JP5856887B2 - Method for producing porous membrane - Google Patents

Method for producing porous membrane Download PDF

Info

Publication number
JP5856887B2
JP5856887B2 JP2012072193A JP2012072193A JP5856887B2 JP 5856887 B2 JP5856887 B2 JP 5856887B2 JP 2012072193 A JP2012072193 A JP 2012072193A JP 2012072193 A JP2012072193 A JP 2012072193A JP 5856887 B2 JP5856887 B2 JP 5856887B2
Authority
JP
Japan
Prior art keywords
solvent
film
stock solution
porous membrane
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012072193A
Other languages
Japanese (ja)
Other versions
JP2013202461A (en
Inventor
寛 山村
寛 山村
橋野 昌年
昌年 橋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2012072193A priority Critical patent/JP5856887B2/en
Publication of JP2013202461A publication Critical patent/JP2013202461A/en
Application granted granted Critical
Publication of JP5856887B2 publication Critical patent/JP5856887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、透水性能及び微小病原体に対する阻止性能に優れ、高い耐薬品性を有するのみならず、微小病原体に対する阻止性能を長期間安定して保持し得る、多孔質膜の製造方法に関するものである。   The present invention relates to a method for producing a porous membrane that is excellent in water permeability and blocking performance against micropathogens, has high chemical resistance, and can stably maintain blocking performance against micropathogens for a long period of time. .

多孔質膜によるろ過プロセスは、凝集沈殿・砂ろ過のような従来の化学的処理プロセスと比較して、分離性能が高く且つ維持管理が容易なことから、用排水処理においてその普及が進んでいる。特に、飲料水製造では、医薬品製造や食品工業分野と同様に、工程内に微生物よりもサイズの小さいウイルス等の微小病原体が混入すると製造ラインが汚染されるだけでなく消費者の集団感染を引き起こす危険があることから、精密ろ過よりもさらに孔径が小さな限外ろ過膜の適用が進んでいる。そして、微小病原体の最小サイズが22nm程度であることから、飲料水用途の限外ろ過膜には、排除能力20nm以下の分離層を有する多孔質膜の開発が求められている。   The filtration process using a porous membrane is widely used in wastewater treatment because it has higher separation performance and is easier to maintain and manage than conventional chemical treatment processes such as coagulation sedimentation and sand filtration. . In particular, in the production of drinking water, as in the pharmaceutical manufacturing and food industry fields, contamination of the production line as well as consumer infection is caused not only by contamination of the production line, but also by contamination with micropathogens such as viruses that are smaller in size than microorganisms. Due to the danger, ultrafiltration membranes with smaller pore diameters than microfiltration are increasingly being applied. And since the minimum size of a micropathogen is about 22 nm, development of the porous membrane which has a separation layer of 20 nm or less of exclusion capability is calculated | required by the ultrafiltration membrane for drinking water use.

従来、限外ろ過膜の作製方法としては、種々のものが知られているが、小孔径から大孔径まで比較的広範囲の孔径制御に優れる相分離法が、比較的に多く用いられている。かかる相分離法としては、非溶媒誘起相分離法(以降において、「NIPS法」とも記載する。)と、熱誘起相分離法(以後において、「TIPS法」とも記載する。)が知られている。   Conventionally, various methods for producing an ultrafiltration membrane are known, but phase separation methods that are excellent in controlling pore diameters over a relatively wide range from small pore diameters to large pore diameters are used relatively frequently. As such a phase separation method, a non-solvent induced phase separation method (hereinafter also referred to as “NIPS method”) and a thermally induced phase separation method (hereinafter also referred to as “TIPS method”) are known. Yes.

NIPS法は、高分子を溶媒に溶解することで調製した均一溶液(製膜原液)を吐出して非溶媒を含む凝固液に接触させることにより、該製膜原液中の溶媒と凝固浴中の非溶媒間に濃度勾配を生じさせ、これを駆動力として非溶媒が製膜原液中の溶媒と置換することで相分離現象が進行するものである。かかるNIPS法では、製膜原液が凝固液と接触した面から多孔質膜内部に向かって前記濃度勾配が減少する影響から、溶媒から非溶媒への置換速度が接触面から多孔質膜内部にかけて遅くなる。溶媒交換速度が遅いほど相分離は進行し、細孔が粗大化する傾向があることから、一般的にはNIPS法で製造された多孔質膜は、接触面は緻密な細孔が形成されるとともに多孔質膜内部に向かうにつれて細孔の孔径が除々に粗大化する、傾斜構造を有するものとなり易い。   In the NIPS method, a uniform solution (film-forming stock solution) prepared by dissolving a polymer in a solvent is discharged and brought into contact with a coagulating liquid containing a non-solvent, so that the solvent in the film-forming stock solution and the coagulation bath A concentration gradient is generated between the non-solvents, and the phase separation phenomenon proceeds by replacing the non-solvent with the solvent in the film-forming stock solution using this as a driving force. In this NIPS method, the rate of substitution from the solvent to the non-solvent is slow from the contact surface to the inside of the porous membrane because the concentration gradient decreases from the surface in contact with the coagulating solution to the inside of the porous membrane. Become. Since the lower the solvent exchange rate, the phase separation proceeds and the pores tend to become coarser. Therefore, in general, a porous membrane produced by the NIPS method forms dense pores on the contact surface. At the same time, it tends to have an inclined structure in which the pore diameter gradually becomes larger toward the inside of the porous membrane.

また、TIPS法は、高分子を潜在溶媒と高温で混練することで調製した均一溶液(製膜原液)を冷却することにより、熱拡散を発生させ、これを駆動力として相分離を進行させるものである。かかるTIPS法では、発生する熱拡散がNIPS法で発生する濃度拡散よりも極めて早い速度で進行するため、多孔質膜の断面方向での相分離進行度がほぼ等しい。そのため、TIPS法で製造された多孔質膜は、多孔質膜の断面方向に比較的均一な孔径を有する細孔が形成された多孔質構造を有するものとなり易い。   The TIPS method generates heat diffusion by cooling a homogeneous solution (film-forming stock solution) prepared by kneading a polymer with a latent solvent at a high temperature, and proceeds phase separation using this as a driving force. It is. In such a TIPS method, the generated thermal diffusion proceeds at a much faster rate than the concentration diffusion generated in the NIPS method, and therefore the degree of progress of phase separation in the cross-sectional direction of the porous membrane is substantially equal. Therefore, the porous membrane manufactured by the TIPS method tends to have a porous structure in which pores having a relatively uniform pore diameter are formed in the cross-sectional direction of the porous membrane.

そして、ウイルス除去に必要な小孔径と透水性能とを両立させるためには、透水性能と孔径と膜厚の関係を示したハーゲンポアゼイユの式から分離層の厚みを薄くする必要があるところ、TIPS法では分離層のみを薄膜化させることが困難である。そのため、小孔径且つ高透水性能の多孔質膜を作製する場合には、傾斜構造により数μmの厚みの分離層を容易に製造することが可能な、NIPS法による製造が多用される。   And in order to achieve both the small pore size and water permeability required for virus removal, it is necessary to reduce the thickness of the separation layer from the Hagen Poiseuille's formula showing the relationship between water permeability, pore size and film thickness. In the TIPS method, it is difficult to thin only the separation layer. Therefore, when a porous membrane having a small pore diameter and high water permeability is produced, production by the NIPS method, which can easily produce a separation layer having a thickness of several μm by an inclined structure, is frequently used.

一方、多孔質膜によるろ過プロセスに用いられるろ材としては、例えば、加工性に優れる高分子を中空状に形成した中空糸膜や高分子をシート状に形成した平膜等を複合化した膜モジュール等が用いられている。しかしながら、このような膜モジュールを水処理等に用いる場合、ろ過により分離された濁質によって膜面閉塞が生じ、その結果、透水性能が低下して膜目詰まり生じ易いという問題があった。   On the other hand, as a filter medium used in a filtration process using a porous membrane, for example, a membrane module in which a hollow fiber membrane in which a polymer excellent in processability is formed in a hollow shape or a flat membrane in which a polymer is formed in a sheet shape is combined. Etc. are used. However, when such a membrane module is used for water treatment or the like, there is a problem in that the membrane surface is clogged by the turbidity separated by filtration, and as a result, the water permeability is lowered and membrane clogging is likely to occur.

上述した膜目詰まりは、一般的に、細孔内及び膜表面に濁質が堆積することによって生じる物理的な閉塞と、膜基材に有機物等が吸着等することによって生じる化学的な閉塞とに分類される。多くの場合、一定時間或いは一定水量をろ過した後に、膜目詰まりを解消して透過水量を回復させるために、膜の洗浄が行われる。例えば、物理的な閉塞を解消する手段としては、ろ過又は逆洗運転時において、原水中に空気を連続的或いは断続的に送ることによって膜を振動させる、エアースクラビング処理が有効な手段として用いられている。   The above-mentioned film clogging is generally caused by physical clogging caused by accumulation of turbidity in pores and on the membrane surface, and chemical clogging caused by adsorption of organic substances etc. on the membrane substrate. are categorized. In many cases, after a certain amount of time or a certain amount of water is filtered, the membrane is washed in order to eliminate clogging of the membrane and restore the amount of permeated water. For example, air scrubbing treatment that vibrates the membrane by continuously or intermittently sending air into the raw water during filtration or backwash operation is used as an effective means for eliminating physical blockage. ing.

一方、化学的な閉塞を解消する手段としては、蓄積した有機物等を化学薬品、例えば次亜塩素酸ナトリウム等の酸化剤や水酸化ナトリウム等のアルカリを用いて分解除去等することが有効な手段として用いられている。しかしながら、このような化学薬品は、蓄積した有機物を分解するだけでなく、膜を構成する高分子をも分解させ得るため、継続的に薬品洗浄を行うと、膜細孔が粗大化する等して、膜の分離性能を長期間保持することが困難となる。そのため、膜目詰まりによる透過水量の低下を解消しつつ、長期間にわたって分離性能を保持するためには、薬品による洗浄処理を行った後でも分離性能を十分に維持し得る程度の耐薬品性が、分離層に求められている。   On the other hand, as a means for eliminating chemical blockage, it is effective to decompose and remove accumulated organic substances using chemicals, for example, an oxidizing agent such as sodium hypochlorite or an alkali such as sodium hydroxide. It is used as. However, such chemicals not only decompose the accumulated organic matter, but can also decompose the polymer that composes the membrane. Therefore, continuous chemical cleaning causes the pores of the membrane to become coarse. Thus, it becomes difficult to maintain the separation performance of the membrane for a long time. Therefore, in order to maintain the separation performance over a long period of time while eliminating the decrease in the amount of permeated water due to membrane clogging, the chemical resistance is such that the separation performance can be sufficiently maintained even after washing with chemicals. Sought in the separation layer.

近年、このような化学薬品による膜の劣化を防ぐことを目的として、薬品耐性に優れる無機材料やポリテトラフルオロエチレン等のフッ素系高分子を材料とする膜が製品化されている。しかしながら、これらの材料は溶媒に溶解しにくいことから、NIPS法により、微小病原体の除去に有効な膜形状や高い分離性能を有する膜を作製することが困難であった。   In recent years, for the purpose of preventing the deterioration of the film due to such chemicals, a film made of an inorganic material having excellent chemical resistance and a fluorine-based polymer such as polytetrafluoroethylene has been commercialized. However, since these materials are difficult to dissolve in a solvent, it has been difficult to produce a membrane having a membrane shape effective for removing micropathogens and a membrane having high separation performance by the NIPS method.

一方、フッ素系高分子の中でも、ポリフッ化ビニリデン樹脂(以後において、「PVDF樹脂」とも記載する。)は、比較的加工性に優れるので、多孔質膜の材料としてよく用いられている。一方、PVDF樹脂は、他のフッ素系高分子と比較して、アルカリに対する耐性が低いという欠点がある。そのため、アルカリでの洗浄を伴う長期の使用に耐え得るPVDF樹脂製の多孔質膜を製造することは、極めて困難であった。   On the other hand, among the fluorine-based polymers, polyvinylidene fluoride resin (hereinafter also referred to as “PVDF resin”) is comparatively excellent in processability and is often used as a material for a porous film. On the other hand, the PVDF resin has a drawback of low resistance to alkali as compared with other fluoropolymers. Therefore, it has been extremely difficult to produce a porous membrane made of PVDF resin that can withstand long-term use involving washing with alkali.

