JP7095326B2 - Polyvinyl chloride resin porous beads and their manufacturing method - Google Patents

Polyvinyl chloride resin porous beads and their manufacturing method Download PDF

Info

Publication number
JP7095326B2
JP7095326B2 JP2018046857A JP2018046857A JP7095326B2 JP 7095326 B2 JP7095326 B2 JP 7095326B2 JP 2018046857 A JP2018046857 A JP 2018046857A JP 2018046857 A JP2018046857 A JP 2018046857A JP 7095326 B2 JP7095326 B2 JP 7095326B2
Authority
JP
Japan
Prior art keywords
polyvinyl chloride
chloride resin
porous beads
beads
resin porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018046857A
Other languages
Japanese (ja)
Other versions
JP2018159060A (en
Inventor
奨 山田
和明 山本
敬浩 松永
武史 開川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JP2018159060A publication Critical patent/JP2018159060A/en
Application granted granted Critical
Publication of JP7095326B2 publication Critical patent/JP7095326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、ポリ塩化ビニル樹脂多孔質ビーズおよびその製造方法に関する。更に詳細には、外層から中心にかけて微細な連続孔を有し、中心部に中空部を有する空孔率の高いポリ塩化ビニル樹脂多孔質ビーズおよびその製造方法に関する。 The present invention relates to polyvinyl chloride resin porous beads and a method for producing the same. More specifically, the present invention relates to a polyvinyl chloride resin porous bead having fine continuous pores from the outer layer to the center and having a hollow portion in the center and having a high porosity, and a method for producing the same.

多孔質高分子材料は、分離、吸着、吸水機能、触媒固定・担持機能、断熱・緩衝性、絶縁性、吸音性、軽量性など、様々な機能や特性を有している。そのため、分離機能性や吸着性から、膜・フィルム状の分離膜や医療材料、粒状の濾過材や吸着材、軽量性や緩衝性から梱包・包装材料、断熱性から建築資材や保温材、吸音性から吸音材料、など幅広い用途で有用である。 Porous polymer materials have various functions and properties such as separation, adsorption, water absorption function, catalyst fixing / supporting function, heat insulation / buffer property, insulation property, sound absorption property, and light weight. Therefore, due to its separation functionality and adsorptivity, membrane / film-like separation membranes and medical materials, granular filter materials and adsorbents, packaging / packaging materials due to its light weight and cushioning properties, building materials and heat insulating materials due to its heat insulating properties, and sound absorption. It is useful in a wide range of applications, from sex to sound absorbing materials.

また、高分子材料として塩化ビニル系重合体は、耐薬品性、耐酸性、耐アルカリ性、耐候性に優れており、安価であるため汎用材料として有用である。 Further, as a polymer material, a vinyl chloride polymer is excellent in chemical resistance, acid resistance, alkali resistance, and weather resistance, and is useful as a general-purpose material because it is inexpensive.

塩化ビニル系重合体の多孔体については、多孔体形成に水溶性粒子を用いた特定の空隙率と貯蔵弾性率を有する塩素含有樹脂多孔体(例えば、特許文献1参照)、塩化ビニル系共重合体溶液を冷却して析出した成形体を分離、乾燥して得られる孔径が0.1~40μmの連続孔であり、孔の骨格径が0.1~20μmであり、且つ厚みが1mm以上を有する塩化ビニル/アクリロニトリル共重合体多孔質体(例えば、特許文献2参照)、水中油型のエマルション形成技術を利用したPVC粒状物(例えば、特許文献3参照)、100~180℃の温度で、コロイド溶液を形成するような溶剤中にPVCを溶解し、溶液を冷却、形成されたポリマー小球状体を分離して得られる1~5000μmの範囲内の狭い粒子スペクトルを有する多孔性PVC小球状体(例えば、特許文献4参照)が報告されている。また、高分子中空体を得る方法については、油溶性界面活性剤を含有した樹脂液に気体を注入し、気体を内包した液滴粒子を得る方法(例えば、特許文献5参照)が報告されている。 Regarding the porous body of the vinyl chloride polymer, a chlorine-containing resin porous body having a specific void ratio and storage elasticity using water-soluble particles for forming the porous body (see, for example, Patent Document 1) and a vinyl chloride-based co-weight. The polymer is a continuous pore having a pore diameter of 0.1 to 40 μm, a skeleton diameter of 0.1 to 20 μm, and a thickness of 1 mm or more, which is obtained by cooling the polymerized solution to separate and drying the precipitated polymer. Polyvinyl chloride / acrylonitrile copolymer porous body (see, for example, Patent Document 2), PVC granules using an oil-in-water emulsion forming technique (see, for example, Patent Document 3), at a temperature of 100 to 180 ° C. A porous PVC small sphere having a narrow particle spectrum in the range of 1 to 5000 μm obtained by dissolving PVC in a solvent that forms a colloidal solution, cooling the solution, and separating the formed polymer small sphere. (See, for example, Patent Document 4) has been reported. Further, as a method for obtaining a polymer hollow body, a method for obtaining droplet particles containing a gas by injecting a gas into a resin liquid containing an oil-soluble surfactant (see, for example, Patent Document 5) has been reported. There is.

特開2015-145485公報JP-A-2015-145485A 国際特許公開第2013-069681号パンフレットInternational Patent Publication No. 2013-069681 Pamphlet 特許第5252414号公報Japanese Patent No. 5252414 特表2000―516973公報Special Table 2000-516973 Gazette 特開2016-131933公報Japanese Unexamined Patent Publication No. 2016-131933

吸着または吸収用途において、粒径が小さいと圧力損失が大きくなり、空孔率が低い、または、連続孔を有していないと吸着または吸収効率が低下する。また、一般に毛管凝縮による細孔内への吸着量が急激に増加する数ナノ~数百ナノの細孔を有する高分子多孔体は、貧溶媒相分離法や熱誘導相分離法、または、空孔成形材により作製することは難しい。 In adsorption or absorption applications, a small particle size results in a large pressure loss, and a low porosity or lack of continuous pores results in a decrease in adsorption or absorption efficiency. In general, a polymer porous body having pores of several nanometers to several hundreds of nanometers in which the amount of adsorption into the pores due to capillary condensation rapidly increases is a poor solvent phase separation method, a heat-induced phase separation method, or an empty body. It is difficult to make with a hole forming material.

特許文献1に開示された多孔体形成に水溶性粒子を用いる方法、特許文献4に開示された高温溶解したPVC溶液を冷却する方法、特許文献5に開示された油溶性界面活性剤を含有した樹脂液に気体を注入し、気体を内包した液滴粒子を得る方法では、微細な連続孔を有する多孔体の形成が困難であった。特許文献2に開示された塩化ビニル系共重合体溶液を冷却して析出した成形体を分離する方法では、空孔率の高い粒状多孔体形成が難しく、特許文献3で開示された水中油型のエマルション形成技術を利用した多孔体形成方法では、粒径の大きい多孔体形成が困難であった。 A method of using water-soluble particles for forming a porous body disclosed in Patent Document 1, a method of cooling a high-temperature dissolved PVC solution disclosed in Patent Document 4, and an oil-soluble surfactant disclosed in Patent Document 5 are contained. In the method of injecting a gas into a resin solution to obtain droplet particles containing the gas, it is difficult to form a porous body having fine continuous pores. In the method of cooling the vinyl chloride-based copolymer solution disclosed in Patent Document 2 to separate the precipitated molded body, it is difficult to form a granular porous body having a high porosity, and the underwater oil type disclosed in Patent Document 3 is used. In the method for forming a porous body using the emulsion forming technique of No. 1, it was difficult to form a porous body having a large particle size.

本発明の目的は、ポリ塩化ビニル樹脂多孔質ビーズおよびその製造方法に関する。更に詳細には、ビーズ表面から中心にかけて微細な連続孔を有し、ビーズ内部に中空部を有する空孔率の高いポリ塩化ビニル樹脂多孔質ビーズおよびその製造方法を提供することにある。 An object of the present invention relates to polyvinyl chloride resin porous beads and a method for producing the same. More specifically, it is an object of the present invention to provide a polyvinyl chloride resin porous bead having fine continuous pores from the surface to the center of the bead and having a hollow portion inside the bead and having a high porosity, and a method for producing the same.

