JP2010094670A - Polyvinylidene fluoride-based multiple membrane and method for producing the same - Google Patents

Polyvinylidene fluoride-based multiple membrane and method for producing the same Download PDF

Info

Publication number
JP2010094670A
JP2010094670A JP2009216681A JP2009216681A JP2010094670A JP 2010094670 A JP2010094670 A JP 2010094670A JP 2009216681 A JP2009216681 A JP 2009216681A JP 2009216681 A JP2009216681 A JP 2009216681A JP 2010094670 A JP2010094670 A JP 2010094670A
Authority
JP
Japan
Prior art keywords
membrane
polyvinylidene fluoride
weight
less
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009216681A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishizaki
利之 石崎
Takashi Minaki
尚 皆木
Kenta Iwai
健太 岩井
Shinichi Minegishi
進一 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2009216681A priority Critical patent/JP2010094670A/en
Publication of JP2010094670A publication Critical patent/JP2010094670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyvinylidene fluoride-based multiple membrane having good capability of removing viruses, pure water permeation performance, and physical strength in a simple process in order to stabilize the water quality of permeation water through improvement of separation functions to a greater extent than conventional water treatment membranes. <P>SOLUTION: The polyvinylidene fluoride-based multiple membrane contains 50 wt.% or more and 88 wt.% or less of a polyvinylidene fluoride-based resin with viscosity of 2,500 Pa s or more and 12 wt.% or more and 50 wt.% or less of cellulose ester and having a three-dimensional network structure with an average bore size of 0.01 μm or more and 1 μm or less and a thickness of 5 μm or more and 100 μm or less, wherein the multiple membrane is formed via lamination of a separation function layer having no macrovoid of substantially 5 μm or more on a polyvinylidene fluoride-based supporting membrane having a spherical structure with an average diameter of 0.1 μm or more and 5 μm or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水処理分野、医薬品製造分野、食品工業分野などに好適に用いられる分離膜に関する。さらに詳しくは、液体中のウイルスなどの微小物を効率的に除去する分野に好適に使用できるポリフッ化ビニリデン系複合膜の製造方法に関する。   The present invention relates to a separation membrane suitably used in the fields of water treatment, pharmaceutical production, food industry and the like. More specifically, the present invention relates to a method for producing a polyvinylidene fluoride composite film that can be suitably used in the field of efficiently removing fine substances such as viruses in a liquid.

近年、河川水や地下水の除濁、工業用水の清澄化、排水の高度処理などの浄水分野にフッ素系樹脂の中空糸膜モジュールが適用されるようになってきた。これら浄水分野で用いられる中空糸膜モジュールには、長期運転を目的に酸、アルカリ、塩素、界面活性剤などの薬品洗浄を中空糸膜モジュールに施し、再生を繰り返して使用される。このために使用される中空糸膜には、高い耐薬品性能(化学的強度)、物理強度が要求され、加えてクリプトスポリジウムなどの病原性微生物が透過処理水に混入しない分離特性が必要とされている。また飲料水製造、医薬品製造、食品工業分野では、製造工程内にウイルスなどの病原体が混入すると製造ラインが汚染され、ウイルス感染症などを引き起こす危険性がある。このために種々の殺菌技術が用いられ、物理的にウイルスを細孔で除去できる分離膜の利用が注目されるようになってきた。このように分離膜には、優れた分離性能、化学的強度(耐薬品性)、物理強度、及び透過性能が求められている。   In recent years, fluororesin hollow fiber membrane modules have been applied to water purification fields such as turbidity of river water and groundwater, clarification of industrial water, and advanced treatment of wastewater. For these hollow fiber membrane modules used in the water purification field, chemical cleaning such as acid, alkali, chlorine and surfactant is applied to the hollow fiber membrane module for the purpose of long-term operation, and regeneration is used repeatedly. The hollow fiber membranes used for this purpose require high chemical resistance (chemical strength) and physical strength, and in addition, separation characteristics that prevent pathogenic microorganisms such as Cryptosporidium from entering the permeated water are required. ing. In the fields of drinking water production, pharmaceutical production, and food industry, if a pathogen such as a virus is mixed in the production process, the production line is contaminated and there is a risk of causing a virus infection. For this purpose, various sterilization techniques have been used, and the use of separation membranes that can physically remove viruses with pores has attracted attention. Thus, the separation membrane is required to have excellent separation performance, chemical strength (chemical resistance), physical strength, and permeation performance.

この様な特性要求に対して化学的強度(耐薬品性)、物理強度を併せ有するポリフッ化ビニリデン系樹脂の分離膜が用いられるようになって来た。しかしながらポリフッ化ビニリデン樹脂製の分離膜は、化学的強度(耐薬品性)、物理強度が高いものの、膜面に疎水性相互作用があって汚れ易く、透水性能が低下する。   Polyvinylidene fluoride resin separation membranes that have both chemical strength (chemical resistance) and physical strength have been used in response to such characteristic requirements. However, although the separation membrane made of polyvinylidene fluoride resin has high chemical strength (chemical resistance) and physical strength, it has a hydrophobic interaction on the membrane surface and is easily soiled, resulting in a decrease in water permeability.

このためにポリフッ化ビニリデン樹脂の親水化など耐汚れ性、透水性、或いはウイルス除去性の改善が行われてきた。例えば特許文献1に記載の方法では、酢酸セルロースとポリフッ化ビニリデン系樹脂をブレンドした分離膜の製造方法が開示されている。しかし、単層系の膜で親水性の効果が発現するまで酢酸セルロースをブレンドした場合、酸、アルカリ、塩素などの耐薬品性が低く、機械的強度が低下する懸念がある。また特許文献2には、表層に親水性高分子を含有するフッ素系樹脂を形成させて、高い物理強度や透水性能などを有する複合膜が開示されている。しかし、この複合膜はマクロボイドを含み膜細孔が粗いためにウイルスなどの微小物を除去する分離特性が低い。また特許文献3では、表層に親水性高分子を含有するフッ素系樹脂で形成させた複合膜が高い分離特性を有すること開示されている。しかしながらウイルス除去性については未だ不十分であった。また特許文献4には、医療用途の中空糸膜の記載がある。しかし、高いウイルス除去性能を示すものの膜厚が薄いため物理的強度が低く、さらに透過性能も低い。   For this reason, improvement in stain resistance, water permeability, or virus removal properties such as hydrophilicity of polyvinylidene fluoride resin has been performed. For example, the method described in Patent Document 1 discloses a method for producing a separation membrane in which cellulose acetate and a polyvinylidene fluoride resin are blended. However, when cellulose acetate is blended until a hydrophilic effect is exhibited in a single-layer film, chemical resistance such as acid, alkali, and chlorine is low, and there is a concern that mechanical strength is lowered. Patent Document 2 discloses a composite film having a high physical strength, water permeability, and the like by forming a fluororesin containing a hydrophilic polymer on the surface layer. However, since this composite membrane contains macrovoids and the membrane pores are coarse, the separation characteristics for removing microscopic substances such as viruses are low. Patent Document 3 discloses that a composite membrane formed of a fluororesin containing a hydrophilic polymer on the surface layer has high separation characteristics. However, virus removability was still insufficient. Patent Document 4 describes a hollow fiber membrane for medical use. However, although it exhibits high virus removal performance, its physical strength is low due to the thin film thickness, and the permeation performance is also low.

特開平2−78425号公報JP-A-2-78425 特開2006−239680号公報JP 2006-239680 A 特開2006−263721号公報JP 2006-263721 A 国際公開第03/26779号パンフレットInternational Publication No. 03/26779 Pamphlet

本発明は上記のような問題点に鑑み、簡素なプロセスで優れたウイルス除去性能、純水透過性能、及び物理的強度を有するポリフッ化ビニリデン系複合膜を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a polyvinylidene fluoride composite membrane having excellent virus removal performance, pure water permeation performance, and physical strength by a simple process.

上記の課題を達成するために以下の(1)から(2)の構成からなる。
(1)溶融粘度2500Pa・s以上のポリフッ化ビニリデン系樹脂を50重量%以上88重量%以下、かつセルロースエステルを12重量%以上50重量%以下含有し、平均孔径0.01μm以上1μm以下の三次元網目構造を有し、厚さが5μm以上100μm以下であって、実質的に5μm以上のマクロボイドを有しない分離機能層が、平均直径0.1μm以上5μm以下の球状構造を有するポリフッ化ビニリデン系支持膜に積層されて形成されていることを特徴とするポリフッ化ビニリデン系複合膜。
(2)溶融粘度2500Pa・s以上のポリフッ化ビニリデン系樹脂を8重量%以上14重量%以下、かつセルロースエステルを2重量%以上12重量%以下含有し、溶液粘度が1Pa・s以上100Pa・s以下のコート溶液を、ポリフッ化ビニリデン系支持膜にコーティングしながら、2秒以下の空走時間を経て凝固浴中で凝固させることで、該ポリフッ化ビニリデン系支持膜に分離機能層を形成することを特徴とするポリフッ化ビニリデン系複合膜の製造方法。
In order to achieve the above-mentioned problems, the following configurations (1) to (2) are included.
(1) A tertiary resin having a melt viscosity of 2500 Pa · s or more and a polyvinylidene fluoride-based resin of 50% by weight or more and 88% by weight or less and a cellulose ester of 12% by weight or more and 50% by weight or less and an average pore diameter of 0.01 μm or more and 1 μm or less. Polyvinylidene fluoride having an original network structure, a separation functional layer having a thickness of 5 μm or more and 100 μm or less and substantially having no macrovoids of 5 μm or more has a spherical structure having an average diameter of 0.1 μm or more and 5 μm or less A polyvinylidene fluoride-based composite membrane, characterized by being laminated on a system support membrane.
(2) Polyvinylidene fluoride resin having a melt viscosity of 2500 Pa · s or more is contained in an amount of 8 wt% or more and 14 wt% or less, and a cellulose ester is contained in an amount of 2 wt% or more and 12 wt% or less, and the solution viscosity is 1 Pa · s or more and 100 Pa · s. Forming a separation functional layer on the polyvinylidene fluoride-based support membrane by coating the following coating solution on the polyvinylidene fluoride-based support membrane and solidifying it in a coagulation bath after a free running time of 2 seconds or less. A process for producing a polyvinylidene fluoride-based composite film characterized by

本発明の製造方法により、簡素なプロセスで優れたウイルス除去性能、純水透過性能、及び物理的強度を有するポリフッ化ビニリデン系複合膜およびその製造方法を提供することができる。   The production method of the present invention can provide a polyvinylidene fluoride composite membrane having excellent virus removal performance, pure water permeation performance, and physical strength by a simple process, and a production method thereof.

本発明に係る中空糸状分離膜に関する一様態の横断面(一部)を示す電子顕微鏡写真(倍率600倍)である。It is an electron micrograph (magnification 600 times) which shows the cross section (part) of the uniform state regarding the hollow fiber-shaped separation membrane which concerns on this invention. 本発明に係る中空糸状分離膜に関する一様態の横断面(一部)を示す電子顕微鏡写真(倍率3000倍)である。It is an electron micrograph (magnification 3000 times) which shows the cross section (part) of the uniform state regarding the hollow fiber-shaped separation membrane which concerns on this invention. 実施例で用いたろ過抵抗上昇度の評価モジュールの概略図である。It is the schematic of the evaluation module of the filtration resistance raise degree used in the Example.

以下、本発明のポリフッ化ビニリデン系樹脂複合膜、およびポリフッ化ビニリデン系樹脂複合膜の製造方法の具体的な実施形態について述べる。   Hereinafter, specific embodiments of the polyvinylidene fluoride resin composite film and the method for producing the polyvinylidene fluoride resin composite film of the present invention will be described.