PVDF樹脂を用いてNIPS法により多孔質膜を製造する方法は、これまでに多数の文献において報告されている。例えば、特許文献1には、NIPS法によりβ結晶比率が低く、結晶化度が低く、比面が小さい多孔質膜を製造することで、物理強度が薬品によって低下しない多孔質膜を製造する方法が開示されている。また、特許文献2には、PVDF樹脂と潜在溶媒と無機微粉体とを溶融混練して膜状に成型・冷却し、続いて潜在溶媒及び無機微粉体を順次抽出することにより、膜断面方向に均一結晶構造を有する多孔質膜が得られるとの開示があり、当該多孔質膜の結晶構造はβ結晶比率が低く、結晶化度が低いことから、分離層の化学強度が強く、長期間の使用にわたって分離性能を維持することが可能であることを確認している。さらに、特許文献3には、ウイルスを4log以上除去するPVDF製の限外ろ過膜が開示されている。   A method for producing a porous membrane by the NIPS method using PVDF resin has been reported in many documents so far. For example, Patent Document 1 discloses a method for producing a porous film in which physical strength is not reduced by a chemical by producing a porous film having a low β crystal ratio, a low crystallinity, and a small specific surface by the NIPS method. Is disclosed. In Patent Document 2, PVDF resin, latent solvent, and inorganic fine powder are melted and kneaded, molded and cooled into a film shape, and subsequently extracted in the cross-sectional direction of the film by sequentially extracting the latent solvent and inorganic fine powder. There is a disclosure that a porous membrane having a uniform crystal structure can be obtained. Since the crystal structure of the porous membrane has a low β crystal ratio and a low crystallinity, the chemical strength of the separation layer is strong, It has been confirmed that separation performance can be maintained over use. Furthermore, Patent Document 3 discloses a PVDF ultrafiltration membrane that removes 4 logs or more of viruses.

国際特許公開第2007/119850公報パンフレットInternational Patent Publication No. 2007/119850 pamphlet 特許第2835365号Japanese Patent No. 2835365 特開2010−94670号公報JP 2010-94670 A

しかしながら、上記特許文献に開示された方法により製造されたPVDF製の多孔質限外ろ過膜は、以下の理由により、高い安全性が要求される飲料水へのろ過用途に不向きなものと考えられる。   However, the porous ultrafiltration membrane made of PVDF manufactured by the method disclosed in the above patent document is considered to be unsuitable for the filtration application to drinking water requiring high safety for the following reasons. .

すなわち、特許文献1に記載された多孔質膜は、膜断面方向に結晶構造が変化しており、膜断面の中央近辺では薬品の劣化に対して強い構造を有している一方で、膜表面近傍の分離層の化学強度が弱い(耐薬品性に劣る)ことから、膜厚全体で担う強度・伸度の劣化は抑えられるものの、長期間の使用に伴って或いは薬品洗浄により分離層が劣化し、分離性能が低下することが容易に予想される。そのため、特許文献1に記載された製法によって作製された多孔質膜は、ウイルス等の微小病原体を長期間除去することが求められる飲料水用途には不向きである。   That is, the porous film described in Patent Document 1 has a crystal structure that changes in the film cross-sectional direction, and has a structure that is strong against chemical deterioration near the center of the film cross-section. The chemical strength of the adjacent separation layer is weak (it is inferior in chemical resistance), so the deterioration of strength and elongation of the entire film thickness can be suppressed, but the separation layer deteriorates with long-term use or chemical cleaning However, it is easily expected that the separation performance is lowered. Therefore, the porous membrane produced by the manufacturing method described in Patent Document 1 is unsuitable for drinking water applications that require long-term removal of micropathogens such as viruses.

また、特許文献2に記載された多孔質膜は、TIPS法により作製されており、多孔質膜の断面方向に比較的均一な孔径を有する細孔が形成された多孔質構造を有しているため、ウイルス等の微小病原体の除去性能を担保するために細孔の孔径を微細化すると、透水性能が著しく低下する。また、特許文献2に記載された製法によって多孔質膜を製造すると、添加した無機微粉体が脱落する等して孔が形成されるため、得られる多孔質膜は、ウイルス等の微小病原体の阻止性能が不十分なものとなり易い。とりわけ、製造時に無機微粉体の凝集物等が存在した場合には、無機微粉体の粒径以上の孔径を有する粗大な孔が形成されるため、微小病原体の阻止性能が著しく低下する傾向にある。   Moreover, the porous film described in Patent Document 2 is manufactured by the TIPS method, and has a porous structure in which pores having a relatively uniform pore diameter are formed in the cross-sectional direction of the porous film. Therefore, if the pore diameter is reduced in order to ensure the removal performance of micropathogens such as viruses, the water permeation performance is significantly reduced. In addition, when a porous membrane is produced by the production method described in Patent Document 2, pores are formed by dropping the added inorganic fine powder, etc., so that the obtained porous membrane is capable of blocking micropathogens such as viruses. Performance tends to be insufficient. In particular, when there are aggregates of inorganic fine powder at the time of production, coarse pores having a pore size larger than the particle size of the inorganic fine powder are formed, so that the ability to prevent micropathogens tends to be significantly reduced. .

さらに、特許文献3に記載されたPVDF製の限外ろ過膜は、ウイルスの除去を目的としたものであり、分離層の耐薬品性に劣るものであることから、薬品洗浄の度に分離層が破壊され、長期の使用に伴ってその分離性能が除々に低下してしまうものである。   Furthermore, the ultrafiltration membrane made of PVDF described in Patent Document 3 is for the purpose of removing viruses and is inferior in chemical resistance of the separation layer. Is destroyed, and the separation performance gradually decreases with long-term use.

本発明は、以上の問題点を鑑みてなされたものであり、透水性能及び微小病原体に対する阻止性能に優れ、薬品洗浄等に対して孔の粗大化を抑制し得る極めて高い耐薬品性を有するのみならず、微小病原体に対する阻止性能を長期間安定して保持し得る、PVDF製多孔質膜の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and has excellent water permeability and blocking performance against micropathogens, and has only extremely high chemical resistance capable of suppressing the coarsening of pores for chemical cleaning and the like. It aims at providing the manufacturing method of the porous membrane made from PVDF which can hold | maintain the prevention performance with respect to a micropathogen stably for a long period.

上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、NIPS法における、製膜原液の吐出時におけるPVDF樹脂の結晶状態及び溶媒と非溶媒との置換(交換)速度に着目し、これらが所定の条件に調整されるように製膜原液と凝固液の温度を調整して多孔質膜を製造することで、従来の製法で得られる高分子膜と比較して、透水性及び微小病原体に対する阻止性能に優れ、極めて薬品耐性が高いのみならず、微小病原体を長期間安定して十分に除去可能な多孔質膜を製造できることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have made extensive studies, and as a result, in the NIPS method, the crystal state of the PVDF resin and the rate of substitution (exchange) between the solvent and the non-solvent at the time of discharging the film forming stock solution. Pay attention and adjust the temperature of the membrane-forming stock solution and the coagulating solution so that they are adjusted to the prescribed conditions, thereby producing a porous membrane, compared to the polymer membrane obtained by the conventional manufacturing method. The present invention has been completed by discovering that a porous membrane capable of removing a micropathogen stably and sufficiently for a long period of time can be produced, as well as excellent resistance and blocking performance against micropathogens and extremely high chemical resistance.

すなわち、本発明は、以下(1)〜(5)を提供する。
(1) ポリフッ化ビニリデン樹脂及び溶媒を少なくとも含む製膜原液を吐出して非溶媒を少なくとも含む凝固液に接触させて非溶媒誘起相分離法により多孔質膜を製造する、多孔質膜の製造方法であって、
前記製膜原液の吐出温度が、前記ポリフッ化ビニリデン樹脂の融点以上、前記ポリフッ化ビニリデン樹脂の分解温度未満であり、且つ、前記凝固液の温度が、前記製膜原液の多孔構造形成開始温度より高いことを特徴とする、
多孔質膜の製造方法
(2) 前記非溶媒に対する前記溶媒の飽和溶解濃度Cmax(溶媒の飽和重量(mg)/非溶媒1L)、及び、前記非溶媒中の溶媒濃度Cが、下記式(1)及び(2);
max≧100(mg/L) ・・・(1)
(Cmax−C)×100/Cmax>80(%) ・・・(2)
の関係を満たすことを特徴とする、
上記(1)に記載の多孔質膜の製造方法。
(3) 前記溶媒とポリフッ化ビニリデン樹脂とのHSP距離が、5.20以上8.00以下を満たすことを特徴とする、
上記(1)又は(2)に記載の多孔質膜の製造方法。
(4) 前記溶媒の沸点が、前記製膜原液の吐出温度+15℃以上であり、且つ、前記ポリフッ化ビニリデン樹脂の分解温度未満を満たすことを特徴とする、
上記(1)〜(3)のいずれか一項に記載の多孔質膜の製造方法。
(5) ポリフッ化ビニリデン樹脂を含む多孔質膜を製造する方法において、
円環状吐出口を2つ以上有する中空糸成型ノズルを用い、隣接する2つの該円環状吐出口の一方からはポリフッ化ビニリデン樹脂、有機液体及び無機微粉を少なくとも含む溶融混練物を、他方からはポリフッ化ビニリデン樹脂及び前記ポリフッ化ビニリデン樹脂とのHSP距離が5.20以上8.00以下を満たす溶媒を少なくとも含む製膜原液を、請求項1を満たす条件下で同時に吐出し、前記製膜原液の多孔構造形成開始温度より高く、前記溶融混練物の多孔構造形成開始温度よりも低い凝固液に接触させることで多層多孔中空糸構造を形成し、
得られた多層多孔中空糸構造物から前記有機液体を抽出除去することを特徴とする、
多孔質膜の製造方法。
That is, the present invention provides the following (1) to (5).
(1) A method for producing a porous membrane, comprising producing a porous membrane by a non-solvent-induced phase separation method by discharging a film-forming stock solution containing at least a polyvinylidene fluoride resin and a solvent, and bringing it into contact with a coagulation solution containing at least a non-solvent Because
The discharge temperature of the film forming stock solution is equal to or higher than the melting point of the polyvinylidene fluoride resin and lower than the decomposition temperature of the polyvinylidene fluoride resin, and the temperature of the coagulating liquid is higher than the porous structure formation start temperature of the film forming stock solution. Characterized by high,
Method for Producing Porous Membrane (2) The saturated dissolution concentration C max of the solvent with respect to the non-solvent (saturated weight of the solvent (mg) / non-solvent 1 L) and the solvent concentration C in the non-solvent are represented by the following formula ( 1) and (2);
C max ≧ 100 (mg / L) (1)
(C max −C) × 100 / C max > 80 (%) (2)
Satisfying the relationship of
The manufacturing method of the porous membrane as described in said (1).
(3) The HSP distance between the solvent and the polyvinylidene fluoride resin satisfies 5.20 or more and 8.00 or less,
The manufacturing method of the porous membrane as described in said (1) or (2).
(4) The boiling point of the solvent is a discharge temperature of the film-forming stock solution + 15 ° C. or higher and satisfies a decomposition temperature of the polyvinylidene fluoride resin,
The manufacturing method of the porous membrane as described in any one of said (1)-(3).
(5) In a method for producing a porous film containing a polyvinylidene fluoride resin,
Using a hollow fiber molding nozzle having two or more annular discharge ports, from one of the two adjacent annular discharge ports, a melt-kneaded material containing at least a polyvinylidene fluoride resin, an organic liquid and inorganic fine powder, and from the other A film-forming stock solution containing at least a polyvinylidene fluoride resin and a solvent satisfying an HSP distance of 5.20 or more and 8.00 or less between the polyvinylidene fluoride resin and the polyvinylidene fluoride resin is simultaneously discharged under the conditions satisfying claim 1, and the film-forming stock solution A multilayer porous hollow fiber structure is formed by contacting with a coagulating liquid that is higher than the porous structure formation start temperature of the melt kneaded product and lower than the porous structure formation start temperature of the melt-kneaded product,
The organic liquid is extracted and removed from the obtained multilayer porous hollow fiber structure,
A method for producing a porous membrane.

本発明によれば、透水性能及び微小病原体に対する阻止性能に優れ、薬品洗浄等に対して孔の粗大化を抑制し得る極めて高い耐薬品性を有するのみならず、微小病原体に対する阻止性能を長期間安定して保持し得る、多孔質膜を再現性よく簡便に製造することができる。   According to the present invention, it has excellent water permeation performance and prevention performance against micropathogens, and has extremely high chemical resistance that can suppress pore coarsening for chemical cleaning, etc. A porous membrane that can be stably held can be easily produced with good reproducibility.

