオンや3価の亜砒酸イオンとなって溶出しやすく、環境庁の報告資料「平成14年度地下水質測定結果について」(環境省環境管理局水環境部土壌環境課地下水・地盤環境室平成15年11月27日)によると、調査の対象となった5,269本の井戸のうち1.5%で砒素濃度が地下水質基準(0.01mg/l)を越えており、その超越率は他の汚染物質よりも飛び抜けて高い。砒素は、発ガン性を有し、長期飲用すれば慢性中毒を引き起こす。自然界で砒素は温泉水、鉱山流出水中に検出される場合や、地下水、湧水中に恒常的に水質基準値以上検出される場合がある。その水質基準値は、カナダ保険福祉局が0.025mg/l以下、米国環境保護機関は0.050mg/l以下を0.01mg/l以下にする予定で、WHO世界保健機関の飲料水基準や国内水道法における水質基準値では砒素濃度は、0.01mg/l以下とされており、水中の砒素濃度がこれを越える場合は、水中より砒素を除去する必要がある。   Water quality deterioration in lakes, rivers, and groundwater due to natural conditions and wastewater from factory wastewater, especially soil and water pollution by harmful heavy metal compounds are recognized. Among the heavy metal compounds, arsenic is particularly problematic. Of the causative substances of soil contamination, arsenic is eluted due to wind and rain and infiltration of groundwater, and there is a concern that it may cause secondary environmental water pollution. In particular, underground arsenic tends to elute as pentavalent arsenate ions or trivalent arsenite ions, and is reported by the Environment Agency “FY 2002 groundwater quality measurement results” (Ministry of the Environment, Environment Management Bureau, Water Environment Department) According to the Soil Environment Division Groundwater / Ground Environment Office November 27, 2003), 1.5% of the 5,269 wells surveyed had arsenic concentrations of 0.01 mg / l ) And the transcendence rate is far higher than other pollutants. Arsenic is carcinogenic and can cause chronic poisoning if taken for a long time. In nature, arsenic may be detected in hot spring water and mine runoff water, or may be detected constantly in groundwater and spring water above the water quality standard value. The water quality standards are set to 0.025 mg / l or less by the Canadian Insurance and Welfare Agency, and the US Environmental Protection Agency plans to reduce 0.050 mg / l or less to 0.01 mg / l or less. According to the water quality standard value in the domestic water supply law, the arsenic concentration is 0.01 mg / l or less. When the arsenic concentration in water exceeds this value, it is necessary to remove arsenic from the water.

従来の水中の砒素の除去処理方法としては、凝集沈殿法(共沈法)と吸着法が主に挙げられる。凝集沈殿法(共沈法)は、アルミニウム塩や鉄塩などの無機凝集剤を添加し、pHを中性に調整して金属水酸化物の凝集フロックが形成することにより、濁質、重金属イオン等を除去する。濁質、重金属イオン等はこのフロックと共に沈殿する。この時、砒素も凝集フロックに取り込まれ沈殿する。沈殿物は重力分離等により除去される。   Conventional methods for removing arsenic in water include a coagulation precipitation method (coprecipitation method) and an adsorption method. In the coagulation precipitation method (coprecipitation method), inorganic flocculants such as aluminum salts and iron salts are added and the pH is adjusted to neutral to form coagulation flocks of metal hydroxides. Etc. are removed. Turbidity, heavy metal ions, etc. are precipitated with this floc. At this time, arsenic is also taken into the aggregated floc and precipitates. The precipitate is removed by gravity separation or the like.

砒素の除去処理方法として、一般に用いられている凝集沈殿法(共沈法)は、被処理水の濁質量に応じてアルミニウム塩や鉄塩等の無機凝集剤を添加するため、濁質量が多い場合には、多量の凝集剤の投与を必要とする。さらに、砒素を取り込んだ凝集フロックが沈殿池や沈殿槽内で沈降沈殿するまでに除去時間に長時間を要する欠点があり、また凝集能に応じると沈殿池や沈殿槽の設置面積が大きい設備を操作する複雑さの欠点がある。その沈降を促進させる目的で別に用意した高分子凝集剤等を添加する場合もあるが、無機凝集剤、高分子凝集剤の調整添加により、被処理水の濁質量以上に砒素を含む嵩張ったスラッジ量が発生し、その処理にさらに煩雑な作業が必要となる欠点がある。また、凝集沈殿法(共沈法)では3価の亜砒酸を直接取り込むことが出来ないため、前処理として次亜塩素酸ナトリウム等の酸化剤を加えて、5価の砒酸に形態を変えなければ取り込むことができない欠点がある。   As a method for removing arsenic, a commonly used coagulation method (coprecipitation method) has a large turbid mass because an inorganic coagulant such as an aluminum salt or an iron salt is added according to the turbid mass of the water to be treated. In some cases, it requires administration of large amounts of flocculant. Furthermore, there is a disadvantage that it takes a long time to remove the flocculation flocs that have taken in arsenic in the sedimentation basin or sedimentation tank, and the installation area of the sedimentation basin or sedimentation tank is large depending on the aggregation capacity. There are drawbacks to the complexity of operation. A polymer flocculant prepared separately may be added for the purpose of accelerating the sedimentation. However, the adjustment of the inorganic flocculant and the polymer flocculant makes the bulk of arsenic contained more than the turbid mass of the water to be treated. The amount of sludge is generated, and there is a drawback that more complicated work is required for the treatment. In addition, trivalent arsenous acid cannot be directly taken in by the coagulation precipitation method (coprecipitation method), so an oxidizing agent such as sodium hypochlorite must be added as a pretreatment to change the form to pentavalent arsenic acid. There are disadvantages that cannot be captured.

特許文献1(特開平8−206663号公報)には、凝集剤添加による共沈法で生じる金属水酸化物と砒素から成る凝集フロックを限外濾過膜、もしくは精密濾過膜で分離する処理方法が記載されている。この方法は、処理施設の設置面積がコンパクト化出来る反面、凝集剤投入量は従来の凝集沈殿法と変わらず、濁質と、金属水酸化物と砒素から成る凝集フロックを多量に含むスラッジを限外濾過膜、もしくは精密濾過膜で濾過するため、頻繁な濾過膜の洗浄を要するという欠点がある。また、砒素を含む多量のスラッジの処理にさらに煩雑な作業が必要となる欠点もある。さらに、この特開公報記載の発明の砒素の除去処理方法は、多量に凝集剤を使用するため凝集フロックpHが酸性側に移行し、凝集フロックが一部加水分解を生じてせっかくの除去砒素を放出し、限外濾過膜、或いは精密濾過膜を容易に通過し濾過水の砒素濃度を低減できなくなるという欠点もある。   Patent Document 1 (Japanese Patent Laid-Open No. 8-206663) discloses a treatment method for separating agglomerated flocs composed of metal hydroxide and arsenic produced by a coprecipitation method by adding a flocculant with an ultrafiltration membrane or a microfiltration membrane. Has been described. Although this method can reduce the installation area of the treatment facility, the amount of flocculant input is the same as that of the conventional coagulation sedimentation method, and it limits turbidity and sludge that contains a large amount of coagulation floc composed of metal hydroxide and arsenic. Since filtration is performed with an outer filtration membrane or a microfiltration membrane, there is a drawback that frequent washing of the filtration membrane is required. In addition, there is a drawback that more complicated work is required for processing a large amount of sludge containing arsenic. Furthermore, since the arsenic removal treatment method of the invention described in this Japanese Patent Laid-Open Publication uses a large amount of an aggregating agent, the agglomerated floc pH shifts to the acidic side, and the agglomerated floc partially hydrolyzes to remove the precious arsenic. There is also a drawback that the arsenic concentration of the filtered water cannot be reduced because it is released and easily passes through the ultrafiltration membrane or the microfiltration membrane.

