JP2013031832A - Method for manufacturing porous membrane, and microfiltration membrane - Google Patents

Method for manufacturing porous membrane, and microfiltration membrane Download PDF

Info

Publication number
JP2013031832A
JP2013031832A JP2012124488A JP2012124488A JP2013031832A JP 2013031832 A JP2013031832 A JP 2013031832A JP 2012124488 A JP2012124488 A JP 2012124488A JP 2012124488 A JP2012124488 A JP 2012124488A JP 2013031832 A JP2013031832 A JP 2013031832A
Authority
JP
Japan
Prior art keywords
film
membrane
stock solution
porous membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012124488A
Other languages
Japanese (ja)
Inventor
Masakazu Minagawa
正和 皆川
Masashi Teramachi
正史 寺町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012124488A priority Critical patent/JP2013031832A/en
Publication of JP2013031832A publication Critical patent/JP2013031832A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a porous membrane excellent in chemical resistance and also excellent in filtering flow rate and a fractionation performance.SOLUTION: A method for manufacturing the porous membrane includes: a film-forming stock solution preparation process for dissolving a chlorinated polyvinyl chloride to a solvent that is a good solvent to the chlorinated polyvinyl chloride and has the compatibility to water, and desirably further dissolving a compound (A) that is soluble to both the solvent and water to obtain a film-forming stock solution; a film-forming process for forming the film-forming stock solution in membrane to obtain an uncoagulated film; a moisture absorption process for retaining the uncoagulated film in air that contains water vapor to absorb moisture; and a coagulation process for coagulating the uncoagulated film in a congealed liquid after the moisture absorption process.

Description

本発明は、塩素化ポリ塩化ビニルからなる多孔質膜の製造方法、および塩素化ポリ塩化ビニルからなる精密ろ過膜に関する。   The present invention relates to a method for producing a porous membrane made of chlorinated polyvinyl chloride and a microfiltration membrane made of chlorinated polyvinyl chloride.

近年、環境汚染に対する関心の高まりと規制の強化により、分離の完全性やコンパクト性などに優れた分離膜を用いた膜法による水処理が注目を集めている。
膜法による水処理においては、膜表面・内部に閉塞した有機物、無機物を分解除去するために、次亜塩素酸ナトリウム、過酸化水素の様な酸化剤、あるいは酸・アルカリ等で膜の洗浄を行うため、分離膜には高い耐酸化劣化性および耐酸・耐アルカリ性が求められる。
In recent years, due to increasing interest in environmental pollution and stricter regulations, water treatment by a membrane method using a separation membrane having excellent separation completeness and compactness has attracted attention.
In the water treatment by the membrane method, the membrane is washed with an oxidizing agent such as sodium hypochlorite or hydrogen peroxide, acid or alkali, etc. in order to decompose and remove the organic and inorganic substances clogged on and inside the membrane. Therefore, the separation membrane is required to have high oxidation deterioration resistance and acid / alkali resistance.

この様な背景のもと、ポリフッ化ビニリデン等のフッ素系ポリマー;塩化ビニル系ポリマー(ポリ塩化ビニル、塩素化ポリ塩化ビニル等)、ポリ塩化ビニリデン等の塩素系ポリマー;等が膜形成ポリマーとして用いられてきている。
特に、塩化ビニル系ポリマーは耐薬品性に優れ、かつ安価であり、またフッ素系ポリマーの様に焼却時に有害なフッ化水素を発生しないため分離膜素材として好適である。
Against this background, fluorine-based polymers such as polyvinylidene fluoride; vinyl chloride polymers (polyvinyl chloride, chlorinated polyvinyl chloride, etc.), chlorine-based polymers such as polyvinylidene chloride; etc. are used as film-forming polymers. It has been.
In particular, a vinyl chloride polymer is suitable as a separation membrane material because it is excellent in chemical resistance and inexpensive, and does not generate harmful hydrogen fluoride during incineration unlike a fluorine polymer.

従来の塩化ビニル系ポリマー分離膜の製造方法として、例えば特許文献1には、ポリ塩化ビニル、塩化ビニル−酢酸ビニル−無水マレイン酸の共重合体、熱安定剤、および制孔剤を、有機溶媒に懸濁させたスラリーを用い、ドライ・スプレー湿式紡糸プロセスで製膜し、凝固液中で凝固させて中空ろ膜を製造する方法が記載されている。
特許文献1に記載の方法は、塩化ビニル樹脂の湿式プロセスで用いる溶媒への溶解性が低いため、スラリーを調製するために高温で長時間の溶解、攪拌が必要であり、かつ熱安定剤を添加する必要があるため、コスト面で問題があり、工業生産上望ましくない。また表面直下に膜欠陥の要因となる数10μm以上の粗大なマクロボイドが形成される傾向にある。
As a conventional method for producing a vinyl chloride polymer separation membrane, for example, Patent Document 1 discloses that a polyvinyl chloride, a vinyl chloride-vinyl acetate-maleic anhydride copolymer, a heat stabilizer, and a pore-control agent are used as an organic solvent. A method is described in which a hollow filter membrane is produced by forming a membrane by a dry-spray wet spinning process using a slurry suspended in a coagulant and coagulating it in a coagulating liquid.
The method described in Patent Document 1 has a low solubility in a solvent used in a wet process of a vinyl chloride resin, and therefore requires long-time dissolution and stirring at a high temperature to prepare a slurry, and a heat stabilizer is used. Since it is necessary to add, there is a problem in terms of cost, which is not desirable for industrial production. In addition, coarse macrovoids of several tens of micrometers or more that cause film defects tend to be formed immediately below the surface.

特許文献2には、ポリ塩化ビニルまたは塩素化ポリ塩化ビニルと、親水性高分子(例えばヒドロキシプロピルメチルセルロースフタレート)を、溶剤(例えばテトラヒドロキシフラン)に溶解した後、該溶剤と相溶する非溶剤(例えばイソプロピルアルコール)を加えた溶液を、不織布に塗布し、溶剤を乾燥する方法が記載されている。
また特許文献3には、厚さ方向に段階的な孔径の差を有する非対称膜の製造方法として、塩素化ポリ塩化ビニルをテトラヒドロキシフランに溶解した後、イソプロピルアルコールを加えた溶液を、不織布を2枚重ねた多孔質基体に含浸し、溶媒を乾燥した後、該多孔質基体を2枚に分割する方法が記載されている。
しかしながら、特許文献2,3の方法では、非溶剤を加えて混合する工程において長時間の撹拌を必要とし、溶媒の乾燥にも時間がかかる。また揮発性が高い溶剤を使用する必要がある点でも、工業生産上望ましくない。
また特許文献3に記載されている方法で得られる分離膜は、本質的には内部方向に孔径の段階的な変化が小さく、透水性を高めるために傾斜型の構造とするためには、孔径の異なる多孔質膜材を重ね合わせる必要があった。また、膜表面の平均孔径が2μm以上あり、大腸菌などの細菌類を透過する懸念がある。
Patent Document 2 discloses a non-solvent that dissolves polyvinyl chloride or chlorinated polyvinyl chloride and a hydrophilic polymer (for example, hydroxypropylmethylcellulose phthalate) in a solvent (for example, tetrahydroxyfuran) and then is compatible with the solvent. A method is described in which a solution to which (for example, isopropyl alcohol) is added is applied to a nonwoven fabric and the solvent is dried.
In Patent Document 3, as a method for producing an asymmetric membrane having a stepwise difference in pore diameter in the thickness direction, a solution obtained by dissolving chlorinated polyvinyl chloride in tetrahydroxyfuran and then adding isopropyl alcohol is used as a nonwoven fabric. A method is described in which two porous substrates are impregnated, the solvent is dried, and then the porous substrate is divided into two.
However, the methods of Patent Documents 2 and 3 require long stirring in the step of adding and mixing a non-solvent, and it takes time to dry the solvent. In addition, it is not desirable for industrial production because it is necessary to use a highly volatile solvent.
In addition, the separation membrane obtained by the method described in Patent Document 3 essentially has a small stepwise change in pore diameter in the internal direction, and in order to have an inclined structure in order to increase water permeability, the pore diameter It was necessary to superimpose different porous membrane materials. In addition, the average pore diameter on the membrane surface is 2 μm or more, and there is concern that bacteria such as Escherichia coli may permeate.

特許文献4には、例えば、塩素化ポリ塩化ビニルとポリエチレングリコールとを含むジメチルアセトアミド溶液を、中空糸ノズルより連続的に吐出させ、水浴槽中で凝固させて中空糸膜を製造する方法が記載されている。
この特許文献4には分画分子量150,000以下の塩素化ポリ塩化ビニル限外ろ過膜が記載されているが、精密ろ過に適した孔径0.05〜1μmの表面孔径を有する多孔質膜については記載されていない。
Patent Document 4 describes, for example, a method for producing a hollow fiber membrane by continuously discharging a dimethylacetamide solution containing chlorinated polyvinyl chloride and polyethylene glycol from a hollow fiber nozzle and coagulating it in a water bath. Has been.
Although this patent document 4 describes a chlorinated polyvinyl chloride ultrafiltration membrane having a molecular weight cut-off of 150,000 or less, a porous membrane having a surface pore size of 0.05 to 1 μm suitable for microfiltration is disclosed. Is not listed.

特許文献5には、塩素化ポリ塩化ビニルとメチルセルロースを含むN−2−メチルピロリドン溶液を、水蒸気下に保持した後、凝固液に浸漬することにより表面孔径0.3から0.5μmの精密ろ過膜を製造する方法が記載されている。
しかしながら特許文献5の方法では、製膜後次亜塩素酸により酸化処理を行わない状態では透水性が発現しない。
In Patent Document 5, an N-2-methylpyrrolidone solution containing chlorinated polyvinyl chloride and methylcellulose is kept under water vapor, and then immersed in a coagulation liquid, thereby microfiltration with a surface pore diameter of 0.3 to 0.5 μm. A method of manufacturing a membrane is described.
However, in the method of Patent Document 5, water permeability does not develop in a state where the oxidation treatment is not performed with hypochlorous acid after film formation.