本発明者らは、上記の課題を解決するために鋭意検討した結果、ポリ塩化ビニル樹脂からなる多孔質ビーズであって、空孔率が50~95%の範囲内であり、ビーズ内部に中空部を有し、ビーズ表面から中心に一部の孔径が0.002~0.2μmの範囲にある連続孔を有し、その連続孔の細孔容積が0.03cm/g以上であり、且つ、ビーズ内部に位置する複数の中空部のうちビーズ中心部に位置する中空部の平均空間容積が、多孔質ビーズの体積に対し0.01~30体積%であることを特徴とするポリ塩化ビニル樹脂多孔質ビーズおよびその製造方法を見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have found that the porous beads made of polyvinyl chloride resin have a pore ratio in the range of 50 to 95% and are hollow inside the beads. It has a portion, and a part of the pore diameter is in the range of 0.002 to 0.2 μm from the surface of the bead to the center, and the pore volume of the continuous pore is 0.03 cm 3 / g or more. Moreover, the polychloride is characterized in that the average space volume of the hollow portion located in the center of the beads among the plurality of hollow portions located inside the beads is 0.01 to 30% by volume with respect to the volume of the porous beads. We have found vinyl resin porous beads and a method for producing them, and have completed the present invention.

即ち、本発明は、
[1]空孔率が50~95%の範囲内であり、ビーズ内部に中空部を有し、ビーズ表面から中心に一部の孔径が0.002~0.2μmの範囲にある連続孔を有し、その連続孔の細孔容積が0.03cm/g以上であり、且つ、ビーズ内部に位置する複数の中空部のうちビーズ中心部に位置する中空部の平均空間容積が、多孔質ビーズの体積に対し0.01~30体積%であることを特徴とするポリ塩化ビニル樹脂多孔質ビーズ。
That is, the present invention
[1] Continuous holes having a pore ratio in the range of 50 to 95%, having a hollow portion inside the bead, and having a partial pore diameter in the range of 0.002 to 0.2 μm from the surface of the bead to the center. The pore volume of the continuous pores is 0.03 cm 3 / g or more, and the average space volume of the hollow portion located in the center of the bead among the plurality of hollow portions located inside the bead is porous. Polyvinyl chloride resin porous beads characterized by being 0.01 to 30% by volume with respect to the volume of the beads.

[2]ポリ塩化ビニル樹脂を良溶媒に溶解し、ポリ塩化ビニル樹脂溶液を得る工程、
前記工程で得られたポリ塩化ビニル樹脂溶液の液滴を形成する工程、
前記工程で得られた液滴を水を含む貧溶媒に浸漬させ、樹脂を固化する工程、
前記工程で得られた固化した樹脂を溶媒系から分離する工程
を含み、前記貧溶媒中の水の割合が0.1~80重量%であることを特徴とする[1]に記載のポリ塩化ビニル樹脂多孔質ビーズの製造方法。
[2] A step of dissolving a polyvinyl chloride resin in a good solvent to obtain a polyvinyl chloride resin solution.
The step of forming droplets of the polyvinyl chloride resin solution obtained in the above step,
A step of immersing the droplets obtained in the above step in a poor solvent containing water to solidify the resin.
The polyvinyl chloride according to [1], which comprises a step of separating the solidified resin obtained in the above step from the solvent system, and the proportion of water in the poor solvent is 0.1 to 80% by weight. A method for manufacturing vinyl resin porous beads.

[3]前記貧溶媒がメタノールまたはエタノールであることを特徴とする[2]に記載のポリ塩化ビニル樹脂多孔質ビーズの製造方法。 [3] The method for producing polyvinyl chloride resin porous beads according to [2], wherein the poor solvent is methanol or ethanol.

[4]前記良溶媒がジメチルアセトアミドであることを特徴とする[2]に記載のポリ塩化ビニル樹脂多孔質ビーズの製造方法。 [4] The method for producing polyvinyl chloride resin porous beads according to [2], wherein the good solvent is dimethylacetamide.

[5]液滴を水を含む貧溶媒に浸漬させ、樹脂を固化する工程の温度が-15~50℃であることを特徴とする[2]に記載のポリ塩化ビニル樹脂多孔質ビーズの製造方法。 [5] Production of the polyvinyl chloride resin porous beads according to [2], wherein the temperature of the step of immersing the droplets in a poor solvent containing water to solidify the resin is −15 to 50 ° C. Method.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明におけるポリ塩化ビニル樹脂多孔質ビーズの空孔率は50~95%の範囲内であり、70~95%の範囲内であることが好ましく、80~95%の範囲内であることがより好ましい。空孔率が50%より高ければ、濾過材や吸着剤としての性能に優れる点で好ましい。 The porosity of the polyvinyl chloride resin porous beads in the present invention is in the range of 50 to 95%, preferably in the range of 70 to 95%, and more preferably in the range of 80 to 95%. preferable. When the porosity is higher than 50%, it is preferable in that the performance as a filter material or an adsorbent is excellent.

本発明で規定するポリ塩化ビニル樹脂多孔質ビーズの空孔率(P)は、下記式に従い、全細孔容積(Vp)とポリ塩化ビニル樹脂の比重により求められる。 The porosity (P) of the polyvinyl chloride resin porous beads specified in the present invention is determined by the total pore volume (Vp) and the specific gravity of the polyvinyl chloride resin according to the following formula.

Figure 0007095326000001
Figure 0007095326000001

(式中、Pは多孔質ビーズの空孔率(%)を表し、Vpは多孔質ビーズの全細孔容積(cm/g)を表し、ρPVCはポリ塩化ビニル樹脂の比重を表す)
また、本発明におけるポリ塩化ビニル樹脂多孔質ビーズの全細孔容積Vpは、乾燥した多孔質ビーズ約0.2gの重量を測定し、乾燥時の重量(W)とし、重量測定したビーズ全量を25℃のメタノール100mLに添加して、48時間静置した。次に、細孔内に十分にメタノールが含浸したポリ塩化ビニル樹脂多孔質ビーズを取出し、乾燥した濾紙に広げて、表面の余分なメタノールを取り、重量を測定し、メタノール含浸時の重量(W)とした。多孔質ビーズの乾燥時の重量(W)とメタノール含浸時の重量(W)およびメタノールの比重(25℃)を用いて、下記式に従いポリ塩化ビニル樹脂多孔質ビーズの全細孔容積(Vp)を求めた。
(In the formula, P represents the porosity (%) of the porous beads, Vp represents the total pore volume (cm 3 / g) of the porous beads, and ρ PVC represents the specific gravity of the polyvinyl chloride resin.)
The total pore volume Vp of the polyvinyl chloride resin porous beads in the present invention is the total weight of the dried porous beads measured by measuring the weight of about 0.2 g and setting the weight at the time of drying (W 0 ). Was added to 100 mL of methanol at 25 ° C. and allowed to stand for 48 hours. Next, the polyvinyl chloride resin porous beads sufficiently impregnated with methanol in the pores are taken out, spread on a dry filter paper, excess methanol on the surface is removed, the weight is measured, and the weight at the time of methanol impregnation (W). 1 ). Using the weight of the porous beads when dried (W 0 ), the weight when impregnated with methanol (W 1 ), and the specific gravity of methanol (25 ° C), the total pore volume of the polyvinyl chloride resin porous beads according to the following formula (W 0). Vp) was calculated.

Figure 0007095326000002
Figure 0007095326000002

(式中、Vpは多孔質ビーズの全細孔容積(cm/g)を表し、Wは多孔質ビーズの乾燥時の重量(g)を表し、Wは多孔質ビーズのメタノール含浸時の重量(g)を表し、ρMeOHはメタノールの比重を表す)
本発明におけるポリ塩化ビニル樹脂多孔質ビーズは、ビーズ内部に中空部を有する。中空部は、ビーズ内部に複数位置し、特に限定するものではないが、例えば、10~1500μmの孔径を有しており、機械的強度に優れる点で孔径が10~500μmであることが好ましい。
(In the formula, Vp represents the total pore volume (cm 3 / g) of the porous beads, W 0 represents the weight (g) of the porous beads when dried, and W 1 represents the methanol impregnation of the porous beads. Represents the weight (g) of, and ρ MeOH represents the specific gravity of methanol)
The polyvinyl chloride resin porous beads in the present invention have a hollow portion inside the beads. A plurality of hollow portions are located inside the beads and are not particularly limited, but for example, they have a pore size of 10 to 1500 μm, and are preferably 10 to 500 μm in terms of excellent mechanical strength.