吸着法は、砒素を含む被処理水と吸着材を接触させ、砒素を吸着させることにより除去する方法が一般に用いられている。吸着材には、天然土壌や、活性炭、活性アルミナ、二酸化マンガン、チタン酸、ジルコニウム水和物、ランタン、イットリウム、セリウム等の遷移金属化合物類が直径1.0から2.0mmの粒状物で用いられていることが挙げられる。   As the adsorption method, generally used is a method in which water to be treated containing arsenic is brought into contact with an adsorbent and removed by adsorbing arsenic. For adsorbents, natural soil, transition metal compounds such as activated carbon, activated alumina, manganese dioxide, titanic acid, zirconium hydrate, lanthanum, yttrium and cerium are used in the form of granules having a diameter of 1.0 to 2.0 mm. It is mentioned that.

吸着法では、活性アルミナ、活性炭、またはチタン酸、ジルコニウム水和物、ランタン、イットリウム、セリウム等の遷移金属化合物類を用いると、砒素吸着能力により、一般に吸着材の除去能力が低下した場合、定期的に吸着材の交換・再生を行う頻度が高くなるという欠点がある。   In the adsorption method, use of activated alumina, activated carbon, or transition metal compounds such as titanic acid, zirconium hydrate, lanthanum, yttrium, cerium, etc. In particular, there is a drawback that the frequency of exchanging and regenerating the adsorbent increases.

従来用いられている吸着剤のうち、特に、活性アルミナは、排水中の残留砒素が通水倍量にほぼ比例して増加する性質を有する吸着材であって砒素のリークが吸着処理開始後比較的早く始まり吸着材の交換または再生メンテナンス頻度が煩雑である欠点があった。
また、吸着材の砒素吸着速度を考慮すると出来るだけ被処理水との接触時間を多くする必要があり、特殊なカラムや吸着槽が必要となるので砒素の処理効率を高く出来ないという欠点がある。
Among the adsorbents used in the past, activated alumina, in particular, is an adsorbent that has the property that the residual arsenic in the wastewater increases almost in proportion to the amount of water passing, and the arsenic leak is compared after the start of the adsorption process. There was a drawback that the frequency of adsorbent replacement or regeneration maintenance was complicated.
In addition, considering the arsenic adsorption rate of the adsorbent, it is necessary to increase the contact time with the water to be treated as much as possible, and a special column or adsorption tank is required, so that the arsenic treatment efficiency cannot be increased. .

特許文献2(特開2000−70923号公報)記載の発明はかかる状況に鑑み被処理水中の砒素を迅速に効率よく除去する為に弱酸性の処理液を中和するために吸着塔の下流に設けられた中和手段と、吸着材及び吸着材の砕片を捕捉するために、中和手段の下流に設けられた、フィルタとを備えていることを特徴とする砒素除去装置を提案しているが用いる吸着剤の吸着能力が弱いので充分目的を達したとは言い難い欠点があった。   In view of such circumstances, the invention described in Patent Document 2 (Japanese Patent Laid-Open No. 2000-70923) is provided downstream of the adsorption tower in order to neutralize the weakly acidic treatment liquid in order to quickly and efficiently remove arsenic in the treated water. In order to capture the adsorbent and the adsorbent debris, a arsenic removing device is provided, which is provided downstream of the neutralizer and captures the adsorbent and adsorbent fragments. However, the adsorbent used has a weak adsorbing ability, so that it has a drawback that it is difficult to say that the objective has been sufficiently achieved.

吸着量が高いとされているランタン等の希土類系吸着剤は、その砒素化合物吸着量が水中の砒素濃度の影響を受け、砒素濃度1.0mg/l以下の濃度領域になると急激に平衡吸着量が低下するという欠点があった。また、活性アルミナや活性炭では、ランタン等の希土類系吸着剤に比べて平衡吸着量が低い欠点があった。   Rare earth-based adsorbents such as lanthanum, which are said to have a high adsorption amount, are affected by the arsenic concentration in the water, and when the arsenic concentration falls below 1.0 mg / l, the equilibrium adsorption amount suddenly increases. There was a drawback that it decreased. In addition, activated alumina and activated carbon have a drawback that the equilibrium adsorption amount is lower than that of a rare earth-based adsorbent such as lanthanum.

特許文献3(特開2000−24647号公報)記載の発明は、吸着剤としてアルミナ担体に希土類金属の酸化物または水酸化物を5〜60重量%担持したものを用いることを特徴とする砒素の吸着除去方法を提案しているが、該吸着剤の吸着能力が弱く、充分目的を達したとは言い難い欠点があった。   The invention described in Patent Document 3 (Japanese Patent Application Laid-Open No. 2000-24647) uses an arsenic material characterized by using, as an adsorbent, an alumina support carrying 5 to 60% by weight of a rare earth metal oxide or hydroxide. Although an adsorption removal method has been proposed, the adsorption capability of the adsorbent is weak, and there is a drawback that it is difficult to say that the purpose has been sufficiently achieved.

特許文献4(特公平4−45213号公報)記載の発明は、吸着剤として有機高分子担体に希土類金属の水和酸化物を5〜50重量%担持したものを用いることを特徴とする砒素吸着剤を提案しているが、有機高分子担体に親水性樹脂を用いており、初期通水時に親水性樹脂が溶出する欠点があった。また、実施例にて通水時の空塔速度を10l/hr程度と想定しているが、これ以上に空塔速度を上げると、吸着剤に水が十分浸透せず、結果として吸着量が低下するという欠点があった。
また、特許文献4記載の吸着剤に限らず、親水性樹脂を使用するタイプの吸着剤では、初期溶出分である樹脂中の低分子成分を除去するための吸着剤の水洗工程を余分に設ける必要があり、更に、飲料用にするためには実使用中も砒素吸着剤による処理に加えて活性炭による最終処理が必要となる欠点があった。
The invention described in Patent Document 4 (Japanese Patent Publication No. 4-45213) uses arsenic adsorption characterized in that an organic polymer carrier carrying 5 to 50% by weight of a rare earth metal hydrated oxide is used as an adsorbent. However, since the hydrophilic polymer is used for the organic polymer carrier, the hydrophilic resin is eluted at the initial water flow. In the examples, it is assumed that the superficial velocity at the time of passing water is about 10 l / hr. However, if the superficial velocity is increased more than this, water does not sufficiently permeate the adsorbent, resulting in an adsorbed amount. There was a drawback of lowering.
In addition to the adsorbent described in Patent Document 4, in the type of adsorbent that uses a hydrophilic resin, an extra washing step of the adsorbent for removing low-molecular components in the resin, which is the initial elution, is provided. Furthermore, in order to use for beverages, there was a drawback that a final treatment with activated carbon was required in addition to a treatment with an arsenic adsorbent during actual use.

特開平8−206663号公報JP-A-8-206663 特開2000−70923号公報JP 2000-70923 A 特開2000−24647号公報JP 2000-24647 A 特公平4−45213号公報Japanese Examined Patent Publication No. 4-45213

本発明は、こうした実情の下に、従来の吸着剤に比べて砒素の吸着性能を格段に向上させた吸着剤を提供することを目的とするものである。すなわち、砒素で汚染された水を大量に高速度で浄化処理することが可能であり、また、低濃度の砒素を含む被処理水も効率的に浄化が可能であり、しかも吸着活性を長期間保持できるので、メンテナンスも容易であり、加えて、吸着剤や樹脂成分の溶出もない砒素吸着剤を提供することを目的とするものである。   Under such circumstances, an object of the present invention is to provide an adsorbent in which the adsorption performance of arsenic is significantly improved as compared with conventional adsorbents. In other words, it is possible to purify a large amount of water contaminated with arsenic at a high speed, and also to treat treated water containing low-concentration arsenic efficiently, and to maintain the adsorption activity for a long time. The object of the present invention is to provide an arsenic adsorbent that is easy to maintain since it can be retained, and that does not elute the adsorbent and resin components.