以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明は、この実施の形態のみに限定する趣旨ではない。また、本発明は、その要旨を逸脱しない限り、種々の形態で実施することができる。   Embodiments of the present invention will be described below. Note that the following embodiment is an example for explaining the present invention, and the present invention is not limited to this embodiment. Moreover, this invention can be implemented with a various form, unless it deviates from the summary.

本実施形態の多孔質膜の製造方法は、PVDF樹脂及び溶媒を少なくとも含む製膜原液を吐出して非溶媒を少なくとも含む凝固液に接触させることで、NIPS法により相分離を進行させて、多孔質膜を製造するものである。本実施形態では、製膜原液の吐出温度及び製膜原液と接触させる凝固液の温度を調整することにより、所望の相分離が進行される。以下、詳述する。   The porous membrane manufacturing method of this embodiment is a porous membrane in which phase separation is advanced by the NIPS method by discharging a membrane-forming stock solution containing at least a PVDF resin and a solvent and bringing it into contact with a coagulation solution containing at least a non-solvent. A membrane is produced. In the present embodiment, desired phase separation proceeds by adjusting the discharge temperature of the film-forming stock solution and the temperature of the coagulating liquid brought into contact with the film-forming stock solution. Details will be described below.

製膜原液は、多孔質膜を構成する高分子成分として、PVDF樹脂を含有する。ここで、PVDF樹脂とは、フッ化ビニリデンのホモポリマー、又は、フッ化ビニリデンをモル比で50%以上含有する共重合ポリマーを意味する。PVDF樹脂は、強度に優れる多孔質膜を得る観点から、ホモポリマーであることが好ましい。また、PVDF樹脂が共重合ポリマーである場合、フッ化ビニリデンモノマーと共重合される他の共重合モノマーは、公知のものを適宜選択して用いることができ、特に限定されるものではないが、例えば、フッ素系モノマーや塩素系モノマー等を好適に用いることができる。   The film-forming stock solution contains a PVDF resin as a polymer component constituting the porous membrane. Here, the PVDF resin means a homopolymer of vinylidene fluoride or a copolymer containing 50% or more of vinylidene fluoride in a molar ratio. The PVDF resin is preferably a homopolymer from the viewpoint of obtaining a porous film having excellent strength. Further, when the PVDF resin is a copolymer, other copolymer monomers copolymerized with the vinylidene fluoride monomer can be appropriately selected from known ones and are not particularly limited. For example, a fluorine-based monomer or a chlorine-based monomer can be preferably used.

PVDF樹脂の重量平均分子量(Mw)は、特に限定されないが、10万以上、100万以下であることが好ましく、20万以上、70万以下であることがより好ましい。重量平均分子量を20万以上、100万以下にすることによって、製膜原液の粘度を紡糸に適した範囲に制御できる。また、重量平均分子量70万以下のPVDF樹脂を用いることで、溶媒と非溶媒との置換(交換)が早く進行し、より薬品耐性の高い分離層を形成することが可能となる。   The weight average molecular weight (Mw) of the PVDF resin is not particularly limited, but is preferably 100,000 or more and 1,000,000 or less, and more preferably 200,000 or more and 700,000 or less. By setting the weight average molecular weight to 200,000 or more and 1,000,000 or less, the viscosity of the film-forming stock solution can be controlled within a range suitable for spinning. In addition, by using a PVDF resin having a weight average molecular weight of 700,000 or less, substitution (exchange) between a solvent and a non-solvent proceeds quickly, and a separation layer with higher chemical resistance can be formed.

製膜原液は、溶媒を含む。溶媒とは、1週間以内に80℃でPVDF樹脂を1重量%以上溶解させることができるものを意味する。一方、80℃でPVDF樹脂を1週間以内に溶解できる量が1重量%未満のものを非溶媒と定義する。   The film-forming stock solution contains a solvent. The solvent means a solvent capable of dissolving 1% by weight or more of PVDF resin at 80 ° C. within one week. On the other hand, a solvent that can dissolve the PVDF resin at 80 ° C. within one week is defined as a non-solvent.

ここで、樹脂と溶媒もしくは非溶媒との親和性を推測するツールとして使用される、ハンセンの溶解度パラメーター(以後において、「HSP」とも記載する。)について詳述する。HSPは、ある樹脂がある溶媒もしくは非溶媒にどのくらい溶けるのかを示す溶解性の指標であり、溶解特性を3次元の座標で表し、その距離(以後において、「HSP距離」とも記載する。)が近いもの同士は溶解性が高いと判断するものである。ここで、3次元の座標軸は、分散項dD、極性項dP、水素結合項dHで表される。分散項dDはファンデルワールスの力、極性項dPはダイポール・モーメントの力、水素結合項dHは水、アルコールなどが持つ水素結合力とされる。具体的には、dD、dP、dHを軸とする3次元座標上において、PVDF樹脂の溶解度パラメーターから溶媒もしくは非溶媒の溶解度パラメーターまでのHSP距離を計算することで、PVDF樹脂の溶媒もしくは非溶媒に対する溶解性が評価できる。HSP距離の算定式を、以下に示す。
HSP距離=[4×(dDPVDF−dD溶媒)2+(dPPVDF−dP溶媒)2+(dHPVDF−dH溶媒)2]0.5
Here, Hansen's solubility parameter (hereinafter also referred to as “HSP”) used as a tool for estimating the affinity between the resin and the solvent or non-solvent will be described in detail. HSP is a solubility index indicating how much a certain resin dissolves in a solvent or non-solvent, and the solubility characteristics are expressed in three-dimensional coordinates, and the distance (hereinafter also referred to as “HSP distance”). Those close to each other are judged to have high solubility. Here, the three-dimensional coordinate axis is represented by a dispersion term dD, a polarity term dP, and a hydrogen bond term dH. The dispersion term dD is the van der Waals force, the polar term dP is the dipole moment force, and the hydrogen bond term dH is the hydrogen bond force of water, alcohol, or the like. Specifically, the solvent or non-solvent of the PVDF resin is calculated by calculating the HSP distance from the solubility parameter of the PVDF resin to the solubility parameter of the solvent or non-solvent on the three-dimensional coordinates with dD, dP, and dH as axes. Can be evaluated. The formula for calculating the HSP distance is shown below.
HSP distance = [4 × (dD PVDF −dD solvent ) 2 + (dP PVDF −dP solvent ) 2 + (dH PVDF −dH solvent ) 2 ] 0.5

熱力学的に、HSP距離が0に近づくほど、樹脂と溶媒もしくは非溶媒との相溶性が高い。ハンセンとアボットが開発したコンピューターソフトウエアHSPiPには、HSP距離を計算する機能と様々な樹脂と溶媒もしくは非溶媒のハンセンパラメーターを記載したデータベースが含まれている。そして、本明細書で用いている溶解度パラメーター(SP値)は、HSPiP 3rd versionに含まれるSolvent listとPolymer listに記載されている値を25℃に補正したものを参照している。ここで、Solvent listに記載されていない樹脂と溶媒もしくは非溶媒については、Y−MBと呼ばれるニューラルネットワーク法を用いた推算方法により算出する。分子構造をHSPiPに付属のY−MB計算ソフトに入力することで、自動的に原子団に分解し、HSP値と分子体積が計算される。   Thermodynamically, the closer the HSP distance is to 0, the higher the compatibility between the resin and the solvent or non-solvent. Computer software HSPiP developed by Hansen and Abbott includes a database describing the function of calculating the HSP distance and Hansen parameters for various resins and solvents or non-solvents. The solubility parameter (SP value) used in this specification refers to a value obtained by correcting the value described in the Solvent list and Polymer list included in the HSPiP 3rd version to 25 ° C. Here, resins and solvents or non-solvents not described in the Solvent list are calculated by an estimation method using a neural network method called Y-MB. By inputting the molecular structure into Y-MB calculation software attached to HSPiP, it is automatically decomposed into atomic groups, and the HSP value and molecular volume are calculated.

本実施形態では、NIPS法による多孔質膜の製造において、相分離速度を速めることで、耐薬品性が高められた分離層を有する多孔質膜を製造するものである。より具体的には、PVDF樹脂、及び非溶媒に対して任意の親和性を有する溶媒を選択し、適切な非溶媒を含有する凝固液中においてNIPS相分離を誘起することで、相分離速度が高速化され、これにより、高い阻止性能を有する分離層が形成される。   In the present embodiment, in the production of a porous membrane by the NIPS method, a porous membrane having a separation layer with improved chemical resistance is produced by increasing the phase separation speed. More specifically, a PVDF resin and a solvent having an arbitrary affinity for a non-solvent are selected, and NIPS phase separation is induced in a coagulation liquid containing an appropriate non-solvent, whereby the phase separation rate is increased. The speed is increased, thereby forming a separation layer having high blocking performance.

製膜原液に含まれる溶媒として、PVDF樹脂との相溶性が低い溶媒を選択することにより、相分離速度をより高速化することが可能となる。かかる観点から、PVDF樹脂と溶媒とのHSP距離が、5.20以上、8.00以下であることが好ましい。PVDF樹脂とのHSP距離が5.20以上の溶媒を選択することによって、PVDF樹脂との親和性が下がり、溶媒が凝固浴中に拡散されやすくなることから、相分離速度をより高速化し、膜の薬品耐性をさらに向上させることが可能となる。また、PVDF樹脂とのHSP距離が8.00以下の溶媒を選択することによって、製膜原液の多孔構造形成開始温度が低くなり、凝固液の温度を低く設定することができ、これにより、高温の製膜原液と低温の凝固液との温度差により溶媒及び非溶媒の置換(交換)が促進されて相分離速度が高速化することから、分離層の耐薬品性をより向上させることが可能となる。   By selecting a solvent having a low compatibility with the PVDF resin as the solvent contained in the film-forming stock solution, the phase separation speed can be further increased. From this viewpoint, it is preferable that the HSP distance between the PVDF resin and the solvent is 5.20 or more and 8.00 or less. By selecting a solvent having an HSP distance of 5.20 or more with the PVDF resin, the affinity with the PVDF resin is lowered, and the solvent is easily diffused into the coagulation bath. It is possible to further improve the chemical resistance of the. In addition, by selecting a solvent having an HSP distance with the PVDF resin of 8.00 or less, the formation temperature of the porous structure of the film-forming stock solution can be lowered, and the temperature of the coagulation liquid can be set low. The difference in temperature between the membrane forming stock solution and the low-temperature coagulating liquid accelerates the substitution (exchange) of the solvent and non-solvent, and increases the phase separation speed, so that the chemical resistance of the separation layer can be further improved. It becomes.

溶媒の具体例としては、Glycerol Diacetate、Ethyl Lactate、Diethylene Glycol Monobutyl Ether、gamma-Butyrolactone (GBL)、Methylene Chloride、Methyl Acetate、Dimethyl Isosorbide、1,3-Dioxolane、Dibasic Esters (DBE)、Dipropylene Glycol Mono n-Butyl Ether、Sulfolane (Tetramethylene Sulfone)、Methyl Ethyl Ketone (MEK)、Ethylene Glycol Monomethyl Ether、Cyclohexanone、Propylene Glycol Monomethyl Ether、Isophorone、Caprolactone (Epsilon)、Tetrahydrofuran (THF)、Propylene Glycol Phenyl Ether、Texanol等の単一溶媒の他、これらを任意の割合で混合した混合溶媒等が挙げられる。なお、混合溶媒の溶解度パラメーターについては、下式のように、溶媒の重量比(a:b)に基づいて、加成法則により計算したパラメーターを使用する。
[dD混合溶媒、dP混合溶媒、dH混合溶媒]=[(a×dD溶媒1+b×dD溶媒2)、(a×dP溶媒1+b×dP溶媒2)) (a×dH溶媒1+b×dH溶媒2)]/(a+b)
Specific examples of solvents include Glycerol Diacetate, Ethyl Lactate, Diethylene Glycol Monobutyl Ether, gamma-Butyrolactone (GBL), Methylene Chloride, Methyl Acetate, Dimethyl Isosorbide, 1,3-Dioxolane, Dibasic Esters (DBE), Dipropylene Glycol Mono n -Butyl Ether, Sulfolane (Tetramethylene Sulfone), Methyl Ethyl Ketone (MEK), Ethylene Glycol Monomethyl Ether, Cyclohexanone, Propylene Glycol Monomethyl Ether, Isophorone, Caprolactone (Epsilon), Tetrahydrofuran (THF), Propylene Glycol Phenyl Ether, Texanol, etc. In addition to one solvent, a mixed solvent in which these are mixed at an arbitrary ratio may be used. In addition, about the solubility parameter of a mixed solvent, the parameter calculated by the addition law based on the weight ratio (a: b) of a solvent like the following formula is used.
[DD mixed solvent , dP mixed solvent , dH mixed solvent ] = [(a × dD solvent 1 + b × dD solvent 2 ), (a × dP solvent 1 + b × dP solvent 2 )) (a × dH solvent 1 + b × dH Solvent 2 )] / (a + b)