本発明におけるポリ塩化ビニル樹脂多孔質ビーズは、ビーズ表面から中心部に位置する中空部まで微細な連続孔を有する。そして、微細な連続孔の一部の孔径は0.002~0.2μmの範囲にある。 The polyvinyl chloride resin porous beads in the present invention have fine continuous pores from the bead surface to the hollow portion located at the center. The diameter of a part of the fine continuous holes is in the range of 0.002 to 0.2 μm.

連続孔の存在は、本発明のポリ塩化ビニル樹脂多孔質ビーズの割断面と表面のSEM写真およびガス吸着法による細孔分布測定結果から確認することができる。 The presence of continuous pores can be confirmed from the fracture surface of the polyvinyl chloride resin porous beads of the present invention, the SEM photograph of the surface, and the pore distribution measurement result by the gas adsorption method.

本発明におけるポリ塩化ビニル樹脂多孔質ビーズは、その連続孔の細孔容積が0.03cm/g以上である。そして、吸着または吸収用途において毛管凝縮が起こり易い0.002~0.05μmのメソ孔を含む、孔径0.002~0.2μmの細孔を外層に有することは、効率的な細孔内への吸着・吸収に優れることを意味する。 The polyvinyl chloride resin porous beads in the present invention have a pore volume of 0.03 cm 3 / g or more in the continuous pores. Further, having pores having a pore diameter of 0.002 to 0.2 μm in the outer layer, including mesopores having a pore size of 0.002 to 0.05 μm in which capillary condensation is likely to occur in an adsorption or absorption application, is efficient. It means that it is excellent in adsorption and absorption.

本発明におけるポリ塩化ビニル樹脂多孔質ビーズの連続孔の細孔容積は、定容量式ガス吸着法による細孔分布測定装置(マイクロトラック社製、BELSORP-miniII)により吸着等温線を測定し、BJH法による解析により求めた。 The pore volume of the continuous pores of the polyvinyl chloride resin porous beads in the present invention is determined by measuring the adsorption isotherm with a pore distribution measuring device (BELSORP-miniII manufactured by Microtrac Co., Ltd.) by a constant volume gas adsorption method, and BJH. It was obtained by analysis by the method.

本発明におけるポリ塩化ビニル樹脂多孔質ビーズの形状は、実質的に球状であり、真球度については、特に限定するものではないが、例えば、多孔質ビーズの最長径と最短径の比が1~2の範囲を挙げることができ、形状の均一性に優れる点で、1~1.5であることが好ましい。 The shape of the polyvinyl chloride resin porous beads in the present invention is substantially spherical, and the sphericity is not particularly limited. For example, the ratio of the longest diameter to the shortest diameter of the porous beads is 1. The range of 1 to 2 can be mentioned, and 1 to 1.5 is preferable in terms of excellent shape uniformity.

また、本発明におけるポリ塩化ビニル樹脂多孔質ビーズの大きさは、特に限定するものではないが、例えば、ビーズ径0.1~10mmの範囲を挙げることができるが、生産性や取扱いに優れる点でビーズ径は0.5~5mmが好ましい。 The size of the polyvinyl chloride resin porous beads in the present invention is not particularly limited, and for example, a bead diameter in the range of 0.1 to 10 mm can be mentioned, but it is excellent in productivity and handling. The bead diameter is preferably 0.5 to 5 mm.

本発明におけるポリ塩化ビニル樹脂多孔質ビーズの内部に位置する複数の中空部のうちビーズ中心部に位置する中空部の平均空間容積は、多孔質ビーズの体積に対し0.01~30体積%を有する。平均空間容積が0.01体積%未満の場合は空孔率が下がり、30体積%を超えると強度が低下する。空孔率を維持し、機械的強度に優れる点で、平均空間容積は、0.01~30体積%であることが好ましく、0.05~20体積%であることがより好ましい。 Of the plurality of hollow portions located inside the polyvinyl chloride resin porous beads in the present invention, the average space volume of the hollow portion located at the center of the beads is 0.01 to 30% by volume with respect to the volume of the porous beads. Have. If the average space volume is less than 0.01% by volume, the porosity decreases, and if it exceeds 30% by volume, the strength decreases. The average space volume is preferably 0.01 to 30% by volume, more preferably 0.05 to 20% by volume, in terms of maintaining the porosity and excellent mechanical strength.

本発明におけるポリ塩化ビニル樹脂多孔質ビーズの内部に位置する複数の中空部のうちビーズ中心部に位置する中空部の平均空間容積は、SEM写真を用いて中空部の最長直径と最短直径を測定し、その平均値を中空直径とし、平均空間容積を計算した。 Of the plurality of hollow portions located inside the polyvinyl chloride resin porous beads in the present invention, the average spatial volume of the hollow portion located at the center of the beads is measured by measuring the longest diameter and the shortest diameter of the hollow portion using an SEM photograph. Then, the average value was taken as the hollow diameter, and the average space volume was calculated.

本発明におけるポリ塩化ビニル樹脂多孔質ビーズの原料としては、特に限定するものではないが、例えば、ポリ塩化ビニル樹脂の平均重合度は400~4000の範囲を挙げることができ、溶媒への溶解性が優れる点では、400~2000であることが好ましいが、細孔の熱安定性を向上させる点では、1000~4000であることが好ましく、用途に応じて平均重合度を選択すればよい。また、平均重合度の異なる2種類以上のPVCを混合して供してもよい。 The raw material of the polyvinyl chloride resin porous beads in the present invention is not particularly limited, but for example, the average degree of polymerization of the polyvinyl chloride resin can be in the range of 400 to 4000, and its solubility in a solvent can be mentioned. It is preferably 400 to 2000 in terms of being excellent, but it is preferably 1000 to 4000 in terms of improving the thermal stability of the pores, and the average degree of polymerization may be selected according to the application. Further, two or more kinds of PVC having different average degrees of polymerization may be mixed and provided.

前記ポリ塩化ビニル樹脂には、安定剤が含まれていてもよく、安定剤としては、特に限定するものではないが、例えば、鉛、バリウム、亜鉛、カルシウム、錫などの有機酸塩、無機酸塩、等が挙げられる。より具体的には、前記有機酸塩としては、特に限定するものではないが、例えば、ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸鉛、ジラウリン酸ジブチル錫、マレイン酸ジブチル錫等が挙げられる。また、無機酸塩としては、特に限定するものではないが、例えば、塩基性硫酸鉛、塩基性炭酸鉛、塩基性亜リン酸鉛等などが挙げられる。これらの安定剤は、単独もしくは2種以上を併用しても構わない。 The polyvinyl chloride resin may contain a stabilizer, and the stabilizer is not particularly limited, but for example, an organic acid salt such as lead, barium, zinc, calcium, or tin, or an inorganic acid. Examples include salt. More specifically, the organic acid salt is not particularly limited, and examples thereof include barium stearate, zinc stearate, calcium stearate, lead stearate, dibutyltin dilaurate, and dibutyltin maleate. Be done. The inorganic acid salt is not particularly limited, and examples thereof include basic lead sulfate, basic lead carbonate, and basic lead phosphite. These stabilizers may be used alone or in combination of two or more.

本発明におけるポリ塩化ビニル樹脂多孔質ビーズの製造方法は、ポリ塩化ビニル樹脂を良溶媒に加熱溶解し、ポリ塩化ビニル樹脂溶液を得る工程において、良溶媒としては、特に限定するものではないが、例えば、ジメチルアセトアミド、四塩化炭素、クロロベンゼン、クロロホルム、シクロヘキサノン、o-ジクロロベンゼン、ジメチルホルムアミド、1-メチル-2-ピロリドン、および1,1,2,2-テトラクロロエタン等が挙げられる。これらの良溶媒の中で、ポリ塩化ビニル樹脂の溶解性に優れる点で、ジメチルアセトアミドが好ましい。 The method for producing a polyvinyl chloride resin porous bead in the present invention is not particularly limited as a good solvent in the step of heat-dissolving the polyvinyl chloride resin in a good solvent to obtain a polyvinyl chloride resin solution. For example, dimethylacetamide, carbon tetrachloride, chlorobenzene, chloroform, cyclohexanone, o-dichlorobenzene, dimethylformamide, 1-methyl-2-pyrrolidone, 1,1,2,2-tetrachloroethane and the like can be mentioned. Among these good solvents, dimethylacetamide is preferable because it has excellent solubility of the polyvinyl chloride resin.