本発明者等は鋭意研究した結果、砒素吸着剤成分として希土類元素水酸化物を使用し、これを高分子樹脂の薄い層、すなわちスキン層により被覆し、かつこのスキン層内部に空隙の多い希土類元素水酸化物を多量に包含すること構造が吸着能の顕著なもたらすことを見出し、本発明に至った。   As a result of diligent research, the present inventors have used rare earth element hydroxide as an arsenic adsorbent component, which is covered with a thin layer of a polymer resin, that is, a skin layer, and has a large amount of voids inside the skin layer. The inventors have found that a structure containing a large amount of element hydroxide brings about a remarkable adsorption ability, and has led to the present invention.

すなわち、本発明は下記(1)〜(10)に係わる。
(1) 希土類元素水酸化物およびその表面を被覆する高分子樹脂からなる砒素吸着剤であって、該希土類元素水酸化物は中心空洞部とその周囲の微細空隙部を有し、該希土類元素水酸化物表面を被覆する高分子樹脂は耐水性を有する多孔質のスキン層であることを特徴とする砒素吸着剤、
(2) 該高分子樹脂が、フッ素系樹脂およびアセタール化ポリビニルアルコール系樹脂から選ばれる樹脂であることを特徴とする前記(1)記載の砒素吸着剤、
(3) 該希土類元素水酸化物が、平均2次粒子径1〜6μmであることを特徴とする前記(1)または(2)記載の砒素吸着剤、
(4) 該希土類元素水酸化物が、該水酸化物100重量部当たり硝酸塩類1〜10重量部含有することを特徴とする前記(1)〜(3)のいずれか1項記載の砒素吸着剤。
(5) 該希土類元素水酸化物が、該水酸化物100重量部当たり水分1〜30重量部含有することを特徴とする前記(1)〜(4)のいずれか1項記載の砒素吸着剤、
(6) 該高分子樹脂と高分子樹脂100重量部当たり600重量部以上の該希土類元素水酸化物とを含有してなる前記(1)〜(5)のいずれか1項記載の砒素吸着剤、
That is, the present invention relates to the following (1) to (10).
(1) An arsenic adsorbent comprising a rare earth element hydroxide and a polymer resin covering the surface thereof, wherein the rare earth element hydroxide has a central cavity and a surrounding fine void, and the rare earth element An arsenic adsorbent characterized in that the polymer resin covering the hydroxide surface is a porous skin layer having water resistance;
(2) The arsenic adsorbent according to (1), wherein the polymer resin is a resin selected from a fluorine resin and an acetalized polyvinyl alcohol resin,
(3) The arsenic adsorbent according to (1) or (2), wherein the rare earth element hydroxide has an average secondary particle diameter of 1 to 6 μm,
(4) Arsenic adsorption according to any one of (1) to (3), wherein the rare earth element hydroxide contains 1 to 10 parts by weight of nitrates per 100 parts by weight of the hydroxide. Agent.
(5) The arsenic adsorbent according to any one of (1) to (4), wherein the rare earth element hydroxide contains 1 to 30 parts by weight of water per 100 parts by weight of the hydroxide. ,
(6) The arsenic adsorbent according to any one of (1) to (5), comprising the polymer resin and 600 parts by weight or more of the rare earth element hydroxide per 100 parts by weight of the polymer resin. ,

(7) 希土類元素水酸化物と水との混合物を100℃以下の低温で乾燥することにより、水5〜30重量部を含有する希土類元素水酸化物を得て、次いで該水酸化物を耐水性高分子樹脂とともに該樹脂を溶解する有機溶媒に溶解した液に分散させ、該分散物から造粒することを特徴とする砒素吸着剤の製造方法、
(8) 希土類元素水酸化物が平均2次粒子径0.2〜25μmであり、砒素吸着剤の平均粒径が0.2〜2.0mmである前記(7)記載の砒素吸着剤の製造方法、
(9) 砒素を含む被処理水を前記(1)〜(6)記載の砒素吸着剤に接触させて砒素を吸着、除去する方法、
(10) 空塔速度100〜200l/hrの高空塔速度域にて接触させる前記(9)記載の砒素吸着除去方法、
に関する。
(7) A rare earth element hydroxide containing 5 to 30 parts by weight of water is obtained by drying a mixture of the rare earth element hydroxide and water at a low temperature of 100 ° C. or lower, and the hydroxide is then water-resistant. A method for producing an arsenic adsorbent, characterized by being dispersed in a liquid dissolved in an organic solvent that dissolves the resin together with a functional polymer resin, and granulating from the dispersion;
(8) The production of the arsenic adsorbent according to (7), wherein the rare earth element hydroxide has an average secondary particle size of 0.2 to 25 µm and the average particle diameter of the arsenic adsorbent is 0.2 to 2.0 mm. Method,
(9) A method for adsorbing and removing arsenic by bringing water to be treated containing arsenic into contact with the arsenic adsorbent described in (1) to (6) above,
(10) The arsenic adsorption removal method according to (9), wherein the contact is performed in a high superficial velocity range of a superficial velocity of 100 to 200 l / hr,
About.

本発明の砒素吸着剤は、多孔質高分子樹脂をスキン層とし、その内部に空隙の多い希土類金属水酸化物を多量に包含することができるため砒素吸着能は従来の吸着剤に比べて格段に優れている。また、砒素濃度が低い汚染水も効率的に浄化処理が可能である。しかも吸着活性を長期間にわたって保持することができるので、メンテナンスも容易である。さらには、処理水中への吸着剤成分の溶出、高分子樹脂の初期溶出もないので、この対策としての吸着剤の水洗工程および砒素吸着処理後の活性炭による最終処理を要しない。   The arsenic adsorbent of the present invention has a porous polymer resin as a skin layer, and can contain a large amount of rare earth metal hydroxide with many voids in the skin layer. Is excellent. Moreover, it is possible to efficiently purify contaminated water having a low arsenic concentration. Moreover, since the adsorption activity can be maintained for a long period of time, maintenance is easy. Further, since there is no elution of the adsorbent component into the treated water and no initial elution of the polymer resin, there is no need for a water washing step of the adsorbent as a countermeasure and a final treatment with activated carbon after the arsenic adsorption treatment.

本発明について、以下具体的に説明する。
本発明の砒素吸着剤は、高分子樹脂と希土類元素水酸化物との混合物である。
この混合物の形状は粒状でも水が通過出来る形の成型体でも良い。これら混合物を通水に支障なく充填して用いることができる構造形状であればよい。網状成型体でも目的課題に合えば良い。また、ほぼ均一な丸い粒状体であれば、平均粒径0.2mm〜5.0mmが好ましく用いられる。粒径0.2mm以下では充填密度が高くなって通水抵抗が高くなり作業性が劣り易いし、5.0mm以上では、砒素含有水と粒状体の単位時間当たりの接触面積が少なくなり易く結果として砒素吸着能が低くなり易い。
The present invention will be specifically described below.
The arsenic adsorbent of the present invention is a mixture of a polymer resin and a rare earth element hydroxide.
The mixture may have a granular shape or a molded body in which water can pass. Any structure may be used as long as the mixture can be filled and used without any problem. A net-like molded body may be used to meet the purpose. Moreover, if it is a substantially uniform round granular body, the average particle diameter of 0.2 mm-5.0 mm is used preferably. If the particle size is 0.2 mm or less, the packing density becomes high and the water flow resistance becomes high and the workability tends to be inferior, and if it is 5.0 mm or more, the contact area per unit time between the arsenic-containing water and the granular material tends to decrease. As a result, the arsenic adsorption ability tends to be low.

粒状成型体は、乾燥機中で水分率を調整した希土類元素水酸化物の粉末と高分子樹脂とを溶媒に分散させて得た混合液を、造粒機に投入して得た。得られた粒状成型体は、溶媒の溶出が認められなくなるまで水洗を施した。   The granular molded body was obtained by putting a mixed liquid obtained by dispersing a rare earth element hydroxide powder and a polymer resin, the moisture content of which was adjusted in a drier, into a granulator. The obtained granular molded body was washed with water until no solvent elution was observed.