本発明におけるポリフッ化ビニリデン系樹脂とは、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂で、複数のフッ化ビニリデン共重合体を含有しても構わない。フッ化ビニリデン共重合体は、フッ化ビニリデンの残基構造を有するポリマーであり、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマーなどとの共重合体である。かかる共重合体としては、例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。また、本発明の効果を損なわない程度に、前記フッ素系モノマー以外の例えばエチレンなどのモノマーが共重合されていても良い。なかでも化学的強度および物理的強度の高さからフッ化ビニリデンホモポリマーからなる樹脂が好ましく用いられる。   The polyvinylidene fluoride resin in the present invention is a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer, and may contain a plurality of vinylidene fluoride copolymers. The vinylidene fluoride copolymer is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and other fluorine-based monomers. Examples of such a copolymer include a copolymer of vinylidene fluoride and one or more selected from vinyl fluoride, ethylene tetrafluoride, propylene hexafluoride, and ethylene trifluoride chloride. Further, a monomer such as ethylene other than the fluorine-based monomer may be copolymerized to such an extent that the effects of the present invention are not impaired. Among them, a resin made of vinylidene fluoride homopolymer is preferably used because of its high chemical strength and physical strength.

上述したポリフッ化ビニリデン系樹脂を支持膜に用いる場合、物理的強度や透水性を考慮すると重量平均分子量が5万から70万の範囲内にあることが好ましく、溶媒への溶解性や紡糸性を考慮すると重量平均分子量10万〜50万のものが好ましく用いられる。   When the above-mentioned polyvinylidene fluoride resin is used for the support membrane, it is preferable that the weight average molecular weight is in the range of 50,000 to 700,000 in view of physical strength and water permeability, and the solubility in a solvent and spinnability are improved. In consideration, those having a weight average molecular weight of 100,000 to 500,000 are preferably used.

またコート層に用いるポリフッ化ビニリデン系樹脂の場合、溶融粘度2500Pa・s以上のポリフッ化ビニリデン系樹脂が用いられるが、一般的に溶融粘度と重量平均分子量との関係が一義的に決まることから、溶融粘度2500Pa・s以上に相当する重量平均分子量のポリフッ化ビニリデン系樹脂を用いても良い。溶融粘度2500Pa・s以上となるポリフッ化ビニリデン系樹脂の重量平均分子量としては、一般的に70万以上であるが、90万以上であればより確実に達成される。溶融粘度が2500Pa・s以上、あるいは重量平均分子量が70万以上であるとマクロボイド発生を抑制しウイルス除去などの分離特性を向上させることができる。ここで、ポリフッ化ビニリデン系樹脂の溶融粘度の上限については特に制限はないが、7000Pa・sを超える、あるいは重量平均分子量が130万を超えると、溶媒への溶解性の低下、或いは複合膜にした場合の透水性が低下する懸念がある。   In the case of the polyvinylidene fluoride resin used for the coating layer, a polyvinylidene fluoride resin having a melt viscosity of 2500 Pa · s or more is used, but generally, the relationship between the melt viscosity and the weight average molecular weight is uniquely determined. A polyvinylidene fluoride resin having a weight average molecular weight corresponding to a melt viscosity of 2500 Pa · s or more may be used. The weight average molecular weight of the polyvinylidene fluoride resin having a melt viscosity of 2500 Pa · s or more is generally 700,000 or more, but is more reliably achieved if it is 900,000 or more. When the melt viscosity is 2500 Pa · s or more, or the weight average molecular weight is 700,000 or more, generation of macrovoids can be suppressed and separation characteristics such as virus removal can be improved. Here, the upper limit of the melt viscosity of the polyvinylidene fluoride resin is not particularly limited, but if it exceeds 7000 Pa · s or the weight average molecular weight exceeds 1.3 million, the solubility in a solvent is reduced, or the composite film There is a concern that the water permeability will decrease.

本発明の支持膜は、主にポリフッ化ビニリデン系樹脂溶液の冷却による熱誘起相分離法により製造される。ここでは重量平均分子量5万から70万のポリフッ化ビニリデン系樹脂を20重量%以上60重量%以下の濃度で、ポリフッ化ビニリデン系樹脂の貧溶媒もしくは良溶媒に結晶化温度以上の温度で溶解する。ポリフッ化ビニリデン系樹脂濃度は高くなれば、物理強度の高い支持膜が得られるが、分離膜の空孔率が小さくなり透過性能が低下傾向を示すので考慮する必要がある。従ってポリフッ化ビニリデン系樹脂濃度は30重量%以上50重量%以下の範囲とすることが好ましい。   The support membrane of the present invention is produced mainly by a thermally induced phase separation method by cooling a polyvinylidene fluoride resin solution. Here, a polyvinylidene fluoride resin having a weight average molecular weight of 50,000 to 700,000 is dissolved in a poor solvent or a good solvent of the polyvinylidene fluoride resin at a concentration higher than the crystallization temperature at a concentration of 20 wt% to 60 wt%. . If the concentration of the polyvinylidene fluoride resin increases, a support membrane having high physical strength can be obtained. However, since the porosity of the separation membrane decreases and the permeation performance tends to decrease, it is necessary to consider. Accordingly, the concentration of the polyvinylidene fluoride resin is preferably in the range of 30 wt% to 50 wt%.

該ポリフッ化ビニリデン系樹脂溶液をTダイ、二重管式口金などで、シート状或いは中空糸状に賦形して、冷却浴中で冷却固化する。冷却浴には0℃以上30℃以下で、濃度が50重量%以上95重量%以下の貧溶媒あるいは良溶媒と、濃度が5重量%以上50重量%以下の非溶媒からなる混合液体が好ましい。また、中空糸状に成形する際には、該ポリフッ化ビニリデン系樹脂溶液と同時に二重管式口金の中心パイプから中空部形成液体を吐出させる方法が好ましい。中空部形成液体には、冷却浴同様、濃度が50重量%以上95重量%以下の貧溶媒あるいは良溶媒と、濃度が5重量%以上50重量%以下の非溶媒からなる混合液体が好ましい。さらに貧溶媒としては樹脂溶液と同じ貧溶媒を用いることが好ましく採用される。   The polyvinylidene fluoride resin solution is shaped into a sheet shape or hollow fiber shape with a T-die, a double tube die, or the like, and cooled and solidified in a cooling bath. The cooling bath is preferably a mixed liquid composed of a poor solvent or a good solvent having a concentration of 50% to 95% by weight and a non-solvent having a concentration of 5% to 50% by weight at 0 ° C. to 30 ° C. Further, when forming into a hollow fiber shape, it is preferable to discharge the hollow portion forming liquid from the central pipe of the double tube type die simultaneously with the polyvinylidene fluoride resin solution. The hollow portion forming liquid is preferably a mixed liquid comprising a poor solvent or a good solvent having a concentration of 50% by weight to 95% by weight and a non-solvent having a concentration of 5% by weight to 50% by weight, as in the cooling bath. Further, it is preferable to use the same poor solvent as the resin solution as the poor solvent.

以上の支持膜の製造方法に加えて、透過性能を向上させるために延伸を行うことも好ましい。延伸温度は、好ましくは50℃以上165℃以下が好ましい。50℃以上であると延伸配向が均一に起こりやすくなり、165℃以下であるとポリフッ化ビニリデンの融点近くになるので、膜表面の微細孔の部分消失などを抑制することができる。延伸倍率は1.1倍以上4倍以下が好ましく、より好ましくは1.1倍以上2倍以下である。1.1倍以上であると透過性能が向上し、4倍以下であると座屈圧力などの物理強度の低下を抑制することができる。   In addition to the above method for producing a support membrane, it is also preferable to perform stretching in order to improve the permeation performance. The stretching temperature is preferably 50 ° C. or higher and 165 ° C. or lower. When the temperature is 50 ° C. or higher, stretching orientation tends to occur uniformly, and when the temperature is 165 ° C. or lower, the melting point of polyvinylidene fluoride is close to the melting point, so that the partial disappearance of fine pores on the film surface can be suppressed. The draw ratio is preferably 1.1 to 4 times, more preferably 1.1 to 2 times. If it is 1.1 times or more, the transmission performance is improved, and if it is 4 times or less, a decrease in physical strength such as buckling pressure can be suppressed.

本発明における貧溶媒とは、ポリフッ化ビニリデン系樹脂を60℃未満の低温では5重量%以上溶解させることができないが、60℃以上かつポリフッ化ビニリデン系樹脂の融点以下(例えばポリフッ化ビニリデン系樹脂がポリフッ化ビニリデンホモポリマー単独で構成される場合は178℃程度)の高温領域で5重量%以上溶解させることができる溶媒のことである。ここで、本発明における貧溶媒を例示すると、シクロヘキサノン、イソホロン、γ−ブチロラクトン、メチルイソアミルケトン、プロピレンカーボネート、等の中鎖長のアルキルケトン、エステル、および有機カーボネート等およびその混合溶媒が挙げられる。   The poor solvent in the present invention cannot dissolve 5% by weight or more of polyvinylidene fluoride resin at a low temperature of less than 60 ° C., but it is 60 ° C. or more and below the melting point of the polyvinylidene fluoride resin (for example, polyvinylidene fluoride resin). Is a solvent that can be dissolved by 5 wt% or more in a high temperature region of about 178 ° C. when the polyvinylidene fluoride homopolymer is used alone. Examples of the poor solvent in the present invention include cyclohexanone, isophorone, γ-butyrolactone, methyl isoamyl ketone, propylene carbonate, and other medium chain length alkyl ketones, esters, organic carbonates, and the like, and mixed solvents thereof.

良溶媒としては、ポリフッ化ビニリデン系樹脂を溶解し、好ましくは非溶媒誘起相分離により三次元網目構造を形成するものであればとくに制限されないが、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド等およびそれらの混合溶媒が挙げられる。ここで良溶媒とは、60℃未満の低温でもポリフッ化ビニリデン系樹脂を5重量%以上溶解させることが可能な溶媒である。   The good solvent is not particularly limited as long as it dissolves polyvinylidene fluoride resin and preferably forms a three-dimensional network structure by non-solvent induced phase separation, but dimethyl sulfoxide, N, N-dimethylformamide, N, Examples thereof include N-dimethylacetamide, N-methyl-2-pyrrolidone, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethylurea, lower alkyl ketones such as trimethyl phosphate, esters, amides, and the like, and mixed solvents thereof. Here, the good solvent is a solvent capable of dissolving 5% by weight or more of the polyvinylidene fluoride resin even at a low temperature of less than 60 ° C.

また非溶媒は、ポリフッ化ビニリデン系樹脂の融点または溶媒の沸点まで、ポリフッ化ビニリデン系樹脂を溶解も膨潤もさせない溶媒と定義する。ここでポリフッ化ビニリデン系樹脂の非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、メタノール、エタノール、四塩化炭素、o−ジクロルベンゼン、トリクロルエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、脂肪族多価アルコール、芳香族多価アルコール、塩素化炭化水素、またはその他の塩素化有機液体およびその混合溶媒などが挙げられる。   The non-solvent is defined as a solvent that does not dissolve or swell the polyvinylidene fluoride resin up to the melting point of the polyvinylidene fluoride resin or the boiling point of the solvent. Here, as the non-solvent of the polyvinylidene fluoride resin, water, hexane, pentane, benzene, toluene, methanol, ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol, propylene Aliphatic hydrocarbons such as glycol, butylene glycol, pentanediol, hexanediol, low molecular weight polyethylene glycol, aromatic hydrocarbons, aliphatic polyhydric alcohols, aromatic polyhydric alcohols, chlorinated hydrocarbons, or other chlorinations Examples thereof include organic liquids and mixed solvents thereof.