また、ポリ塩化ビニル樹脂を良溶媒に加熱溶解する温度としては、良溶媒の沸点以下であればよく、特に限定するものではないが、10~100℃の範囲を挙げることができ、生産性の観点から20~80℃が好ましい。更に溶解の方法としては、特に限定するものではないが、撹拌、ポンプ循環、振とう、超音波処理等が挙げられる。 The temperature at which the polyvinyl chloride resin is heated and dissolved in a good solvent may be any temperature equal to or lower than the boiling point of the good solvent, and is not particularly limited, but may be in the range of 10 to 100 ° C. and is productive. From the viewpoint, 20 to 80 ° C. is preferable. Further, the dissolution method is not particularly limited, and examples thereof include stirring, pump circulation, shaking, and ultrasonic treatment.

ポリ塩化ビニル樹脂を良溶媒に加熱溶解し、ポリ塩化ビニル樹脂溶液を得る工程において、ポリ塩化ビニル樹脂溶液の濃度としては、特に限定するものではないが、例えば、1~50重量%の範囲が挙げられる。濃度が1重量%未満であると液滴化した後、形状を維持することが難しく、ビーズ強度も低下する。また、濃度が50重量%より高いとポリ塩化ビニル樹脂溶液の粘度が増加するため、液滴を形成することが困難になる。液滴形成が容易で、生産性に優れている観点から、ポリ塩化ビニル樹脂溶液の濃度は、3~50重量%が好ましく、5~30重量%がより好ましい。 In the step of heating and dissolving the polyvinyl chloride resin in a good solvent to obtain the polyvinyl chloride resin solution, the concentration of the polyvinyl chloride resin solution is not particularly limited, but is, for example, in the range of 1 to 50% by weight. Can be mentioned. If the concentration is less than 1% by weight, it is difficult to maintain the shape after droplet formation, and the bead strength is also lowered. Further, if the concentration is higher than 50% by weight, the viscosity of the polyvinyl chloride resin solution increases, which makes it difficult to form droplets. From the viewpoint of easy droplet formation and excellent productivity, the concentration of the polyvinyl chloride resin solution is preferably 3 to 50% by weight, more preferably 5 to 30% by weight.

前記工程で得られたポリ塩化ビニル樹脂溶液の液滴を形成する工程において、液滴形成方法としては、特に限定するものではないが、例えば、撹拌、回転噴霧、スプレー噴霧、振動式滴下、自然滴下が挙げられる。液滴形成方法は、均一な多孔質ビーズを得ることができる点で、振動式滴下、自然滴下が好ましく、生産性の観点で振動式滴下がより好ましい。 In the step of forming droplets of the polyvinyl chloride resin solution obtained in the above step, the droplet forming method is not particularly limited, but for example, stirring, rotary spraying, spray spraying, vibrating dropping, and natural. Dropping is mentioned. As the droplet forming method, vibration-type dropping and natural dropping are preferable in that uniform porous beads can be obtained, and vibration-type dropping is more preferable from the viewpoint of productivity.

ポリ塩化ビニル樹脂溶液の液滴を形成する工程において、液滴を形成する温度としては、液滴が形成できればよく、特に限定するものではないが、0~100℃の範囲を挙げることができ、生産性の観点から20~80℃が好ましい。 In the step of forming the droplets of the polyvinyl chloride resin solution, the temperature at which the droplets are formed may be in the range of 0 to 100 ° C. as long as the droplets can be formed, and is not particularly limited. From the viewpoint of productivity, 20 to 80 ° C. is preferable.

前記工程で得られた液滴を水を含む貧溶媒に浸漬させ、樹脂を固化する工程において、貧溶媒としては、特に限定するものではないが、例えば、メタノール、エタノール、プロパノール、イソ-プロパノール、ブタノール等が挙げられ、汎用性の観点から、メタノールが好ましい。 In the step of immersing the droplets obtained in the above step in a poor solvent containing water to solidify the resin, the poor solvent is not particularly limited, but for example, methanol, ethanol, propanol, iso-propanol, and the like. Examples thereof include butanol, and methanol is preferable from the viewpoint of versatility.

また、液滴を貧溶媒中で固化する方法において、特に限定するものではないが、静置、撹拌のいずれでもよい。液滴を球状として固化する点で、撹拌することが好ましい。 Further, the method for solidifying the droplets in a poor solvent is not particularly limited, and may be either standing or stirring. Stirring is preferable in that the droplets are solidified into a spherical shape.

ここで、水を含む貧溶媒の水の割合としては、特に限定するものではないが、例えば0.1~80重量%までの範囲を挙げることができ、多孔質ビーズの成形が容易で、吸着性能が向上する孔径0.002~0.2μmの孔の生成に優れる点で、3~70重量%であることが好ましい。 Here, the ratio of the poor solvent water containing water is not particularly limited, but may be, for example, in the range of 0.1 to 80% by weight, and the porous beads can be easily formed and adsorbed. It is preferably 3 to 70% by weight in that it is excellent in forming holes having a hole diameter of 0.002 to 0.2 μm, which improves performance.

液滴を水を含む該貧溶媒に浸漬させ、樹脂を固化する工程において、樹脂を固化する温度としては、良溶媒の凝固点よりも高く、ポリ塩化ビニル樹脂のガラス転移温度より低ければよい。特に限定するものではないが、-15~50℃の範囲を挙げることができ、生産性に優れる点で、-5~50℃が好ましく、0~40℃がより好ましい。樹脂を固化する時間としては、特に限定するものではないが、成形性に優れる点で、0.25時間以上であることが好ましい。 In the step of immersing the droplets in the poor solvent containing water to solidify the resin, the temperature at which the resin is solidified may be higher than the freezing point of the good solvent and lower than the glass transition temperature of the polyvinyl chloride resin. Although not particularly limited, the range of −15 to 50 ° C. can be mentioned, and −5 to 50 ° C. is preferable, and 0 to 40 ° C. is more preferable in terms of excellent productivity. The time for solidifying the resin is not particularly limited, but is preferably 0.25 hours or more in terms of excellent moldability.

前記工程で得られた固化した樹脂を該良溶媒と水と該貧溶媒との混合物から分離する工程において、前処理として、固化した樹脂内に含まれる良溶媒と貧溶媒を置換する溶媒置換を行うことが好ましい。溶媒置換としては、固化した樹脂を新しい貧溶媒に浸漬する。このとき撹拌しても静置でもどちらでもよいが、置換効率に優れる点で、撹拌することが好ましい。また、溶媒置換の時間としては、特に限定するものではないが、置換効率に優れる点で、0.5時間以上であることが好ましい。また、溶媒置換の温度としては、ポリ塩化ビニル樹脂のガラス転移温度よりも低ければ、特に限定するものではないが、-15~70℃の範囲を挙げることができる。生産性に優れる点で、0~50℃が好ましく、10~40℃がより好ましい。 In the step of separating the solidified resin obtained in the above step from the mixture of the good solvent, water and the poor solvent, as a pretreatment, solvent substitution for substituting the good solvent and the poor solvent contained in the solidified resin is performed. It is preferable to do so. For solvent substitution, the solidified resin is immersed in a new antisolvent. At this time, either stirring or standing may be performed, but stirring is preferable in terms of excellent replacement efficiency. The solvent replacement time is not particularly limited, but is preferably 0.5 hours or more in terms of excellent replacement efficiency. The temperature of the solvent substitution is not particularly limited as long as it is lower than the glass transition temperature of the polyvinyl chloride resin, but may be in the range of −15 to 70 ° C. From the viewpoint of excellent productivity, 0 to 50 ° C. is preferable, and 10 to 40 ° C. is more preferable.