高分子樹脂としては、アニオン交換樹脂やキレート系樹脂よりも耐熱性があって水に溶出しない耐水性を持つ有機高分子重合体樹脂またはこれら樹脂の誘導体が好ましく、その数平均分子量は500以上好ましくは2000以上あれば良い。水溶性親水性樹脂は溶出する点で好ましくなく、高温度では溶出が更に大きくなり耐熱性も無い。   As the polymer resin, an organic polymer polymer resin or a derivative of these resins having a water resistance that is more heat resistant than an anion exchange resin or a chelate resin and does not elute into water is preferable, and its number average molecular weight is preferably 500 or more. Is better than 2000. A water-soluble hydrophilic resin is not preferable in terms of elution, and at a high temperature, elution is further increased and there is no heat resistance.

本発明に使用する高分子樹脂としては、合成または天然の耐水性に優れた、有機高分子や天然高分子及びその誘導体を挙げることができる。
ここで、耐水性とは、吸着剤への通水初期においても処理水中に高分子樹脂が溶出しないこと、少なくとも飲料用として差し支えが生じるような溶出がないことを意味する。
したがって、ポリエチレン樹脂等のポリオレフィン樹脂、ポリ塩化ビニルなどの耐水性に優れた一般的な樹脂を使用することができる。
特に好ましい高分子樹脂としては、フッ素樹脂、アセタール化ポリビニルアルコール系樹脂を挙げることができる。
具体例を挙げれば、例えばポリフッ化ビニリデン樹脂、フッ化ビニリデン−6−フッ化プロピレン共重合樹脂、ポリテトラフルオロエチレン樹脂、ポリビニルブチラール樹脂等を挙げることができる。これらの高分子樹脂は、希土類元素水酸化物を高濃度に含有させ易く、耐水性、耐薬品性に優れており、特に好ましい樹脂といえる。
Examples of the polymer resin used in the present invention include organic polymers, natural polymers and derivatives thereof excellent in synthetic or natural water resistance.
Here, the water resistance means that the polymer resin does not elute in the treated water even in the initial stage of water passage to the adsorbent, and that there is no elution that causes any trouble for beverages.
Therefore, a general resin excellent in water resistance such as a polyolefin resin such as a polyethylene resin or polyvinyl chloride can be used.
Particularly preferred polymer resins include fluororesins and acetalized polyvinyl alcohol resins.
Specific examples include polyvinylidene fluoride resin, vinylidene fluoride-6-propylene propylene copolymer resin, polytetrafluoroethylene resin, and polyvinyl butyral resin. These polymer resins are easy to contain a rare earth element hydroxide at a high concentration, are excellent in water resistance and chemical resistance, and can be said to be particularly preferable resins.

本発明の希土類元素水酸化物とは、1991年元素の周期表による3(3A)族の希土類元素であって、スカンジウムSc、イットリウムY、ランタノイド元素、ランタンLa、セリウムCe、プラセオジムPr、ネオジムNd、プロメチウムPm、サマリウムSm、ユウロピウムEu、カドリニウムGd、テルビウムTb、ジスプロシウムDy、ホルミウムHo、エルビウムEr、ツリウムTm、イッテルビウムYb、ルテチウムLuの水酸化物である。なかでも本発明の目的課題の合致して好ましい元素はCeであり4価のCeが好ましい。これら希土類元素水酸化物の混合体も有用である。   The rare earth element hydroxide of the present invention is a 3 (3A) group rare earth element according to the periodic table of elements of 1991, and is scandium Sc, yttrium Y, lanthanoid element, lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd. , Promethium Pm, Samarium Sm, Europium Eu, Cadolinium Gd, Terbium Tb, Dysprosium Dy, Holmium Ho, Erbium Er, Thulium Tm, Ytterbium Yb, Lutetium Lu. Among these, Ce is a preferable element in accordance with the object of the present invention, and tetravalent Ce is preferable. Mixtures of these rare earth hydroxides are also useful.

この本発明の希土類元素水酸化物には水を含有すると尚好ましく、その含水量は、Ce水酸化物100重量部に対して水1〜30重量部好ましくは5〜18重量部であることが驚くべきことに本願目的課題に合ってより好ましい。この含水量がある為に従来不可能と思われていた高分子樹脂と高分子樹脂100重量部当たり600重量部以上という従来水準(樹脂100重量部当たり400重量部)からは考えられないような高含量で希土類元素水酸化物を含有してなる砒素吸着剤を作ることが出来て、砒素吸着能も2〜4倍の驚くべき吸着能を得る事ができた。本発明の吸着剤は、飽和吸着量(平衡吸着量)が図4に示すごとく従来技術で達し得なかった吸着量を示す。   It is more preferable that the rare earth element hydroxide of the present invention contains water, and the water content thereof is 1 to 30 parts by weight, preferably 5 to 18 parts by weight with respect to 100 parts by weight of Ce hydroxide. Surprisingly, it is more preferred to meet the purpose of the present application. Because of this water content, it is impossible to think from the conventional level (400 parts by weight per 100 parts by weight of resin) of a polymer resin that was considered impossible in the past and 600 parts by weight or more per 100 parts by weight of the polymer resin. An arsenic adsorbent containing a high amount of rare earth element hydroxide was able to be made, and the arsenic adsorption ability was also 2 to 4 times astonishing. The adsorbent of the present invention shows an adsorption amount that the saturated adsorption amount (equilibrium adsorption amount) cannot be achieved by the prior art as shown in FIG.

その理由は定かでないが、含水することにより希土類元素水酸化物の流動性がよくなり樹脂との適当な混合が行われ、図7や図8の様に希土類元素水酸化物粒子の表面で高分子樹脂がスキン層を形成することにより、希土類元素水酸化物が流出せずに粒子内部に保持されることと、水が2次凝集している希土類元素水酸化物を適度の粒径にする作用と、その2次粒子の空隙を作って適度の砒素含有水との接触を可能にすること、及び水酸化物が酸化物に戻ることを防止し結果として砒素吸着能が高まっているものと推定される。
本発明の砒素吸着剤における前記高分子樹脂のスキン層は、その厚みが0.01〜2μm、好ましくは0.1〜0.5μmであることが望ましい。厚さ0.01μm未満では希土類元素が溶出するおそれがあり、また、厚さ2μmを超えると、通水時に吸着剤内部まで水が浸透し難くなるおそれある。
The reason for this is not clear, but by adding water, the fluidity of the rare earth element hydroxide is improved and appropriate mixing with the resin is performed, and the surface of the rare earth element hydroxide particles is high as shown in FIGS. The molecular resin forms a skin layer, so that the rare earth element hydroxide is retained inside the particles without flowing out, and the rare earth element hydroxide in which water is secondarily aggregated has an appropriate particle size. And the effect of creating voids in the secondary particles to allow contact with moderate arsenic-containing water, and preventing hydroxide from returning to oxide, resulting in increased arsenic adsorption capacity. Presumed.
The skin layer of the polymer resin in the arsenic adsorbent of the present invention has a thickness of 0.01 to 2 μm, preferably 0.1 to 0.5 μm. If the thickness is less than 0.01 μm, rare earth elements may be eluted, and if the thickness exceeds 2 μm, water may not easily penetrate into the adsorbent during water flow.

この含水率を測定する方法は樹脂混合粒子を樹脂溶解剤で樹脂を除き次いで該溶剤を揮発や分別除去して、残った含水希土類元素水酸化物を800℃の高温に1時間放置してその蒸発分を含水希土類元素水酸化物で除した値を含水率で表現する。
この希土類元素水酸化物の2次粒子は、平均粒径0.01〜0.1μmの1次粒子の凝集体であり、該2次粒子の平均粒径は0.2〜25μmが良く、1〜6μmが好ましい。0.2μm以下では樹脂混合で包まれて砒素含有水との接触が不足することがあり、25μm以上では樹脂との混合が良くないことがある。
The water content is measured by removing resin mixed particles with a resin solubilizer, volatilizing or separating the solvent, and leaving the remaining hydrous rare earth element hydroxide at a high temperature of 800 ° C. for 1 hour. The value obtained by dividing the evaporation by the hydrous rare earth element hydroxide is expressed by the water content.
The secondary particles of the rare earth element hydroxide are aggregates of primary particles having an average particle diameter of 0.01 to 0.1 μm, and the average particle diameter of the secondary particles is preferably 0.2 to 25 μm. ˜6 μm is preferred. If it is 0.2 μm or less, it may be wrapped with resin mixing and contact with arsenic-containing water may be insufficient, and if it is 25 μm or more, mixing with resin may be poor.