次亜塩素酸の様な酸化剤を用いた場合、薬剤使用コストに加え、製膜装置が腐食されるため、耐食性の高い材質の装置を用いる必要があるなど、製造コストが高くなりがちであった。   When an oxidizing agent such as hypochlorous acid is used, the film production equipment is corroded in addition to the cost of using the chemicals, so the production cost tends to be high, such as the need to use equipment with high corrosion resistance. It was.

特許第4243293号公報Japanese Patent No. 4243293 特許第4395904号公報Japanese Patent No. 4395904 特公平1−41653号公報Japanese Patent Publication No. 1-41653 国際公開第2011/004786号パンフレットInternational Publication No. 2011/004786 Pamphlet 特表2010−527290号公報Special table 2010-527290

特許文献1〜4に記載の方法で得られる分離膜は、例えば精密ろ過などの高度な膜処理を行うには十分ではなく、孔径を制御して分画性能を向上させること、および孔径を小さくしても良好な濾過流量が得られるようにすることが望まれる。
また、特許文献1に記載の方法では、高温での溶解、熱安定化剤の添加が必要であり、特許文献5に記載の方法では透水性を発現するために酸化剤での処理が必要であり、より容易で安価な方法で透水性を有する膜が得られるようにすることが望まれる。
本発明は前記事情を鑑みてなされたもので、耐薬品性に優れ、濾過流量と分画性能に優れた多孔質膜を提供することを目的とする。
Separation membranes obtained by the methods described in Patent Documents 1 to 4 are not sufficient for performing advanced membrane treatment such as microfiltration, for example, improving the fractionation performance by controlling the pore size, and reducing the pore size. Even so, it is desirable to obtain a good filtration flow rate.
Further, the method described in Patent Document 1 requires dissolution at high temperature and addition of a heat stabilizer, and the method described in Patent Document 5 requires treatment with an oxidizing agent in order to develop water permeability. It is desirable to obtain a membrane having water permeability by an easier and less expensive method.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a porous membrane having excellent chemical resistance and excellent filtration flow rate and fractionation performance.

本発明の多孔質膜の製造方法は、塩素化ポリ塩化ビニルを、塩素化ポリ塩化ビニルに対して良溶媒で、かつ水に対して相溶性を有する溶媒に溶解させて製膜原液を得る製膜原液調製工程と、該製膜原液を膜状に形成して未凝固膜を得る製膜工程と、前記未凝固膜を、水蒸気を含む空気中に保持して吸湿させる吸湿工程と、前記吸湿工程の後に、前記未凝固膜を凝固液中で凝固させる凝固工程を有する。   The method for producing a porous membrane according to the present invention is a method for producing a film-forming stock solution by dissolving chlorinated polyvinyl chloride in a good solvent for chlorinated polyvinyl chloride and a solvent compatible with water. A film stock solution preparing step, a film forming step of forming the film forming stock solution into a film to obtain an uncoagulated film, a moisture absorbing step of absorbing the moisture by holding the uncoagulated film in air containing water vapor, and the moisture absorbing After the step, there is a coagulation step of coagulating the uncoagulated film in a coagulation liquid.

前記製膜原液調製工程において、前記製膜原液に、前記溶媒および水の両方に対して可溶性の化合物(A)を溶解させることが好ましい。
前記吸湿工程において、前記水蒸気を含む空気の、単位体積当たりの水蒸気量をV(単位:g/m)、吸湿時間をt(単位:秒)とするとき、V×tの値が30〜600(単位:g/m・秒)であることが好ましい。
前記化合物(A)が、塩化リチウムまたは臭化リチウムであることが好ましい。
前記多孔質膜が精密ろ過膜であることが好ましい。
前記化合物(A)が、重量平均分子量50,000以下のポリビニルピロリドンであることが好ましい。
本発明は、塩素化ポリ塩化ビニルからなり、膜内部の最大孔径が0.1μm以上〜5μm以下の傾斜型3次元網目構造を有する精密ろ過膜を提供する。
In the film-forming stock solution preparing step, it is preferable that the compound (A) soluble in both the solvent and water is dissolved in the film-forming stock solution.
In the moisture absorption step, when the amount of water vapor per unit volume of the air containing the water vapor is V (unit: g / m 3 ) and the moisture absorption time is t (unit: second), the value of V × t is 30 to It is preferably 600 (unit: g / m 3 · sec).
The compound (A) is preferably lithium chloride or lithium bromide.
It is preferable that the porous membrane is a microfiltration membrane.
The compound (A) is preferably polyvinyl pyrrolidone having a weight average molecular weight of 50,000 or less.
The present invention provides a microfiltration membrane having an inclined three-dimensional network structure made of chlorinated polyvinyl chloride and having a maximum pore size within the membrane of 0.1 μm to 5 μm.

本発明によれば、次亜塩素酸ナトリウム等の酸化剤による処理を行うことなく、透湿性を有し、耐薬品性に優れ、傾斜型3次元網目構造を有する多孔質膜を製造できる。
本発明で言う3次元網目構造とは、多孔質膜を形成するポリマーが、フィブリル状となって3次元的に相互に連通した網目構造のことである。また傾斜型3次元網目構造とは3次元網目構造のサイズが厚さ方向に連続的に変化する構造である。被処理水と接する膜表面近傍から膜内層に向かって孔径が漸次大きくなる傾斜構造を有していると、分画性能と透水性に優れる。
すなわち、本発明によれば、耐薬品性に優れ、濾過流量と分画特性に優れた多孔質膜が得られる。
例えば、精密ろ過膜として好適な塩素化ポリ塩化ビニル多孔質膜が得られる。
According to the present invention, a porous film having moisture permeability, excellent chemical resistance, and an inclined three-dimensional network structure can be produced without performing treatment with an oxidizing agent such as sodium hypochlorite.
The three-dimensional network structure referred to in the present invention is a network structure in which the polymers forming the porous film are in the form of fibrils and communicate with each other three-dimensionally. The inclined three-dimensional network structure is a structure in which the size of the three-dimensional network structure changes continuously in the thickness direction. When it has an inclined structure in which the pore diameter gradually increases from the vicinity of the membrane surface in contact with the water to be treated toward the inner layer of the membrane, the fractionation performance and water permeability are excellent.
That is, according to the present invention, a porous membrane having excellent chemical resistance and excellent filtration flow rate and fractionation characteristics can be obtained.
For example, a chlorinated polyvinyl chloride porous membrane suitable as a microfiltration membrane can be obtained.

例1で得られた多孔質膜の表面SEM観察写真である。3 is a surface SEM observation photograph of the porous membrane obtained in Example 1. FIG. 例1で得られた多孔質膜の断面SEM観察写真である。2 is a cross-sectional SEM observation photograph of the porous film obtained in Example 1. 例2で得られた多孔質膜の表面SEM観察写真である。3 is a surface SEM observation photograph of the porous membrane obtained in Example 2. 例2で得られた多孔質膜の断面SEM観察写真である。3 is a cross-sectional SEM observation photograph of the porous membrane obtained in Example 2. 例3で得られた多孔質膜の表面SEM観察写真である。4 is a surface SEM observation photograph of the porous membrane obtained in Example 3. 例3で得られた多孔質膜の断面SEM観察写真である。4 is a cross-sectional SEM observation photograph of the porous membrane obtained in Example 3. 例4で得られた多孔質膜の断面SEM観察写真である。4 is a cross-sectional SEM observation photograph of the porous film obtained in Example 4. 例6で得られた多孔質膜の表面SEM観察写真である。6 is a surface SEM observation photograph of the porous membrane obtained in Example 6. 例6で得られた多孔質膜の断面SEM観察写真である。6 is a cross-sectional SEM observation photograph of the porous membrane obtained in Example 6. 例7で得られた多孔質膜の表面SEM観察写真である。4 is a surface SEM observation photograph of the porous membrane obtained in Example 7. FIG. 例7で得られた多孔質膜の断面SEM観察写真である。6 is a cross-sectional SEM observation photograph of the porous membrane obtained in Example 7. 例8で得られた多孔質膜の表面SEM観察写真である。4 is a surface SEM observation photograph of the porous membrane obtained in Example 8. FIG. 例8で得られた多孔質膜の断面SEM観察写真である。6 is a cross-sectional SEM observation photograph of the porous membrane obtained in Example 8. 例9で得られた多孔質膜の表面SEM観察写真である。4 is a surface SEM observation photograph of the porous membrane obtained in Example 9. 例9で得られた多孔質膜の断面SEM観察写真である。6 is a cross-sectional SEM observation photograph of the porous membrane obtained in Example 9. 例10で得られた多孔質膜の表面SEM観察写真である。4 is a surface SEM observation photograph of the porous film obtained in Example 10. FIG. 例10で得られた多孔質膜の断面SEM観察写真である。2 is a cross-sectional SEM observation photograph of the porous membrane obtained in Example 10.

本発明の多孔質膜の製造方法について詳しく説明する。本発明における多孔質膜は、好ましくは精密ろ過膜である。精密ろ過膜とは、分画層の平均孔径が0.05μm以上、1μm以下の多孔質膜である。
該平均孔径が1μmより大きい場合、大腸菌等の有害な菌の流出が起こり好ましくない。一方、該平均孔径が0.05μm以上であると、良好な透水性が得られやすい。より好ましくは0.05〜0.4μmの範囲である。
なお、多孔質膜が上述の傾斜型3次元網目構造を有する場合、分画層の孔径は、被処理水と接する表面における孔径で表される。
本発明において、膜の表面における平均孔径の値は、膜表面を電子顕微鏡により撮影した画像について、画像処理ソフト等により孔部の平均径を求めることにより算出される。
The method for producing the porous membrane of the present invention will be described in detail. The porous membrane in the present invention is preferably a microfiltration membrane. The microfiltration membrane is a porous membrane having an average pore diameter of the fractionation layer of 0.05 μm or more and 1 μm or less.
When the average pore size is larger than 1 μm, harmful bacteria such as Escherichia coli may flow out, which is not preferable. On the other hand, when the average pore diameter is 0.05 μm or more, good water permeability is easily obtained. More preferably, it is the range of 0.05-0.4 micrometer.
When the porous membrane has the above-described inclined three-dimensional network structure, the pore size of the fractionation layer is represented by the pore size at the surface in contact with the water to be treated.
In the present invention, the value of the average pore diameter on the surface of the membrane is calculated by obtaining the average diameter of the pores with image processing software or the like for an image obtained by photographing the membrane surface with an electron microscope.