固化した樹脂を該良溶媒と水と該貧溶媒との混合物から分離する工程において、前処理の溶媒置換後の分離方法は任意であり、例えば、減圧濾過、加圧濾過、遠心濾過、デカンテーション、遠心デカンテーション、減圧乾燥、加熱乾燥、自然乾燥等の方法をいくつか組み合わせて用いることが可能である。また、その際の温度は、ポリ塩化ビニル樹脂のガラス転移温度よりも低ければ、特に限定するものではないが、-15~70℃の範囲を挙げることができる。生産性に優れる点で、0~50℃が好ましく、さらには本発明の特徴である多孔質ビーズが形成する点で、10~40℃がより好ましい。 In the step of separating the solidified resin from the mixture of the good solvent, water and the poor solvent, the separation method after the solvent replacement in the pretreatment is arbitrary, for example, vacuum filtration, pressure filtration, centrifugal filtration, decantation. , Centrifugal decantation, vacuum drying, heat drying, natural drying and the like can be used in combination. Further, the temperature at that time is not particularly limited as long as it is lower than the glass transition temperature of the polyvinyl chloride resin, but the range of −15 to 70 ° C. can be mentioned. 0 to 50 ° C. is preferable from the viewpoint of excellent productivity, and 10 to 40 ° C. is more preferable from the viewpoint of forming porous beads, which is a feature of the present invention.

本発明によれば、工業的に有利な方法で、連続孔を有する空孔率の高いポリ塩化ビニル樹脂の多孔質ビーズを提供することができる。 According to the present invention, it is possible to provide porous beads of polyvinyl chloride resin having continuous pores and having a high porosity by an industrially advantageous method.

実施例1で得られたポリ塩化ビニル樹脂多孔質ビーズの断面のSEM写真(倍率:30倍)である。6 is an SEM photograph (magnification: 30 times) of a cross section of the polyvinyl chloride resin porous beads obtained in Example 1. 実施例1で得られたポリ塩化ビニル樹脂多孔質ビーズの表面のSEM写真(倍率:10万倍)である。6 is an SEM photograph (magnification: 100,000 times) of the surface of the polyvinyl chloride resin porous beads obtained in Example 1. 実施例1で得られたポリ塩化ビニル樹脂多孔質ビーズの断面の外殻部分近傍のSEM写真(倍率:2.5万倍)である。6 is an SEM photograph (magnification: 25,000 times) of the vicinity of the outer shell portion of the cross section of the polyvinyl chloride resin porous beads obtained in Example 1. 実施例2で得られたポリ塩化ビニル樹脂多孔質ビーズの断面のSEM写真(倍率:30倍)である。6 is an SEM photograph (magnification: 30 times) of a cross section of the polyvinyl chloride resin porous beads obtained in Example 2. 実施例2で得られたポリ塩化ビニル樹脂多孔質ビーズの表面のSEM写真(倍率:5万倍)である。6 is an SEM photograph (magnification: 50,000 times) of the surface of the polyvinyl chloride resin porous beads obtained in Example 2. 実施例2で得られたポリ塩化ビニル樹脂多孔質ビーズの断面の外殻部分近傍のSEM写真(倍率:2万倍)である。6 is an SEM photograph (magnification: 20,000 times) of the vicinity of the outer shell portion of the cross section of the polyvinyl chloride resin porous beads obtained in Example 2. 実施例3で得られたポリ塩化ビニル樹脂多孔質ビーズの断面のSEM写真(倍率:30倍)である。3 is an SEM photograph (magnification: 30 times) of a cross section of the polyvinyl chloride resin porous beads obtained in Example 3. 実施例3で得られたポリ塩化ビニル樹脂多孔質ビーズの表面のSEM写真(倍率:1万倍)である。3 is an SEM photograph (magnification: 10,000 times) of the surface of the polyvinyl chloride resin porous beads obtained in Example 3. 実施例3で得られたポリ塩化ビニル樹脂多孔質ビーズの断面の外殻部分近傍のSEM写真(倍率:1万倍)である。3 is an SEM photograph (magnification: 10,000 times) of the vicinity of the outer shell portion of the cross section of the polyvinyl chloride resin porous beads obtained in Example 3. 得られたポリ塩化ビニル樹脂多孔質ビーズのガス吸着法による細孔分布(0.002~0.2μm)を例示するグラフである。It is a graph which illustrates the pore distribution (0.002 to 0.2 μm) by the gas adsorption method of the obtained polyvinyl chloride resin porous beads. 実施例1および実施例3と比較例1で得られたポリ塩化ビニル樹脂多孔質ビーズの溶媒吸収テストの結果である。It is the result of the solvent absorption test of the polyvinyl chloride resin porous beads obtained in Example 1 and Example 3 and Comparative Example 1. 実施例3で得られたポリ塩化ビニル樹脂多孔質ビーズの熱安定性テストの結果である。It is the result of the thermal stability test of the polyvinyl chloride resin porous beads obtained in Example 3.

以下に、本発明の実施例を挙げてより詳細に説明するが、本発明はこれらの実施例により何ら限定されて解釈されるものではない。得られたポリ塩化ビニル樹脂多孔質ビーズは、以下に示す方法により評価した。 Hereinafter, the present invention will be described in more detail with reference to examples of the present invention, but the present invention is not to be construed as being limited by these examples. The obtained polyvinyl chloride resin porous beads were evaluated by the methods shown below.

[SEMによる観測]
ポリ塩化ビニル樹脂多孔質ビーズのSEMによる観測は、JEOL製JSM-6390LV走査型電子顕微鏡(SEM)により行った。
[Observation by SEM]
Observation of polyvinyl chloride resin porous beads by SEM was performed by a JSM-6390LV scanning electron microscope (SEM) manufactured by JEOL.

ポリ塩化ビニル樹脂多孔質ビーズの断面の観測は、乾燥した多孔質ビーズをエタノールに浸漬し、次いで、エタノールが含浸した多孔質ビーズを液体窒素で凍結し、更に、凍結した多孔質ビーズを剃刀で割断した断面を試料とした。 To observe the cross section of the polyvinyl chloride resin porous beads, immerse the dried porous beads in ethanol, then freeze the ethanol-impregnated porous beads with liquid nitrogen, and then shave the frozen porous beads with a sword. The cut cross section was used as a sample.

[中空部の平均空間容積]
ポリ塩化ビニル樹脂多孔質ビーズの内部に位置する複数の中空部のうちビーズ中心部に位置する中空部の平均空間容積は、SEM写真を用いて中空部の最長直径と最短直径を測定し、その平均値を中空直径とし、平均空間容積を計算した。
[Average space volume of hollow part]
The average spatial volume of the hollow portion located in the center of the bead among the plurality of hollow portions located inside the polyvinyl chloride resin porous beads is measured by measuring the longest diameter and the shortest diameter of the hollow portion using SEM photographs. The average space volume was calculated with the average value as the hollow diameter.

[ビーズ径]
SEM写真を用いてポリ塩化ビニル樹脂多孔質ビーズの最長直径と最短直径を測定し、その平均値をビーズ径とした。
[Bead diameter]
The longest diameter and the shortest diameter of the polyvinyl chloride resin porous beads were measured using SEM photographs, and the average value was taken as the bead diameter.

[全細孔容積]
ポリ塩化ビニル樹脂多孔質ビーズの全細孔容積は、乾燥した多孔質ビーズ約0.2gの重量を測定し、乾燥時の重量(W)とし、重量測定したビーズ全量を25℃のメタノール50mLに添加して、48時間静置した。次に、細孔内に十分にメタノールが含浸したポリ塩化ビニル樹脂多孔質ビーズを取出し、乾燥した濾紙に広げて、表面の余分なメタノールを取り、重量を測定し、メタノール含浸時の重量(W)とした。多孔質ビーズの乾燥時の重量(W)とメタノール含浸時の重量(W)およびメタノールの比重(25℃)を用いて、下記式に従いポリ塩化ビニル樹脂多孔質ビーズの全細孔容積(Vp)を求めた。
[Total pore volume]
The total pore volume of the polyvinyl chloride resin porous beads was measured by measuring the weight of about 0.2 g of the dried porous beads and taking the weight at the time of drying (W 0 ), and the total weight of the measured beads was 50 mL of methanol at 25 ° C. Was added to and allowed to stand for 48 hours. Next, the polyvinyl chloride resin porous beads sufficiently impregnated with methanol in the pores are taken out, spread on a dry filter paper, excess methanol on the surface is removed, the weight is measured, and the weight at the time of methanol impregnation (W). 1 ). Using the weight of the porous beads when dried (W 0 ), the weight when impregnated with methanol (W 1 ), and the specific gravity of methanol (25 ° C), the total pore volume of the polyvinyl chloride resin porous beads according to the following formula (W 0). Vp) was calculated.