また、希土類元素水酸化物は、希土類元素硝酸化物を水酸基と中和反応させることで得られるが、反応時のpHが酸性側にあると、未反応の希土類元素硝酸化物が希土類元素水酸化物中に少量残留する。具体的な理由は明らかでないが、表2の様に希土類元素水酸化物100重量部当たり希土類元素硝酸化物1〜10重量部が残留していると、より高い砒素吸着性能を有するという知見が開発過程で見出され、本発明目的課題を解決する上で好ましいことが判明した。   The rare earth element hydroxide can be obtained by neutralizing the rare earth element nitrate with a hydroxyl group. If the pH during the reaction is on the acidic side, the unreacted rare earth element hydroxide is converted to the rare earth element hydroxide. A small amount remains in. Although the specific reason is not clear, as shown in Table 2, the knowledge that 1 to 10 parts by weight of rare earth element nitrate remained per 100 parts by weight of rare earth element hydroxide has higher arsenic adsorption performance. It was found in the process and proved preferable for solving the object of the present invention.

本発明の粒状砒素吸着剤を所定の容器内に充填し、所定の濃度の砒素(As(V)及びAs(III))含有水を該吸着剤容量に対して1〜20000倍容量
を通水(通水倍率と言う)すると通過した該含有水の砒素濃度は0.01mg/l以下に維持される。また、通水時の空塔速度を、従来水準の10l/hrを遥かに超えた100〜200l/hrとしても、十分な吸着性能を有する。尚この場合通水に用いられる砒素含有水のpHは4〜10が該吸着剤の吸着能を活性化維持させ好ましい。
また、本発明の吸着剤は、長期間の使用により吸着能が低下したとき、公知の方法により(例えば、特開2000−140626記載の方法などにより)再生処理してその吸着能を回復させることができる。
The granular arsenic adsorbent of the present invention is filled in a predetermined container, and water containing arsenic (As (V) and As (III)) having a predetermined concentration is passed through 1 to 20000 times the volume of the adsorbent. Then, the arsenic concentration of the contained water that has passed through is maintained at 0.01 mg / l or less. Moreover, even if the superficial velocity at the time of passing water is 100 to 200 l / hr, far exceeding the conventional level of 10 l / hr, sufficient adsorption performance is obtained. In this case, the pH of arsenic-containing water used for water passage is preferably 4 to 10 so that the adsorption ability of the adsorbent is activated and maintained.
The adsorbent of the present invention can be recovered by a regenerating process by a known method (for example, by the method described in JP-A No. 2000-140626, etc.) when the adsorptive capacity is lowered after long-term use. Can do.

[実施例]
以下に本発明の実施例、比較例を示す。
文中のSVとは、空塔速度(スペースベロシテイー)であり、吸着剤当たりの通水量であり、吸着剤1l当たりの水の通水速度のことである。例えば時間当たり吸着剤の20倍の速度であれば、20l/hrで通水したことを言う。
また、通水倍率とは、吸着剤容量当たり何倍の水を流したかを意味するもので、例えば、1lの吸着剤で通水倍率200というと、水を200l流したことを言う。
飽和吸着量とは、特定濃度の砒素水溶液で吸着剤にその砒素を吸着させた場合の最大どれだけ吸着出来るかを示す値で、砒素濃度により変わる。
[Example]
Examples of the present invention and comparative examples are shown below.
The SV in the sentence is a superficial velocity (space velocity), a water flow rate per adsorbent, and a water flow rate per 1 l of the adsorbent. For example, if the speed is 20 times that of the adsorbent per hour, it means that water was passed at 20 l / hr.
Further, the water flow rate means how many times the amount of water has flowed per adsorbent volume. For example, when the water flow rate is 200 with 1 l of adsorbent, it means that 200 l of water has flowed.
The saturated adsorption amount is a value indicating how much arsenic can be adsorbed when the arsenic is adsorbed to the adsorbent with an arsenic aqueous solution having a specific concentration, and varies depending on the arsenic concentration.

(実施例1,比較例1,比較例2)
水道水に砒酸水素2ナトリウム7水和物(Na2HAsO4・7H2O)を溶解して(初期)As(V)濃度1mg/lにした液を作製しpH7.0を確認し
た。以下これを水道水砒酸含有液という。別に、硝酸セリウム水溶液と水酸化ナトリウム水溶液を中和反応させ、精製、脱水して水分率30〜40重量%の含水酸化セリウム粉末を得た。次いで、この粉末を70℃低温乾燥機で乾燥し、水分率16重量%の含水酸化セリウム粉末を得た。この粉末833重量部とポリビニルブチラール樹脂100重量部とを溶媒N―メチル−2−ピロリドン700重量部に分散させて分散液を得た。次いでこの分散液を造粒機に投入し、樹脂100重量部に対して水酸化セリウム700重量部の割合になる丸みのある平均粒径0.70mmの粒子を得た。この粒子の断面を顕微鏡で見たところ、図7及び図8の如くであった。以下この粒子を吸着剤Aという。
(Example 1, Comparative Example 1, Comparative Example 2)
A solution was prepared by dissolving disodium hydrogen arsenate heptahydrate (Na 2 HAsO 4 .7H 2 O) in tap water to an (initial) As (V) concentration of 1 mg / l, and pH 7.0 was confirmed. This is hereinafter referred to as tap water arsenic acid-containing liquid. Separately, a cerium nitrate aqueous solution and a sodium hydroxide aqueous solution were neutralized, purified and dehydrated to obtain hydrous cerium hydroxide powder having a moisture content of 30 to 40% by weight. Next, this powder was dried with a low-temperature dryer at 70 ° C. to obtain a hydrous cerium oxide powder having a moisture content of 16% by weight. 833 parts by weight of this powder and 100 parts by weight of polyvinyl butyral resin were dispersed in 700 parts by weight of a solvent N-methyl-2-pyrrolidone to obtain a dispersion. Next, this dispersion was put into a granulator to obtain round particles having an average particle diameter of 0.70 mm and a ratio of 700 parts by weight of cerium hydroxide to 100 parts by weight of the resin. When the cross section of the particle was observed with a microscope, it was as shown in FIGS. Hereinafter, these particles are referred to as adsorbent A.

この吸着剤Aとは別に、比較例として特許文献3記載の砒素吸着剤(千代田化工建設社製、商品名:ヒソキュー)を用意した。
この粒子吸着剤Aを15ml及びヒソキューを15ml各々カラム塔に充填し、該カラムに先の水道水砒酸含有液を空塔速度(スペースベロシテイー;SV)が10l/hrの条件で、通水日数を変化させて実験し、通水させた該液中のAs(V)濃度(mg/l)(処理液砒素濃度)を測定した。その結果は図1に示す。
Apart from this adsorbent A, an arsenic adsorbent described in Patent Document 3 (trade name: Hisokyu, manufactured by Chiyoda Corporation) was prepared as a comparative example.
15 ml of this particle adsorbent A and 15 ml of Hisokyu are each packed in a column tower, and the previous tap water arsenic acid-containing liquid is passed through the column under conditions of a superficial velocity (space velocity; SV) of 10 l / hr. In this experiment, As (V) concentration (mg / l) (treatment solution arsenic concentration) was measured. The result is shown in FIG.