本発明に用いられるコート溶液は、溶融粘度2500Pa・s以上のポリフッ化ビニリデン系樹脂を8重量%以上14重量%以下、かつセルロースエステルを2重量%以上12重量%以下含有する樹脂溶液である。通常、単一組成のポリフッ化ビニリデン系樹脂溶液をコート溶液に用いて非溶媒誘起相分離法で凝固させる場合、コート溶液の凝集性が高いために形成する膜壁に多数のマクロボイドが発生して、高い分離特性と透過性能を発現させることが難しい。なお、本発明においてマクロボイドとは、分離機能層中に形成された孔径が5μmを超える粗大な孔のことを指す。また溶融粘度の高いポリフッ化ビニリデン系樹脂を用いることでマクロボイドを少なくすることができるが、膜壁に緻密層を形成するなどのために透過性能が低下する。本発明では親水性ポリマーであるセルロースエステルをブレンドすることでポリフッ化ビニリデン樹脂の凝集性を低下させ、相溶性を高めることができる。さらに溶融粘度の高いポリフッ化ビニリデン系樹脂を用いることで分離機能層の細孔を均一的に形成し、従来膜に比べ高い分離特性と透過性能を発現させることが可能になる。   The coating solution used in the present invention is a resin solution containing 8 to 14% by weight of a polyvinylidene fluoride resin having a melt viscosity of 2500 Pa · s or more and 2 to 12% by weight of a cellulose ester. Normally, when a polyvinylidene fluoride resin solution with a single composition is used as a coating solution and solidified by a non-solvent-induced phase separation method, a large number of macrovoids are generated on the formed film wall due to the high cohesiveness of the coating solution. Therefore, it is difficult to develop high separation characteristics and permeation performance. In addition, in this invention, a macro void refers to the coarse hole in which the hole diameter formed in the isolation | separation functional layer exceeds 5 micrometers. In addition, macrovoids can be reduced by using a polyvinylidene fluoride resin having a high melt viscosity, but the permeation performance decreases due to the formation of a dense layer on the membrane wall. In the present invention, by blending a cellulose ester which is a hydrophilic polymer, the cohesiveness of the polyvinylidene fluoride resin can be lowered and the compatibility can be increased. Furthermore, by using a polyvinylidene fluoride resin having a high melt viscosity, the pores of the separation functional layer can be uniformly formed, and higher separation characteristics and permeation performance can be exhibited compared to conventional membranes.

本発明では、ポリフッ化ビニリデン系樹脂の溶融粘度が2500Pa・s以上であることが必要であり、好ましくは3000Pa・s以上、さらに好ましくは3300Pa・s以上である。溶融粘度が2500Pa・s以上であることで物理的強度が向上し、ウイルス除去などの分離特性を低下させるボイドの発生を抑制できるため、本発明が達成される。また上限については特に制限はないが、7000Pa・sを超えると、樹脂の溶解性低下などの製造上の懸念がある。ここで、ポリフッ化ビニリデン系樹脂の溶融粘度は、ASTM D3835/232℃に剪断速度100秒−1の条件下で測定することができる。 In the present invention, the melt viscosity of the polyvinylidene fluoride resin is required to be 2500 Pa · s or more, preferably 3000 Pa · s or more, and more preferably 3300 Pa · s or more. When the melt viscosity is 2500 Pa · s or more, the physical strength is improved, and the occurrence of voids that deteriorate the separation characteristics such as virus removal can be suppressed, and thus the present invention is achieved. The upper limit is not particularly limited, but if it exceeds 7000 Pa · s, there is a manufacturing concern such as a decrease in the solubility of the resin. Here, the melt viscosity of the polyvinylidene fluoride resin can be measured under the conditions of ASTM D3835 / 232 ° C. and a shear rate of 100 seconds− 1 .

またコート溶液におけるポリフッ化ビニリデン系樹脂の濃度が、8重量%以上14重量%以下であることが必要であり、好ましくは8重量%以上12重量%以下である。ポリフッ化ビニリデン系樹脂の濃度が8重量%以上であると物理特性が向上し、一方で14重量%以下であると分離特性、透水性が向上するため、本発明が達成される。   Further, the concentration of the polyvinylidene fluoride resin in the coating solution needs to be 8% by weight or more and 14% by weight or less, and preferably 8% by weight or more and 12% by weight or less. When the concentration of the polyvinylidene fluoride resin is 8% by weight or more, the physical characteristics are improved. On the other hand, when it is 14% by weight or less, the separation characteristics and the water permeability are improved, so that the present invention is achieved.

また本発明でコート溶液中にブレンドするセルロースエステルのコート溶液における濃度は、2重量%以上12重量%以下であることが必要であり、好ましくは3重量%以上12重量%以下、さらに好ましくは5重量%以上12重量%以下である。セルロースエステルを2重量%以上にすると、ポリフッ化ビニリデン系樹脂の凝集性が低下して大きなボイド発生を抑制し、均一的な細孔形成によりウイルスの分離特性、及び耐ファウリング性が向上する。一方で12重量%以下にすると耐薬品性、物理的強度の低下を軽減することができるため、本発明が達成される。ここでセルロースエステルとは、繰り返し単位中に3つのエステル基を有し、それらの加水分解の程度を調整したセルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートから少なくとも1種以上選ばれるものである。   In the present invention, the concentration of the cellulose ester blended in the coating solution in the coating solution needs to be 2% by weight to 12% by weight, preferably 3% by weight to 12% by weight, and more preferably 5%. % By weight or more and 12% by weight or less. When the cellulose ester content is 2% by weight or more, the cohesiveness of the polyvinylidene fluoride resin is reduced to suppress generation of large voids, and virus separation characteristics and fouling resistance are improved by uniform pore formation. On the other hand, when the content is 12% by weight or less, a decrease in chemical resistance and physical strength can be reduced, so that the present invention is achieved. Here, the cellulose ester is one selected from cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate having three ester groups in the repeating unit and adjusting the degree of hydrolysis thereof. is there.

本発明の製造方法では、溶液粘度が1Pa・s以上100Pa・s以下のコート溶液を、ポリフッ化ビニリデン系支持膜にコーティングしながら、2秒以下の空走時間を経て凝固浴中で凝固させる。中空糸状に賦形する場合、溶液粘度に合わせて、例えば特開2004−314059号公報に記載の弾性体で構成されるコートノズル、或いは金属、セラミックスなどで構成される円形ノズルを用いてコーティングすることが可能である。またシート状に賦形する場合、例えばTダイから引き出した支持膜にスリットコータでコーティングすることが可能である。   In the production method of the present invention, a coating solution having a solution viscosity of 1 Pa · s or more and 100 Pa · s or less is solidified in a coagulation bath after a free running time of 2 seconds or less while being coated on a polyvinylidene fluoride support film. In the case of forming into a hollow fiber shape, coating is performed using a coating nozzle made of an elastic body described in, for example, Japanese Patent Application Laid-Open No. 2004-314059, or a circular nozzle made of metal, ceramics, or the like according to the solution viscosity. It is possible. Further, when forming into a sheet shape, for example, it is possible to coat the support film drawn from the T-die with a slit coater.

コート溶液の溶液粘度は1Pa・s以上100Pa・s以下であることが必要であり、好ましくは5Pa・s以上80Pa・s以下である。コート溶液の粘度が1Pa・s以上であると支持膜への過度なコート溶液の浸透を抑制することができ、また100Pa・s以下であるとズリ応力の増加によるコーティング斑を軽減して、本発明が達成される。ここで、コート溶液の溶液粘度は、溶液を50℃に保温して回転式デジタル粘度計(型式:PV-II+Pro,米国ブルックフィールド社製)で測定することができる。   The solution viscosity of the coating solution needs to be 1 Pa · s or more and 100 Pa · s or less, and preferably 5 Pa · s or more and 80 Pa · s or less. If the viscosity of the coating solution is 1 Pa · s or more, excessive penetration of the coating solution into the support membrane can be suppressed, and if it is 100 Pa · s or less, coating spots due to an increase in shear stress are reduced, The invention is achieved. Here, the solution viscosity of the coating solution can be measured with a rotary digital viscometer (model: PV-II + Pro, manufactured by Brookfield, USA) while keeping the solution at 50 ° C.

コーティング後の空走時間は2秒以下が必要であり、好ましくは1秒以下である。コーティング後に2秒以下で凝固させると、気相中の湿気に誘起されたコート溶液の相分離の進展によるボイドの発達を抑制して、分離特性を向上させることができるため、本発明が達成される。なお凝固液としては、上述した40重量%以下の良溶媒と非溶媒との混合液が好ましく用いられるが、取り扱い容易な水を単独で用いることも好ましい。凝固浴温度は5℃以上、80℃以下であることが好ましい。5℃以上、80℃以下とすることでコート溶液粘度に合わせて、相分離を制御することにより膜壁の細孔を制御できるため、マクロボイドを減らすことができる。   The idle time after coating needs to be 2 seconds or less, preferably 1 second or less. By solidifying in 2 seconds or less after coating, the development of voids due to the progress of phase separation of the coating solution induced by moisture in the gas phase can be suppressed and the separation characteristics can be improved. The As the coagulation liquid, the above-mentioned mixed solution of 40% by weight or less of a good solvent and a non-solvent is preferably used, but it is also preferable to use water that is easy to handle alone. The coagulation bath temperature is preferably 5 ° C. or higher and 80 ° C. or lower. Since the pores of the membrane wall can be controlled by controlling the phase separation according to the viscosity of the coating solution by adjusting the temperature to 5 ° C. or more and 80 ° C. or less, macrovoids can be reduced.

本発明に係るポリフッ化ビニリデン系樹脂の複合膜について、以下に説明する。図1、図2は、本発明の複合中空糸膜の形態を説明する図面代用走査型電子顕微鏡写真である。   The composite film of polyvinylidene fluoride resin according to the present invention will be described below. FIG. 1 and FIG. 2 are scanning electron micrographs in place of drawings for explaining the form of the composite hollow fiber membrane of the present invention.

図1は本発明に係る中空糸状複合膜を構成する膜壁断面構造を示す図面代用写真(600倍)であり、図2は本発明に係る中空糸状複合膜を構成する膜壁断面構造を示す図面代用写真(3000倍)である。   FIG. 1 is a drawing-substituting photograph (600 times) showing a membrane wall sectional structure constituting the hollow fiber-like composite membrane according to the present invention, and FIG. 2 shows a membrane wall sectional structure constituting the hollow fiber-like composite membrane according to the present invention. It is a drawing substitute photograph (3000 times).