Figure 0007095326000003
Figure 0007095326000003

(式中、Vpは多孔質ビーズの全細孔容積(cm/g)を表し、Wは多孔質ビーズの乾燥時の重量(g)を表し、Wは多孔質ビーズのメタノール含浸時の重量(g)を表し、ρMeOHはメタノールの比重を表す)
[空孔率]
ポリ塩化ビニル樹脂多孔質ビーズの空孔率(P)は、下記式に従い、全細孔容積(Vp)とポリ塩化ビニル樹脂の比重により求めた。
(In the formula, Vp represents the total pore volume (cm 3 / g) of the porous beads, W 0 represents the weight (g) of the porous beads when dried, and W 1 represents the methanol impregnation of the porous beads. Represents the weight (g) of, and ρ MeOH represents the specific gravity of methanol)
[Porosity]
The porosity (P) of the polyvinyl chloride resin porous beads was determined by the total pore volume (Vp) and the specific gravity of the polyvinyl chloride resin according to the following formula.

Figure 0007095326000004
Figure 0007095326000004

(式中、Pは多孔質ビーズの空孔率(%)を表し、Vpは多孔質ビーズの全細孔容積(cm/g)を表し、ρPVCはポリ塩化ビニル樹脂の比重を表す)
[0.002~0.2μmの細孔容積の測定]
0.002~0.2μmの細孔容積は、定容量式ガス吸着法による細孔分布測定装置(マイクロトラック社製、BELSORP-miniII)により吸着等温線を測定し、BJH法による解析により求めた。
(In the formula, P represents the porosity (%) of the porous beads, Vp represents the total pore volume (cm 3 / g) of the porous beads, and ρ PVC represents the specific gravity of the polyvinyl chloride resin.)
[Measurement of pore volume of 0.002 to 0.2 μm]
The pore volume of 0.002 to 0.2 μm was determined by measuring the adsorption isotherm with a pore distribution measuring device (BELSORP-miniII manufactured by Microtrac) by the constant volume gas adsorption method and analyzing by the BJH method. ..

実施例1
ポリ塩化ビニル樹脂(大洋塩ビ社製、塩ビホモポリマー、グレードTH-500、平均重合度450-550)20gをジメチルアセトアミド80gに加え、70℃で撹拌し、ポリ塩化ビニル樹脂溶液20重量%を調製した。200mLのガラス容器にメタノール114gと水6gを混合して、水/メタノール混合溶液(水の割合5重量%)を調製した。70℃のポリ塩化ビニル樹脂溶液5gを25℃の該水/メタノール混合溶液(水の割合5重量%)に滴下し、液滴を30分間静置し凝固させた。凝固した液滴を取出し、新しいメタノール100gに入れ、18時間室温で静置した。メタノールを濾過により除去し、濾過物を室温下で6時間減圧乾燥を行い、ポリ塩化ビニル樹脂多孔質ビーズA-1を得た。得られたポリ塩化ビニル樹脂多孔質ビーズA-1は、ビーズ直径2.5mm、空孔率83%、孔径範囲0.002~400μm、細孔容積(0.002~0.2μm領域)1.14cm/g、中空部の平均空間容積13体積%を有するものであった。その結果を表1に示す。得られたポリ塩化ビニル樹脂多孔質ビーズA-1の断面のSEM写真(倍率:30倍)を図1、表面のSEM写真(倍率:10万倍)を図2、外殻部分近傍のSEM写真(倍率:2.5万倍)を図3に示す。
Example 1
20 g of polyvinyl chloride resin (manufactured by Taiyo PVC, PVC homopolymer, grade TH-500, average degree of polymerization 450-550) is added to 80 g of dimethylacetamide, and the mixture is stirred at 70 ° C. to prepare 20% by weight of a polyvinyl chloride resin solution. did. 114 g of methanol and 6 g of water were mixed in a 200 mL glass container to prepare a water / methanol mixed solution (water ratio 5% by weight). 5 g of a polyvinyl chloride resin solution at 70 ° C. was added dropwise to the water / methanol mixed solution at 25 ° C. (water ratio: 5% by weight), and the droplets were allowed to stand for 30 minutes to solidify. The solidified droplets were taken out, placed in 100 g of fresh methanol, and allowed to stand at room temperature for 18 hours. Methanol was removed by filtration, and the filtrate was dried under reduced pressure at room temperature for 6 hours to obtain polyvinyl chloride resin porous beads A-1. The obtained polyvinyl chloride resin porous beads A-1 have a bead diameter of 2.5 mm, a porosity of 83%, a pore diameter range of 0.002 to 400 μm, and a pore volume (0.002 to 0.2 μm region). It had 14 cm 3 / g and an average space volume of 13% by volume in the hollow portion. The results are shown in Table 1. FIG. 1 is an SEM photograph (magnification: 30 times) of the cross section of the obtained polyvinyl chloride resin porous beads A-1, FIG. 2 is an SEM photograph of the surface (magnification: 100,000 times), and an SEM photograph near the outer shell portion. (Magnification: 25,000 times) is shown in FIG.

実施例2
上記実施例1において、メタノール114gと水6gを混合して、水/メタノール混合溶液(水の割合 5重量%)を調製する代わりに、メタノール60gと水60gを混合して、水/メタノール混合溶液(水の割合50重量%)を調製し、更には、水/メタノール混合溶液の温度を25℃とする代わりに0℃にした以外は、実施例1に記載した方法と同様の方法により、ポリ塩化ビニル樹脂多孔質ビーズA-2を得た。得られたポリ塩化ビニル樹脂多孔質ビーズA-2の性状を表1に示す。得られたポリ塩化ビニル樹脂多孔質ビーズA-2の断面のSEM写真(倍率:30倍)を図4、表面のSEM写真(倍率:5万倍)を図5、外殻部分近傍のSEM写真(倍率:2万倍)を図6に示す。
Example 2
In Example 1 above, instead of mixing 114 g of methanol and 6 g of water to prepare a water / methanol mixed solution (water ratio 5% by weight), 60 g of methanol and 60 g of water are mixed to prepare a water / methanol mixed solution. (Water ratio: 50% by weight) was prepared, and further, the poly was carried out by the same method as that described in Example 1 except that the temperature of the water / methanol mixed solution was set to 0 ° C instead of 25 ° C. Vinyl chloride resin porous beads A-2 were obtained. Table 1 shows the properties of the obtained polyvinyl chloride resin porous beads A-2. FIG. 4 is an SEM photograph (magnification: 30 times) of the cross section of the obtained polyvinyl chloride resin porous beads A-2, FIG. 5 is an SEM photograph of the surface (magnification: 50,000 times), and an SEM photograph near the outer shell portion. (Magnification: 20,000 times) is shown in FIG.

実施例3
ポリ塩化ビニル樹脂(大洋塩ビ社製、塩ビホモポリマー、グレードTH-1700(平均重合度1600-1800)10gをジメチルアセトアミド90gに加え、70℃で撹拌し、ポリ塩化ビニル樹脂溶液10重量%を調製した。200mLのガラス容器にエタノール72gと水48gを混合して、水/エタノール混合溶液(水の割合40重量%)を調製した。70℃のポリ塩化ビニル樹脂溶液5gを10℃の該水/エタノール混合溶液(水の割合40重量%)に滴下し、液滴を30分間撹拌して凝固させた。凝固した液滴を取出し、新しいエタノール100gに入れ、18時間室温で静置した。エタノールを濾過により除去し、濾過物を室温下で6時間減圧乾燥を行い、ポリ塩化ビニル樹脂多孔質ビーズA-3を得た。得られたポリ塩化ビニル樹脂多孔質ビーズA-3の性状を表1に示す。得られたポリ塩化ビニル樹脂多孔質ビーズA-3の断面のSEM写真(倍率:30倍)を図7、表面のSEM写真(倍率:5万倍)を図8、外殻部分近傍のSEM写真(倍率:1万倍)を図9に示す。
Example 3
10 g of polyvinyl chloride resin (manufactured by Taiyo PVC Co., Ltd., PVC homopolymer, grade TH-1700 (average degree of polymerization 1600-1800)) is added to 90 g of dimethylacetamide, and the mixture is stirred at 70 ° C. to prepare 10% by weight of a polyvinyl chloride resin solution. 72 g of ethanol and 48 g of water were mixed in a 200 mL glass container to prepare a water / ethanol mixed solution (water ratio 40% by weight). 5 g of a vinyl chloride resin solution at 70 ° C. was added to the water / water at 10 ° C. It was added dropwise to an ethanol mixed solution (40% by weight of water), and the droplets were stirred for 30 minutes to coagulate. The coagulated droplets were taken out, placed in 100 g of fresh ethanol, and allowed to stand at room temperature for 18 hours. It was removed by filtration, and the filtrate was dried under reduced pressure for 6 hours at room temperature to obtain polyvinyl chloride resin porous beads A-3. The properties of the obtained polyvinyl chloride resin porous beads A-3 are shown in Table 1. The SEM photograph (magnification: 30 times) of the cross section of the obtained polyvinyl chloride resin porous beads A-3 is shown in FIG. 7, and the SEM photograph of the surface (magnification: 50,000 times) is shown in FIG. 8, near the outer shell portion. The SEM photograph (magnification: 10,000 times) of the above is shown in FIG.