吸着剤Aの他に、比較例としてエチレン−ビニルアルコール共重合体樹脂を担体として水酸化セリウムを担持した本出願人製従来品(吸着剤B)の全有機炭素TOCを測定した。TOCの測定分析装置は島津製作所製TOC−VCSH型装置を使用し、サンプル採取法は通水倍率200倍時点の純水砒素含有液で採取した。測定結果を表1に示す。   In addition to the adsorbent A, as a comparative example, the total organic carbon TOC of a conventional product (adsorbent B) manufactured by the present applicant carrying cerium hydroxide with an ethylene-vinyl alcohol copolymer resin as a carrier was measured. The TOC measurement / analysis apparatus was a Shimadzu TOC-VCSH type apparatus, and the sample collection method was a pure water arsenic-containing liquid at a water flow rate of 200 times. The measurement results are shown in Table 1.

Figure 2005288363
Figure 2005288363

表1の吸着剤BのTOC濃度は通水初期の値であり、通水後しばらくすると溶解物の溶出は無くなる。そこで、あらかじめ吸着剤を水洗しておき、また処理水を更に活性炭により最終処理をすれば、実使用上の問題は無いが、溶出すること自体が改善すべき点であると考えた。本発明吸着剤について、表1からは明らかに水中への溶解物の溶出し易さを防止でき飲料用に問題がないことが分かり、図1からは吸着性の短時間経時低下が解決されており、高い吸着性能を保持していることが分かる。 The TOC concentration of the adsorbent B in Table 1 is a value at the initial stage of water flow, and elution of the dissolved substance disappears after a while. Therefore, if the adsorbent was washed with water in advance and the treated water was further subjected to final treatment with activated carbon, there was no problem in actual use, but it was thought that the elution itself should be improved. As for the adsorbent of the present invention, it can be clearly seen from Table 1 that elution of dissolved substances in water can be prevented and there is no problem for beverages. From FIG. It can be seen that high adsorption performance is maintained.

(実施例2)
水道水に3酸化2砒素無水物(As23)を溶解して(初期)As(III)濃度1mg/lにした液を作製しpH7.0を確認した。この液をカラム塔に充填した実施例1の吸着剤A15mlに、SV=10l/hrの条件で、通水日数を変化させて実験し、通水させた該液中のAs(III)濃度を測定した。また、通水終了後の吸着剤Aを水酸化ナトリウムで再生処理した後、先述の通水条件でAs(III)濃度を測定した。再生−通水のサイクルは2回行った。結果は図2に示される通り、凝集沈殿法(共沈法)では取り込むことが出来ない3価の亜砒酸が吸着されており、また、再生処理後の吸着性能が低下しないことも分かった。
(Example 2)
A solution having (initial) As (III) concentration of 1 mg / l prepared by dissolving diarsenic trioxide anhydride (As 2 O 3 ) in tap water was confirmed to have a pH of 7.0. An experiment was conducted by changing the number of days of water passage to 15 ml of the adsorbent A of Example 1 packed with this liquid in a column tower under the condition of SV = 10 l / hr, and the concentration of As (III) in the liquid passed through was measured. It was measured. Further, after the adsorbent A after completion of water flow was regenerated with sodium hydroxide, the As (III) concentration was measured under the water flow conditions described above. The regeneration-water flow cycle was performed twice. As shown in FIG. 2, it was found that trivalent arsenous acid that cannot be taken up by the coagulation precipitation method (coprecipitation method) was adsorbed, and that the adsorption performance after the regeneration treatment did not deteriorate.

(実施例3)
実施例1と同様の条件で通水試験を行い、通水させた該液中のAs(V)濃度
及びセリウム(Ce)濃度を測定した。その結果を図3に示す。
図3から、砒素吸着が破過に至っても、セリウムの溶出量が極めて低いことが分かった。
(Example 3)
A water passage test was performed under the same conditions as in Example 1, and the As (V) concentration and the cerium (Ce) concentration in the water flowed were measured. The result is shown in FIG.
From FIG. 3, it was found that even when arsenic adsorption broke through, the cerium elution amount was extremely low.

(実施例4)
純水に砒酸水素2ナトリウム7水和物(Na2HAsO4・7H2O)を溶解して(初期)As(V)濃度100mg/lにした液を作製しpH7.0を確認した。また、純水に3酸化2砒素無水物(As23)を溶解して(初期)As(III)濃度100mg/lにした液を作製しpH7.0を確認した。実施例1の吸着剤A2mlを、前述の各砒素含有液1lに加えて48hr撹拌した。その結果を図4に示す。本発明の吸着剤が、低濃度から高濃度まで有効に砒素を吸着していることが分かった。
Example 4
A solution was prepared by dissolving disodium hydrogen arsenate heptahydrate (Na 2 HAsO 4 .7H 2 O) in pure water to an (initial) As (V) concentration of 100 mg / l, and pH 7.0 was confirmed. Further, a solution was prepared by dissolving diarsenic trioxide anhydride (As 2 O 3 ) in pure water to an (initial) As (III) concentration of 100 mg / l, and pH 7.0 was confirmed. 2 ml of the adsorbent A of Example 1 was added to 1 liter of each of the arsenic-containing liquids described above and stirred for 48 hours. The result is shown in FIG. It was found that the adsorbent of the present invention effectively adsorbs arsenic from a low concentration to a high concentration.

(実施例5)
実施例1の吸着剤A2mlを、(初期)濃度2mmol/lでpHを5〜12の範囲で各々調整した純水As(V)含有液及びAs(III)含有液各1lに加えて48hr撹拌した。その結果を図5に示す。本発明の吸着剤の吸着性、特にAs(III)に対する吸着性がpHの影響を受けにくいことが分かった。
(Example 5)
2 ml of the adsorbent A of Example 1 was added to each 1 liter of pure water As (V) -containing liquid and As (III) -containing liquid each having an (initial) concentration of 2 mmol / l and pH adjusted in the range of 5 to 12, and stirred for 48 hours. did. The result is shown in FIG. It has been found that the adsorptivity of the adsorbent of the present invention, particularly the adsorptivity to As (III), is hardly affected by pH.

(実施例6)
実施例1の水道水砒酸含有液((初期)As(V)濃度1mg/l)を希釈して、(初期)As(V)濃度0.5mg/l及び0.1mg/lの液を作製し、それぞれpH7.0を確認した。SV以外の条件を実施例1と同様とし、SVを変化させて通水試験を行い、通水させた該液中のAs(V)濃度から砒素除去率を算出した。その結果を図6に示す。
図6から、SV=100l/hr以上の高SV領域でも、約70%以上の砒素が除去できており、特に(初期)As(V)濃度0.5mg/l以下の希薄溶液については、約80%以上という高い比率で砒素が除去できていることが分かった。
(Example 6)
The tap water arsenic acid-containing liquid of Example 1 ((initial) As (V) concentration 1 mg / l) was diluted to prepare liquids with (initial) As (V) concentrations of 0.5 mg / l and 0.1 mg / l. Each confirmed pH 7.0. The conditions other than the SV were the same as in Example 1, and the water passage test was performed while changing the SV, and the arsenic removal rate was calculated from the As (V) concentration in the water flowed. The result is shown in FIG.
From FIG. 6, even in a high SV region where SV = 100 l / hr or more, about 70% or more of arsenic can be removed. Especially, in the case of a dilute solution having an (initial) As (V) concentration of 0.5 mg / l or less, about It was found that arsenic was removed at a high rate of 80% or more.