これらの複合膜の構造は、溶融粘度2500Pa・s以上のポリフッ化ビニリデン系樹脂を50重量%以上88重量%以下、かつセルロースエステルを12重量%以上50重量%以下含有する三次元網目構造の分離機能層と、それに続く球状構造の支持膜とで形成される。ポリフッ化ビニリデン系樹脂が50重量%以上であると分離特性や物理強度が向上し、88重量%以下であると透水性が向上する三次元網目構造を形成する。またセルロースエステルを12重量%以上含有することで耐ファウリング性が向上し、50重量%以下含有すると耐薬品性が向上する。本発明における複合膜は、球状構造の支持膜に分離機能層が積層されるものであるから、界面では層同士が互いに入り込むことで積層形成される。つまり球状構造の支持膜の場合では、球状の平均直径が大きくなると広い間隔で支持膜が接合するために、分離機能層が深く入り組む形で積層される。一方で球状の平均直径が小さくなると接合間隔が狭くなり、界面で相互に入り組んだ形で浅く構造が形成される。ここで三次元網目構造とは、固形分が三次元的に網目状に広がっている構造をいう。また三次元網目構造は網を形成する固形分に仕切られた細孔およびボイドを有する。また、球状構造とは、多数の球状もしくは略球状の固形分が、直接もしくは筋状に固形分を介して連結している構造のこという。   The structure of these composite membranes is a three-dimensional network structure containing a polyvinylidene fluoride resin having a melt viscosity of 2500 Pa · s or more in a range of 50 wt% to 88 wt% and a cellulose ester of 12 wt% to 50 wt%. It is formed of a functional layer followed by a support film having a spherical structure. When the polyvinylidene fluoride-based resin is 50% by weight or more, a separation property and physical strength are improved, and when it is 88% by weight or less, a three-dimensional network structure in which water permeability is improved is formed. Further, the fouling resistance is improved by containing 12% by weight or more of the cellulose ester, and the chemical resistance is improved by containing 50% by weight or less. Since the composite membrane in the present invention is formed by laminating a separation functional layer on a support membrane having a spherical structure, the composite membrane is formed by laminating layers at the interface. That is, in the case of a support film having a spherical structure, since the support films are joined at wide intervals when the spherical average diameter is increased, the separation functional layers are laminated in a deeply intricate manner. On the other hand, when the spherical average diameter is reduced, the bonding interval is narrowed, and a shallow structure is formed in an interlaced manner at the interface. Here, the three-dimensional network structure refers to a structure in which the solid content spreads in a three-dimensional network. In addition, the three-dimensional network structure has pores and voids partitioned by solid contents forming a network. The spherical structure refers to a structure in which a large number of spherical or substantially spherical solid components are connected directly or in a streak shape through the solid components.

本発明に係る分離機能層は、平均孔径0.01μm以上1μm以下の三次元網目構造を有し、かつ厚さ5μm以上100μm以下であることが必要であるが、この場合、本発明に係る分離機能層は、最も小さいポリオウイルスの大きさ(約0.03μm)よりも少し大きい孔径を含む三次元網目構造の分離機能層が、ある程度以上の厚みをもって存在することになる。実際には、かかる性質を有することで、より好ましくウイルスなどの除去を行えることから、本発明に係る分離機能層においては、ウイルスより小さい孔径でろ過を行うシービング(篩い分け)ろ過よりも、小さい粒子やウイルスを細孔内で捕捉する、いわゆるデプスろ過が支配的に起こると考えられる。   The separation functional layer according to the present invention needs to have a three-dimensional network structure with an average pore diameter of 0.01 μm or more and 1 μm or less and a thickness of 5 μm or more and 100 μm or less. As the functional layer, a separation functional layer having a three-dimensional network structure including a pore size slightly larger than the size of the smallest poliovirus (about 0.03 μm) is present with a thickness of a certain level or more. In fact, since it has such a property, viruses and the like can be removed more preferably, the separation function layer according to the present invention is smaller than the sieve (sieving) filtration that performs filtration with a pore size smaller than that of the virus. It is thought that so-called depth filtration that traps particles and viruses in the pores occurs predominantly.

上記の理由から、本発明に係る分離機能層中の三次元網目構造の平均孔径は、0.01μm以上1μm以下であることが必要であり、好ましくは0.03μm以上0.5μm以下、さらに好ましくは0.05μm以上、0.2μm以下である。平均孔径が0.01μm未満であると膜透過性が低下しやすくなる傾向があり、逆に1μmを超えるとウイルスの阻止率が低下してしまう懸念がある。ここで、分離機能層中の三次元網目構造の平均孔径は、走査型電子顕微鏡を用いて、複合膜の断面を6,000倍、10,000倍で画像写真撮影し、外表層から5μmの深さで任意に選んだ計20カ所の孔の長径と短径を測定した結果を数平均して求めることができる。   For the above reasons, the average pore size of the three-dimensional network structure in the separation functional layer according to the present invention needs to be 0.01 μm or more and 1 μm or less, preferably 0.03 μm or more and 0.5 μm or less, more preferably Is 0.05 μm or more and 0.2 μm or less. When the average pore diameter is less than 0.01 μm, the membrane permeability tends to be lowered, and when it exceeds 1 μm, there is a concern that the virus blocking rate is lowered. Here, the average pore diameter of the three-dimensional network structure in the separation functional layer was photographed with a scanning electron microscope at a cross section of the composite membrane at 6,000 times and 10,000 times, and 5 μm from the outer surface layer. The result of measuring the major and minor diameters of a total of 20 holes arbitrarily selected by depth can be obtained by number averaging.

また、本発明の分離機能層最表面の平均孔径は1μm以下が好ましく、より好ましくは0.1μm以下、さらに好ましくは0.01μm以下である。最表面の平均孔径が1μmを超えると膜ファウリングが発生し易くなる傾向がある。ここで、分離機能層最表面の平均孔径は、走査型電子顕微鏡を用いて、複合膜の表面を30,000倍、60,000倍で画像写真撮影し、任意に選んだ計20カ所の孔の長径と短径を測定した結果を数平均して求めることができる。   Moreover, the average pore diameter of the outermost surface of the separation functional layer of the present invention is preferably 1 μm or less, more preferably 0.1 μm or less, and still more preferably 0.01 μm or less. If the average pore diameter on the outermost surface exceeds 1 μm, membrane fouling tends to occur. Here, the average pore diameter of the outermost surface of the separation functional layer is 20 holes selected arbitrarily by taking a picture of the surface of the composite membrane at 30,000 times and 60,000 times using a scanning electron microscope. The results of measuring the major axis and minor axis of the film can be obtained by number averaging.

また分離機能層は、実質的には5μm以上のマクロボイドを有しない、厚さ5μm以上100μm以下であることが必要であり、好ましくは5μm以上80μm以下である。コート層の厚さが5μm以上であるとウイルス除去性が向上し、厚さ100μm以下であると透過性能が向上する。ここで、分離機能層の厚さは、走査型電子顕微鏡を用いて、複合膜の断面を3,000倍で画像写真撮影し、三次元網目構造が観察される範囲の長さを、任意に選んだ計10カ所で測定した結果を数平均して求めることができる。   The separation functional layer needs to have a thickness of 5 μm or more and 100 μm or less, substantially not having a macrovoid of 5 μm or more, and preferably 5 μm or more and 80 μm or less. When the thickness of the coat layer is 5 μm or more, the virus removability is improved, and when the thickness is 100 μm or less, the permeation performance is improved. Here, the thickness of the separation functional layer is arbitrarily set to the length of the range in which the three-dimensional network structure is observed by taking a picture of a cross section of the composite film at a magnification of 3,000 using a scanning electron microscope. It is possible to obtain a result obtained by averaging the results measured at 10 selected places.

また本発明に係る支持膜は、厚さは60μm以上400μm以下が好ましく、より好ましくは120μm以上350μm以下である。支持膜の厚さが60μm以上であれば外圧による座屈圧力が向上し、400μm以下であると透過性能が向上する。ここで、支持膜の厚さは、走査型電子顕微鏡を用いて、複合膜の断面を100倍、1000倍で画像写真撮影し、球状構造が観察される範囲の長さを、任意に選んだ計10カ所で測定した結果を数平均して求めることができる。   The support membrane according to the present invention preferably has a thickness of 60 μm or more and 400 μm or less, more preferably 120 μm or more and 350 μm or less. If the thickness of the support film is 60 μm or more, the buckling pressure due to the external pressure is improved, and if it is 400 μm or less, the permeation performance is improved. Here, the thickness of the support film was arbitrarily selected by using a scanning electron microscope, taking a cross-sectional view of the composite film at 100 times and 1000 times, and photographing the length of the range in which the spherical structure was observed. The results measured at a total of 10 locations can be obtained by number averaging.

また球状構造の平均直径は0.1μm以上5μm以下が好ましく、より好ましくは0.5μm以上3μm以下である。平均直径が0.1μm以上の球状構造で構成される場合、透過性能が向上する。また平均直径が5μm以下に球状構造で構成される場合、物理的強度が向上する。ここで、球状構造の平均直径は、走査型電子顕微鏡を用いて、複合膜の断面を6,000倍で画像写真撮影し、任意に選んだ計20カ所の球状の直径を測定した結果を数平均して求めることができる。   The average diameter of the spherical structure is preferably from 0.1 μm to 5 μm, more preferably from 0.5 μm to 3 μm. In the case of a spherical structure having an average diameter of 0.1 μm or more, the transmission performance is improved. Moreover, when it comprises a spherical structure with an average diameter of 5 micrometers or less, physical strength improves. Here, the average diameter of the spherical structure is obtained by measuring the diameter of the spherical shape in a total of 20 locations by taking an image photograph of the cross-section of the composite film at a magnification of 6,000 times using a scanning electron microscope. It can be obtained on average.

本発明の分離膜におけるウイルス除去性能は、膜が捕捉すべき適切な性能を有しているか、また欠損があるかを判定するための非破壊性の試験によって定められる性能である。試験方法としては、例えば決まった大きさの指標菌を培養して、ウイルス原液は指標菌を約1.0×10PFU/mlの濃度を含有する様に蒸留水中で調製し、全ろ過を行う。原液中の菌濃度を分子に、透過液の菌濃度を分母にとり、その比を常用対数で表す。本分離膜のウイルス除去性能は、大きさが約25nmのバクテリオファージMS−2(Bacteriophage MS−2 ATCC 15597−B1)を用いて行うことができる。ウイルス原液の除去性能評価を、例えば中空糸膜の場合では、中空糸2〜4本程度からなる長さ約20cmのガラス製モジュールを作製し、温度約20℃、ろ過差圧約10kPa(外圧)の条件でウイルス原液を送液して全ろ過して行うことができる。また平膜の場合では、例えば膜を直径43mmに切り出し、円筒のろ過ホルダーにセットして中空糸膜と同様な操作をすることで求めることができる。 The virus removal performance of the separation membrane of the present invention is a performance determined by a non-destructive test for determining whether the membrane has an appropriate performance to be captured and whether there is a defect. As a test method, for example, indicator bacteria of a predetermined size are cultured, and the virus stock solution is prepared in distilled water so that the indicator bacteria contain a concentration of about 1.0 × 10 7 PFU / ml. Do. The concentration of bacteria in the stock solution is taken as the numerator, the concentration of bacteria in the permeate as the denominator, and the ratio is expressed in common logarithm. The virus removal performance of this separation membrane can be performed using bacteriophage MS-2 (Bacteriophage MS-2 ATCC 15597-B1) having a size of about 25 nm. For example, in the case of a hollow fiber membrane, a glass module having a length of about 20 cm consisting of about 2 to 4 hollow fibers is produced, and a temperature of about 20 ° C. and a filtration differential pressure of about 10 kPa (external pressure) are evaluated. Under conditions, the virus stock solution can be fed and completely filtered. In the case of a flat membrane, the membrane can be obtained, for example, by cutting the membrane to a diameter of 43 mm, setting it in a cylindrical filtration holder, and performing the same operation as for the hollow fiber membrane.