本発明において、膜内部の最大孔径は0.1μm以上〜5μm以下が好ましい。膜内部の最大孔径が0.1μm以上であると、良好な透水性が得られやすい。より好ましくは0.2μm以上である。膜内部の最大孔径が5μmより大きい場合、膜の機械的強度が低下しやすく好ましくない。膜内部の最大孔径は、膜表面に対して垂直な断面を電子顕微鏡により撮影した画面について、画像処理ソフト等により孔部の最大径を求めることにより算出される。
本発明における膜内部の最大孔径の値は、膜表面に対して垂直な断面を電子顕微鏡により300倍以上の倍率で断面に沿う方向に連続的に撮影した画像について、画像処理ソフト等により膜内部の各空孔の最大径を求め、得られた各孔の最大径のうち最も大きい値を「膜内部の最大孔径」とする方法で得られる値である。
In the present invention, the maximum pore diameter inside the membrane is preferably 0.1 μm to 5 μm. When the maximum pore size inside the membrane is 0.1 μm or more, good water permeability is easily obtained. More preferably, it is 0.2 μm or more. When the maximum pore size inside the membrane is larger than 5 μm, the mechanical strength of the membrane tends to decrease, which is not preferable. The maximum pore diameter inside the membrane is calculated by obtaining the maximum diameter of the pores with image processing software or the like on a screen obtained by photographing a cross section perpendicular to the membrane surface with an electron microscope.
The value of the maximum pore diameter inside the membrane in the present invention is determined by using image processing software or the like for an image obtained by continuously photographing a cross section perpendicular to the membrane surface with an electron microscope at a magnification of 300 times or more along the cross section. This is a value obtained by a method in which the maximum diameter of each of the holes is determined and the largest value among the obtained maximum diameters of the holes is defined as the “maximum hole diameter inside the membrane”.

本発明において、多孔質膜の形態は特に限定されず、例えば平膜であってもよく、中空状であってもよい。また膜強度を高めるために支持体の上に多膜質膜を積層した複合膜の形態でも構わない。
多孔質膜の厚みは特に限定されないが、例えば10〜1000μmの範囲が好ましく、20〜500μmの範囲がより好ましい。
In the present invention, the form of the porous membrane is not particularly limited, and may be, for example, a flat membrane or a hollow shape. In order to increase the film strength, it may be in the form of a composite film in which a multi-membrane film is laminated on a support.
Although the thickness of a porous membrane is not specifically limited, For example, the range of 10-1000 micrometers is preferable and the range of 20-500 micrometers is more preferable.

本発明において使用される塩素化ポリ塩化ビニルは、ポリ塩化ビニルの水素原子の一部が塩素化されたポリマーである。塩化ビニルモノマーを公知の方法で塩素化したものを重合させたポリマーであってもよく、ポリ塩化ビニルを公知の方法で塩素化して得られるものであってもよい。市販品からも入手可能である。
本発明において使用される塩素化ポリ塩化ビニルにおける塩化ビニルの重合度は特に限定されないが、原液の粘度が調整しやすく、かつ得られる膜の強伸度が高くなる傾向から500〜1500の範囲が好ましく、600〜1200の範囲がより好ましい。
塩素化塩化ビニル系樹脂の塩素化度は特に限定されないが、製膜に用いる溶媒への溶解度が高くなることから62質量%以上が好ましく、65質量%以上がより好ましい。
本明細書において、塩素化度とは、塩素化塩化ビニル系樹脂の単位質量当たりの、該塩素化塩化ビニル系樹脂に付加している塩素の質量分率を指す。
The chlorinated polyvinyl chloride used in the present invention is a polymer in which some of hydrogen atoms of polyvinyl chloride are chlorinated. A polymer obtained by polymerizing a chlorinated vinyl chloride monomer by a known method may be used, or a polymer obtained by chlorinating polyvinyl chloride by a known method may be used. It is also available from commercial products.
The degree of polymerization of vinyl chloride in the chlorinated polyvinyl chloride used in the present invention is not particularly limited, but it is in the range of 500 to 1500 because the viscosity of the stock solution is easy to adjust and the strength and elongation of the resulting film tend to increase. Preferably, the range of 600-1200 is more preferable.
The degree of chlorination of the chlorinated vinyl chloride resin is not particularly limited, but is preferably 62% by mass or more, and more preferably 65% by mass or more because the solubility in a solvent used for film formation is increased.
In this specification, the degree of chlorination refers to the mass fraction of chlorine added to the chlorinated vinyl chloride resin per unit mass of the chlorinated vinyl chloride resin.

本発明では、まず、塩素化ポリ塩化ビニルに対して良溶媒で、かつ水に対して相溶性を有する溶媒に、塩素化ポリ塩化ビニルを溶解させて、もしくは塩素化ポリ塩化ビニルを、塩素化ポリ塩化ビニルに対して良溶媒で、かつ水に対して相溶性を有する溶媒に溶解させた製膜原液に前記溶媒および水の両方に対して可溶性の化合物(A)を溶解させ製膜原液を調製する(製膜原液調製工程)。
かかる溶媒としては、N−メチル−2−ピロリドン、N、N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシドなどが挙げられる。特に低温においても塩素化ポリ塩化ビニルの溶解性が高い、N−メチル−2−ピロリドン、N、N−ジメチルアセトアミド、N,N−ジメチルホルムアミドが好ましい。
これらの溶媒は1種を単独で用いてもよく、2種以上を併用してもよい。
In the present invention, first, chlorinated polyvinyl chloride is dissolved in a good solvent for chlorinated polyvinyl chloride and compatible with water, or chlorinated polyvinyl chloride is chlorinated. A film-forming stock solution is prepared by dissolving a compound (A) soluble in both the solvent and water in a film-forming stock solution dissolved in a solvent that is a good solvent for polyvinyl chloride and compatible with water. Prepare (film-forming stock solution preparation step).
Examples of such a solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide and the like. In particular, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, and N, N-dimethylformamide, which have high solubility of chlorinated polyvinyl chloride even at low temperatures, are preferable.
These solvents may be used alone or in combination of two or more.

製膜原液における塩素化ポリ塩化ビニルの含有量は10〜30質量%が好ましく、12〜25質量%がより好ましい。上記範囲の下限値以上であると透過性に優れた三次元網目構造が形成されやすいため好ましく、上記範囲の上限値以下であると製膜原液のゲル化が発生し難いため好ましい。
製膜原液は、塩素化塩化ビニル系樹脂を良好に溶解させるために加熱することが好ましい。製膜原液の加熱温度は、該製膜原液に含まれる成分が熱分解しない温度範囲であればよい。例えば10〜60℃が好ましく、20〜50℃がより好ましい。
10-30 mass% is preferable and, as for content of chlorinated polyvinyl chloride in a film-forming stock solution, 12-25 mass% is more preferable. When it is at least the lower limit of the above range, a three-dimensional network structure excellent in permeability is likely to be formed, and when it is at most the upper limit of the above range, gelation of the film forming stock solution is difficult to occur.
The film-forming stock solution is preferably heated in order to dissolve the chlorinated vinyl chloride resin satisfactorily. The heating temperature of the film-forming stock solution may be in a temperature range where the components contained in the film-forming stock solution are not thermally decomposed. For example, 10-60 degreeC is preferable and 20-50 degreeC is more preferable.

本発明において、空孔率の向上のために、製膜原液中の溶媒と水の両方に対して可溶性の化合物(A)を、孔形成剤として製膜原液に含有させることができる。
かかる化合物(A)(孔形成剤)の例としては、塩化リチウム、臭化リチウムなどのリチウム塩;ポリビニルピロリドン、ポリエチレングリコールなどの水溶性ポリマー:などが挙げられる。
凝固後の膜において、該化合物(A)(孔形成剤)が残存している場合、ろ過水への溶出や孔閉塞による透水性低下が起こるおそれがあるため、凝固工程の後に化合物(A)(孔形成剤)を水で洗浄除去する。
化合物(A)の重量平均分子量は、化合物(A)がポリマーの場合、ポリオキシエチレンを標準物質として、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリオキシエチレン換算分子量である。
In the present invention, in order to improve the porosity, the film-forming stock solution may contain a compound (A) that is soluble in both the solvent and water in the film-forming stock solution as a pore-forming agent.
Examples of the compound (A) (pore forming agent) include lithium salts such as lithium chloride and lithium bromide; water-soluble polymers such as polyvinylpyrrolidone and polyethylene glycol.
When the compound (A) (pore-forming agent) remains in the membrane after coagulation, there is a risk that water permeability will decrease due to elution into the filtered water or pore clogging. Therefore, the compound (A) after the coagulation step may occur. The (pore forming agent) is washed away with water.
When the compound (A) is a polymer, the weight average molecular weight of the compound (A) is a polyoxyethylene equivalent molecular weight measured by gel permeation chromatography (GPC) using polyoxyethylene as a standard substance.

特に化合物(A)として、臭化リチウム、塩化リチウム、または重量平均分子量50,000以下、より好ましくは40,000以下のポリビニルピロリドンが、孔形成性および洗浄性の観点から好ましく用いられる。特に製膜原液の調製の容易さ、製膜後の洗浄除去の容易さ、マクロボイド発生抑制の点で、臭化リチウムまたは塩化リチウムが好ましい。
製膜原液における化合物(A)の含有量は1〜30質量%が好ましく、2〜20質量%がより好ましい。上記範囲の下限値以上であると表面の開孔率が高くなる傾向にあるため好ましく、上記範囲の上限値以下であると製膜後の洗浄除去の容易さの点で好ましい。
In particular, as the compound (A), lithium bromide, lithium chloride, or polyvinylpyrrolidone having a weight average molecular weight of 50,000 or less, more preferably 40,000 or less is preferably used from the viewpoint of pore-forming properties and detergency. In particular, lithium bromide or lithium chloride is preferable from the viewpoints of ease of preparation of a film forming stock solution, ease of washing and removal after film formation, and suppression of macrovoid generation.
1-30 mass% is preferable and, as for content of the compound (A) in a film forming undiluted | stock solution, 2-20 mass% is more preferable. It is preferable that the surface opening rate tends to be higher than the lower limit of the above range, and it is preferable from the upper limit of the above range in terms of ease of washing and removing after film formation.