(実施例7)
硝酸セリウム水溶液に添加する水酸化ナトリウム水溶液の濃度を変化させることで、中和反応時のpHの調整を行い、残留硝酸セリウム濃度が各々異なる含水酸化セリウム粉末を得た。
この含水酸化セリウム粉末を実施例4の純水砒酸含有液((初期)As(V)濃度100mg/l)1l中に、1.5g分散させ、pH6.5〜7.0に調整して20時間撹拌した。攪拌終了後、濾過した濾液をICP(誘導結合プラズマ)にて測定し、測定値より砒素吸着性能を算出した。その結果を表2に示す。
(Example 7)
By changing the concentration of the aqueous sodium hydroxide solution added to the aqueous cerium nitrate solution, the pH during the neutralization reaction was adjusted to obtain hydrous cerium hydroxide powders having different residual cerium nitrate concentrations.
1.5 g of this hydrous cerium hydroxide powder was dispersed in 1 l of the pure water arsenic acid-containing liquid of Example 4 ((initial) As (V) concentration 100 mg / l), adjusted to pH 6.5 to 7.0, and 20 Stir for hours. After the stirring, the filtered filtrate was measured with ICP (inductively coupled plasma), and the arsenic adsorption performance was calculated from the measured values. The results are shown in Table 2.

Figure 2005288363
Figure 2005288363

表2から、含水酸化セリウム中の残留硝酸セリウム濃度の高い方が、より高い砒素吸着性能を持つことが分かった。
実施例1〜7の結果より、本発明の吸着剤は、従来の吸着剤に比べて砒素の吸着性能が格段に向上していることが明らかである。すなわち、砒素で汚染された水を大量に高速度で浄化処理することが可能であり、また、低濃度の砒素を含む被処理水も効率的に浄化が可能であり、しかも吸着活性を長期間保持できるので、メンテナンスも容易であり、加えて、吸着剤や樹脂成分の溶出することもない。
From Table 2, it was found that the higher the residual cerium nitrate concentration in the hydrous cerium oxide, the higher the arsenic adsorption performance.
From the results of Examples 1 to 7, it is clear that the adsorbent of the present invention has a significantly improved arsenic adsorption performance as compared with the conventional adsorbent. That is, it is possible to purify a large amount of arsenic-contaminated water at a high speed, and also to treat the water to be treated containing low-concentration arsenic efficiently, and to maintain the adsorption activity for a long time. Since it can be held, maintenance is easy, and in addition, the adsorbent and resin components are not eluted.

本発明の砒素(As(V))吸着性能を示す図であり通水倍率と処理液砒素濃度(mg/l)の関係図である。It is a figure which shows the arsenic (As (V)) adsorption | suction performance of this invention, and is a related figure of a water flow magnification and a process liquid arsenic density | concentration (mg / l). 本発明の砒素(As(III))吸着性能を示す図であり通水倍率と処理液砒素濃度(mg/l)の関係図である。It is a figure which shows the arsenic (As (III)) adsorption | suction performance of this invention, and is a related figure of a water flow magnification and a process liquid arsenic density | concentration (mg / l). 本発明の通水倍率と処理液セリウム濃度の関係図である。It is a related figure of the water flow rate of this invention and a process liquid cerium density | concentration. 液相砒素濃度(mg/l)と本発明の砒素吸着量(g/l)の関係図である。FIG. 5 is a relationship diagram between liquid phase arsenic concentration (mg / l) and arsenic adsorption amount (g / l) of the present invention. 液pHと本発明の砒素吸着量(mol/l)の関係図である。FIG. 6 is a relationship diagram between the liquid pH and the arsenic adsorption amount (mol / l) of the present invention. 本発明のSV(l/hr)と砒素除去率の関係図である。FIG. 4 is a relationship diagram between SV (l / hr) and an arsenic removal rate of the present invention. 本発明の吸着剤の内部構造模式図である。It is an internal structure schematic diagram of the adsorption agent of this invention. 本発明の吸着剤の内部割断面写真(100倍)である。It is an internal fracture cross-section photograph (100 times) of the adsorbent of the present invention.

Claims (10)

希土類元素水酸化物およびその表面を被覆する高分子樹脂からなる砒素吸着剤であって、該希土類元素水酸化物は中心空洞部とその周囲の微細空隙部を有し、該希土類元素水酸化物表面を被覆する高分子樹脂は耐水性を有する多孔質のスキン層であることを特徴とする砒素吸着剤。 An arsenic adsorbent comprising a rare earth element hydroxide and a polymer resin covering the surface thereof, wherein the rare earth element hydroxide has a central cavity and surrounding fine voids, and the rare earth element hydroxide An arsenic adsorbent characterized in that the polymer resin covering the surface is a porous skin layer having water resistance. 該高分子樹脂が、フッ素樹脂、およびアセタール化ポリビニルアルコール系樹脂から選ばれる樹脂であることを特徴とする請求項1記載の砒素吸着剤。 The arsenic adsorbent according to claim 1, wherein the polymer resin is a resin selected from a fluororesin and an acetalized polyvinyl alcohol resin. 該希土類元素水酸化物が、平均2次粒子径1〜6μmであることを特徴とする請求項1または2記載の砒素吸着剤。 The arsenic adsorbent according to claim 1 or 2, wherein the rare earth element hydroxide has an average secondary particle diameter of 1 to 6 µm. 該希土類元素水酸化物が、該水酸化物100重量部当たり硝酸塩類1〜10重量部含有することを特徴とする請求項1〜3のいずれか1項記載の砒素吸着剤。 The arsenic adsorbent according to any one of claims 1 to 3, wherein the rare earth element hydroxide contains 1 to 10 parts by weight of nitrates per 100 parts by weight of the hydroxide. 該希土類元素水酸化物が、該水酸化物100重量部当たり水分1〜30重量部含有することを特徴とする請求項1〜4のいずれか1項記載の砒素吸着剤。 The arsenic adsorbent according to any one of claims 1 to 4, wherein the rare earth element hydroxide contains 1 to 30 parts by weight of water per 100 parts by weight of the hydroxide. 該高分子樹脂と高分子樹脂100重量部当たり600重量部以上の該希土類元素水酸化物とを含有してなる請求項1〜5のいずれか1項記載の砒素吸着剤。 The arsenic adsorbent according to any one of claims 1 to 5, comprising 600 parts by weight or more of the rare earth element hydroxide per 100 parts by weight of the polymer resin. 希土類元素水酸化物と水との混合物を100℃以下の低温で乾燥することにより、水5〜30重量部を含有する希土類元素水酸化物を得て、次いで該水酸化物を耐水性高分子樹脂とともに該樹脂を溶解する有機溶媒に溶解した液に分散させ、該分散物から造粒することを特徴とする砒素吸着剤の製造方法。 A rare earth element hydroxide containing 5 to 30 parts by weight of water is obtained by drying a mixture of the rare earth element hydroxide and water at a low temperature of 100 ° C. or lower, and the hydroxide is then converted into a water-resistant polymer. A method for producing an arsenic adsorbent, comprising: dispersing in a liquid dissolved in an organic solvent that dissolves the resin together with the resin; and granulating the dispersion. 希土類元素水酸化物が平均2次粒子径0.2〜25μmであり、砒素吸着剤の平均粒径が0.2〜2.0mmである請求項7記載の砒素吸着剤の製造方法。 The method for producing an arsenic adsorbent according to claim 7, wherein the rare earth element hydroxide has an average secondary particle diameter of 0.2 to 25 µm, and the average particle diameter of the arsenic adsorbent is 0.2 to 2.0 mm. 砒素を含む被処理水を請求項1〜6記載の砒素吸着剤に接触させて砒素を吸着、除去する方法。 A method for adsorbing and removing arsenic by bringing treated water containing arsenic into contact with the arsenic adsorbent according to claim 1. 空塔速度100〜200l/hrの高空塔速度域にて接触させる請求項9記載の砒素吸着除去方法。

10. The arsenic adsorption removal method according to claim 9, wherein the contact is made in a high superficial velocity range of a superficial velocity of 100 to 200 l / hr.