また、製膜原液には、上述したPVDF樹脂及び溶媒以外に、非溶媒や添加剤を含んでいてもよい。添加剤の配合により、膜表面の平均孔径の制御を容易に行うことができる。例えば、非溶媒を含む凝固液に添加剤を配合した製膜溶液を接触させてNIPS相分離を生じさせる際に、又は、PVDF樹脂を凝固させた後に、この添加剤を溶出させることにより、添加剤の種類や配合量或いは製膜条件に応じて、所望する平均孔径を有する膜表面を形成することができる。このような添加剤としては、特に限定されないが、有機化合物、無機化合物等が用いられる。有機化合物としては、PVDF樹脂を溶解させる際に使用する溶媒及びNIPS相分離を起こす際に使用する非溶媒の双方に溶解するものが好ましく用いられる。例えば、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレンイミン、ポリアクリル酸、デキストランなどの水溶性ポリマー、界面活性剤、グリセリン、糖類、タンパク質類等を挙げることができる。無機化合物としては、PVDF樹脂を溶解させる際に使用する溶媒及びNIPS相分離を起こす際に使用する非溶媒の双方に溶解するものが好ましく、例えば、塩化カルシウム、塩化マグネシウム、塩化リチウム、硫酸バリウム等を挙げることができる。   In addition to the PVDF resin and the solvent described above, the film-forming stock solution may contain a non-solvent and an additive. By blending the additive, the average pore diameter on the membrane surface can be easily controlled. For example, when a film-forming solution containing an additive is mixed with a coagulating liquid containing a non-solvent to cause NIPS phase separation, or after coagulating PVDF resin, the additive is eluted. A film surface having a desired average pore diameter can be formed according to the type and blending amount of the agent or the film forming conditions. Such additives are not particularly limited, and organic compounds, inorganic compounds, and the like are used. As the organic compound, those that are soluble in both the solvent used when dissolving the PVDF resin and the non-solvent used when causing the NIPS phase separation are preferably used. For example, water-soluble polymers such as polyvinylpyrrolidone, polyethylene glycol, polyethyleneimine, polyacrylic acid, and dextran, surfactants, glycerin, saccharides, proteins, and the like can be given. As the inorganic compound, those that dissolve in both the solvent used when dissolving the PVDF resin and the non-solvent used when causing the NIPS phase separation are preferable. For example, calcium chloride, magnesium chloride, lithium chloride, barium sulfate, etc. Can be mentioned.

製膜原液における各成分の含有割合は、特に限定されないが、分離性能、透水性能、強度の観点から、製膜原液の総量に対する重量割合で、PVDF樹脂が5重量%以上、35重量%以下であり、溶媒が20重量%以上、95重量%以下であり、添加剤が0重量%以上、40重量%以下であり、非溶媒が0重量%以上、5重量%以下であることが好ましい。PVDF樹脂の含有割合が5重量%以上であると、分離層の強度がより高められる傾向にある。また、PVDF樹脂の含有割合が35重量%以下であると、製膜原液を紡糸に適した粘度に調整することが容易となり、かつ、分離層の緻密化が抑制されて透水性能がより高められる傾向にある。また、長期的に製膜原液のゲル化を招く恐れがあるため、非溶媒の含有割合は、0重量%以上、5重量%以下の範囲が好ましい。   The content ratio of each component in the membrane-forming stock solution is not particularly limited, but from the viewpoint of separation performance, water permeability, and strength, the PVDF resin is 5% by weight or more and 35% by weight or less with respect to the total amount of the film-forming stock solution. The solvent is preferably 20 wt% or more and 95 wt% or less, the additive is 0 wt% or more and 40 wt% or less, and the non-solvent is preferably 0 wt% or more and 5 wt% or less. When the content ratio of the PVDF resin is 5% by weight or more, the strength of the separation layer tends to be further increased. Moreover, when the content ratio of the PVDF resin is 35% by weight or less, it becomes easy to adjust the film-forming stock solution to a viscosity suitable for spinning, and the separation layer is suppressed from being densified, and the water permeability is further improved. There is a tendency. Moreover, since there exists a possibility of causing gelatinization of a film forming undiluted solution for a long term, the content rate of a non-solvent has the preferable range of 0 to 5 weight%.

製膜原液の調製方法は、特に限定されず、任意の手法により行うことができる。例えば、上述したPVDF樹脂を添加剤および非溶媒とともに溶媒に混合して攪拌することで、製膜原液を調製することができる。ここで、PVDF樹脂を溶媒に溶解させる際の温度は、PVDF樹脂の融点(Tm)以上であり、且つ、溶媒の沸点未満であることが好ましい。PVDF樹脂の融点(Tm)は、結晶領域の分子鎖が重心の移動を伴って動き出す温度のことであり、PVDF樹脂の化学構造に依存した固有の値である。PVDF樹脂の融点(Tm)は、後述するように、示差走査熱量分析(DSC)によって、求めることができる。このようにPVDF樹脂の融点(Tm)以上で溶媒と混合すると、ポリマーの結晶がほぐれ、ポリマーとの親和性の低い溶媒にも早く溶解させることが可能となる。なお、PVDF樹脂の溶解温度の上限は、溶媒の沸点とされるが、溶媒の引火爆発の危険性を回避して安全に処理を行う観点から、沸点からさらに10℃低い温度であることがましい。また、製膜原液は、溶解中もしくは溶解後において真空ポンプを用いた脱気を行うことが好ましい。脱気工程を経ることで、不純物が少なく、かつ気泡が少ない安定した原液を得ることができる。   The method for preparing the film-forming stock solution is not particularly limited, and can be performed by any method. For example, a film-forming stock solution can be prepared by mixing the PVDF resin described above with an additive and a non-solvent in a solvent and stirring. Here, the temperature at which the PVDF resin is dissolved in the solvent is preferably equal to or higher than the melting point (Tm) of the PVDF resin and lower than the boiling point of the solvent. The melting point (Tm) of the PVDF resin is a temperature at which the molecular chain in the crystal region starts to move with the movement of the center of gravity, and is a specific value depending on the chemical structure of the PVDF resin. The melting point (Tm) of the PVDF resin can be determined by differential scanning calorimetry (DSC) as will be described later. Thus, when mixed with the solvent at a melting point (Tm) or higher of the PVDF resin, the polymer crystals are loosened and can be quickly dissolved in a solvent having a low affinity with the polymer. The upper limit of the melting temperature of the PVDF resin is the boiling point of the solvent. However, from the viewpoint of safe treatment by avoiding the danger of flammable explosion of the solvent, the upper limit of the melting temperature of the PVDF resin is preferably 10 ° C lower than the boiling point. Yes. Moreover, it is preferable to deaerate the film-forming stock solution using a vacuum pump during or after dissolution. By passing through the deaeration process, a stable stock solution with few impurities and few bubbles can be obtained.

かくして得られる製膜原液を、Tダイ或いは中空ノズル等の成型用ノズルから吐出して非溶媒を少なくとも含む凝固液と接触させ、相分離現象を進行させることにより、多孔質膜が作製される。この多孔質膜の製膜は、製膜原液を成型用ノズルから押し出して凝固液中で凝固させる、いわゆる湿式製膜法、或いは、製膜原液を成形用ノズルから押し出した後に所定の空走区間を確保した後に凝固液中で凝固させる、いわゆる乾湿式製膜法のいずれも適用可能である。なお、製膜原液の吐出形状は、特に限定されず、例えば、平膜状、チューブ状、中空糸状等、任意に設定することができる。また、作製する多孔質膜の膜厚は、特に限定されないが、25μmから500μmの範囲とすることが好ましい。膜厚を25μm以上にすることで、膜の破損による微小病原体の流出をより一層確実に防ぐことができる。また、膜厚を500μm以下にすることで、連通性の悪いスポンジ状構造の発生を抑制することができるので、膜の透水性能を著しく向上することが可能となる。   The membrane-forming stock solution thus obtained is discharged from a molding nozzle such as a T-die or a hollow nozzle and brought into contact with a coagulating liquid containing at least a non-solvent, thereby proceeding with a phase separation phenomenon, thereby producing a porous membrane. The porous membrane is formed by extruding a film-forming stock solution from a molding nozzle and coagulating it in a coagulating liquid, or a so-called wet film-forming method, or a predetermined idle running section after the film-forming stock solution is extruded from a molding nozzle. Any of the so-called dry and wet film forming methods, in which the solidification is performed in a coagulating liquid after ensuring the above, can be applied. In addition, the discharge shape of the film-forming stock solution is not particularly limited, and can be arbitrarily set to, for example, a flat film shape, a tube shape, a hollow fiber shape, or the like. The thickness of the porous film to be produced is not particularly limited, but is preferably in the range of 25 μm to 500 μm. By setting the film thickness to 25 μm or more, the outflow of micropathogens due to the breakage of the film can be more reliably prevented. In addition, by setting the film thickness to 500 μm or less, it is possible to suppress the formation of a sponge-like structure with poor communication, and thus the water permeability of the film can be significantly improved.

上述した凝固液は、少なくとも非溶媒を含む。凝固液に含まれる非溶媒として、PVDF樹脂を溶解する溶媒と親和性が高いものを選択することで、相分離速度が速まり、膜の耐薬品性をより一層高めることが可能となる。かかる観点から、非溶媒は、溶媒を100mg以上溶解するのもが好ましい。なお、使用する非溶媒は、1種類に限定するものではなく、2種類以上の非溶媒を混合したものでも良い。   The coagulation liquid described above contains at least a non-solvent. By selecting a non-solvent contained in the coagulation liquid that has a high affinity for the solvent that dissolves the PVDF resin, the phase separation speed is increased, and the chemical resistance of the membrane can be further enhanced. From this viewpoint, it is preferable that the non-solvent dissolves 100 mg or more of the solvent. In addition, the non-solvent to be used is not limited to one type, and may be a mixture of two or more types of non-solvents.

非溶媒の具体例としては、水、グリセリン、メタノール、エタノール、2―プロパノール等の単一非溶媒の他、これらを任意の割合で混合した混合非溶媒等が挙げられる。   Specific examples of the non-solvent include single non-solvents such as water, glycerin, methanol, ethanol, and 2-propanol, and mixed non-solvents obtained by mixing these at an arbitrary ratio.

本実施形態の多孔質膜の製造方法において、凝固液の温度は、製膜原液の多孔構造形成開始温度より高いことが必要とされる。凝固液の温度が製膜原液の多孔構造形成開始温度以下であると、熱誘起相分離が進行して厚く均一に緻密な分離層が生成するため、目的とする小孔径と高透水性を兼ね備えた膜構造が得られない。ここで、本明細書において、製膜原液の多孔構造形成開始温度とは、製膜原液の熱誘起相分離開始温度のことであり、かかる多孔構造形成温度は、温度コントローラー付きの光学顕微鏡を用いて製膜原液を吐出時の温度まで加熱し、2分間ホールドして溶解させた後に、100℃/minで冷却する過程において形成される多孔構造を観察することによって求めることができる。   In the method for producing a porous membrane of the present embodiment, the temperature of the coagulating liquid is required to be higher than the porous structure formation start temperature of the membrane-forming stock solution. If the temperature of the coagulation liquid is equal to or lower than the starting temperature for forming the porous structure of the film-forming stock solution, the heat-induced phase separation proceeds and a thick, uniform and dense separation layer is formed, so it has the desired small pore diameter and high water permeability. The film structure cannot be obtained. Here, in this specification, the porous structure formation start temperature of the film-forming stock solution is the heat-induced phase separation start temperature of the film-forming stock solution, and this porous structure formation temperature is measured using an optical microscope with a temperature controller. The film-forming stock solution can be obtained by observing the porous structure formed in the process of heating to the temperature at the time of discharge, holding for 2 minutes to dissolve, and cooling at 100 ° C./min.