本発明における純水透過性能は、供給水と透過水を区分する容器(モジュール)内に膜を組み込み、印加した圧力のものとに透過水量を測定することで評価できる。供給水に実質的には微粒子を含まない純水ないしは蒸留水を用いて行う。例えば中空糸膜の場合では、中空糸2〜4本程度からなる長さ約20cmのガラス製モジュールを作製し、温度約20℃、ろ過差圧約10kPa(外圧)の条件で純水を送液して全ろ過して行うことができる。また平膜の場合では、例えば膜を直径43mmに切り出し、円筒のろ過ホルダーにセットして中空糸膜と同様な操作をすることで求めることができる。   The pure water permeation performance in the present invention can be evaluated by incorporating a membrane in a container (module) that separates supply water and permeate and measuring the amount of permeate with an applied pressure. It is carried out using pure water or distilled water which does not substantially contain fine particles in the feed water. For example, in the case of a hollow fiber membrane, a glass module having a length of about 20 cm consisting of about 2 to 4 hollow fibers is prepared, and pure water is fed under conditions of a temperature of about 20 ° C. and a filtration differential pressure of about 10 kPa (external pressure). And can be completely filtered. In the case of a flat membrane, the membrane can be obtained, for example, by cutting the membrane to a diameter of 43 mm, setting it in a cylindrical filtration holder, and performing the same operation as for the hollow fiber membrane.

本発明における破断強度・破断伸度は、物性試験機を用いて試験長の長さ方向に引っ張った際の荷重−伸びの曲線が示す破断した時の強度・伸度を測定する。これらの測定については、引張試験機((株)東洋ボールドウィン製TENSILON(登録商標)/RTM−100)を用いて、水で湿潤させた複合膜を試験長50mm、フルスケール5kgの荷重でクロスヘッドスピード50mm/分にて測定し、複合膜を変えて10回実施した破断強力・伸度の測定結果から数平均することによって求めることができる。また破断強度は、破断強力(N)を複合膜の単位断面積(mm)における破断強度(N/mm=Pa)として求めることができる。 The breaking strength and breaking elongation in the present invention are determined by measuring the strength and elongation at the time of breaking indicated by a load-elongation curve when pulled in the length direction of the test length using a physical property tester. For these measurements, using a tensile tester (TENSILON (registered trademark) / RTM-100 manufactured by Toyo Baldwin Co., Ltd.), a composite membrane wetted with water was tested with a test head length of 50 mm and a full scale load of 5 kg. It can be determined by measuring at a speed of 50 mm / min, and by averaging the results of measurement of the breaking strength / elongation performed 10 times by changing the composite film. In addition, the breaking strength can be obtained by breaking strength (N) as breaking strength (N / mm 2 = Pa) in a unit sectional area (mm 2 ) of the composite membrane.

本発明の複合膜は、分離機能層において均一的な細孔形成と、セルロースエステルによる親水性の効果により、優れた耐汚れ性を示すことも特徴である。耐汚れ性について以下に説明する。一般的な精密ろ過膜や限外ろ過膜を用いた水処理方法では、ろ過工程において被処理水中の濁質成分などを阻止することによって膜面細孔の閉塞が進み、ろ過抵抗が上昇する。このために物理洗浄工程では、膜面付着した濁質成分などを膜細孔から除去するために、透過水側から膜外表面に向けて透過水や圧縮空気などの流体を流す逆圧洗浄を施す。この物理洗浄工程において、阻止した成分の一部が膜から剥離され、ろ過抵抗が下がる。しかしながら膜面で阻止した全ての成分を完全に除去することは難しく、膜に残る付着成分によってろ過抵抗は運転の継続と共に上昇を続けることになる。最終的には化学薬品を用いた薬液洗浄を施すが、ろ過抵抗が回復しない場合には膜モジュール自体を交換することになる。   The composite membrane of the present invention is also characterized by excellent stain resistance due to the formation of uniform pores in the separation functional layer and the hydrophilic effect of the cellulose ester. The stain resistance will be described below. In a water treatment method using a general microfiltration membrane or an ultrafiltration membrane, blocking of turbid components and the like in the water to be treated is prevented in the filtration step, so that the membrane surface pores are blocked and the filtration resistance is increased. For this reason, in the physical cleaning process, in order to remove turbid components adhering to the membrane surface from the membrane pores, back pressure cleaning is performed by flowing a fluid such as permeate or compressed air from the permeate side toward the outer surface of the membrane. Apply. In this physical cleaning process, a part of the blocked components is peeled off from the membrane, and the filtration resistance is lowered. However, it is difficult to completely remove all the components blocked on the membrane surface, and the filtration resistance continues to increase as the operation continues due to the adhering components remaining on the membrane. Finally, chemical cleaning using chemicals is performed, but if the filtration resistance does not recover, the membrane module itself is replaced.

このような長期的なろ過抵抗の上昇(度)を抑え、定流量(安定)運転を可能にするには、1回のろ過工程におけるろ過抵抗の上昇を抑制すると共に、物理洗浄工程を含む連続運転におけるろ過抵抗の上昇を抑制することが求められる。つまり、長期の安定運転には物理洗浄の回復性を含んだろ過抵抗値上昇の程度を下げることが重要となる。連続運転におけるろ過抵抗の上昇は、ろ過抵抗上昇度として以下のような手法で定量的に表される。   In order to suppress such a long-term increase (degree) in filtration resistance and enable a constant flow rate (stable) operation, the increase in filtration resistance in a single filtration step is suppressed, and a continuous process including a physical cleaning step is included. It is required to suppress an increase in filtration resistance during operation. In other words, for long-term stable operation, it is important to reduce the degree of increase in the filtration resistance value including the recoverability of physical cleaning. The increase in filtration resistance in continuous operation is quantitatively represented by the following technique as the degree of filtration resistance increase.

ろ過工程では、ろ過圧力100kPaで透過水量0.065m/mまで実施し、次いで逆圧洗浄工程では、逆洗圧力150kPaで0.0025m/mの水を透過側から膜外表面に向けて流すことを行い、再度、ろ過工程と逆圧洗浄工程をサイクルで10回繰り返す。総ろ過水量を横軸に、算出したろ過抵抗を縦軸にプロットする。ろ過工程において一定時間あたりに得られる透過水量を記録し、ろ過圧力100kPaを、その透過水量で除することにより、その時におけるろ過抵抗値を求める。このプロットにおいて、2回目〜10回目のろ過工程開始時のろ過抵抗9点を結んだ直線の傾きをろ過抵抗上昇度とする。ただし、9点が直線上に乗らない場合には、線形近似で直線の傾きを求めてろ過抵抗上昇度とする。通常、ろ過工程と逆圧洗浄工程を繰り返す膜ろ過運転において、ろ過抵抗上昇度が小さいほど耐汚れ性に優れ、長期的に安定運転できる優れた膜と云える。本発明の複合膜において、前記手法によって算出されるろ過抵抗上昇度は、2×1012/m以下が好ましく、1×1012/m以下がより好ましい。 In the filtration step, the permeated water amount is 0.065 m 3 / m 2 at a filtration pressure of 100 kPa, and then in the back pressure washing step, 0.0025 m 3 / m 2 of water is passed from the permeate side to the outer surface of the membrane at a back washing pressure of 150 kPa. The filtration process and the back pressure washing process are repeated 10 times in a cycle. The total filtration water amount is plotted on the horizontal axis, and the calculated filtration resistance is plotted on the vertical axis. The permeated water amount obtained per fixed time in the filtration step is recorded, and the filtration resistance value at that time is obtained by dividing the filtration pressure 100 kPa by the permeated water amount. In this plot, the slope of the straight line connecting 9 points of filtration resistance at the start of the second to 10th filtration steps is defined as the increase in filtration resistance. However, if 9 points are not on the straight line, the slope of the straight line is obtained by linear approximation to obtain the degree of increase in filtration resistance. Usually, in a membrane filtration operation in which the filtration step and the back pressure washing step are repeated, the smaller the degree of increase in filtration resistance, the better the stain resistance and the better the membrane that can be stably operated over the long term. In the composite membranes of the present invention, filtration resistance increases degree calculated by said method is preferably 2 × 10 12 / m 2 or less, more preferably 1 × 10 12 / m 2 or less.