JP2004108704A 2003-05-01 2004-04-01 Arsenic adsorbent and production method therefor Pending JP2005288363A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004108704A JP2005288363A (en) 2004-04-01 2004-04-01 Arsenic adsorbent and production method therefor
KR1020057017919A KR100698672B1 (en) 2003-05-01 2004-04-27 Adsorbent and process for producing the same
CN200480011614.4A CN1780692B (en) 2003-05-01 2004-04-27 Adsorbent and process for producing the same
PCT/JP2004/006091 WO2004096433A1 (en) 2003-05-01 2004-04-27 Adsorbent and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108704A JP2005288363A (en) 2004-04-01 2004-04-01 Arsenic adsorbent and production method therefor

Publications (1)

Publication Number Publication Date
JP2005288363A true JP2005288363A (en) 2005-10-20

Family

ID=35321918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108704A Pending JP2005288363A (en) 2003-05-01 2004-04-01 Arsenic adsorbent and production method therefor

Country Status (1)

Country Link
JP (1) JP2005288363A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160271A (en) * 2005-12-16 2007-06-28 Nihon Kaisui:Kk Regeneration method of boron adsorbent
US7686976B2 (en) 2003-01-29 2010-03-30 Molycorp Minerals, Llc Composition for removing arsenic from aqueous streams
EP2209743A1 (en) * 2007-10-31 2010-07-28 Molycorp Minerals, LLC Aggregate composition for treating a contaminanted fluid
US8066874B2 (en) 2006-12-28 2011-11-29 Molycorp Minerals, Llc Apparatus for treating a flow of an aqueous solution containing arsenic
US8252087B2 (en) 2007-10-31 2012-08-28 Molycorp Minerals, Llc Process and apparatus for treating a gas containing a contaminant
KR20140022416A (en) * 2011-04-13 2014-02-24 몰리코프 미네랄스, 엘엘씨 Rare earth removal of hydrated and hydroxyl species
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
EP3305403A4 (en) * 2015-06-04 2019-02-13 Ebara Corporation Adsorbent for adsorbing iodine compounds and/or antimony, method for preparing said adsorbent, and method and apparatus for treating radioactive waste liquid by using said adsorbent
CN114682221A (en) * 2022-06-01 2022-07-01 矿冶科技集团有限公司 Selective adsorption material for treating lead and cadmium-containing wastewater, preparation method thereof and method for treating lead and cadmium-containing wastewater by using selective adsorption material
CN115106058A (en) * 2022-05-24 2022-09-27 中南大学 Phosphorus modified biomass charcoal, preparation method thereof and application thereof in adsorbing rare earth ions in solution system
CN115646427A (en) * 2022-10-27 2023-01-31 江西鑫泰功能材料科技有限公司 Preparation method of hydrated rare earth oxide adsorbent for arsenic removal

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7686976B2 (en) 2003-01-29 2010-03-30 Molycorp Minerals, Llc Composition for removing arsenic from aqueous streams
US8475658B2 (en) 2003-01-29 2013-07-02 Molycorp Minerals, Llc Water purification device for arsenic removal
JP2007160271A (en) * 2005-12-16 2007-06-28 Nihon Kaisui:Kk Regeneration method of boron adsorbent
JP4637737B2 (en) * 2005-12-16 2011-02-23 株式会社日本海水 Regeneration method of boron adsorbent
US8066874B2 (en) 2006-12-28 2011-11-29 Molycorp Minerals, Llc Apparatus for treating a flow of an aqueous solution containing arsenic
JP2014111256A (en) * 2007-10-31 2014-06-19 Molycorp Minerals Llc Aggregate composition for treating fluid containing contaminant
EP2209743A1 (en) * 2007-10-31 2010-07-28 Molycorp Minerals, LLC Aggregate composition for treating a contaminanted fluid
US8252087B2 (en) 2007-10-31 2012-08-28 Molycorp Minerals, Llc Process and apparatus for treating a gas containing a contaminant
US8349764B2 (en) 2007-10-31 2013-01-08 Molycorp Minerals, Llc Composition for treating a fluid
JP2011502045A (en) * 2007-10-31 2011-01-20 モリーコープ ミネラルズ エルエルシー Agglomerated composition for treating fluids containing contaminants
US8557730B2 (en) 2007-10-31 2013-10-15 Molycorp Minerals, Llc Composition and process for making the composition
EP2209743A4 (en) * 2007-10-31 2012-02-29 Molycorp Minerals Llc Aggregate composition for treating a contaminanted fluid
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
JP2014518538A (en) * 2011-04-13 2014-07-31 モリーコープ ミネラルズ エルエルシー Hydration and removal of rare earth elements of chemical species containing hydroxyl groups
KR20140022416A (en) * 2011-04-13 2014-02-24 몰리코프 미네랄스, 엘엘씨 Rare earth removal of hydrated and hydroxyl species
JP2018051557A (en) * 2011-04-13 2018-04-05 セキュア ナチュラル リソーシズ エルエルシーSecure Natural Resources Llc Rare earth removal of hydrated and hydroxyl species
KR102015961B1 (en) 2011-04-13 2019-08-29 시큐어 네이처 리소시즈 엘엘씨 Rare earth removal of hydrated and hydroxyl species
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
US10577259B2 (en) 2014-03-07 2020-03-03 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
EP3305403A4 (en) * 2015-06-04 2019-02-13 Ebara Corporation Adsorbent for adsorbing iodine compounds and/or antimony, method for preparing said adsorbent, and method and apparatus for treating radioactive waste liquid by using said adsorbent
CN115106058A (en) * 2022-05-24 2022-09-27 中南大学 Phosphorus modified biomass charcoal, preparation method thereof and application thereof in adsorbing rare earth ions in solution system
CN115106058B (en) * 2022-05-24 2024-01-19 中南大学 Phosphorus modified biomass charcoal, preparation method thereof and application thereof in absorbing rare earth ions in solution system
CN114682221A (en) * 2022-06-01 2022-07-01 矿冶科技集团有限公司 Selective adsorption material for treating lead and cadmium-containing wastewater, preparation method thereof and method for treating lead and cadmium-containing wastewater by using selective adsorption material
CN115646427A (en) * 2022-10-27 2023-01-31 江西鑫泰功能材料科技有限公司 Preparation method of hydrated rare earth oxide adsorbent for arsenic removal

Similar Documents

Publication Publication Date Title
Azimi et al. Removal of heavy metals from industrial wastewaters: a review
Katsou et al. Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system
US6861002B2 (en) Reactive compositions for fluid treatment
US7186344B2 (en) Membrane based fluid treatment systems
CN101198549B (en) Waste water treatment device and method
US7807606B2 (en) High capacity adsorption media and method of producing
US6878285B2 (en) Ion-exchange based fluid treatment systems
US8648008B2 (en) Arsenic adsorbing composition and methods of use
US20120261347A1 (en) Non-metal-containing oxyanion removal from waters using rare earths
US20130118985A1 (en) Heavy metal removal from waste streams
JP5136735B2 (en) Method for removing toxic substances in exudate from final disposal site for stable industrial waste
WO2012100264A1 (en) Rare earth removal of phosphorus-containing materials
BR112013026251A2 (en) method of removing rare earths from hydrated and hydroxyl species and composition
Chen et al. Evaluation of enhanced coagulation combined with densadeg-ultrafiltration process in treating secondary effluent: Organic micro-pollutants removal, genotoxicity reduction, and membrane fouling alleviation
KR101185877B1 (en) Water treatment method of arsenic-containing water by using layered double hydroxide
JP2005288363A (en) Arsenic adsorbent and production method therefor
JP2006320847A (en) Organic arsenic-containing water treatment method, and its apparatus
TWI387562B (en) Process and treatment device for water containing biological treatment water
CN1780692B (en) Adsorbent and process for producing the same
WO2012141897A2 (en) Non-metal-containing oxyanion removal from waters using rare earths
KR100698672B1 (en) Adsorbent and process for producing the same
WO2015063147A1 (en) Water purification method
US10752522B2 (en) Compositions and methods for selenium removal
Chuang et al. Improving the removal of anions by coagulation and dissolved air flotation in wastewater reclamation
JP2005028312A (en) Fluorine adsorbent and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051013

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Effective date: 20090312

Free format text: JAPANESE INTERMEDIATE CODE: A02