また、本実施形態において使用する溶媒及び非溶媒は、非溶媒に対する溶媒の飽和溶解濃度をCmax(溶媒の飽和重量(mg)/非溶媒1L)とし、非溶媒中の溶媒濃度をCとしたときに、下記式(1)及び(2)の関係を満たすことが好ましい。
max≧100(mg/L) ・・・(1)
(Cmax−C)×100/Cmax>80(%) ・・・(2)
このような式(1)及び(2)の関係を満たす溶媒及び非溶媒を用いることにより、製膜原液が凝固液と接触した際に溶媒が非溶媒と急速に置換(交換)され、相分離速度が高速化して分離層の耐薬品性がより一層高められる傾向にある。かかる観点から、上記式(1)において、左辺は500(mg/L)以上であることがより好ましく、上記式(2)において、左辺は95%以上であることがより好ましい。なお、上記Cmaxの計測において、エタノールと水のように際限なく溶解する溶媒と非溶媒の組み合わせの場合には、上記Cmaxを∞として、上記式(1)及び(2)の計算に使用し、上記式(2)の左辺の上限値は、100%とする。
In addition, the solvent and non-solvent used in the present embodiment are C max (saturated weight of solvent (mg) / non-solvent 1 L) of the solvent with respect to the non-solvent, and C is the solvent concentration in the non-solvent. Sometimes, it is preferable to satisfy the relationship of the following formulas (1) and (2).
C max ≧ 100 (mg / L) (1)
(C max −C) × 100 / C max > 80 (%) (2)
By using a solvent and a non-solvent that satisfy the relationship of the formulas (1) and (2), the solvent is rapidly replaced (exchanged) with the non-solvent when the film-forming stock solution comes into contact with the coagulation liquid, and phase separation is performed. The speed is increased and the chemical resistance of the separation layer tends to be further enhanced. From this viewpoint, in the above formula (1), the left side is more preferably 500 (mg / L) or more, and in the above formula (2), the left side is more preferably 95% or more. In the measurement of C max , in the case of a combination of a solvent and a non-solvent that dissolves endlessly, such as ethanol and water, the C max is set to ∞ and used for the calculation of the above formulas (1) and (2). The upper limit value on the left side of the formula (2) is 100%.

本実施形態の多孔質膜の製造方法において、製膜原液の吐出温度は、PVDF樹脂の融点(Tm)以上、PVDF樹脂の分解温度(Td)未満であることが必要とされる。製膜原液の吐出温度をTm以上にすることで、PVDF樹脂の結晶がほぐれた状態から相分離が進行するため、結晶化度が低くなり、より薬品耐性の高い多孔質膜が得られる。製膜原液をTmより低い温度で吐出した場合、吐出までにPVDF樹脂が一部結晶化した状態から相分離が進行するため、結晶化度が高くなり、得られる多孔質膜の耐薬品性が著しく低下する。一方、PVDF樹脂のTd以上で吐出した場合、PVDF樹脂が酸化・分解することにより分子構造が破壊され、物理強度が極端に低下する。   In the method for producing a porous membrane of the present embodiment, the discharge temperature of the raw film forming solution is required to be not lower than the melting point (Tm) of the PVDF resin and lower than the decomposition temperature (Td) of the PVDF resin. By setting the discharge temperature of the film-forming stock solution to Tm or higher, phase separation proceeds from a state where the PVDF resin crystals are loosened, so that the degree of crystallinity is lowered and a porous film having higher chemical resistance is obtained. When the film-forming stock solution is discharged at a temperature lower than Tm, phase separation proceeds from a state in which the PVDF resin is partially crystallized until the discharge, so that the degree of crystallinity increases and the resulting porous membrane has chemical resistance. It drops significantly. On the other hand, when discharged at a Td of PVDF resin or higher, the PVDF resin is oxidized and decomposed, thereby destroying the molecular structure and extremely reducing the physical strength.

また、均一で安定した品質の多孔質膜を製造する観点から、製膜原液に含まれる溶媒は、その沸点が吐出温度+15℃以上であり、且つ、PVDF樹脂のTd未満であるものを用いることが好ましい。溶媒の沸点が吐出温度+15℃以上であることにより、製膜原液の吐出後における溶媒の沸騰を抑制でき、ピンホール等の欠陥の発生が抑制される。なお、溶媒の沸点の上限は、特に限定されないが、PVDF樹脂の酸化や分解を避ける観点から、PVDF樹脂の分解温度未満であることが好ましい。   In addition, from the viewpoint of producing a porous film having a uniform and stable quality, the solvent contained in the film forming stock solution should have a boiling point not lower than the discharge temperature + 15 ° C. and lower than the Td of PVDF resin. Is preferred. When the boiling point of the solvent is equal to or higher than the discharge temperature + 15 ° C., the boiling of the solvent after the film-forming stock solution is discharged can be suppressed, and the occurrence of defects such as pinholes is suppressed. In addition, although the upper limit of the boiling point of a solvent is not specifically limited, It is preferable that it is less than the decomposition temperature of PVDF resin from a viewpoint of avoiding oxidation and decomposition | disassembly of PVDF resin.

PVDF樹脂のTm以上で製膜原液を吐出する際、使用する溶媒やPVDF樹脂の分子量によっては、製膜原液の粘度が低くなり任意の膜形状が保持できないような場合がある。そのような場合には、製膜原液と同時に形態保持流体を吐出することで、任意の形状に保持することができる。このような形態保持流体としては、この種の分野において常用されている公知のものを適宜用いることができ、特に限定されないが、例えば、グリセリンの他、Tetraethylene glycolやethylene glycol等のグリコールエーテルにポリビニルピロリドン等の増粘剤を添加したもの、高分子ポリマーを含む成分を溶媒に溶解した高粘度流体等が挙げられる。形態保持流体は、粘度1.0Pa・s以上、5、000Pa・s以下のものが好ましい。形態保持流体の粘度が1Pa・s以上であると、製膜原液と形態保持流体との混合を抑制でき、任意の形態に保持することが容易になる。また、形態保持流体の粘度が5000Pa・s以下であると、製膜原液と同時吐出した際の可紡性が向上する。なお、上述した形態保持流体の粘度は、「JIS K7117−1」の粘度測定法に基づき、単一円筒型回転粘度計を用いて20℃の条件下で測定した値とする。さらに、形態保持流体は、沸点及び分解温度が、製膜原液の吐出温度未満のものが好ましい。形態保持流体の沸点が吐出温度未満の場合、吐出時に形態保持流体が沸騰せず、多孔質膜内に気泡が混入することがないため、ピンホールの発生を防止できる。また、形態保持流体の分解温度が吐出温度未満の場合、形態保持流体に焦げが発生せず、得られる多孔質膜の強度が低下しない。   When the film-forming stock solution is discharged at a Tm of PVDF resin or more, depending on the solvent used or the molecular weight of the PVDF resin, the viscosity of the film-forming stock solution may be low and an arbitrary film shape may not be maintained. In such a case, it can be held in an arbitrary shape by discharging the form-retaining fluid simultaneously with the film-forming stock solution. As such a shape-retaining fluid, a well-known fluid commonly used in this type of field can be used as appropriate, and is not particularly limited. For example, in addition to glycerin, polyvinyl ether or glycol ether such as Tetraethylene glycol or ethylene glycol is used. Examples thereof include a material to which a thickener such as pyrrolidone is added, and a high-viscosity fluid in which a component containing a polymer is dissolved in a solvent. The shape-retaining fluid preferably has a viscosity of 1.0 Pa · s to 5,000 Pa · s. When the viscosity of the shape-retaining fluid is 1 Pa · s or more, mixing of the film-forming stock solution and the shape-retaining fluid can be suppressed, and the shape-retaining fluid can be easily retained in any shape. Further, when the viscosity of the shape-retaining fluid is 5000 Pa · s or less, the spinnability when discharged simultaneously with the film-forming stock solution is improved. The viscosity of the shape-retaining fluid described above is a value measured under the condition of 20 ° C. using a single cylindrical rotational viscometer based on the viscosity measurement method of “JIS K7117-1”. Further, the shape-retaining fluid preferably has a boiling point and a decomposition temperature that are lower than the discharge temperature of the film-forming stock solution. When the boiling point of the shape-retaining fluid is lower than the discharge temperature, the shape-retaining fluid does not boil at the time of discharge, and bubbles are not mixed in the porous film, so that pinholes can be prevented from occurring. In addition, when the decomposition temperature of the shape-retaining fluid is lower than the discharge temperature, the shape-retaining fluid does not burn and the strength of the obtained porous film does not decrease.

さらに中空糸状の多孔質膜の場合、膜の強度を高めたい場合には、本実施形態の製造方法において、例えば円環状吐出口を2つ以上有する中空糸成型ノズル等の多重管状のノズルを用い、隣接する2つの該円環状吐出口の一方からはポリフッ化ビニリデン樹脂、有機液体及び無機微粉を少なくとも含む溶融混練物を、他方からは前述の製膜原液を吐出し、前記製膜原液の多孔構造形成開始温度より高く、前記溶融混練物の多孔構造形成開始温度よりも低い凝固液に接触させて多層多孔中空糸構造を形成し、得られた多層多孔中空糸構造物から前記有機液体を抽出除去させることが好ましい。得られた多層多孔中空糸構造物から前記有機液体を抽出除去することで、極めて物理強度が強く、透水性能が高く、層界面の接着性が良好な、多孔質膜が得られる。ここで、前記溶融混錬物と多層多孔中空糸構造を形成させるにあたって、製膜原液に含まれる溶媒は、PVDF樹脂とのHSP距離が5.20以上、8.00以下であることが好ましい。製膜原液に含まれる溶媒にPVDF樹脂とのHSP距離が5.20以上のものを使用した場合、溶媒がPVDFを容易に溶解するため、該製膜原液から前記溶融混錬物に向けて前記溶媒が潤浸して溶融混練物の粘度が急激に低下することを防止でき、その結果、溶融混錬物の相分離速度が速くなりすぎず、2層の接合部付近においても連通性が良い構造が維持され、最終的に純水透過性能が高く、物理強度が高い多孔質膜が得られる。また、製膜原液に含まれる溶媒にPVDF樹脂と溶媒のHSP距離の差が8.00以下のものを使用した場合には、溶融混錬物に溶媒が浸透しやすいため、接合界面の接着性が良くなり、実使用中に2つの層の剥離を防止できる等の物理強度が高い多孔質膜が得られる。   Further, in the case of a hollow fiber-like porous membrane, when it is desired to increase the strength of the membrane, a multi-tubular nozzle such as a hollow fiber molding nozzle having two or more annular discharge ports is used in the manufacturing method of the present embodiment. The melt-kneaded material containing at least the polyvinylidene fluoride resin, the organic liquid and the inorganic fine powder is discharged from one of the two adjacent annular discharge ports, and the above-mentioned film-forming stock solution is discharged from the other, and the film-forming stock solution is porous. A multilayer porous hollow fiber structure is formed by contact with a coagulation liquid that is higher than the structure formation start temperature and lower than the porous structure formation start temperature of the melt-kneaded product, and the organic liquid is extracted from the obtained multilayer porous hollow fiber structure It is preferable to remove. By extracting and removing the organic liquid from the obtained multilayer porous hollow fiber structure, a porous membrane having extremely high physical strength, high water permeability, and good adhesion at the layer interface can be obtained. Here, in forming the multilayer kneaded hollow fiber structure with the melt-kneaded product, the solvent contained in the film forming stock solution preferably has an HSP distance of 5.20 or more and 8.00 or less with the PVDF resin. When the solvent contained in the film-forming stock solution has a HSP distance of 5.20 or more with the PVDF resin, the solvent easily dissolves PVDF, so that the above-mentioned film-forming stock solution is directed toward the melt-kneaded product. A structure in which the viscosity of the melt-kneaded product can be prevented from drastically decreasing due to the immersion of the solvent, and as a result, the phase separation rate of the melt-kneaded product does not become too fast, and the structure has good communication even in the vicinity of the two-layer joint Is finally maintained, and a porous membrane having high pure water permeation performance and high physical strength can be obtained. In addition, when the difference in HSP distance between the PVDF resin and the solvent is 8.00 or less as the solvent contained in the film-forming stock solution, the solvent easily penetrates into the melt-kneaded material, so that the adhesiveness at the bonding interface As a result, a porous film having a high physical strength such as prevention of peeling of two layers during actual use can be obtained.

以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの限定されるものではない。   Hereinafter, although an example is given and the present invention is explained in detail, the present invention is not limited to these.