実施例4
ポリ塩化ビニル樹脂(大洋塩ビ社製、塩ビホモポリマー、グレードTH-3800(平均重合度3500-4100)5gをジメチルアセトアミド95gに加え、70℃で撹拌し、ポリ塩化ビニル樹脂溶液5重量%を調製した。200mLのガラス容器にエタノール36gと水84gを混合して、水/エタノール混合溶液(水の割合70重量%)を調製した。70℃のポリ塩化ビニル樹脂溶液5gを10℃の該水/エタノール混合溶液(水の割合70重量%)に滴下し、液滴を60分間撹拌して凝固させた。凝固した液滴を取出し、新しいエタノール100gに入れ、18時間室温で静置した。エタノールを濾過により除去し、濾過物を室温下で6時間減圧乾燥を行い、ポリ塩化ビニル樹脂多孔質ビーズA-4を得た。得られたポリ塩化ビニル樹脂多孔質ビーズA-4の性状を表1に示す。
Example 4
Add 5 g of polyvinyl chloride resin (manufactured by Taiyo PVC, PVC homopolymer, grade TH-3800 (average polymerization degree 3500-4100)) to 95 g of dimethylacetamide and stir at 70 ° C. to prepare 5% by weight of polyvinyl chloride resin solution. A water / ethanol mixed solution (70% by weight of water) was prepared by mixing 36 g of ethanol and 84 g of water in a 200 mL glass container. 5 g of a vinyl chloride resin solution at 70 ° C. was added to the water / water at 10 ° C. It was added dropwise to an ethanol mixed solution (70% by weight of water), and the droplets were stirred for 60 minutes to coagulate. The coagulated droplets were taken out, placed in 100 g of fresh ethanol, and allowed to stand at room temperature for 18 hours. It was removed by filtration, and the filtrate was dried under reduced pressure for 6 hours at room temperature to obtain polyvinyl chloride resin porous beads A-4. The properties of the obtained polyvinyl chloride resin porous beads A-4 are shown in Table 1. Shown in.

実施例5
実施例1~4で得られたポリ塩化ビニル樹脂多孔質ビーズA-1~A-4のメタノール含浸テストを実施した。メタノール50mLの中にそれぞれA-1~A-4を0.2g程度加え、25℃で静置した。所定時間に取出し、メタノール含浸多孔質ビーズの重量を測定した。使用した多孔質ビーズの乾燥重量とメタノール含浸重量の差から、メタノール含浸量を求めた。含浸初期の30秒後の結果を表1に示す。また、A-1とA-3の結果については図11にも示す。
Example 5
The methanol impregnation test of the polyvinyl chloride resin porous beads A-1 to A-4 obtained in Examples 1 to 4 was carried out. About 0.2 g of each of A-1 to A-4 was added to 50 mL of methanol, and the mixture was allowed to stand at 25 ° C. It was taken out at a predetermined time, and the weight of the methanol-impregnated porous beads was measured. The amount of methanol impregnated was determined from the difference between the dry weight of the porous beads used and the weight impregnated with methanol. Table 1 shows the results 30 seconds after the initial impregnation. The results of A-1 and A-3 are also shown in FIG.

実施例6
実施例3で得られたポリ塩化ビニル樹脂多孔質ビーズA-3を大気下で80℃、100時間熱処理した。熱処理前後で、空孔率、孔径、0.002~0.2μmの細孔容積、中空部の平均空間容積、メタノール含浸テストによるメタノール含浸量に変化はなかった。図12に0.002~0.2μmの細孔容積の結果を示す。
Example 6
The polyvinyl chloride resin porous beads A-3 obtained in Example 3 were heat-treated at 80 ° C. for 100 hours in the atmosphere. Before and after the heat treatment, there was no change in the pore ratio, pore diameter, pore volume of 0.002 to 0.2 μm, average space volume of the hollow portion, and methanol impregnation amount by the methanol impregnation test. FIG. 12 shows the results of pore volumes of 0.002 to 0.2 μm.

比較例1
上記実施例1において、メタノール114gと水6gを混合して、水/メタノール混合溶液(水の割合5重量%)を調製する代わりに、水120g(水の割合100重量%)とした以外は、実施例1に記載した方法と同様の方法により、ポリ塩化ビニル樹脂多孔質ビーズA-5を得た。得られたポリ塩化ビニル樹脂多孔質ビーズA-5の性状を表1に示す。
Comparative Example 1
In Example 1 above, except that 114 g of methanol and 6 g of water were mixed to prepare a water / methanol mixed solution (water ratio 5% by weight), instead of water 120 g (water ratio 100% by weight). Polyvinyl chloride resin porous beads A-5 were obtained by the same method as that described in Example 1. Table 1 shows the properties of the obtained polyvinyl chloride resin porous beads A-5.

比較例2
上記実施例1において、ポリ塩化ビニル樹脂(大洋塩ビ社製、塩ビホモポリマー、グレードTH-500、平均重合度450-550)20gをジメチルアセトアミド80gに加え、70℃で撹拌し、ポリ塩化ビニル樹脂溶液20重量%を調製する代わりに、ポリ塩化ビニル樹脂(大洋塩ビ社製、塩ビホモポリマー、グレードTH-500、平均重合度450-550)10gをアセトン/水/THF混合溶液(1/0.3/0.9容積割合)100gに加え、45℃で撹拌し、ポリ塩化ビニル樹脂溶液10重量%を調製したが、液は白濁しており、均一なポリ塩化ビニル樹脂溶液を得ることはできなかった。
Comparative Example 2
In Example 1, 20 g of a polyvinyl chloride resin (manufactured by Taiyo PVC Co., Ltd., PVC homopolymer, grade TH-500, average degree of polymerization 450-550) was added to 80 g of dimethylacetamide, and the mixture was stirred at 70 ° C. to obtain a polyvinyl chloride resin. Instead of preparing 20% by weight of the solution, 10 g of a polyvinyl chloride resin (manufactured by Taiyo PVC, PVC homopolymer, grade TH-500, average degree of polymerization 450-550) was added to an acetone / water / THF mixed solution (1 / 0. 3 / 0.9 volume ratio) In addition to 100 g, the mixture was stirred at 45 ° C. to prepare 10% by weight of a polyvinyl chloride resin solution, but the solution was cloudy and a uniform polyvinyl chloride resin solution could be obtained. There wasn't.

比較例3
比較例1で得られたポリ塩化ビニル樹脂多孔質ビーズA-5のメタノール吸着テストを実施した。メタノール50mLの中に比較例1で得られたポリ塩化ビニル樹脂多孔質ビーズA-5を0.2g程度加え、25℃で静置した。所定時間に取出し、メタノール含浸多孔質ビーズの重量を測定した。使用した多孔質ビーズの乾燥重量とメタノール含浸重量の差から、メタノール吸着量を求めた。含浸初期の30秒後の結果を表1と図11に示す。
Comparative Example 3
A methanol adsorption test of the polyvinyl chloride resin porous beads A-5 obtained in Comparative Example 1 was carried out. About 0.2 g of the polyvinyl chloride resin porous beads A-5 obtained in Comparative Example 1 was added to 50 mL of methanol, and the mixture was allowed to stand at 25 ° C. It was taken out at a predetermined time, and the weight of the methanol-impregnated porous beads was measured. The amount of methanol adsorbed was determined from the difference between the dry weight of the porous beads used and the weight impregnated with methanol. The results 30 seconds after the initial impregnation are shown in Table 1 and FIG.