マクロボイドとは膜内部に形成される粗大な孔であり、特に湿式、乾湿式法により製造された膜に形成されやすい。この様なマクロボイドは膜表面の欠陥と連結し、リークの要因となる、あるいは膜強度の低下を引き起こす傾向があることから、膜内部に存在しないことが望ましい。本発明におけるマクロボイドとは最大径が5μmより大きい空孔を示す。
膜内部の空孔の最大径は、前記膜内部の最大孔径の求め方と同様にして、膜表面に対して垂直な断面を電子顕微鏡により撮影した画像について、画像処理ソフト等により各孔の最大径を求める方法で得られる。
Macrovoids are coarse pores formed inside the film, and are particularly easily formed in films manufactured by wet or dry wet methods. Such macrovoids are connected to defects on the film surface and tend to cause leaks or cause a decrease in film strength. The macro void in the present invention indicates a pore having a maximum diameter larger than 5 μm.
The maximum diameter of the pores inside the membrane is the same as the method for obtaining the maximum pore diameter inside the membrane. It is obtained by the method of obtaining the diameter.

次に、製膜原液を膜状に形成して未凝固膜とする(製膜工程)。すなわち、得ようとする多孔質膜の形態に応じて、製膜を行う。
膜状に形成する方法は、公知の製膜の手法を適宜用いて行うことができる。平膜の場合、例えばガラス板等の平滑な基材上に、製膜原液を所望の厚さで塗布する方法でもよい。
Next, a film-forming stock solution is formed into a film to form an uncoagulated film (film-forming step). That is, film formation is performed according to the form of the porous film to be obtained.
The method for forming the film can be performed by appropriately using a known film forming method. In the case of a flat film, for example, a method of applying a film-forming stock solution at a desired thickness on a smooth substrate such as a glass plate may be used.

続いて、未凝固膜を、水蒸気を含む空気中に保持して吸湿させる(吸湿工程)。
該吸湿工程は、例えば、水蒸気を含む空気からなる環境下に、未凝固膜を静置して所定の時間(吸湿時間)保持する方法で行うことができる。または、中空糸膜を連続して製造する場合には、製膜原液を連続的に紡糸した後、水蒸気を含む空気中を所定の速度で走行させる方法で行うことができる。
水蒸気を含む空気の、単位体積当たりの水蒸気量をV(単位:g/m)、吸湿時間(保持時間)をt(単位:秒)とするとき、V×tの値が30〜600(単位:g/m・秒)であることが好ましく、35〜300(g/m・秒)がより好ましい。
該V×tの値が上記の範囲内であると、精密ろ過に適した表面孔径が得られやすい。
該水蒸気量(V)は、水蒸気を含む空気の温度と相対湿度から求められる。
水蒸気を含む空気の温度は特に限定されないが、水蒸気量が少ない場合吸湿時間を長くする必要があるため、生産性の点から10〜100℃が好ましく、20〜100℃がより好ましい。
吸湿時間(保持時間)は、生産性の点からは0.01〜60秒が好ましく、0.01〜30秒がより好ましい。
Subsequently, the unsolidified film is held in air containing water vapor to absorb moisture (moisture absorption step).
The moisture absorption step can be performed, for example, by a method in which an uncoagulated film is allowed to stand in an environment including air containing water vapor and held for a predetermined time (moisture absorption time). Or when manufacturing a hollow fiber membrane continuously, after spinning a membrane-forming stock solution continuously, it can carry out by the method of running in the air containing water vapor at a predetermined speed.
When the amount of water vapor per unit volume of air containing water vapor is V (unit: g / m 3 ) and the moisture absorption time (retention time) is t (unit: seconds), the value of V × t is 30 to 600 ( unit: preferably g / m is 3-sec), 35~300 (g / m 3 · sec) is more preferred.
When the value of V × t is within the above range, a surface pore size suitable for microfiltration is easily obtained.
The water vapor amount (V) is determined from the temperature and relative humidity of air containing water vapor.
Although the temperature of the air containing water vapor | steam is not specifically limited, Since it is necessary to lengthen moisture absorption time when there are few amounts of water vapor | steam, 10-100 degreeC is preferable from the point of productivity and 20-100 degreeC is more preferable.
The moisture absorption time (holding time) is preferably 0.01 to 60 seconds, more preferably 0.01 to 30 seconds from the viewpoint of productivity.

次いで、吸湿工程を終えた未凝固膜を凝固液中に浸漬して凝固させることにより多孔質膜が得られる(凝固工程)。
凝固液は、水、または水と製膜原液の調製に用いた溶媒との混合物(溶媒の水溶液)が好ましい。該溶媒と水の混合物において、溶媒の濃度は特に限定されないが、溶媒の比率が高くなると、凝固に要する時間が長くなる傾向にあることから50質量%以下が好ましく、30質量%以下がより好ましい。
Next, a porous film is obtained by immersing the uncoagulated film after the moisture absorption process in a coagulating liquid and coagulating it (coagulating process).
The coagulation liquid is preferably water or a mixture of water and a solvent used for the preparation of the film forming solution (an aqueous solution of the solvent). In the mixture of the solvent and water, the concentration of the solvent is not particularly limited. However, when the ratio of the solvent is increased, the time required for coagulation tends to be long, and therefore 50% by mass or less is preferable, and 30% by mass or less is more preferable. .

凝固工程後の多孔質膜を水で洗浄して、残存する溶媒及び添加した化合物(A)を除去する。洗浄は水中に浸漬させる方法で行うことができる。化合物(A)の洗浄が不十分である場合、膜表面に残存し孔を閉塞し透水性が得られない傾向にある。   The porous membrane after the coagulation step is washed with water to remove the remaining solvent and the added compound (A). Cleaning can be performed by a method of immersing in water. When the cleaning of the compound (A) is insufficient, it tends to remain on the membrane surface, block the pores and not obtain water permeability.

本発明によれば、後述の実施例に示されるように、塩素化ポリ塩化ビニルを、塩素化ポリ塩化ビニルに対して良溶媒でかつ水に対して相溶性を有する溶媒に溶解した製膜原液、もしくは塩素化ポリ塩化ビニルを、塩素化ポリ塩化ビニルに対して良溶媒で、かつ水に対して相溶性を有する溶媒に溶解させ、さらに該溶媒および水の両方に対して可溶性の化合物(A)を溶解させた製膜原液を用い、吸湿工程を経て凝固させ、溶媒及び添加した孔形成剤(化合物(A))を水で洗浄する方法で多孔質膜を製造することにより、被処理水と接する膜表面近傍から膜内層に向かって孔径が漸次大きくなる傾斜型3次元網目構造を有する多孔質膜が得られる。
本発明の多孔質膜の製造方法は、膜を凝固させた後に水で洗浄するだけで、透湿性を有する多孔質膜が得られる。すなわち、例えば次亜塩素酸ナトリウム等の酸化剤を用いた処理は行わない。
本発明の多孔質膜は塩素化ポリ塩化ビニルからなるので、耐薬品性に優れる。
本発明において「塩素化ポリ塩化ビニルからなる」とは、多孔質膜に含まれる高分子化合物(分子量1万以上の化合物)が塩素化ポリ塩化ビニルのみであることを意味する。
According to the present invention, as shown in the examples below, a film-forming stock solution in which chlorinated polyvinyl chloride is dissolved in a good solvent for chlorinated polyvinyl chloride and a solvent compatible with water. Or chlorinated polyvinyl chloride is dissolved in a good solvent for chlorinated polyvinyl chloride and a solvent compatible with water, and further a compound (A Water to be treated by producing a porous film by a method in which the film-forming stock solution in which the solution is dissolved is solidified through a moisture absorption step and the solvent and the added pore-forming agent (compound (A)) are washed with water. A porous membrane having an inclined three-dimensional network structure in which the pore diameter gradually increases from the vicinity of the membrane surface in contact with the inner layer toward the inner membrane layer is obtained.
In the method for producing a porous membrane of the present invention, a porous membrane having moisture permeability can be obtained simply by coagulating the membrane and washing with water. That is, for example, treatment using an oxidizing agent such as sodium hypochlorite is not performed.
Since the porous membrane of the present invention is made of chlorinated polyvinyl chloride, it has excellent chemical resistance.
In the present invention, “consisting of chlorinated polyvinyl chloride” means that the polymer compound (compound having a molecular weight of 10,000 or more) contained in the porous film is only chlorinated polyvinyl chloride.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
[例1]
市販の塩素化ポリ塩化ビニル(徳山積水工業社製、製品名:HA−53K、塩素化度:67質量%、塩化ビニルの重合度:1000)を用いた。
製膜原液の溶媒として、N−メチル−2−ピロリドン(和光純薬社製、試薬特級、以下、NMPと記載することもある。)を用い、化合物(A)として臭化リチウム(和光純薬社製、試薬特級)を用いた。
下記の組成で、40℃の水浴上で、溶媒であるNMPに塩素化ポリ塩化ビニルおよび臭化リチウムを溶解して、製膜原液を調製した。
塩素化ポリ塩化ビニル:20質量%、
臭化リチウム:4質量%、
NMP:76質量%。
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
[Example 1]
Commercially available chlorinated polyvinyl chloride (manufactured by Tokuyama Sekisui Industry Co., Ltd., product name: HA-53K, chlorination degree: 67% by mass, polymerization degree of vinyl chloride: 1000) was used.
N-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, reagent special grade, hereinafter sometimes referred to as NMP) was used as a solvent for the film-forming stock solution, and lithium bromide (Wako Pure Chemical Industries, Ltd.) was used as the compound (A). A reagent special grade) was used.
A film-forming stock solution was prepared by dissolving chlorinated polyvinyl chloride and lithium bromide in NMP as a solvent in a water bath at 40 ° C. with the following composition.
Chlorinated polyvinyl chloride: 20% by mass,
Lithium bromide: 4% by mass
NMP: 76% by mass.