実施例及び比較例における、(1)PVDF樹脂の重量平均分子量(Mw)、(2)PVDF樹脂の融点(Tm)、(3)非溶媒に対する溶媒の飽和溶解濃度Cmax、(4)多孔質膜の透水性、(5)多孔質膜のデキストラン除去率、(6)多孔質膜の薬品耐性、(7)多孔質膜の欠陥発生率は、以下の方法で各々測定及び評価を行った。 In Examples and Comparative Examples, (1) PVDF resin weight average molecular weight (Mw), (2) PVDF resin melting point (Tm), (3) Saturated solvent concentration C max with respect to non-solvent, (4) Porous The water permeability of the membrane, (5) the dextran removal rate of the porous membrane, (6) the chemical resistance of the porous membrane, and (7) the defect occurrence rate of the porous membrane were measured and evaluated by the following methods, respectively.

(1)PVDF樹脂の重量平均分子量(Mw)
PVDF樹脂を1.0mg/mLの濃度でDMFに溶解した試料を50mL用い、以下の条件でGPC測定を行い、その重量平均分子量(PMMA換算)を求めた。
装置 :HPLC−8220GPC (東ソー株式会社)
カラム :Shodex KF―606M、KF−601
移動相 :0.6mL/min DMF
検出器 :示差屈折率検出器
(1) Weight average molecular weight (Mw) of PVDF resin
Using 50 mL of a sample obtained by dissolving PVDF resin in DMF at a concentration of 1.0 mg / mL, GPC measurement was performed under the following conditions, and the weight average molecular weight (PMMA conversion) was obtained.
Apparatus: HPLC-8220GPC (Tosoh Corporation)
Column: Shodex KF-606M, KF-601
Mobile phase: 0.6 mL / min DMF
Detector: Differential refractive index detector

(2)PVDF樹脂の融点(Tm)
PVDF樹脂15mgを密封式DSC容器に密封し、セイコー電子製DSC−6200を用いて昇温速度10℃/minで昇温し、この昇温過程で観察される融解ピークの頂点をPVDF樹脂の融点(Tm)とした。
(2) Melting point (Tm) of PVDF resin
15 mg of PVDF resin is sealed in a sealed DSC container and heated at a rate of temperature increase of 10 ° C./min using a DSC-6200 manufactured by Seiko Electronics Co., Ltd. The peak of the melting peak observed during this temperature increase process is the melting point of the PVDF resin. (Tm).

(3)非溶媒に対する溶媒の飽和溶解濃度(Cmax
非溶媒100mgを25℃で100rpm攪拌し、この非溶媒中にビュレットを用いて溶媒を滴定添加し、1時間以内に溶媒が非溶媒に均一拡散・溶解する最大量(飽和重量)を測定することにより、飽和溶解濃度(Cmax)を算出した。
max=滴定した溶媒の量(mg)/使用した非溶媒の量(0.1L)
(3) Saturated dissolution concentration of solvent with respect to non-solvent (C max )
Stir 100 mg of non-solvent at 25 ° C. at 100 rpm, titrate the solvent into the non-solvent using a burette, and measure the maximum amount (saturated weight) that the solvent uniformly diffuses and dissolves in the non-solvent within 1 hour. Was used to calculate the saturated dissolution concentration (C max ).
C max = amount of solvent titrated (mg) / amount of non-solvent used (0.1 L)

(4)多孔質膜の透水性試験(L/(m2・hr))
約10cm長の湿潤中空糸膜の一端を封止し、他端の中空部内へ注射針を入れ、注射針から0.1MPaの圧力にて25℃の純水を中空部内へ注入し、外表面へと透過してくる純水の透過水量を測定し、下記式から純水透水率を決定した。
純水透水率(L/(m2・hr))=(60(min/hr)×透水量(L))/(π×膜内径(m)×膜有効長(m)×測定時間(min))
(4) Permeability test of porous membrane (L / (m 2 · hr))
Seal one end of a wet hollow fiber membrane of about 10 cm length, put an injection needle into the hollow part at the other end, and inject pure water at 25 ° C. into the hollow part at a pressure of 0.1 MPa from the injection needle. The amount of pure water permeated into the water was measured, and the pure water permeability was determined from the following equation.
Pure water permeability (L / (m 2 · hr)) = (60 (min / hr) × water permeability (L)) / (π × membrane inner diameter (m) × membrane effective length (m) × measurement time (min ))

(5)多孔質膜のデキストラン除去率(%)
湿潤中空糸膜両端の中空部内へ注射針を入れ、温度25℃、ろ過差圧50kPa、膜面線速0.5m/sの条件下、分子量200万のデキストラン(Dextran 2000、Amersham bioscience製)1,000ppm水溶液の外圧クロスフローろ過を25分間行った。次に、初期原水中及び25分ろ過終了後に採取したろ過水のデキストラン濃度を、示唆屈折率計を用いて求めた。最後に、分子量200万のデキストラン除去率を、下記式から求めた。
除去率(%)=(1−(25分ろ過終了後デキストラン濃度)/(初期原水中デキストラン濃度))×100
(5) Dextran removal rate of porous membrane (%)
The injection needles are inserted into the hollow portions at both ends of the wet hollow fiber membrane, and dextran having a molecular weight of 2 million (Dextran 2000, manufactured by Amersham bioscience) 1 under conditions of a temperature of 25 ° C., a filtration differential pressure of 50 kPa, and a membrane surface linear velocity of 0.5 m / s. An external pressure cross-flow filtration of a 1,000 ppm aqueous solution was performed for 25 minutes. Next, the concentration of dextran in the initial raw water and the filtrate collected after 25 minutes of filtration was determined using a suggested refractometer. Finally, the dextran removal rate with a molecular weight of 2 million was determined from the following formula.
Removal rate (%) = (1- (Dextran concentration after completion of filtration for 25 minutes) / (Dextran concentration in initial raw water)) × 100

(6)多孔質膜の薬品耐性試験(5日目孔径保持率(%))
多孔質膜の薬品耐性試験として、5日目孔径保持率(%)による評価を行った、5日目孔径保持率(%)は、湿潤状態の多孔質中空糸膜を40℃の水酸化ナトリウムを4重量%と次亜塩素酸ナトリウムを有効塩素濃度で0.5重量%溶液との混合水溶液に5日間浸漬し、薬液への浸漬前後で上記(5)の分子量200万のデキストラン除去率の測定を行い、浸漬前のデキストラン除去率(E0)と5日浸漬による薬品劣化後のデキストラン除去率(E5)を下記式に代入して算出した。
5日目孔径保持率(%)=(E5/E0)×100
(6) Chemical resistance test of porous membrane (5th day pore size retention rate (%))
As the chemical resistance test of the porous membrane, the evaluation was conducted based on the 5th day pore size retention rate (%). The 5th day pore size retention rate (%) was determined by using a wet porous hollow fiber membrane at 40 ° C. sodium hydroxide. Is immersed in a mixed aqueous solution of 4% by weight of sodium hypochlorite and 0.5% by weight of an effective chlorine concentration for 5 days, and the dextran removal rate of 2 million molecular weight of (5) above and before is immersed in the chemical solution. The measurement was performed, and the dextran removal rate (E 0 ) before immersion and the dextran removal rate (E 5 ) after chemical deterioration due to 5-day immersion were substituted into the following formulas and calculated.
Day 5 pore diameter retention rate (%) = (E 5 / E 0 ) × 100

(7)多孔質膜の欠陥発生数
約1m長の湿潤中空糸膜の一端を封止し、他端の中空部内へ注射針を入れ、注射針から0.2MPaの圧力にて空気を中空部内へ注入し、気泡が外表面から出てくる箇所数を計測することにより、欠陥発生数を決定した。
(7) Number of defects in the porous membrane One end of a wet hollow fiber membrane with a length of about 1 m is sealed, an injection needle is inserted into the hollow portion at the other end, and air is blown into the hollow portion from the injection needle at a pressure of 0.2 MPa. The number of defects was determined by measuring the number of locations where bubbles emerge from the outer surface.

[実施例1]
PVDF樹脂として重量平均分子量が35万であるフッ化ビニリデンホモポリマー(アルケマ社製、Kynar741)24重量%と、K値17のポリビニルピロリドン(BASF製、ルビスコールK17)17重量%と、スルホラン(和光純薬製)59重量%とを混合し、180℃で溶解させて、製膜原液を調製した。このフッ化ビニリデンホモポリマーの融点(Tm)は174℃、分解温度は375℃であり、この製膜原液の多孔構造形成開始温度は42℃であった。
この製膜原液を2重環紡糸ノズル(最外径1.3mm、中間経0.7mm、最内径0.5mm)から内部液であるグリセリン(和光純薬製、特級)とともに200℃で吐出し、40mmの空走距離を通した後、60℃の水中で非溶媒誘起相分離を進行させ、脱溶媒を行い、中空糸膜の膜構造を有する実施例1の多孔質膜(多孔質中空糸膜)を得た。
表1に、得られた実施例1の多孔質膜の配合組成及び製造条件並びに各種性能を示す。
[Example 1]
As PVDF resin, vinylidene fluoride homopolymer having a weight average molecular weight of 350,000 (Arkema, Kynar 741) 24% by weight, polyvinyl pyrrolidone having a K value of 17 (BASF, Rubiscol K17) 17% by weight, sulfolane (sum) 59% by weight (manufactured by Koyo Pure Chemical) was mixed and dissolved at 180 ° C. to prepare a film forming stock solution. The melting point (Tm) of this vinylidene fluoride homopolymer was 174 ° C., the decomposition temperature was 375 ° C., and the porous structure formation starting temperature of this film-forming stock solution was 42 ° C.
This film-forming stock solution is discharged at 200 ° C. together with glycerin (made by Wako Pure Chemicals, special grade) as an internal liquid from a double ring spinning nozzle (outer diameter 1.3 mm, intermediate diameter 0.7 mm, inner diameter 0.5 mm). The porous membrane of Example 1 having a membrane structure of a hollow fiber membrane after passing through a free running distance of 40 mm, proceeding with non-solvent induced phase separation in water at 60 ° C., and removing the solvent (porous hollow fiber) Membrane).
Table 1 shows the blending composition, production conditions, and various performances of the obtained porous membrane of Example 1.

[実施例2]
実施例1と同じPVDFホモポリマー20重量%と、K値17のポリビニルピロリドン17重量%と、Triacetin(Aldrich製、99%)63重量%とを混合し、200℃で溶解させて、製膜原液を調製した。このフッ化ビニリデンホモポリマーの融点(Tm)は174℃、分解温度は375℃であり、この製膜原液の多孔構造形成開始温度は102℃であった。
この製膜原液を実施例1と同じ紡糸ノズルから内部液であるグリセリン(和光純薬製、特級)とともに250℃で吐出し、40mmの空走距離を通した後、110℃のグリセリン中で非溶媒誘起相分離を進行させ、脱溶媒を行い、中空糸膜の膜構造を有する実施例2の多孔質膜(多孔質中空糸膜)を得た。
表1に、得られた実施例2の多孔質膜の配合組成及び製造条件並びに各種性能を示す。
[Example 2]
The same PVDF homopolymer as in Example 1, 20% by weight of polyvinyl pyrrolidone having a K value of 17 and 63% by weight of Triacetin (manufactured by Aldrich, 99%) were mixed and dissolved at 200 ° C. Was prepared. The melting point (Tm) of this vinylidene fluoride homopolymer was 174 ° C., the decomposition temperature was 375 ° C., and the porous structure formation starting temperature of this film-forming stock solution was 102 ° C.
This film-forming stock solution was discharged at 250 ° C. together with glycerin (made by Wako Pure Chemicals, special grade) as an internal liquid from the same spinning nozzle as in Example 1, and after passing through a free running distance of 40 mm, Solvent-induced phase separation was advanced to remove the solvent, and a porous membrane (porous hollow fiber membrane) of Example 2 having a hollow fiber membrane structure was obtained.
Table 1 shows the composition, production conditions, and various performances of the porous membrane of Example 2 obtained.