参考例1
上記実施例1において、メタノール114gと水6gを混合して、水/メタノール混合溶液(水の割合5重量%)を調製する代わりに、メタノール120g(水の割合0.01重量%未満)を用いた。70℃のポリ塩化ビニル樹脂溶液5gを25℃のメタノールに滴下し、液滴を30分間静置し凝固させたが、液滴形状を維持できず、不定形となり、ポリ塩化ビニル樹脂多孔質ビーズを得ることができなかった。
Reference example 1
In Example 1 above, instead of mixing 114 g of methanol and 6 g of water to prepare a water / methanol mixed solution (water ratio 5% by weight), 120 g of methanol (water ratio less than 0.01% by weight) is used. board. 5 g of a polyvinyl chloride resin solution at 70 ° C. was added dropwise to methanol at 25 ° C., and the droplets were allowed to stand for 30 minutes to solidify, but the droplet shape could not be maintained and became irregular, and the polyvinyl chloride resin porous beads became irregular. Could not be obtained.

Figure 0007095326000005
Figure 0007095326000005

本発明のポリ塩化ビニル樹脂多孔質ビーズは、耐薬品性、耐酸性、耐アルカリ性、耐候性に優れ、外層から中心にかけて微細な連続孔を有し、ビーズ内部に中空部を有し、空孔率が高いため、各種物質の吸着・吸収、分離、有害物質の除去、有価物質の回収、また触媒の担体などの広範囲な分野への応用が期待される。 The polyvinyl chloride resin porous beads of the present invention are excellent in chemical resistance, acid resistance, alkali resistance, and weather resistance, have fine continuous pores from the outer layer to the center, have hollow portions inside the beads, and have pores. Due to its high rate, it is expected to be applied to a wide range of fields such as adsorption / absorption and separation of various substances, removal of harmful substances, recovery of valuable substances, and carriers of catalysts.

Claims (5)

空孔率が50~95%の範囲内であり、ビーズ内部に中空部を有し、ビーズ表面から中心に一部の孔径が0.002~0.2μmの範囲にある連続孔を有し、その連続孔の細孔容積が0.03cm/g以上であり、且つ、ビーズ内部に位置する複数の中空部のうちビーズ中心部に位置する中空部の平均空間容積が、多孔質ビーズの体積に対し0.01~30体積%であることを特徴とするポリ塩化ビニル樹脂多孔質ビーズ。 It has a pore ratio in the range of 50 to 95%, a hollow portion inside the bead, and a continuous hole having a partial pore diameter in the range of 0.002 to 0.2 μm from the surface of the bead to the center. The pore volume of the continuous pores is 0.03 cm 3 / g or more, and the average space volume of the hollow portion located in the center of the beads among the plurality of hollow portions located inside the beads is the volume of the porous beads. Polyvinyl chloride resin porous beads characterized by being 0.01 to 30% by volume. ポリ塩化ビニル樹脂を良溶媒に溶解し、ポリ塩化ビニル樹脂溶液を得る工程、
前記工程で得られたポリ塩化ビニル樹脂溶液の液滴を形成する工程、
前記工程で得られた液滴を水を含む貧溶媒に浸漬させ、樹脂を固化する工程、
前記工程で得られた固化した樹脂を溶媒系から分離する工程
を含み、前記貧溶媒中の水の割合が0.1~80重量%であることを特徴とする請求項1に記載のポリ塩化ビニル樹脂多孔質ビーズの製造方法。
A process of dissolving a polyvinyl chloride resin in a good solvent to obtain a polyvinyl chloride resin solution,
The step of forming droplets of the polyvinyl chloride resin solution obtained in the above step,
A step of immersing the droplets obtained in the above step in a poor solvent containing water to solidify the resin.
The polyvinyl chloride according to claim 1, further comprising a step of separating the solidified resin obtained in the above step from the solvent system, wherein the proportion of water in the poor solvent is 0.1 to 80% by weight. A method for manufacturing vinyl resin porous beads.
前記貧溶媒がメタノールまたはエタノールであることを特徴とする請求項2に記載のポリ塩化ビニル樹脂多孔質ビーズの製造方法。 The method for producing polyvinyl chloride resin porous beads according to claim 2, wherein the poor solvent is methanol or ethanol. 前記良溶媒がジメチルアセトアミドであることを特徴とする請求項2に記載のポリ塩化ビニル樹脂多孔質ビーズの製造方法。 The method for producing polyvinyl chloride resin porous beads according to claim 2, wherein the good solvent is dimethylacetamide. 液滴を水を含む貧溶媒に浸漬させ、樹脂を固化する工程の温度が-15~50℃であることを特徴とする請求項2に記載のポリ塩化ビニル樹脂多孔質ビーズの製造方法。 The method for producing a polyvinyl chloride resin porous bead according to claim 2, wherein the temperature of the step of immersing the droplets in a poor solvent containing water to solidify the resin is −15 to 50 ° C.
JP2018046857A 2017-03-22 2018-03-14 Polyvinyl chloride resin porous beads and their manufacturing method Active JP7095326B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017056395 2017-03-22
JP2017056395 2017-03-22

Publications (2)

Publication Number Publication Date
JP2018159060A JP2018159060A (en) 2018-10-11
JP7095326B2 true JP7095326B2 (en) 2022-07-05

Family

ID=63796415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046857A Active JP7095326B2 (en) 2017-03-22 2018-03-14 Polyvinyl chloride resin porous beads and their manufacturing method

Country Status (1)

Country Link
JP (1) JP7095326B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002282684A (en) 2001-03-28 2002-10-02 National Institute Of Advanced Industrial & Technology Method for producing porous granular lithium adsorbent
JP2013031832A (en) 2011-07-06 2013-02-14 Mitsubishi Rayon Co Ltd Method for manufacturing porous membrane, and microfiltration membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002282684A (en) 2001-03-28 2002-10-02 National Institute Of Advanced Industrial & Technology Method for producing porous granular lithium adsorbent
JP2013031832A (en) 2011-07-06 2013-02-14 Mitsubishi Rayon Co Ltd Method for manufacturing porous membrane, and microfiltration membrane

Also Published As

Publication number Publication date
JP2018159060A (en) 2018-10-11

Similar Documents

Publication Publication Date Title
US11077487B2 (en) Metal form containing dispersed aerogel particles impregnated with polymers and a method of producing the same
EP2338532B1 (en) Porous PEEK article as an implant
NL2009777C2 (en) Polymer foam comprising a polymer and nanoparticles, and nanoparticles for the manufacture of such foam.
US20190217517A1 (en) Polymer composites for fused filament fabrication and methods of making the same
Menner et al. A new route to carbon black filled polyHIPEs
US20210024704A1 (en) Polymer matrix composites comprising thermally insulating particles and methods of making the same
KR100926794B1 (en) Preparing method for melamine-formaldehyde spheres
Cameron et al. Colloidal templating
JPS5893734A (en) Production of porous membrane of hydrophilic polyvinylidene fluoride resin
JP5717107B2 (en) Polyacrylonitrile porous material
JPH0241336A (en) Porous material
Zhu et al. Preparation of raspberry-like ZIF-8/PS composite spheres via dispersion polymerization
Gui et al. Closed-cell, emulsion-templated hydrogels for latent heat storage applications
US5525710A (en) Highly porous chitosan bodies
JP7095326B2 (en) Polyvinyl chloride resin porous beads and their manufacturing method
JP2020026511A (en) Spherical porous resin and method for producing the same
JP2020193334A (en) Composite porous body of polyvinyl chloride resin and method for producing the same
Zhou et al. Toward Scalable Fabrication of Hierarchical Silica Capsules with Integrated Micro‐, Meso‐, and Macropores
WO2013069681A1 (en) Vinyl chloride-based copolymer porous body and method for producing same
Li et al. Dual templating synthesis of hierarchical porous silica materials with three orders of length scale
WO2023197423A1 (en) Blocky metal organic framework material, and preparation method therefor and use thereof
KR102264814B1 (en) Manufacturing method of porous polyimide using high internal phase emulsion
Menzel et al. Double emulsion template suspension polymerisation: towards the synthesis of polyelectrolyte core porous hydrophobic shell particles for environmental applications
KR20190070249A (en) Hybrid polymeric hollow fiber membrane, carbon molecular sieve hollow fiber membrane, and processes for fabricating the same
Qian et al. Porogen incorporation and phase inversion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R151 Written notification of patent or utility model registration

Ref document number: 7095326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151