次いで、上記で得た製膜原液を、ガラス板上に約75μmの厚みで均一に塗布して未凝固膜を形成した後、温度19.3℃、相対湿度30.4%の空気中に8秒間静置する条件で吸湿工程を行った。
この後、ガラス板とともに凝固液に1分間浸漬し、多孔質膜を得た。凝固液としては、濃度8質量%のNMP水溶液(NMP8質量%と水92質量%の混合物)を用いた。
19.3℃における飽和水蒸気量は16.6g/mであり、本例におけるV×tの値は40.4g/m・秒である。
Next, the film-forming stock solution obtained above was uniformly applied to a glass plate with a thickness of about 75 μm to form an uncoagulated film, and then in an air at a temperature of 19.3 ° C. and a relative humidity of 30.4%. The moisture absorption process was performed under the condition of standing still for 2 seconds.
Then, it was immersed in the coagulation liquid for 1 minute with the glass plate, and the porous film was obtained. As the coagulation liquid, an NMP aqueous solution having a concentration of 8% by mass (a mixture of 8% by mass of NMP and 92% by mass of water) was used.
The saturated water vapor amount at 19.3 ° C. is 16.6 g / m 3 , and the value of V × t in this example is 40.4 g / m 3 · sec.

得られた多孔質膜をガラス板から取り外した後、20℃の水中に1時間浸漬して洗浄し、残存する溶剤及び化合物(A)を除去した。
洗浄後の多孔質膜の表面構造を、走査型電子顕微鏡(日立ハイテクノロジー社製、製品名:S−3400N、以下SEMという。)により10,000倍の倍率で観察した。得られた画像を図1に示す。得られた画像より求めた表面の平均孔径は0.11μmであった。
洗浄後の多孔質膜の断面構造を、前記SEMで5,000倍の倍率で観察した。すなわち、洗浄後の多孔質膜を液体窒素中に約1分間浸漬させて凍結させた後に、カミソリで、表面に対して垂直方向に切断したときの断面について、観察を行った。得られた画像を図2に示す。
図2の結果より、得られた多孔質膜は表面から厚さ方向に向かって孔径が漸次大きくなる傾斜型3次元網目構造を有することがわかる。また図1、2の結果より、粗大なマクロボイドは形成されなかったことがわかる。膜内部の最大孔径は0.3μmであった。
After removing the obtained porous membrane from the glass plate, it was immersed in water at 20 ° C. for 1 hour and washed to remove the remaining solvent and compound (A).
The surface structure of the washed porous membrane was observed at a magnification of 10,000 times with a scanning electron microscope (manufactured by Hitachi High-Technology Corporation, product name: S-3400N, hereinafter referred to as SEM). The obtained image is shown in FIG. The average pore diameter of the surface determined from the obtained image was 0.11 μm.
The cross-sectional structure of the washed porous membrane was observed with the SEM at a magnification of 5,000 times. That is, the washed porous membrane was immersed in liquid nitrogen for about 1 minute and frozen, and then observed with a razor in a cross section cut in a direction perpendicular to the surface. The obtained image is shown in FIG.
From the results of FIG. 2, it can be seen that the obtained porous film has an inclined three-dimensional network structure in which the pore diameter gradually increases from the surface in the thickness direction. Moreover, it turns out that the coarse macrovoid was not formed from the result of FIGS. The maximum pore size inside the membrane was 0.3 μm.

[透水性の測定]
得られた多孔質膜を乾燥後直径25mmの円状に切りとり、ミリポア社製のフィルターホルダー(製品名:スウィネクス25、適応フィルターサイズ25mm)にセットし、30kPaの加圧下で超純水をろ過し1分間の流量から透水量(m/m/hr/MPa)を求めた。
得られた膜の透水性は、21m/m/hr/MPaであった。
[Measurement of water permeability]
The obtained porous membrane is dried and then cut into a circle having a diameter of 25 mm, set in a filter holder (product name: Swinex 25, adaptive filter size 25 mm) manufactured by Millipore, and ultrapure water is filtered under a pressure of 30 kPa. The water permeability (m 3 / m 2 / hr / MPa) was determined from the flow rate for 1 minute.
The water permeability of the obtained membrane was 21 m 3 / m 2 / hr / MPa.

[例2]
例1において、吸湿工程の条件を下記の通りに変更したほかは、例1と同様に多孔質膜を製造し、観察を行った。
すなわち、未凝固膜を温度19.2℃、相対湿度29.0%の空気中に14秒間静置した。19.2℃における飽和水蒸気量は16.5g/mであり、本例におけるV×tの値は67.0g/m・秒である。
例1と同様にして、多孔質膜の表面構造を観察して得られた画像を図3に示し、断面構造の画像を図4に示す。図3の画像より求めた表面の平均孔径は0.14μmであった。
図4の結果より、得られた多孔質膜は表面から厚さ方向に向かって孔径が漸次大きくなる傾斜型3次元網目構造を有することがわかる。また図3、4の結果より、粗大なマクロボイドは形成されなかったことがわかる。膜内部の最大孔径は0.4μmであった。
[Example 2]
In Example 1, a porous film was produced and observed in the same manner as in Example 1 except that the conditions of the moisture absorption process were changed as follows.
That is, the unsolidified film was allowed to stand for 14 seconds in air at a temperature of 19.2 ° C. and a relative humidity of 29.0%. The saturated water vapor amount at 19.2 ° C. is 16.5 g / m 3 , and the value of V × t in this example is 67.0 g / m 3 · sec.
In the same manner as in Example 1, an image obtained by observing the surface structure of the porous membrane is shown in FIG. 3, and an image of the cross-sectional structure is shown in FIG. The average pore diameter on the surface determined from the image of FIG. 3 was 0.14 μm.
From the results of FIG. 4, it can be seen that the obtained porous film has an inclined three-dimensional network structure in which the pore diameter gradually increases from the surface in the thickness direction. 3 and 4, it can be seen that coarse macrovoids were not formed. The maximum pore size inside the membrane was 0.4 μm.

得られた多孔質膜の透水量(m/m/hr/MPa)を例1と同様の方法で求めた。 得られた膜の透水性は、30m/m/hr/MPaであった。 The amount of water permeation (m 3 / m 2 / hr / MPa) of the obtained porous membrane was determined in the same manner as in Example 1. The water permeability of the obtained membrane was 30 m 3 / m 2 / hr / MPa.

[例3]
例1において、吸湿工程の条件を下記の通りに変更したほかは、例1と同様に多孔質膜を製造し、観察を行った。
すなわち、未凝固膜を温度19.3℃、相対湿度33.0%の空気中に5秒間静置した。19.3℃における飽和水蒸気量は16.6g/mであり、本例におけるV×tの値は27.4g/m・秒である。
例1と同様にして、多孔質膜の表面構造を観察して得られた画像を図5に示し、断面構造の画像を図6に示す。図5の画像より求めた表面の平均孔径は0.05μm未満であった。
図6の結果より、得られた多孔質膜は表面から厚さ方向に向かって孔径が漸次大きくなる傾斜型3次元網目構造を有することがわかる。また図5、6の結果より、粗大なマクロボイドは形成されなかったことがわかる。膜内部の最大孔径は0.5μmであった。
[Example 3]
In Example 1, a porous film was produced and observed in the same manner as in Example 1 except that the conditions of the moisture absorption process were changed as follows.
That is, the unsolidified film was allowed to stand for 5 seconds in air having a temperature of 19.3 ° C. and a relative humidity of 33.0%. The saturated water vapor amount at 19.3 ° C. is 16.6 g / m 3 , and the value of V × t in this example is 27.4 g / m 3 · sec.
The image obtained by observing the surface structure of the porous membrane in the same manner as in Example 1 is shown in FIG. 5, and the image of the cross-sectional structure is shown in FIG. The average pore diameter of the surface determined from the image of FIG. 5 was less than 0.05 μm.
From the results of FIG. 6, it can be seen that the obtained porous film has an inclined three-dimensional network structure in which the pore diameter gradually increases from the surface in the thickness direction. Also, from the results of FIGS. 5 and 6, it can be seen that coarse macrovoids were not formed. The maximum pore size inside the membrane was 0.5 μm.

[例4]
本例は、吸湿工程を行わず、また凝固液を用いない乾式の製法で多孔質膜を製造した比較例である。
塩素化ポリ塩化ビニルおよび製膜原液の溶媒であるNMPは、例1と同じものを用いた。
まず下記の組成で、30℃の水浴上で、NMPに塩素化ポリ塩化ビニルを溶解し、さらにイソプロピルアルコールを加えて混合し、製膜原液を調製した。
塩素化ポリ塩化ビニル:9質量%、
イソプロピルアルコール:27質量%、
NMP:64質量%。
次いで、上記で得た製膜原液を、ガラス板上に約75μmの厚みで均一に塗布して未凝固膜を形成した後、温度30℃、相対湿度60%の空気中に30分間静置して、NMPおよびイソプロピルアルコールを乾燥除去し、多孔質膜を得た。
得られた多孔質膜の断面構造を、例1と同様にしてSEMで5,000倍の倍率で観察した。得られた画像を図7に示す。
図7の結果に示されるように、得られた多孔質膜は断面において孔径が均一な網目構造を有していた。すなわち、孔径は厚さ方向において均一であり、傾斜型3次元網目構造は形成されなかった。
[Example 4]
This example is a comparative example in which a porous film was manufactured by a dry manufacturing method without performing a moisture absorption step and without using a coagulating liquid.
The same NMP as the solvent for the chlorinated polyvinyl chloride and the film forming stock solution was used.
First, in the following composition, chlorinated polyvinyl chloride was dissolved in NMP in a 30 ° C. water bath, and isopropyl alcohol was further added and mixed to prepare a film forming stock solution.
Chlorinated polyvinyl chloride: 9% by mass,
Isopropyl alcohol: 27% by mass
NMP: 64% by mass.
Next, the film-forming stock solution obtained above was uniformly applied to a glass plate with a thickness of about 75 μm to form an unsolidified film, and then allowed to stand in air at a temperature of 30 ° C. and a relative humidity of 60% for 30 minutes. Then, NMP and isopropyl alcohol were removed by drying to obtain a porous membrane.
The cross-sectional structure of the obtained porous membrane was observed with a SEM at a magnification of 5,000 times in the same manner as in Example 1. The obtained image is shown in FIG.
As shown in the results of FIG. 7, the obtained porous membrane had a network structure with a uniform pore diameter in cross section. That is, the hole diameter was uniform in the thickness direction, and an inclined three-dimensional network structure was not formed.