以下に具体的な実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。ここで本発明のポリフッ化ビニリデン系複合膜に関する物性値、形態は以下の方法で測定した。
(1)溶融粘度
溶融粘度は、ASTM D3835/232℃に剪断速度100秒−1の条件下で測定した。
(2)溶液粘度
溶液粘度は、溶液を50℃に保温して回転式デジタル粘度計(型式:PV-II+Pro,米国ブルックフィールド社製)で測定した。
(3)ウイルス除去性能
ウイルス原液は、大きさが約25nmのバクテリオファージMS−2(Bacteriophage MS−2 ATCC 15597−B1)を約1.0×10PFU/mlの濃度を含有する様に蒸留水中で調製した。ここで蒸留水は純水製造装置オートスチル(ヤマト科学製)の蒸留水を121℃で20分間高圧蒸気滅菌したものを用いた。ウイルス原液の除去性能評価は、中空糸膜2〜4本程度からなる長さ約20cmのガラス製モジュールを作製し、温度約20℃、ろ過差圧約10kPa(外圧)の条件でウイルス原液を送液して、全ろ過した。ろ過液の採取は、ろ過した初期透過液の約10mlを破棄した後、測定用の透過液を約5ml採取し、0〜1000倍に蒸留水で希釈した。Overlay agar assay、Standard Method 9211−D(APHA、1998、Standard methods for the examination of water and wastewater, 18th ed.)の方法に基づいて、希釈した透過液1mlを検定用シャーレに接種し、プラックを計数することによってバクテリオファージMS−2の濃度を求めた。除去性能は対数で表した。例えば2logとは2log10のことであり、残存濃度が100分の1であることを意味する。また透過液中にプラックがまったく計測されない場合、>7logとした。
(4)純水透過性能
透水性能は、複合膜2〜4本程度からなるガラス製ミニモジュールを作製し、温度25℃、ろ過差圧16kPa(外圧)の条件で蒸留水を送液して全ろ過を行い、一定時間の透過水量(m)を測定して得た値を、単位時間(hr)、単位有効膜面積(m)、50kPaにおける値に換算して算出した。
(5)破断強度・伸度
引張試験機((株)東洋ボールドウィン製TENSILON(登録商標)/RTM−100)を用いて、水で湿潤させた複合膜を試験長50mm、フルスケール5kgの荷重でクロスヘッドスピード50mm/分にて測定し、複合膜を変えて10回実施した破断強力・伸度の測定結果から数平均することで求めた。また破断強度は、破断強力(N)を複合膜の単位断面積(mm)における破断強度(N/mm=Pa)として求めた。
(6)分離機能層の厚さ
走査型電子顕微鏡を用いて、複合膜の断面を3,000倍で画像写真撮影し、三次元網目構造が観察される範囲の長さを、任意に選んだ計10カ所で測定した結果を数平均して求めた。
(7)支持膜の厚さ
走査型電子顕微鏡を用いて、複合膜の断面を100倍、1000倍で画像写真撮影し、球状構造が観察される範囲の長さを、任意に選んだ計10カ所で測定した結果を数平均して求めた。
(8)分離機能層外表面の平均孔径
走査型電子顕微鏡を用いて、複合膜の表面を30,000倍、60,000倍で画像写真撮影し、任意に選んだ計20カ所の孔の長径と短径を測定した結果を数平均して求めた。
(9)三次元網目構造の平均孔径
走査型電子顕微鏡を用いて、複合膜の断面を6,000倍、10,000倍で画像写真撮影し、任意に選んだ計20カ所の孔の長径と短径を測定した結果を数平均して求めた。
(10)球状構造の平均直径
走査型電子顕微鏡を用いて、複合膜の断面を6,000倍で画像写真撮影し、任意に選んだ計20カ所の球状の長径と短径を測定した結果を数平均して求めた。
(11)複合膜(中空糸膜)の平均外径/内径
走査型電子顕微鏡を用いて、中空糸状の複合膜の断面を60倍、100倍で画像写真撮影し、任意に選んだ計10カ所の外径及内径の長径と短径を測定した結果を数平均して求めた。
(12)複合膜(中空糸膜)の平均厚み
走査型電子顕微鏡を用いて、複合膜の断面を60倍、100倍で画像写真撮影し、最外層から最内層端部までの長さを、任意に選んだ計10カ所の測定した結果を数平均して求めた。
(13)ろ過抵抗上昇度
中空糸膜6本からなる長さ約15cmの中空糸膜の両端部が開口したガラス製膜モジュールを作製した(図3)。ステンレス製加圧タンク(ADVANTEC PRESSURE VESSEL DV−10、容量10L)に原水を入れ(以下に原水タンクと云う)、ステンレス製加圧タンク(ADVANTEC PRESSURE VESSEL DV−40、容量40L))に純水製造装置オートスチル(ヤマト科学製)の蒸留水を121℃で20分間高圧蒸気滅菌した蒸留水を入れた(以下に蒸留水タンクと云う)。なお原水には、琵琶湖水(濁度1.0NTU以下,TOC(全有機炭素)1.2mg/L,カルシウム濃度15mg/L,ケイ素濃度0.5,マンガン濃度0.01mg/L以下,鉄濃度0.01mg/以下)を用いた。
Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to these examples. Here, the physical property value and form of the polyvinylidene fluoride composite film of the present invention were measured by the following methods.
(1) Melt viscosity The melt viscosity was measured under the conditions of ASTM D3835 / 232 ° C and a shear rate of 100 sec- 1 .
(2) Solution viscosity The solution viscosity was measured with a rotary digital viscometer (model: PV-II + Pro, manufactured by Brookfield, USA) while keeping the solution at 50 ° C.
(3) Virus removal performance The virus stock solution is distilled so that bacteriophage MS-2 (Bacteriophage MS-2 ATCC 15597-B1) having a size of about 25 nm contains a concentration of about 1.0 × 10 7 PFU / ml. Prepared in water. The distilled water used here was distilled water from a pure water production apparatus Auto Still (manufactured by Yamato Kagaku) and subjected to high-pressure steam sterilization at 121 ° C. for 20 minutes. The virus stock solution removal performance was evaluated by preparing a glass module with a length of about 20 cm consisting of about 2 to 4 hollow fiber membranes, and sending the virus stock solution under conditions of a temperature of about 20 ° C. and a filtration differential pressure of about 10 kPa (external pressure). The whole was filtered. In collecting the filtrate, about 10 ml of the filtered initial permeate was discarded, and about 5 ml of the permeate for measurement was collected and diluted with distilled water to 0 to 1000 times. Based on the method of Overlay agar assay, Standard Method 9211-D (APHA, 1998, Standard methods for the examination of water and wastewater, 18th ed.) To determine the concentration of bacteriophage MS-2. Removal performance was expressed logarithmically. For example, 2 log means 2 log 10 and means that the residual concentration is 1/100. Further, when no plaque was measured in the permeate, it was set to> 7 log.
(4) Pure water permeation performance Water permeation performance was achieved by preparing a glass mini-module consisting of about 2 to 4 composite membranes and sending distilled water under conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa (external pressure). The value obtained by performing filtration and measuring the amount of permeated water (m 3 ) for a certain period of time was calculated by converting into values at unit time (hr), unit effective membrane area (m 2 ), and 50 kPa.
(5) Breaking strength / elongation Using a tensile tester (TENSILON (registered trademark) / RTM-100 manufactured by Toyo Baldwin Co., Ltd.), the composite membrane wetted with water was tested with a test length of 50 mm and a full scale load of 5 kg. The measurement was performed at a crosshead speed of 50 mm / min, and the number averaged from the measurement results of the breaking strength / elongation performed 10 times by changing the composite film. In addition, the breaking strength was determined as the breaking strength (N / mm 2 = Pa) at the unit cross-sectional area (mm 2 ) of the composite membrane.
(6) Thickness of separation functional layer Using a scanning electron microscope, the cross section of the composite film was photographed at 3,000 times, and the length of the range in which the three-dimensional network structure was observed was arbitrarily selected. The results measured at a total of 10 locations were obtained by number averaging.
(7) Thickness of the support film Using a scanning electron microscope, the composite film was photographed at 100 times and 1000 times, and the length of the range in which the spherical structure was observed was arbitrarily selected. The results measured at the places were obtained by number averaging.
(8) Average pore diameter on the outer surface of the separation function layer Using a scanning electron microscope, the surface of the composite membrane was photographed at 30,000 times and 60,000 times, and the long diameters of a total of 20 holes selected arbitrarily. The number average of the results of measuring the minor axis was obtained.
(9) Average pore diameter of three-dimensional network structure Using a scanning electron microscope, the composite membrane was photographed at 6,000 times and 10,000 times in cross section, and the pore diameters of a total of 20 holes selected arbitrarily. The result of measuring the minor axis was obtained by number averaging.
(10) Average diameter of spherical structure Using a scanning electron microscope, a cross-section of the composite film was photographed at a magnification of 6,000 times, and the results of measuring the major and minor diameters of a total of 20 arbitrarily selected spherical shapes were obtained. Obtained by number average.
(11) Average outer diameter / inner diameter of composite membrane (hollow fiber membrane) Using a scanning electron microscope, the cross-section of the hollow fiber-like composite membrane was photographed at 60 times and 100 times, and a total of 10 arbitrarily selected locations The results of measuring the major and minor diameters of the outer and inner diameters were obtained by number averaging.
(12) Average thickness of composite membrane (hollow fiber membrane) Using a scanning electron microscope, the cross section of the composite membrane was photographed at 60 times and 100 times, and the length from the outermost layer to the innermost layer end was The measurement results at a total of 10 arbitrarily selected sites were obtained by number averaging.
(13) Degree of increase in filtration resistance A glass membrane module was produced in which both ends of a hollow fiber membrane having a length of about 15 cm consisting of six hollow fiber membranes were opened (FIG. 3). Raw water is put into a stainless steel pressurized tank (ADVANTEC PRESSURE VESSEL DV-10, capacity 10L) (hereinafter referred to as raw water tank), and pure water is produced in a stainless steel pressurized tank (ADVANTEC PRESSURE VESSEL DV-40, capacity 40L). Distilled water obtained by autoclaving distilled water from a device auto still (manufactured by Yamato Kagaku) at 121 ° C. for 20 minutes was added (hereinafter referred to as a distilled water tank). For raw water, Lake Biwa water (turbidity 1.0 NTU or less, TOC (total organic carbon) 1.2 mg / L, calcium concentration 15 mg / L, silicon concentration 0.5, manganese concentration 0.01 mg / L or less, iron concentration) 0.01 mg / below) was used.

評価装置の構成は、ガラス製膜モジュールのA、Dの端部に接続型2方コック(PTFE製)、C、Dの端部に接続型3方コック(PTFE製)を取り付けた。ガラス製膜モジュールのB端部の2方コックと原水タンク供給口を内径φ6mmのPTFEチューブで接続し、原水供給ラインとした。また同様のチューブでA,C端部のコックと蒸留水タンク供給口に接続して、蒸留水供給ラインとした。まずA端部とC端部のコックを閉止し、原水タンク内に100KPaに調整した圧縮空気を印加し、B端部とD端部のコックを開くことで原水タンクからガラス製膜モジュール内に原水(湖水)を供給して外圧全ろ過を行うろ過工程とした。   The configuration of the evaluation apparatus was such that a connection type two-way cock (made of PTFE) was attached to the ends of A and D of the glass membrane module, and a connection type three-way cock (made of PTFE) was attached to the ends of C and D. The two-way cock at the B end of the glass membrane module and the raw water tank supply port were connected with a PTFE tube having an inner diameter of φ6 mm to form a raw water supply line. A similar tube was connected to the cocks at the ends of A and C and a distilled water tank supply port to form a distilled water supply line. First, the A and C end cocks are closed, compressed air adjusted to 100 KPa is applied to the raw water tank, and the B and D end cocks are opened to open the raw water tank into the glass membrane module. It was set as the filtration process which supplies raw | natural water (lake water) and performs external pressure total filtration.

透過水の重量をパソコンに接続した電子天秤(AND HF−6000)で5秒毎に測定し、連続記録プログラムAND RsCom ver.2.40を用いて記録した。本実験で得られるデータは5秒あたりの透過水重量(g)から、ろ過抵抗を以下に示す式を用いて算出した。   The weight of the permeated water was measured every 5 seconds with an electronic balance (AND HF-6000) connected to a personal computer, and the continuous recording program AND RsCom ver. Recorded using 2.40. The data obtained in this experiment was calculated from the permeated water weight (g) per 5 seconds using the following formula for filtration resistance.

ろ過抵抗(1/m) =ろ過圧力(kPa)×10 ×5×膜面積(m)×10 /(粘度(Pa・s)×(5秒あたりの透過水重量)×密度(g/cm))
透過水が流量0.00025(m/m)になった時点で、ガラス製膜モジュールのB端部の原水ライン3方コック、及びD端部の2方コックを閉として原水供給を停止した。引き続き、蒸留水タンク内に150kPaに調整した圧縮空気印加し、逆洗水としてA端部の2方コックを開いて蒸留水を中空糸内部に流し、C端部の3方コックを排出側に開いて逆洗排水が10mlになるまで系外に流して逆洗工程とした。以上のろ過工程と逆洗工程を一つの操作として、設置モジュール対して10回連続して実施し、総ろ過水量を横軸に、算出したろ過抵抗を縦軸にプロットした。
Filtration resistance (1 / m) = filtration pressure (kPa) × 10 3 × 5 × membrane area (m 2 ) × 10 6 / (viscosity (Pa · s) × (permeated water weight per 5 seconds) × density (g / Cm 3 ))
When the permeate reaches a flow rate of 0.00025 (m 3 / m 2 ), the raw water supply is stopped by closing the 3-way cock at the B-end of the glass membrane module and the 2-way cock at the D-end. did. Subsequently, compressed air adjusted to 150 kPa is applied to the distilled water tank, the two-way cock at the A end is opened as backwash water, distilled water is allowed to flow inside the hollow fiber, and the three-way cock at the C end is moved to the discharge side. It was opened and flowed out of the system until the backwash drainage reached 10 ml, and the backwash process was performed. The above filtration step and backwashing step were carried out 10 times continuously with respect to the installation module as one operation, and the total filtration water amount was plotted on the horizontal axis and the calculated filtration resistance was plotted on the vertical axis.

ここでプロットの開始は、各回のろ過開始30秒後からとした。また、ろ過抵抗の上昇に伴い透水量が減少するため、5秒ごとの増加量の絶対値が減少する。ろ過抵抗は増加量から前記式に従って算出するため、増加量が減少するとそのばらつきが算出されるろ過抵抗に与える影響が大きくなる。従って、透水量の減少が著しい場合には、適宜作成したグラフの移動平均近似をとってグラフを修正した。   Here, the plot was started 30 seconds after the start of each filtration. Moreover, since the water permeation amount decreases as the filtration resistance increases, the absolute value of the increase amount every 5 seconds decreases. Since the filtration resistance is calculated from the increase amount according to the above formula, when the increase amount decreases, the variation has a greater effect on the calculated filtration resistance. Therefore, when the decrease in water permeability was significant, the graph was corrected by taking a moving average approximation of the graph created as appropriate.