[実施例3]
PVDF樹脂として重量平均分子量が30万であるフッ化ビニリデンホモポリマー(ソルベイソレキシス社製、SOLEF6008)20重量%と、K値12のポリビニルピロリドン(BASF製、コリドン 12PF)17重量%と、N-Methyl-2-Pyrrolidone(NMP)(関東化学製、特級)63重量%とを混合し、180℃で溶解させて、製膜原液を調製した。このフッ化ビニリデンホモポリマーの融点(Tm)は174℃、分解温度は390℃であり、この製膜原液の多孔構造形成開始温度は35℃であった。
この製膜原液を実施例1と同じ紡糸ノズルから内部液であるグリセリン(和光純薬製、特級)とともに180℃で吐出し、20mmの空走距離を通した後、60℃の水中で非溶媒誘起相分離を進行させ、脱溶媒を行い、中空糸膜の膜構造を有する実施例3の多孔質膜(多孔質中空糸膜)を得た。
表1に、得られた実施例3の多孔質膜の配合組成及び製造条件並びに各種性能を示す。
[Example 3]
20% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 300,000 as a PVDF resin (SOLEF6008 manufactured by Solvay Solexis), 17% by weight of polyvinylpyrrolidone having a K value of 12 (manufactured by BASF, Kollidon 12PF), N -Methyl-2-Pyrrolidone (NMP) (manufactured by Kanto Chemical Co., Ltd., special grade) 63% by weight was mixed and dissolved at 180 ° C. to prepare a film forming stock solution. The melting point (Tm) of this vinylidene fluoride homopolymer was 174 ° C., the decomposition temperature was 390 ° C., and the formation start temperature of the porous structure of this film-forming stock solution was 35 ° C.
This film-forming stock solution was discharged from the same spinning nozzle as in Example 1 at 180 ° C. together with glycerin (made by Wako Pure Chemicals, special grade) as an internal solution, passed through a 20 mm free running distance, and then non-solvent in 60 ° C. water. The induced phase separation was advanced and the solvent was removed to obtain a porous membrane (porous hollow fiber membrane) of Example 3 having a hollow fiber membrane structure.
Table 1 shows the composition, production conditions, and various performances of the porous membrane of Example 3 obtained.

[実施例4]
PVDF樹脂として重量平均分子量が44万であるフッ化ビニリデンホモポリマー(ソルベイソレキシス社製、SOLEF6012)22重量%と、K値12のポリビニルピロリドン(BASF製、コリドン 12PF)15重量%と、Triacetin(Aldrich製、99%)63重量%とを混合し、220℃で溶解させて、製膜原液を調製した。このフッ化ビニリデンホモポリマーの融点(Tm)は174℃、分解温度は390℃であり、この製膜原液の多孔構造形成開始温度は102℃であった。
この製膜原液を実施例1と同じ紡糸ノズルから内部液であるグリセリン(和光純薬製、特級)とともに230℃で吐出し、60mmの空走距離を通した後、110℃のグリセリン40%とTriacetin40重量%の混合液中で非溶媒誘起相分離を進行させ、脱溶媒を行い、中空糸膜の膜構造を有する実施例4の多孔質膜(多孔質中空糸膜)を得た。
表1に、得られた実施例4の多孔質膜の配合組成及び製造条件並びに各種性能を示す。
[Example 4]
As PVDF resin, vinylidene fluoride homopolymer having a weight average molecular weight of 440,000 (SOLBE 6012, manufactured by Solvay Solexis Co., Ltd.), polyvinylpyrrolidone having a K value of 12 (BASF, Kollidon 12PF), 15% by weight, Triacetin (Aldrich, 99%) was mixed with 63% by weight and dissolved at 220 ° C. to prepare a film forming stock solution. The melting point (Tm) of this vinylidene fluoride homopolymer was 174 ° C., the decomposition temperature was 390 ° C., and the formation start temperature of the porous structure of this film forming stock solution was 102 ° C.
This film-forming stock solution was discharged at 230 ° C. together with glycerin (made by Wako Pure Chemicals, special grade) as an internal liquid from the same spinning nozzle as in Example 1, and after passing through an idle running distance of 60 mm, glycerin 40% at 110 ° C. Non-solvent induced phase separation was allowed to proceed in a 40 wt% Triacetin mixed solution, and the solvent was removed to obtain a porous membrane (porous hollow fiber membrane) of Example 4 having a hollow fiber membrane structure.
Table 1 shows the composition, production conditions, and various performances of the porous membrane of Example 4 obtained.

[実施例5]
3重構造の紡糸ノズルを用いて、外層と内層を有する2層中空糸膜の膜構造を有する実施例5の多孔質膜を得た。ここでは、外層には実施例1と同じ製膜原液を、内層にはフッ化ビニリデンホモポリマー(ソルベイソレキシス社製、SOLEF6020)34重量%、フタル酸ビス(2−エチルヘキシル)33.8重量%、フタル酸ジブチル6.8重量%、微粉シリカ25.4重量%の溶融混練物を、中空部形成流体には空気をそれぞれ用い、これらを3重環紡糸ノズル(外層最外径2.0mm、内層最外径1.8mm、中空部形成層最外径0.9mm)から同時に吐出すことで、中空糸状成型物を得た。
押し出した中空糸状成型物は、80mmの空走距離を通した後、外層は60℃の水中で非溶媒誘起相分離を進行させ、内層は空走部及び水中において熱誘起相分離を進行させ、20m/分の速度でかせに巻き取った。得られた2層中空糸状押出し物を塩化メチレン中に浸漬させてフタル酸ビス(2−エチルヘキシル)及びフタル酸ジブチルを抽出除去した後、乾燥させた。続いて、50重量%のエタノール水溶液中に30分間浸漬させた後、水中に30分間浸漬し、中空糸膜を膨潤化した。続いて、20重量%NaOH水溶液中に70℃にて1時間浸漬し、さらに水洗を繰り返して微粉シリカを抽出除去した。
このようにして得られた実施例5の多孔質膜は、高い分離性能を有する外層と高い透水性能及び機械強度を有する内層からなり、外層と内層が非連続的に接合し、両層間の界面も極めて連通性が高い構造を有するものであった。また、実施例5の多孔質膜は、実施例1〜4の多孔質膜と比較して、優れた強度、及び透水性能を示した。
表1に、得られた実施例5の多孔質膜の配合組成及び製造条件並びに各種性能を示す。
[Example 5]
A porous membrane of Example 5 having a membrane structure of a two-layer hollow fiber membrane having an outer layer and an inner layer was obtained using a triple-structure spinning nozzle. Here, the same film-forming stock solution as in Example 1 was used for the outer layer, and 34% by weight of vinylidene fluoride homopolymer (SOLEF6020 manufactured by Solvay Solexis, Inc.) and 33.8% by weight of bis (2-ethylhexyl) phthalate were used for the inner layer. %, Dibutyl phthalate 6.8% by weight, finely divided silica 25.4% by weight, and the hollow part forming fluid is air, respectively, and these are used as triple ring spinning nozzles (outer layer outer diameter 2.0 mm) The hollow fiber-shaped molded product was obtained by simultaneously discharging from the inner layer outermost diameter 1.8 mm and the hollow portion forming layer outermost diameter 0.9 mm.
The extruded hollow fiber-shaped molded article passes through an idle running distance of 80 mm, and then the outer layer advances non-solvent induced phase separation in water at 60 ° C., and the inner layer advances thermally induced phase separation in the empty running part and water, The skein was wound up at a speed of 20 m / min. The obtained two-layer hollow fiber extrudate was immersed in methylene chloride to extract and remove bis (2-ethylhexyl) phthalate and dibutyl phthalate, and then dried. Subsequently, after immersing in a 50% by weight aqueous ethanol solution for 30 minutes, it was immersed in water for 30 minutes to swell the hollow fiber membrane. Subsequently, it was immersed in a 20 wt% NaOH aqueous solution at 70 ° C. for 1 hour, and further washed with water to extract and remove finely divided silica.
The porous membrane of Example 5 obtained in this way consists of an outer layer having high separation performance and an inner layer having high water permeability and mechanical strength, and the outer layer and inner layer are joined discontinuously, and the interface between the two layers. Also, it had a structure with extremely high communication. Moreover, the porous membrane of Example 5 showed the outstanding intensity | strength and water-permeable performance compared with the porous membrane of Examples 1-4.
Table 1 shows the composition, production conditions, and various performances of the porous membrane of Example 5 obtained.

[比較例1]
実施例1と同じPVDFポリマー24重量%と、K17ポリビニルピロリドン17重量%と、スルホラン(和光純薬製)59重量%とを混合し、180℃で溶解させて、製膜原液を調製した。このフッ化ビニリデンホモポリマーの融点(Tm)は174℃、分解温度は375℃であり、この原液の多孔構造形成開始温度は42℃であった。
この製膜原液を実施例1と同じ紡糸ノズルから内部液であるグリセリン(和光純薬製、特級)とともに140℃で吐出し、60mmの空走距離を通した後、60℃の水中で非溶媒誘起相分離を進行させ、脱溶媒を行い、中空糸膜の膜構造を有する比較例1の多孔質膜(多孔質中空糸膜)を得た。
表1に、得られた比較例1の多孔質膜の配合組成及び製造条件並びに各種性能を示す。この比較例1の多孔質膜は、5日目孔径保持率が10%と極めて低く、実施例1〜5の多孔質膜と比較して、分離層の薬品耐性が低いものであった。
[Comparative Example 1]
The same PVDF polymer as in Example 1, 24% by weight, 17% by weight of K17 polyvinylpyrrolidone, and 59% by weight of sulfolane (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and dissolved at 180 ° C. to prepare a film forming stock solution. The melting point (Tm) of this vinylidene fluoride homopolymer was 174 ° C., the decomposition temperature was 375 ° C., and the porous structure formation starting temperature of this stock solution was 42 ° C.
This film-forming stock solution was discharged from the same spinning nozzle as in Example 1 with glycerin (made by Wako Pure Chemicals, special grade) as an internal liquid at 140 ° C., passed through a 60 mm free running distance, and then non-solvent in water at 60 ° C. The induced phase separation was advanced, the solvent was removed, and a porous membrane (porous hollow fiber membrane) of Comparative Example 1 having a hollow fiber membrane structure was obtained.
Table 1 shows the composition, production conditions, and various performances of the obtained porous membrane of Comparative Example 1. The porous membrane of Comparative Example 1 had a very low pore diameter retention rate of 10% on the fifth day, and the chemical resistance of the separation layer was lower than that of the porous membranes of Examples 1 to 5.

[比較例2]
比較例1と同じ製膜原液を用い、実施例1と同じ紡糸ノズルからグリセリン(和光純薬製、特級)とともに200℃で吐出し、60mmの空走距離を通した後、原液の多孔構造形成開始温度(42℃)以下の23℃の水中で熱誘起相分離を進行させ、脱溶媒を行い、中空糸膜の膜構造を有する比較例2の多孔質膜(多孔質中空糸膜)を得た。
表1に、得られた比較例2の多孔質膜の配合組成及び製造条件並びに各種性能を示す。この比較例2の多孔質膜は、実施例1〜5の多孔質膜とは異なり、極めて緻密で厚い分離層が形成されたものとなり、透水性能が極めて低く、孔径保持率の計測が不可能であった。
[Comparative Example 2]
Using the same film-forming stock solution as in Comparative Example 1, discharged from the same spinning nozzle as in Example 1 together with glycerin (made by Wako Pure Chemicals, special grade) at 200 ° C., passed through a free running distance of 60 mm, and then formed a porous structure of the stock solution Thermally induced phase separation is allowed to proceed in 23 ° C. water below the starting temperature (42 ° C.), and the solvent is removed to obtain a porous membrane (porous hollow fiber membrane) of Comparative Example 2 having a hollow fiber membrane structure. It was.
Table 1 shows the composition, production conditions, and various performances of the porous membrane of Comparative Example 2 obtained. The porous membrane of Comparative Example 2 is different from the porous membranes of Examples 1 to 5 in that a very dense and thick separation layer is formed, the water permeability is extremely low, and the pore diameter retention rate cannot be measured. Met.

[比較例3]
PVDF樹脂として重量平均分子量が35万であるフッ化ビニリデンホモポリマー(アルケマ社製、Kynar741)27重量%と、重量平均分子量35000のポリエチレングリコール(メルク社製、ポリエチレングリコール35000)15重量%とを、ジメチルアセトアミド(和光純薬製、特級)58重量%に70℃で溶解させ、製膜原液とした。このフッ化ビニリデンホモポリマーの融点(Tm)は174℃、分解温度は375℃であり、この製膜原液の多孔構造形成開始温度は75℃以上、0℃以下であった。
この製膜原液を実施例1と同じ紡糸ノズルから内部液である水とともに70℃で吐出し、200mmの空走距離を通した後、77℃の水中で非溶媒誘起相分離を進行させ、脱溶媒を行い、中空糸膜の膜構造を有する比較例3の多孔質膜(多孔質中空糸膜)を得た。
表1に、得られた比較例3の多孔質膜の配合組成及び製造条件並びに各種性能を示す。この比較例3の多孔質膜は、実施例1〜5の多孔質膜とは異なり、分離層の薬品耐性が極めて低いものであった。
[Comparative Example 3]
27% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 350,000 as PVDF resin (Akema, Kynar 741) and 15% by weight of polyethylene glycol having a weight average molecular weight of 35,000 (Merck, polyethylene glycol 35000), Dissolved in 58% by weight of dimethylacetamide (manufactured by Wako Pure Chemicals, special grade) at 70 ° C. to obtain a film forming stock solution. The melting point (Tm) of this vinylidene fluoride homopolymer was 174 ° C., the decomposition temperature was 375 ° C., and the porous structure formation starting temperature of this film forming stock solution was 75 ° C. or higher and 0 ° C. or lower.
This film-forming stock solution was discharged from the same spinning nozzle as in Example 1 at 70 ° C. with water as the internal solution, passed through an idle running distance of 200 mm, and then proceeded with non-solvent-induced phase separation in water at 77 ° C. The solvent was used to obtain a porous membrane (porous hollow fiber membrane) of Comparative Example 3 having a hollow fiber membrane structure.
Table 1 shows the composition, production conditions, and various performances of the obtained porous membrane of Comparative Example 3. Unlike the porous membranes of Examples 1 to 5, the porous membrane of Comparative Example 3 had extremely low chemical resistance in the separation layer.