[例5]
本例は、塩素化ポリ塩化ビニルの代わりに、塩素化されていない塩化ビニル樹脂(徳山積水化学社製、製品名:TS−1000)を用いた比較例である。
塩化ビニル樹脂を用いた以外は実施例1と同様にして製膜原液の調製を試みたが、液がゲル化してしまい、製膜を行うことができなかった。
[Example 5]
This example is a comparative example using a non-chlorinated vinyl chloride resin (manufactured by Tokuyama Sekisui Chemical Co., Ltd., product name: TS-1000) instead of chlorinated polyvinyl chloride.
Preparation of a film forming stock solution was attempted in the same manner as in Example 1 except that a vinyl chloride resin was used. However, the liquid was gelled, and film formation could not be performed.

[例6]
本例は、臭化リチウム(化合物(A))を用いずに、多孔質膜を製造した実施例である。
まず、本例においては、原液組成を以下の割合とした以外は、例1と同様の方法により、製膜原液を調製した。
塩素化ポリ塩化ビニル:21質量%、
NMP:79質量%。
[Example 6]
In this example, a porous membrane was produced without using lithium bromide (compound (A)).
First, in this example, a film-forming stock solution was prepared in the same manner as in Example 1 except that the stock solution composition was changed to the following ratio.
Chlorinated polyvinyl chloride: 21% by mass,
NMP: 79% by mass.

次いで、上記で得た製膜原液を、ガラス板上に約75μmの厚みで均一に塗布して未凝固膜を形成した後、温度19.6℃、相対湿度60.6%の空気中に10秒間静置する条件で吸湿工程を行った。
この後、ガラス板とともに凝固液に1分間浸漬し、多孔質膜を得た。凝固液としては、濃度8質量%のNMP水溶液(NMP8質量%と水92質量%の混合物)を用いた。
19.6℃における飽和水蒸気量は16.9g/mであり、本例におけるV×tの値は102g/m・秒である。
得られた多孔質膜をガラス板から取り外した後、20℃の水中に1時間浸漬して洗浄し、残存する溶剤を除去した。
例1と同様にして、20000倍で多孔質膜の表面構造を観察して得られた画像を図8に示し、断面構造の画像を図9に示す。図8の画像より求めた表面の平均孔径は0.06μmであった。
図9の結果より、得られた多孔質膜は表面から厚さ方向に向かって孔径が漸次大きくなる傾斜型3次元網目構造を有することがわかる。また図8、9の結果より、粗大なマクロボイドは形成されなかったことがわかる。膜内部の最大孔径は0.3μmであった。
Next, the film-forming stock solution obtained above was uniformly applied to a glass plate with a thickness of about 75 μm to form an unsolidified film, and then 10% in air at a temperature of 19.6 ° C. and a relative humidity of 60.6%. The moisture absorption process was performed under the condition of standing still for 2 seconds.
Then, it was immersed in the coagulation liquid for 1 minute with the glass plate, and the porous film was obtained. As the coagulation liquid, an NMP aqueous solution having a concentration of 8% by mass (a mixture of 8% by mass of NMP and 92% by mass of water) was used.
The saturated water vapor amount at 19.6 ° C. is 16.9 g / m 3 , and the value of V × t in this example is 102 g / m 3 · sec.
After removing the obtained porous membrane from the glass plate, it was washed by immersion in water at 20 ° C. for 1 hour to remove the remaining solvent.
In the same manner as in Example 1, an image obtained by observing the surface structure of the porous film at 20000 times is shown in FIG. 8, and an image of the cross-sectional structure is shown in FIG. The average pore diameter on the surface determined from the image of FIG. 8 was 0.06 μm.
From the results of FIG. 9, it can be seen that the obtained porous film has an inclined three-dimensional network structure in which the pore diameter gradually increases from the surface in the thickness direction. 8 and 9, it can be seen that coarse macrovoids were not formed. The maximum pore size inside the membrane was 0.3 μm.

得られた多孔質膜の透水量(m/m/hr/MPa)を例1と同様の方法で求めた。
得られた膜の透水性は、8m/m/hr/MPaであった。
The amount of water permeation (m 3 / m 2 / hr / MPa) of the obtained porous membrane was determined in the same manner as in Example 1.
The water permeability of the obtained membrane was 8 m 3 / m 2 / hr / MPa.

[例7]
本例は、化合物(A)として塩化リチウムを用い、多孔質膜を製造した実施例である。
まず、本例においては、原液組成を以下の割合とした以外は、例1と同様の方法により、製膜原液を調製した。
塩素化ポリ塩化ビニル:20質量%、
塩化リチウム:4質量%
NMP:76質量%。
[Example 7]
In this example, a porous membrane was produced using lithium chloride as the compound (A).
First, in this example, a film-forming stock solution was prepared in the same manner as in Example 1 except that the stock solution composition was changed to the following ratio.
Chlorinated polyvinyl chloride: 20% by mass,
Lithium chloride: 4% by mass
NMP: 76% by mass.

次いで、上記で得た製膜原液を、ガラス板上に約75μmの厚みで均一に塗布して未凝固膜を形成した後、温度19.8℃、相対湿度60.3%の空気中に14秒間静置する条件で吸湿工程を行った。
この後、ガラス板とともに凝固液に1分間浸漬し、多孔質膜を得た。凝固液としては、濃度8質量%のNMP水溶液(NMP8質量%と水92質量%の混合物)を用いた。
19.8℃における飽和水蒸気量は17.1g/mであり、本例におけるV×tの値は144g/m・秒である。
得られた多孔質膜をガラス板から取り外した後、20℃の水中に1時間浸漬して洗浄し、残存する溶剤及び化合物(A)を除去した。
例1と同様にして、20000倍で多孔質膜の表面構造を観察して得られた画像を図10に示し、断面構造の画像を図11に示す。図10の画像より求めた表面の平均孔径は0.10μmであった。
図11の結果より、得られた多孔質膜は表面から厚さ方向に向かって孔径が漸次大きくなる傾斜型3次元網目構造を有することがわかる。また図10、11の結果より、粗大なマクロボイドは形成されなかったことがわかる。膜内部の最大孔径は1.0μmであった。
Next, the film-forming stock solution obtained above was uniformly applied to a glass plate with a thickness of about 75 μm to form an uncoagulated film, and then 14% in air at a temperature of 19.8 ° C. and a relative humidity of 60.3%. The moisture absorption process was performed under the condition of standing still for 2 seconds.
Then, it was immersed in the coagulation liquid for 1 minute with the glass plate, and the porous film was obtained. As the coagulation liquid, an NMP aqueous solution having a concentration of 8% by mass (a mixture of 8% by mass of NMP and 92% by mass of water) was used.
The saturated water vapor amount at 19.8 ° C. is 17.1 g / m 3 , and the value of V × t in this example is 144 g / m 3 · sec.
After removing the obtained porous membrane from the glass plate, it was immersed in water at 20 ° C. for 1 hour and washed to remove the remaining solvent and compound (A).
In the same manner as in Example 1, an image obtained by observing the surface structure of the porous film at 20000 times is shown in FIG. 10, and an image of the cross-sectional structure is shown in FIG. The average pore diameter of the surface determined from the image of FIG. 10 was 0.10 μm.
From the results of FIG. 11, it can be seen that the obtained porous film has an inclined three-dimensional network structure in which the pore diameter gradually increases from the surface in the thickness direction. Moreover, it turns out that the coarse macrovoid was not formed from the result of FIG. The maximum pore size inside the membrane was 1.0 μm.

得られた多孔質膜の透水量(m/m/hr/MPa)を例1と同様の方法で求めた。
得られた膜の透水性は、31m/m/hr/MPaであった。
The amount of water permeation (m 3 / m 2 / hr / MPa) of the obtained porous membrane was determined in the same manner as in Example 1.
The water permeability of the obtained membrane was 31 m 3 / m 2 / hr / MPa.

[例8]
本例は、化合物(A)としてポリビニルピロリドン(シグマアルドリッチ社製ポリビニルピロリドンK16−18:重量平均分子量4000)を用い、多孔質膜を製造した実施例である。
まず、本例においては、原液組成を以下の割合とした以外は、例1と同様の方法により、製膜原液を調製した。
塩素化ポリ塩化ビニル:20質量%、
ポリビニルピロリドンK16−18:4質量%
NMP:76質量%。
[Example 8]
In this example, a porous membrane was produced using polyvinyl pyrrolidone (Sigma-Aldrich Polyvinyl pyrrolidone K16-18: weight average molecular weight 4000) as the compound (A).
First, in this example, a film-forming stock solution was prepared in the same manner as in Example 1 except that the stock solution composition was changed to the following ratio.
Chlorinated polyvinyl chloride: 20% by mass,
Polyvinylpyrrolidone K16-18: 4% by mass
NMP: 76% by mass.