ろ過実験の結果から作成した総ろ過水量−ろ過抵抗のグラフ、場合によっては前記グラフの移動平均近似をとったグラフにおいて、総ろ過水量とろ過抵抗の関係から、2〜10回目のろ過工程開始時のろ過抵抗9点を結んだ直線の傾きをろ過抵抗上昇度とした。ただし、9点が直線上に乗らない場合には、線形近似で直線の傾きを求めてろ過抵抗上昇度(×1012/m)とした。
<実施例1>
重量平均分子量42万のフッ化ビニリデンホモポリマー38重量%とγ−ブチロラクトン62重量%を160℃で溶解して支持膜用溶液を得た。また溶融粘度4700Pa・sのフッ化ビニリデンホモポリマー10重量%、セルロースアセテート(イーストマンケミカル社、CA435−755:三酢酸セルロース、CA398−3:二酢酸セルロース)6重量%、N−メチル−2−ピロリドンを84重量%の割合として温度140℃で溶解し、溶液粘度46Pa・sのコート溶液を得た。この支持膜用溶液を2重管状紡糸ノズルの外側スリットから、γ−ブチロラクトン85重量%水溶液を2重管状紡糸ノズルの中心パイプから共に同心円状に押し出し、凝固温度が10℃のγ−ブチロラクトン85重量%水溶液中で固化させた後、1.5倍の延伸工程、脱溶媒工程、乾燥工程を経て支持膜を得た。この支持膜をコートノズル内に供給し、一方で得られたコート溶液を供給して支持膜をコーティングしながら引き出して、空走時間1秒で凝固浴温度が25℃の水中で凝固させる工程、脱溶媒工程を経て中空糸状の複合膜(以後、複合中空糸膜と呼ぶ。)を得た。
In the graph of the total filtered water amount-filtration resistance created from the results of the filtration experiment, and in some cases the moving average approximation of the graph, the relationship between the total filtered water amount and the filtration resistance, and the 2-10th filtration process start time The slope of the straight line connecting 9 filtration resistances was defined as the increase in filtration resistance. However, when 9 points did not lie on the straight line, the slope of the straight line was obtained by linear approximation to obtain the degree of increase in filtration resistance (× 10 12 / m 2 ).
<Example 1>
A support membrane solution was obtained by dissolving 38% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 420,000 and 62% by weight of γ-butyrolactone at 160 ° C. Further, vinylidene fluoride homopolymer having a melt viscosity of 4700 Pa · s is 10% by weight, cellulose acetate (Eastman Chemical Co., CA435-755: cellulose triacetate, CA398-3: cellulose diacetate) 6% by weight, N-methyl-2- Pyrrolidone was dissolved at a temperature of 140 ° C. at a ratio of 84% by weight to obtain a coating solution having a solution viscosity of 46 Pa · s. The support membrane solution was extruded from the outer slit of the double tubular spinning nozzle and a 85% by weight aqueous solution of γ-butyrolactone was extruded concentrically from the center pipe of the double tubular spinning nozzle, and the solidification temperature was 10 ° C. and 85 weight of γ-butyrolactone. After solidifying in an aqueous solution, a support film was obtained through a 1.5-fold stretching process, a solvent removal process, and a drying process. Supplying the support film into a coating nozzle, and on the other hand, supplying the obtained coating solution and drawing it out while coating the support film, coagulating in water with a freezing time of 1 second and a coagulation bath temperature of 25 ° C .; A hollow fiber composite membrane (hereinafter referred to as a composite hollow fiber membrane) was obtained through a solvent removal step.

得られた複合中空糸膜の構造形態は、外径が1352μm、内径が728μm、分離機能層の平均厚さが50μm、分離機能層外表面の平均孔径が0.03μm、三次元網目構造の平均孔径が0.3μm、支持膜の厚さが262μm、球状(構造)の平均直径が2.6μmであった。純水透過性能が0.43m/m/hr、ウイルス除去性能が>7log、破断強度が11.9MPa、破断伸度53%であり、琵琶湖水におけるろ過抵抗上昇度が0.55×1012/mを示す、耐汚れ性に優れた複合中空糸膜であった。なお評価結果を表1にまとめた。
<実施例2>
溶融粘度4700Pa・sのフッ化ビニリデンホモポリマー10重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S:三酢酸セルロース、CA398−3:二酢酸セルロース)9.6重量%、N−メチル−2−ピロリドンを80.4重量%の割合として温度140℃で溶解し、溶液粘度76Pa・sのコート溶液を得た。実施例1と同様の支持膜用溶液を用いて支持膜を得た。この支持膜をコートノズル内に供給し、一方で得られたコート溶液を供給して支持膜をコーティングしながら引き出して、空走時間1秒で凝固浴温度が25℃の水中で凝固させる工程、脱溶媒工程を経て複合中空糸膜を得た。
The structure of the obtained composite hollow fiber membrane has an outer diameter of 1352 μm, an inner diameter of 728 μm, an average thickness of the separation functional layer of 50 μm, an average pore diameter of the outer surface of the separation functional layer of 0.03 μm, and an average of the three-dimensional network structure The pore diameter was 0.3 μm, the thickness of the support membrane was 262 μm, and the average diameter of the sphere (structure) was 2.6 μm. Pure water permeation performance is 0.43 m 3 / m 2 / hr, virus removal performance is> 7 log, breaking strength is 11.9 MPa, breaking elongation is 53%, and filtration resistance increase in Lake Biwa water is 0.55 × 10 It was a composite hollow fiber membrane showing 12 / m 2 and excellent in stain resistance. The evaluation results are summarized in Table 1.
<Example 2>
10% by weight of vinylidene fluoride homopolymer having a melt viscosity of 4700 Pa · s, 9.6% by weight of cellulose acetate (Eastman Chemical Co., CA435-75S: cellulose triacetate, CA398-3: cellulose diacetate), N-methyl-2 -Pyrrolidone was dissolved at a temperature of 140 ° C as a proportion of 80.4% by weight to obtain a coating solution having a solution viscosity of 76 Pa · s. A support membrane was obtained using the same support membrane solution as in Example 1. Supplying the support film into a coating nozzle, and on the other hand, supplying the obtained coating solution and drawing it out while coating the support film, coagulating in water with a freezing time of 1 second and a coagulation bath temperature of 25 ° C .; A composite hollow fiber membrane was obtained through a solvent removal step.

得られた複合中空糸膜の構造形態は、外径が1360μm、内径が736μm、分離機能層の平均厚さが52μm、分離機能層外表面の平均孔径が0.02μm、三次元網目構造の平均孔径が0.4μm、支持膜の厚さが260μm、球状(構造)の平均直径が2.6μmであった。純水透過性能が0.32m/m/hr、ウイルス除去性能が>7log、破断強度が12.9MPa、破断伸度45%であり、琵琶湖水におけるろ過抵抗上昇度は、0.21×1012/mを示す、耐汚れ性に優れた複合中空糸膜であった。なお評価結果を表1にまとめた。
<実施例3>
溶融粘度4700Pa・sのフッ化ビニリデンホモポリマー12重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S:三酢酸セルロース、CA398−3:二酢酸セルロース)6重量%、ジメチルスルホキシドを82重量%の割合として温度140℃で溶解し、溶液粘度80Pa・sのコート溶液を得た。実施例1と同様の支持膜用溶液を用いて支持膜を得た。この支持膜をコートノズル内に供給し、一方で得られたコート溶液を供給して支持膜をコーティングしながら引き出して、空走時間1秒で凝固浴温度が25℃の水中で凝固させる工程、脱溶媒工程を経て複合中空糸膜を得た。
The resulting composite hollow fiber membrane has an outer diameter of 1360 μm, an inner diameter of 736 μm, an average thickness of the separation functional layer of 52 μm, an average pore diameter of the outer surface of the separation functional layer of 0.02 μm, and an average of the three-dimensional network structure. The pore diameter was 0.4 μm, the thickness of the support membrane was 260 μm, and the average diameter of the sphere (structure) was 2.6 μm. Pure water permeation performance is 0.32 m 3 / m 2 / hr, virus removal performance is> 7 log, breaking strength is 12.9 MPa, breaking elongation is 45%, and filtration resistance increase in Lake Biwa water is 0.21 × It was a composite hollow fiber membrane exhibiting 10 12 / m 2 and excellent in stain resistance. The evaluation results are summarized in Table 1.
<Example 3>
12% by weight of vinylidene fluoride homopolymer having a melt viscosity of 4700 Pa · s, 6% by weight of cellulose acetate (Eastman Chemical Co., CA435-75S: cellulose triacetate, CA398-3: cellulose diacetate), 82% by weight of dimethyl sulfoxide A coating solution having a solution viscosity of 80 Pa · s was obtained by dissolving at a temperature of 140 ° C. as a ratio. A support membrane was obtained using the same support membrane solution as in Example 1. Supplying the support film into a coating nozzle, and on the other hand, supplying the obtained coating solution and drawing it out while coating the support film, coagulating in water with a freezing time of 1 second and a coagulation bath temperature of 25 ° C .; A composite hollow fiber membrane was obtained through a solvent removal step.

得られた複合中空糸膜の構造形態は、外径が1363μm、内径が713μm、分離機能層の平均厚さが64μm、分離機能層外表面の平均孔径が0.02μm、三次元網目構造の平均孔径が0.4μm、支持膜の厚さが261μm、球状(構造)の平均直径が2.7μmであった。純水透過性能が0.32m/m/hr、ウイルス除去性能が>7log、破断強度が12.2MPa、破断伸度43%であり、琵琶湖水におけるろ過抵抗上昇度は、2.0×1012/mを示す、耐汚れ性に優れた複合中空糸膜であった。なお評価結果を表1にまとめた。
<実施例4>
溶融粘度2800Pa・sのフッ化ビニリデンホモポリマー10重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S:三酢酸セルロース、CA398−3:二酢酸セルロース)4重量%、N−メチル−2−ピロリドンを82重量%の割合として温度140℃で溶解し、溶液粘度8.6Pa・sのコート溶液を得た以外は、実施例1と同様の条件下に支持膜にコーティングして複合中空糸膜を得た。
The structure of the obtained composite hollow fiber membrane has an outer diameter of 1363 μm, an inner diameter of 713 μm, an average thickness of the separation functional layer of 64 μm, an average pore diameter of the outer surface of the separation functional layer of 0.02 μm, and an average of a three-dimensional network structure. The pore diameter was 0.4 μm, the thickness of the support membrane was 261 μm, and the average diameter of the sphere (structure) was 2.7 μm. Pure water permeation performance is 0.32 m 3 / m 2 / hr, virus removal performance is> 7 log, breaking strength is 12.2 MPa, breaking elongation is 43%, and filtration resistance increase in Lake Biwa water is 2.0 × It was a composite hollow fiber membrane exhibiting 10 12 / m 2 and excellent in stain resistance. The evaluation results are summarized in Table 1.
<Example 4>
10% by weight of vinylidene fluoride homopolymer having a melt viscosity of 2800 Pa · s, 4% by weight of cellulose acetate (Eastman Chemical Co., CA435-75S: cellulose triacetate, CA398-3: cellulose diacetate), N-methyl-2-pyrrolidone Was coated at a temperature of 140 ° C. at a temperature of 140 ° C. to obtain a coating solution having a solution viscosity of 8.6 Pa · s, and the composite hollow fiber membrane was coated on the support membrane under the same conditions as in Example 1. Obtained.