以上説明したとおり、本発明の多孔質膜の製造方法によれば、透水性能及び微小病原体に対する阻止性能に優れ、薬品洗浄等に対して孔の粗大化を抑制し得る極めて高い耐薬品性を有するのみならず、微小病原体に対する阻止性能を長期間安定して保持し得る、多孔質膜を再現性よく簡便に製造することができる。そのため、膜面に蓄積する濁質等の汚れをアルカリ水溶液等の薬品を用いて洗浄を行うことが求められるろ過用途、長期間にわたり安定したろ過性能が求められるろ過用途において、広く且つ有効に利用でき、例えば、浄水場での浄水処理や、河川水や湖沼水のろ過処理、工業用水のろ過精製及び廃水処理、海水淡水化の前処理等液体のろ過処理等の、濾過によって膜面に蓄積する濁質等の汚れを薬品で洗浄するような、膜に高い透水性と薬品耐性の両立が要求される分野において、広く且つ有効に利用可能である。   As described above, according to the method for producing a porous membrane of the present invention, it has excellent water permeability and blocking performance against micropathogens, and has extremely high chemical resistance that can suppress pore coarsening for chemical cleaning and the like. In addition, it is possible to easily and easily produce a porous membrane that can stably retain the blocking performance against micropathogens for a long period of time. Therefore, it can be used widely and effectively in filtration applications that require cleaning of turbidity and other contaminants accumulated on the membrane surface using chemicals such as alkaline aqueous solutions, and filtration applications that require stable filtration performance over a long period of time. Can be accumulated on the membrane surface by filtration, for example, water treatment at water purification plants, filtration treatment of river water and lake water, filtration and purification of industrial water and wastewater treatment, pretreatment of seawater desalination, etc. It can be used widely and effectively in a field where both high water permeability and chemical resistance are required for the membrane, such as cleaning dirt such as turbidity with chemicals.

Claims (5)

ポリフッ化ビニリデン樹脂及び溶媒を少なくとも含む製膜原液を吐出して非溶媒を少なくとも含む凝固液に接触させて非溶媒誘起相分離法により多孔質膜を製造する、多孔質膜の製造方法であって、
前記製膜原液の吐出温度が、前記ポリフッ化ビニリデン樹脂の融点以上、前記ポリフッ化ビニリデン樹脂の分解温度未満であり、且つ、前記凝固液の温度が、前記製膜原液の多孔構造形成開始温度より高いことを特徴とする、
多孔質膜の製造方法。
A method for producing a porous membrane, comprising producing a porous membrane by a non-solvent-induced phase separation method by discharging a film-forming stock solution containing at least a polyvinylidene fluoride resin and a solvent, and contacting a coagulating liquid containing at least a non-solvent. ,
The discharge temperature of the film forming stock solution is equal to or higher than the melting point of the polyvinylidene fluoride resin and lower than the decomposition temperature of the polyvinylidene fluoride resin, and the temperature of the coagulating liquid is higher than the porous structure formation start temperature of the film forming stock solution. Characterized by high,
A method for producing a porous membrane.
前記非溶媒に対する前記溶媒の飽和溶解濃度Cmax(溶媒の飽和重量(mg)/非溶媒1L)、及び、前記非溶媒中の溶媒濃度Cが、下記式(1)及び(2);
max≧100(mg/L) ・・・(1)
(Cmax−C)×100/Cmax>80(%) ・・・(2)
の関係を満たすことを特徴とする、
請求項1に記載の多孔質膜の製造方法。
The saturated dissolution concentration C max of the solvent with respect to the non-solvent (saturated weight of the solvent (mg) / non-solvent 1 L) and the solvent concentration C in the non-solvent are represented by the following formulas (1) and (2):
C max ≧ 100 (mg / L) (1)
(C max −C) × 100 / C max > 80 (%) (2)
Satisfying the relationship of
The method for producing a porous membrane according to claim 1.
前記溶媒とポリフッ化ビニリデン樹脂とのHSP距離が、5.20以上8.00以下を満たすことを特徴とする、
請求項1又は2に記載の多孔質膜の製造方法。
The HSP distance between the solvent and the polyvinylidene fluoride resin satisfies 5.20 or more and 8.00 or less,
The manufacturing method of the porous membrane of Claim 1 or 2.
前記溶媒の沸点が、前記製膜原液の吐出温度+15℃以上であり、且つ、前記ポリフッ化ビニリデン樹脂の分解温度未満を満たすことを特徴とする、
請求項1〜3のいずれかに記載の多孔質膜の製造方法。
The boiling point of the solvent is not less than the discharge temperature of the film-forming stock solution + 15 ° C. and satisfies the decomposition temperature of the polyvinylidene fluoride resin,
The manufacturing method of the porous membrane in any one of Claims 1-3.
ポリフッ化ビニリデン樹脂を含む多孔質膜を製造する方法において、
円環状吐出口を2つ以上有する中空糸成型ノズルを用い、隣接する2つの該円環状吐出口の一方からはポリフッ化ビニリデン樹脂、有機液体及び無機微粉を少なくとも含む溶融混練物を、他方からはポリフッ化ビニリデン樹脂及び前記ポリフッ化ビニリデン樹脂とのHSP距離が5.20以上8.00以下を満たす溶媒を少なくとも含む製膜原液を、請求項1を満たす条件下で同時に吐出し、前記製膜原液の多孔構造形成開始温度より高く、前記溶融混練物の多孔構造形成開始温度よりも低い凝固液に接触させることで多層多孔中空糸構造を形成し、
得られた多層多孔中空糸構造物から前記有機液体を抽出除去することを特徴とする、
多孔質膜の製造方法。
In a method for producing a porous membrane comprising a polyvinylidene fluoride resin,
Using a hollow fiber molding nozzle having two or more annular discharge ports, from one of the two adjacent annular discharge ports, a melt-kneaded material containing at least a polyvinylidene fluoride resin, an organic liquid and inorganic fine powder, and from the other A film-forming stock solution containing at least a polyvinylidene fluoride resin and a solvent satisfying an HSP distance of 5.20 or more and 8.00 or less between the polyvinylidene fluoride resin and the polyvinylidene fluoride resin is simultaneously discharged under the conditions satisfying claim 1, and the film-forming stock solution A multilayer porous hollow fiber structure is formed by contacting with a coagulating liquid that is higher than the porous structure formation start temperature of the melt kneaded product and lower than the porous structure formation start temperature of the melt-kneaded product,
The organic liquid is extracted and removed from the obtained multilayer porous hollow fiber structure,
A method for producing a porous membrane.
JP2012072193A 2012-03-27 2012-03-27 Method for producing porous membrane Active JP5856887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012072193A JP5856887B2 (en) 2012-03-27 2012-03-27 Method for producing porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072193A JP5856887B2 (en) 2012-03-27 2012-03-27 Method for producing porous membrane

Publications (2)

Publication Number Publication Date
JP2013202461A JP2013202461A (en) 2013-10-07
JP5856887B2 true JP5856887B2 (en) 2016-02-10

Family

ID=49522170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072193A Active JP5856887B2 (en) 2012-03-27 2012-03-27 Method for producing porous membrane

Country Status (1)

Country Link
JP (1) JP5856887B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201607405TA (en) 2014-03-26 2016-10-28 Kuraray Co Hollow fiber membrane, and method for producing hollow fiber membrane
JP6226795B2 (en) * 2014-03-26 2017-11-08 株式会社クラレ Method for producing hollow fiber membrane
US11654400B2 (en) * 2016-11-09 2023-05-23 Asahi Kasei Kabushiki Kaisha Porous hollow fiber membrane and method for producing porous hollow fiber membrane
CN106731897B (en) * 2016-12-16 2023-01-10 南京久盈膜科技有限公司 High-pollution-resistance polyvinylidene fluoride hollow fiber ultrafiltration membrane, and preparation method and device thereof
JP6796842B2 (en) * 2017-03-31 2020-12-09 学校法人 関西大学 How to estimate Hansen solubility index
JP6419917B2 (en) * 2017-09-05 2018-11-07 株式会社クラレ Method for producing hollow fiber membrane
CN108126541A (en) * 2017-12-20 2018-06-08 济南大学 Kynoar Thermo-sensitive film and preparation method thereof
WO2020138065A1 (en) * 2018-12-26 2020-07-02 東レ株式会社 Porous film, composite film, and method for producing porous film
CN114539601B (en) * 2022-01-18 2023-04-28 华南理工大学 Three-dimensional porous polyvinylidene fluoride piezoelectric film and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002230143B2 (en) * 2001-02-16 2006-06-15 Toray Industries, Inc. Separating film, separating film element, separating film module, sewage and waste water treatment device, and separating film manufacturing method
ATE539105T1 (en) * 2002-06-14 2012-01-15 Toray Industries POROUS MEMBRANE AND METHOD FOR PRODUCING THE POROUS MEMBRANE
JP4623626B2 (en) * 2004-01-30 2011-02-02 日東電工株式会社 Porous membrane and method for producing the same
JP4563457B2 (en) * 2005-10-13 2010-10-13 旭化成ケミカルズ株式会社 Porous multilayer hollow fiber membrane and method for producing the same
RU2415697C2 (en) * 2006-04-19 2011-04-10 Асахи Касеи Кемикалз Корпорейшн Porous pvdf film with high wear resistance, method of its production, as well as method of its rinsing and method of filtration using said film
CN102085457B (en) * 2009-12-07 2013-01-02 广州美能材料科技有限公司 Method and device for preparing composite multilayer porous hollow fibrous membrane and product

Also Published As

Publication number Publication date
JP2013202461A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5856887B2 (en) Method for producing porous membrane
JP6274642B2 (en) Porous hollow fiber membrane and method for producing the same
JP5622833B2 (en) High durability PVDF porous membrane, method for producing the same, and cleaning method and filtration method using the same
JP5036033B2 (en) Porous membrane for water treatment and method for producing the same
CN105120992B (en) Polyvinylidene fluoride hollow fiber membrane and its preparation
WO2008001426A1 (en) Polymer separation membrane and process for producing the same
JP5293959B2 (en) Hollow fiber membrane and method for producing the same
JP5050499B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
JP6577781B2 (en) Hollow fiber membrane and method for producing hollow fiber membrane
JP2010094670A (en) Polyvinylidene fluoride-based multiple membrane and method for producing the same
JP5292890B2 (en) Composite hollow fiber membrane
KR20190045361A (en) Porous hollow fiber membranes and methods for producing porous hollow fiber membranes
JP2011168741A (en) Method for producing polyvinylidene fluoride-based porous film
WO2019066061A1 (en) Porous hollow fiber membrane and method for producing same
JP2009082882A (en) Polyvinylidene fluoride based composite hollow fiber membrane, and its manufacturing method
WO2007125709A1 (en) Porous water treatment membrane made of vinylidene fluoride-based resin with little contamination and method of producing the same
JP6226795B2 (en) Method for producing hollow fiber membrane
JP2006218441A (en) Porous membrane and its production method
KR20120094362A (en) Acetylated alkyl cellulose membrane using thermal induced phase separation and preparing method thereof
JP6419917B2 (en) Method for producing hollow fiber membrane
JP2003138422A (en) Method for producing hollow fiber membrane and hollow fiber membrane module
JP2012187575A (en) Composite membrane and method for manufacturing the same
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
JP2006231274A (en) Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method
JPWO2009119373A1 (en) Hollow fiber membrane and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5856887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350