次いで、上記で得た製膜原液を、ガラス板上に約75μmの厚みで均一に塗布して未凝固膜を形成した後、温度19.5℃、相対湿度59.6%の空気中に30秒間静置する条件で吸湿工程を行った。
この後、ガラス板とともに凝固液に1分間浸漬し、多孔質膜を得た。凝固液としては、濃度8質量%のNMP水溶液(NMP8質量%と水92質量%の混合物)を用いた。
19.5℃における飽和水蒸気量は16.8g/mであり、本例におけるV×tの値は300g/m・秒である。
得られた多孔質膜をガラス板から取り外した後、20℃の水中に8時間浸漬して洗浄し、残存する溶剤及び化合物(A)を除去した。
例1と同様にして、20000倍で多孔質膜の表面構造を観察して得られた画像を図12に示し、断面構造の画像を図13に示す。図12の画像より求めた表面の平均孔径は0.05μmであった。図13の結果より、得られた多孔質膜は表面から厚さ方向に向かって孔径が漸次大きくなる傾斜型3次元網目構造を有することがわかる。また図13の結果より、表面から数10μm下に最大径が5μmを超える大きさのマクロボイドが形成されていることがわかる。
Next, the film-forming stock solution obtained above was uniformly applied to a glass plate with a thickness of about 75 μm to form an unsolidified film, and then 30% in air at a temperature of 19.5 ° C. and a relative humidity of 59.6%. The moisture absorption process was performed under the condition of standing still for 2 seconds.
Then, it was immersed in the coagulation liquid for 1 minute with the glass plate, and the porous film was obtained. As the coagulation liquid, an NMP aqueous solution having a concentration of 8% by mass (a mixture of 8% by mass of NMP and 92% by mass of water) was used.
Saturated water vapor amount at 19.5 ° C. is 16.8 g / m 3, values of V × t in this example is 300 g / m 3 · sec.
After removing the obtained porous membrane from the glass plate, it was immersed and washed in 20 ° C. water for 8 hours to remove the remaining solvent and compound (A).
In the same manner as in Example 1, an image obtained by observing the surface structure of the porous film at 20000 times is shown in FIG. 12, and an image of the cross-sectional structure is shown in FIG. The average pore diameter on the surface determined from the image of FIG. 12 was 0.05 μm. From the results of FIG. 13, it can be seen that the obtained porous film has an inclined three-dimensional network structure in which the pore diameter gradually increases in the thickness direction from the surface. From the result of FIG. 13, it can be seen that macrovoids having a maximum diameter exceeding 5 μm are formed several tens of μm below the surface.

得られた多孔質膜の透水量(m/m/hr/MPa)を例1と同様の方法で求めた。
得られた膜の透水性は、11m/m/hr/MPaであった。
The amount of water permeation (m 3 / m 2 / hr / MPa) of the obtained porous membrane was determined in the same manner as in Example 1.
The water permeability of the obtained membrane was 11 m 3 / m 2 / hr / MPa.

[例9]
本例は化合物(A)として水により洗浄され難い、高分子量のポリビニルピロリドン(日本触媒社製ポリビニルピロリドンK79:重量平均分子量400,000)を用い、多孔質膜を製造した後、十分な洗浄を行わなかった比較例である。
まず、本例においては、原液組成を以下の割合とした以外は、例1と同様の方法により、製膜原液を調製した。
塩素化ポリ塩化ビニル:20質量%、
ポリビニルピロリドンK79:4質量%
NMP:76質量%。
[Example 9]
In this example, a high molecular weight polyvinyl pyrrolidone (polyvinyl pyrrolidone K79 manufactured by Nippon Shokubai Co., Ltd .: weight average molecular weight 400,000), which is difficult to be washed with water as the compound (A), was used to produce a porous membrane, and then washed sufficiently. This is a comparative example that was not performed.
First, in this example, a film-forming stock solution was prepared in the same manner as in Example 1 except that the stock solution composition was changed to the following ratio.
Chlorinated polyvinyl chloride: 20% by mass,
Polyvinylpyrrolidone K79: 4% by mass
NMP: 76% by mass.

次いで、上記で得た製膜原液を、ガラス板上に約75μmの厚みで均一に塗布して未凝固膜を形成した後、温度19.5℃、相対湿度59.8%の空気中に14秒間静置する条件で吸湿工程を行った。
この後、ガラス板とともに凝固液に1分間浸漬し、多孔質膜を得た。凝固液としては、濃度8質量%のNMP水溶液(NMP8質量%と水92質量%の混合物)を用いた。
19.5℃における飽和水蒸気量は16.8g/mであり、本例におけるV×tの値は140g/m・秒である。
得られた多孔質膜をガラス板から取り外した後、20℃の水中に24時間浸漬して洗浄した。
Next, the film-forming stock solution obtained above was uniformly applied to a glass plate with a thickness of about 75 μm to form an uncoagulated film, and then 14% in air at a temperature of 19.5 ° C. and a relative humidity of 59.8%. The moisture absorption process was performed under the condition of standing still for 2 seconds.
Then, it was immersed in the coagulation liquid for 1 minute with the glass plate, and the porous film was obtained. As the coagulation liquid, an NMP aqueous solution having a concentration of 8% by mass (a mixture of 8% by mass of NMP and 92% by mass of water) was used.
Saturated water vapor amount at 19.5 ° C. is 16.8 g / m 3, values of V × t in this example is 140 g / m 3 · sec.
After removing the obtained porous membrane from the glass plate, it was immersed in water at 20 ° C. for 24 hours for cleaning.

例1と同様にして、5000倍で多孔質膜の表面構造を観察して得られた画像を図14に示し、断面構造の画像を図15に示す。図14の画像より約0.6μmの凹状の構造が形成されているが未洗浄のポリビニルピロリドンに閉塞され、明確な孔が観察されなかった。図15の結果より、得られた多孔質膜は表面から厚さ方向に向かって孔径が漸次大きくなる傾斜型3次元網目構造を有することがわかる。また図15の結果より、表面から数10μm下に最大径が5μmを超える大きさのマクロボイドが形成されていることがわかる。   In the same manner as in Example 1, an image obtained by observing the surface structure of the porous film at a magnification of 5000 is shown in FIG. 14, and an image of the cross-sectional structure is shown in FIG. From the image in FIG. 14, a concave structure of about 0.6 μm was formed, but it was blocked by unwashed polyvinyl pyrrolidone, and no clear pores were observed. From the results of FIG. 15, it can be seen that the obtained porous film has an inclined three-dimensional network structure in which the pore diameter gradually increases from the surface in the thickness direction. From the results of FIG. 15, it can be seen that macrovoids having a maximum diameter exceeding 5 μm are formed several tens of μm below the surface.

得られた多孔質膜の透水量(m/m/hr/MPa)を例1と同様の方法で測定したが、0.2m/m/hr/MPaと非常に低い透水性となった。 The water permeability (m 3 / m 2 / hr / MPa) of the obtained porous membrane was measured by the same method as in Example 1, but the water permeability was as low as 0.2 m 3 / m 2 / hr / MPa. became.

[例10]
本例は化合物(A)として水により洗浄され難い、メチルセルロース(アクロスオーガニクス社製メチルセルロース:2%水溶液粘度 3000−5600cP)を用い、多孔質膜を製造した後、十分な洗浄を行わなかった比較例である。
まず、本例においては、原液組成を以下の割合とした以外は、例1と同様の方法により、製膜原液を調整した。
塩素化ポリ塩化ビニル:19質量%、
メチルセルロース:3質量%
NMP:78質量%。
[Example 10]
This example is a comparative example in which methyl cellulose (methyl cellulose manufactured by Acros Organics Co., Ltd .: 2% aqueous solution viscosity 3000-5600 cP), which is difficult to be washed with water as a compound (A), was used to produce a porous membrane and was not sufficiently washed. It is.
First, in this example, a film-forming stock solution was prepared in the same manner as in Example 1 except that the stock solution composition was changed to the following ratio.
Chlorinated polyvinyl chloride: 19% by mass
Methyl cellulose: 3% by mass
NMP: 78% by mass.

次いで、上記で得た製膜原液を、ガラス板上に約75μmの厚みで均一に塗布して未凝固膜を形成した後、温度19.5℃、相対湿度59.7%の空気中に14秒間静置する条件で吸湿工程を行った。
この後、ガラス板とともに凝固液に1分間浸漬し、多孔質膜を得た。凝固液としては、濃度8質量%のNMP水溶液(NMP8質量%と水92質量%の混合物)を用いた。
19.5℃における飽和水蒸気量は16.8g/mであり、本例におけるV×tの値は140g/m・秒である。
得られた多孔質膜をガラス板から取り外した後、20℃の水中に72時間浸漬して洗浄した。
例1と同様にして、多孔質膜の表面構造を観察して得られた画像を図16に示し、断面構造の画像を図17に示す。図16の画像から膜表面が未洗浄のメチルセルロースにより閉塞されており明確な孔が観察されなかった。得られた多孔質膜は表面から厚さ方向に向かって孔径が漸次大きくなる傾斜型3次元網目構造を有することがわかる。また図17の結果より、表面から数10μm下に最大径が5μmを超える大きさのマクロボイドが形成されていることがわかる。
Next, the film-forming stock solution obtained above was uniformly applied to a glass plate with a thickness of about 75 μm to form an uncoagulated film, and then 14% in air at a temperature of 19.5 ° C. and a relative humidity of 59.7%. The moisture absorption process was performed under the condition of standing still for 2 seconds.
Then, it was immersed in the coagulation liquid for 1 minute with the glass plate, and the porous film was obtained. As the coagulation liquid, an NMP aqueous solution having a concentration of 8% by mass (a mixture of 8% by mass of NMP and 92% by mass of water) was used.
Saturated water vapor amount at 19.5 ° C. is 16.8 g / m 3, values of V × t in this example is 140 g / m 3 · sec.
After removing the obtained porous membrane from the glass plate, it was immersed in water at 20 ° C. for 72 hours for cleaning.
The image obtained by observing the surface structure of the porous membrane in the same manner as in Example 1 is shown in FIG. 16, and the image of the cross-sectional structure is shown in FIG. From the image in FIG. 16, the membrane surface was blocked with unwashed methylcellulose, and no clear pores were observed. It can be seen that the obtained porous film has an inclined three-dimensional network structure in which the pore diameter gradually increases from the surface toward the thickness direction. Moreover, it can be seen from the results of FIG. 17 that macrovoids having a maximum diameter exceeding 5 μm are formed several tens of μm below the surface.

得られた多孔質膜の透水量(m/m/hr/MPa)を例1と同様の方法で測定したが、透水が確認されなかった。 The water permeability (m 3 / m 2 / hr / MPa) of the obtained porous membrane was measured by the same method as in Example 1, but water permeability was not confirmed.

Claims (7)

塩素化ポリ塩化ビニルを、塩素化ポリ塩化ビニルに対して良溶媒で、かつ水に対して相溶性を有する溶媒に溶解させて製膜原液を得る製膜原液調製工程と、
該製膜原液を膜状に形成して未凝固膜を得る製膜工程と、
前記未凝固膜を、水蒸気を含む空気中に保持して吸湿させる吸湿工程と、
前記吸湿工程の後に、前記未凝固膜を凝固液中で凝固させる凝固工程を有する、多孔質膜の製造方法。
A film-forming stock solution preparing step for obtaining a film-forming stock solution by dissolving chlorinated polyvinyl chloride in a good solvent for chlorinated polyvinyl chloride and a solvent compatible with water;
A film forming step of forming the film forming stock solution into a film to obtain an uncoagulated film;
A moisture absorption step of absorbing the moisture by holding the unsolidified film in air containing water vapor;
A method for producing a porous membrane, comprising a coagulation step of coagulating the uncoagulated membrane in a coagulation liquid after the moisture absorption step.
前記製膜原液調製工程において、前記製膜原液に、前記溶媒および水の両方に対して可溶性の化合物(A)を溶解させる、請求項1に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to claim 1, wherein in the film-forming stock solution preparing step, the compound (A) soluble in both the solvent and water is dissolved in the film-forming stock solution. 前記吸湿工程において、前記水蒸気を含む空気の、単位体積当たりの水蒸気量をV(単位:g/m)、吸湿時間をt(単位:秒)とするとき、V×tの値が30〜600(単位:g/m・秒)である、請求項1〜2のいずれか一項に記載の多孔質膜の製造方法。 In the moisture absorption step, when the amount of water vapor per unit volume of the air containing the water vapor is V (unit: g / m 3 ) and the moisture absorption time is t (unit: second), the value of V × t is 30 to The manufacturing method of the porous membrane as described in any one of Claims 1-2 which is 600 (unit: g / m < 3 > * second). 前記化合物(A)が、塩化リチウムまたは臭化リチウムである、請求項2又は3のいずれか一項に記載の多孔質膜の製造方法。   The method for producing a porous film according to any one of claims 2 and 3, wherein the compound (A) is lithium chloride or lithium bromide. 前記多孔質膜が精密ろ過膜である、請求項1〜4のいずれか一項に記載の多孔質膜の製造方法。   The manufacturing method of the porous membrane as described in any one of Claims 1-4 whose said porous membrane is a microfiltration membrane. 前記化合物(A)が、重量平均分子量50,000以下のポリビニルピロリドンである、請求項2〜5のいずれか一項に記載の多孔質膜の製造方法。   The method for producing a porous membrane according to any one of claims 2 to 5, wherein the compound (A) is polyvinylpyrrolidone having a weight average molecular weight of 50,000 or less. 塩素化ポリ塩化ビニルからなり、膜内部の最大孔径が0.1μm以上〜5μm以下の傾斜型3次元網目構造を有する精密ろ過膜。   A microfiltration membrane made of chlorinated polyvinyl chloride and having an inclined three-dimensional network structure with a maximum pore size of 0.1 μm to 5 μm inside the membrane.
JP2012124488A 2011-07-06 2012-05-31 Method for manufacturing porous membrane, and microfiltration membrane Pending JP2013031832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012124488A JP2013031832A (en) 2011-07-06 2012-05-31 Method for manufacturing porous membrane, and microfiltration membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011150102 2011-07-06
JP2011150102 2011-07-06
JP2012124488A JP2013031832A (en) 2011-07-06 2012-05-31 Method for manufacturing porous membrane, and microfiltration membrane

Publications (1)

Publication Number Publication Date
JP2013031832A true JP2013031832A (en) 2013-02-14

Family

ID=47788181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124488A Pending JP2013031832A (en) 2011-07-06 2012-05-31 Method for manufacturing porous membrane, and microfiltration membrane

Country Status (1)

Country Link
JP (1) JP2013031832A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159060A (en) * 2017-03-22 2018-10-11 東ソー株式会社 Polyvinyl chloride resin porous bead and production method thereof
CN112447994A (en) * 2019-08-28 2021-03-05 中国科学院大连化学物理研究所 Application of ion-conducting membrane containing chlorinated polyvinyl chloride in flow battery
CN116407957A (en) * 2022-12-29 2023-07-11 南京水诺环保科技有限公司 Preparation method of one-step molding Gao Tuoyan nanofiltration membrane

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370128A (en) * 1976-11-29 1978-06-22 Nippon Zeon Co Ltd Production of hollow fiber
JPH05245350A (en) * 1992-03-03 1993-09-24 Asahi Chem Ind Co Ltd High-performance hollow-fiber microfiltration membrane
JPH0631147A (en) * 1992-07-10 1994-02-08 Nok Corp Production of ultrafilter membrane
JPH06182166A (en) * 1992-12-22 1994-07-05 Toray Ind Inc Composite reverse osmosis membrane and manufacture thereof
JPH1085571A (en) * 1996-07-26 1998-04-07 Dainippon Ink & Chem Inc Separating membrane
JPH1177041A (en) * 1997-09-05 1999-03-23 Asahi Chem Ind Co Ltd Removal of microorganism from water
JP2003236351A (en) * 2002-02-15 2003-08-26 Mitsubishi Rayon Co Ltd Porous membrane and method for manufacturing the same
JP2006231274A (en) * 2005-02-28 2006-09-07 Toray Ind Inc Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method
JP2008508997A (en) * 2004-08-11 2008-03-27 ヴラームス インステリング ヴール テクノロギシュ オンデルゾーク (ヴイアイティーオー) Web-reinforced separation membrane and continuous manufacturing method thereof
JP2009536573A (en) * 2006-05-09 2009-10-15 ポーレックス コーポレイション Porous composite membrane material and its application
JP2010527290A (en) * 2007-05-18 2010-08-12 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Membrane bag having seamless membrane material, use thereof and filtration apparatus using the same
JP2010227757A (en) * 2009-03-26 2010-10-14 Toray Ind Inc Composite separation membrane

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370128A (en) * 1976-11-29 1978-06-22 Nippon Zeon Co Ltd Production of hollow fiber
JPH05245350A (en) * 1992-03-03 1993-09-24 Asahi Chem Ind Co Ltd High-performance hollow-fiber microfiltration membrane
JPH0631147A (en) * 1992-07-10 1994-02-08 Nok Corp Production of ultrafilter membrane
JPH06182166A (en) * 1992-12-22 1994-07-05 Toray Ind Inc Composite reverse osmosis membrane and manufacture thereof
JPH1085571A (en) * 1996-07-26 1998-04-07 Dainippon Ink & Chem Inc Separating membrane
JPH1177041A (en) * 1997-09-05 1999-03-23 Asahi Chem Ind Co Ltd Removal of microorganism from water
JP2003236351A (en) * 2002-02-15 2003-08-26 Mitsubishi Rayon Co Ltd Porous membrane and method for manufacturing the same
JP2008508997A (en) * 2004-08-11 2008-03-27 ヴラームス インステリング ヴール テクノロギシュ オンデルゾーク (ヴイアイティーオー) Web-reinforced separation membrane and continuous manufacturing method thereof
JP2006231274A (en) * 2005-02-28 2006-09-07 Toray Ind Inc Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method
JP2009536573A (en) * 2006-05-09 2009-10-15 ポーレックス コーポレイション Porous composite membrane material and its application
JP2010527290A (en) * 2007-05-18 2010-08-12 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ Membrane bag having seamless membrane material, use thereof and filtration apparatus using the same
JP2010227757A (en) * 2009-03-26 2010-10-14 Toray Ind Inc Composite separation membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159060A (en) * 2017-03-22 2018-10-11 東ソー株式会社 Polyvinyl chloride resin porous bead and production method thereof
JP7095326B2 (en) 2017-03-22 2022-07-05 東ソー株式会社 Polyvinyl chloride resin porous beads and their manufacturing method
CN112447994A (en) * 2019-08-28 2021-03-05 中国科学院大连化学物理研究所 Application of ion-conducting membrane containing chlorinated polyvinyl chloride in flow battery
CN112447994B (en) * 2019-08-28 2022-03-08 中国科学院大连化学物理研究所 Application of ion-conducting membrane containing chlorinated polyvinyl chloride in flow battery
CN116407957A (en) * 2022-12-29 2023-07-11 南京水诺环保科技有限公司 Preparation method of one-step molding Gao Tuoyan nanofiltration membrane
CN116407957B (en) * 2022-12-29 2023-09-26 南京水诺环保科技有限公司 Preparation method of one-step molding Gao Tuoyan nanofiltration membrane

Similar Documents

Publication Publication Date Title
Razzaghi et al. Morphological and separation performance study of PVDF/CA blend membranes
JP5076320B2 (en) Method for producing polyvinylidene fluoride hollow fiber type microporous membrane
JP5722621B2 (en) Polyvinylidene fluoride porous flat membrane and method for producing the same
KR101752981B1 (en) Process for production of porous membrane
JP5856887B2 (en) Method for producing porous membrane
KR20100114808A (en) Method for asymmetric microporous hollow fiber membrane
WO2007125709A1 (en) Porous water treatment membrane made of vinylidene fluoride-based resin with little contamination and method of producing the same
JP2010082573A (en) Porous film and method for manufacturing the same
JP5983981B2 (en) Method for producing porous membrane
JP2013031832A (en) Method for manufacturing porous membrane, and microfiltration membrane
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
JPS6138208B2 (en)
JPH08108053A (en) Cellulose acetate hollow-fiber separation membrane and its production
JP4724914B2 (en) Dry / wet spinning method of porous hollow fiber membrane
CN114699934B (en) Separation membrane material, preparation method and application
JP4803697B2 (en) Method for producing porous membrane
JP2013013875A (en) Production method of vinyl chloride-based porous membrane
JP2004033854A (en) Method for manufacturing porous film
JP2022514036A (en) Porous membrane for high pressure filtration
JP3169404B2 (en) Method for producing semipermeable membrane with high water permeability
KR102306426B1 (en) Composite porous membrane of acetylated alkyl cellulose and polyolefinketone
JP2008238040A (en) Porous film
JP2010075851A (en) Porous film and method for manufacturing the same
JP2022515734A (en) Porous membrane for high pressure filtration
JP4502324B2 (en) Method for producing porous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509