得られた複合中空糸膜の構造形態は、外径が1371μm、内径が717μm、分離機能層の平均厚さが60μm、分離機能層外表面の平均孔径が0.02μm、三次元網目構造の平均孔径が0.4μm、支持膜の厚さが267μm、球状(構造)の平均直径が2.5μmであって、純水透過性能が0.39m/m/hr、ウイルス除去性能が>7logであった。また破断強度が8.2MPa、破断伸度43%であり、琵琶湖水におけるろ過抵抗上昇度は、1.3×1012/mを示す、耐汚れ性に優れた複合中空糸膜であった。なお評価結果を表1にまとめた。
<実施例5>
溶融粘度4700Pa・sのフッ化ビニリデンホモポリマー14重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S:三酢酸セルロース、CA398−3:二酢酸セルロース)2重量%、N−メチル−2−ピロリドンを84重量%の割合として温度140℃で溶解し、溶液粘度68Pa・sのコート溶液を得た。実施例1と同様の支持膜用溶液を用いて支持膜を得た。この支持膜をコートノズル内に供給し、一方で得られたコート溶液を供給して支持膜をコーティングしながら引き出して、空走時間1秒で凝固浴温度が25℃の水中で凝固させる工程、脱溶媒工程を経て複合中空糸膜を得た。
The structure of the obtained composite hollow fiber membrane has an outer diameter of 1371 μm, an inner diameter of 717 μm, an average thickness of the separation functional layer of 60 μm, an average pore diameter of the outer surface of the separation functional layer of 0.02 μm, and an average of the three-dimensional network structure The pore diameter is 0.4 μm, the support membrane thickness is 267 μm, the spherical (structure) average diameter is 2.5 μm, the pure water permeation performance is 0.39 m 3 / m 2 / hr, and the virus removal performance is> 7 log. Met. Moreover, it was a composite hollow fiber membrane excellent in stain resistance, having a breaking strength of 8.2 MPa, a breaking elongation of 43%, and an increase in filtration resistance in Lake Biwa water of 1.3 × 10 12 / m 2 . . The evaluation results are summarized in Table 1.
<Example 5>
14% by weight of vinylidene fluoride homopolymer having a melt viscosity of 4700 Pa · s, 2% by weight of cellulose acetate (Eastman Chemical Co., CA435-75S: cellulose triacetate, CA398-3: cellulose diacetate), N-methyl-2-pyrrolidone Was dissolved at a temperature of 140 ° C. at a ratio of 84% by weight to obtain a coating solution having a solution viscosity of 68 Pa · s. A support membrane was obtained using the same support membrane solution as in Example 1. Supplying the support film into a coating nozzle, and on the other hand, supplying the obtained coating solution and drawing it out while coating the support film, coagulating in water with a freezing time of 1 second and a coagulation bath temperature of 25 ° C .; A composite hollow fiber membrane was obtained through a solvent removal step.

得られた複合中空糸膜の構造形態は、外径が1383μm、内径が713μm、分離機能層の平均厚さが74μm、分離機能層外表面の平均孔径が0.02μm、三次元網目構造の平均孔径が0.4μm、支持膜の厚さが261μm、球状(構造)の平均直径が2.7μmであって、純水透過性能が0.30m/m/hr、ウイルス除去性能が>7log、破断強度が11.2MPa、破断伸度44%であり、琵琶湖水におけるろ過抵抗上昇度は、1.9×1012/mを示す、耐汚れ性に優れた複合中空糸膜であった。なお評価結果を表1にまとめた。 The structure of the obtained composite hollow fiber membrane has an outer diameter of 1383 μm, an inner diameter of 713 μm, an average thickness of the separation functional layer of 74 μm, an average pore diameter of the outer surface of the separation functional layer of 0.02 μm, and an average of the three-dimensional network structure. The pore diameter is 0.4 μm, the support membrane thickness is 261 μm, the spherical (structure) average diameter is 2.7 μm, the pure water permeation performance is 0.30 m 3 / m 2 / hr, and the virus removal performance is> 7 log. The composite hollow fiber membrane was excellent in stain resistance, having a breaking strength of 11.2 MPa, a breaking elongation of 44%, and an increase in filtration resistance in Lake Biwa water of 1.9 × 10 12 / m 2 . . The evaluation results are summarized in Table 1.

<比較例1>
空走時間を10秒にする以外は実施例1の条件で行った。
<Comparative Example 1>
The test was carried out under the same conditions as in Example 1 except that the idling time was 10 seconds.

得られた複合中空糸膜の構造形態は、外径が1348μm、内径が722μm、分離機能層の平均厚さが51μm、分離機能層外表面の平均孔径が0.06μm、三次元網目構造の平均孔径が1.3μm、支持膜の厚さが262μm、球状(構造)の平均直径が2.6μmであった。純水透過性能が0.41m/m/hr、ウイルス除去性能が4.8log、破断強力が11.2MPa、破断伸度48%であり、琵琶湖水におけるろ過抵抗上昇度は、0.61×1012/mを示した。膜特性としては、純水透過性能、破断強伸度、高く維持し、ろ過抵抗上昇度が低く耐汚れ性にも優れていたが、ウイルス除去性が低下した。なお評価結果を表2にまとめた。
<比較例2>
溶融粘度700Pa・sのフッ化ビニリデンホモポリマー10重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S:三酢酸セルロース)4重量%、N−メチル−2−ピロリドンを86重量%の割合として温度110℃で溶解し、溶液粘度0.4Pa・sのコート溶液を得た以外は、実施例1と同様の条件で支持膜にコーティングして複合中空糸膜を得た。
The structure of the obtained composite hollow fiber membrane has an outer diameter of 1348 μm, an inner diameter of 722 μm, an average thickness of the separation functional layer of 51 μm, an average pore diameter of the outer surface of the separation functional layer of 0.06 μm, and an average of a three-dimensional network structure. The pore diameter was 1.3 μm, the support membrane thickness was 262 μm, and the average diameter of the sphere (structure) was 2.6 μm. Pure water permeation performance is 0.41 m 3 / m 2 / hr, virus removal performance is 4.8 log, breaking strength is 11.2 MPa, breaking elongation is 48%, and filtration resistance increase in Lake Biwa water is 0.61 × 10 12 / m 2 was shown. As membrane characteristics, pure water permeation performance, breaking strength and elongation were maintained high, and the degree of filtration resistance increase was low and the stain resistance was excellent, but the virus removability decreased. The evaluation results are summarized in Table 2.
<Comparative example 2>
Temperature of 10% by weight of vinylidene fluoride homopolymer having a melt viscosity of 700 Pa · s, 4% by weight of cellulose acetate (Eastman Chemical Co., CA435-75S: cellulose triacetate), and 86% by weight of N-methyl-2-pyrrolidone A composite hollow fiber membrane was obtained by coating the support membrane under the same conditions as in Example 1 except that the coating solution was dissolved at 110 ° C. to obtain a coating solution having a solution viscosity of 0.4 Pa · s.

得られた複合中空糸膜の構造形態は、外径が1340μm、内径が750μm、分離機能層の平均厚さが35μm、分離機能層外表面の平均孔径が0.04μm、支持膜の厚さが260μm、球状(構造)の平均直径が2.6μmであったが、三次元網目構造内(断面)に孔径5μmを超えるマクロボイドが多数みられた。純水透過性能が0.18m/m/hr、ウイルス除去性能が1.2logであった。また破断強度が7.0MPa、破断伸度55%であり、琵琶湖水におけるろ過抵抗上昇度は、0.73×1012/mを示したが、ウイルス除去性能、純水透過性能、および破断強度が顕著に低下した。なお評価結果を表2にまとめた。
<比較例3>
溶融粘度700Pa・sのフッ化ビニリデンホモポリマー10重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S:三酢酸セルロース)8重量%、N−メチル−2−ピロリドンを82重量%の割合として温度110℃で溶解し、溶液粘度4.7Pa・sのコート溶液を得た以外は、実施例1と同様の条件で支持膜にコーティングして複合中空糸膜を得た。
The structure of the obtained composite hollow fiber membrane has an outer diameter of 1340 μm, an inner diameter of 750 μm, an average thickness of the separation functional layer of 35 μm, an average pore diameter of the outer surface of the separation functional layer of 0.04 μm, and a thickness of the support membrane. Although 260 μm and the average diameter of the sphere (structure) were 2.6 μm, many macrovoids having a pore diameter exceeding 5 μm were observed in the three-dimensional network structure (cross section). The pure water permeation performance was 0.18 m 3 / m 2 / hr, and the virus removal performance was 1.2 log. The breaking strength was 7.0 MPa, the breaking elongation was 55%, and the filtration resistance increase in Lake Biwa water was 0.73 × 10 12 / m 2 , but the virus removal performance, pure water permeation performance, and breaking strength The strength decreased significantly. The evaluation results are summarized in Table 2.
<Comparative Example 3>
Temperature of 10% by weight of vinylidene fluoride homopolymer having a melt viscosity of 700 Pa · s, 8% by weight of cellulose acetate (Eastman Chemical Co., CA435-75S: cellulose triacetate), 82% by weight of N-methyl-2-pyrrolidone A composite hollow fiber membrane was obtained by coating the support membrane under the same conditions as in Example 1 except that the coating solution having a solution viscosity of 4.7 Pa · s was obtained by dissolving at 110 ° C.

得られた複合中空糸膜の構造形態は、外径が1342μm、内径が740μm、分離機能層の平均厚さが38μm、分離機能層外表面の平均孔径が0.02μm、支持膜の厚さが263μm、球状(構造)の平均直径が2.6μmであったが、三次元網目構造内(断面)に孔径5μmを超えるマクロボイドが多数みられた。純水透過性能が0.04m/m/hr、ウイルス除去性能が1.7logであった。また破断強度が7.1MPa、破断伸度32%であり、琵琶湖水におけるろ過抵抗上昇度は、2.3×1012/mを示した。膜特性としては、ウイルス除去性能、透水性能、破断強度が顕著に低下した。なお評価結果を表2にまとめた。
<比較例4>
溶融粘度2200Pa・sのフッ化ビニリデンホモポリマー10重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S:三酢酸セルロース)4重量%、N−メチル−2−ピロリドンを86重量%の割合に温度110℃で溶解し、溶液粘度1.7Pa・sコート溶液を得た以外は、実施例1と同様の条件で支持膜にコーティングして複合中空糸膜を得た。
The structure of the obtained composite hollow fiber membrane has an outer diameter of 1342 μm, an inner diameter of 740 μm, an average thickness of the separation functional layer of 38 μm, an average pore diameter of the outer surface of the separation functional layer of 0.02 μm, and a thickness of the support membrane. Although the average diameter of the spherical (structure) was 263 μm and 2.6 μm, many macrovoids having a pore diameter exceeding 5 μm were observed in the three-dimensional network structure (cross section). The pure water permeation performance was 0.04 m 3 / m 2 / hr, and the virus removal performance was 1.7 log. The breaking strength was 7.1 MPa, the breaking elongation was 32%, and the increase in filtration resistance in Lake Biwa water was 2.3 × 10 12 / m 2 . As membrane characteristics, virus removal performance, water permeability performance, and breaking strength were significantly reduced. The evaluation results are summarized in Table 2.
<Comparative example 4>
10% by weight of vinylidene fluoride homopolymer having a melt viscosity of 2200 Pa · s, 4% by weight of cellulose acetate (Eastman Chemical Co., CA435-75S: cellulose triacetate), 86% by weight of N-methyl-2-pyrrolidone A composite hollow fiber membrane was obtained by coating the support membrane under the same conditions as in Example 1 except that the solution was dissolved at 110 ° C. to obtain a solution viscosity of 1.7 Pa · s coating solution.

得られた複合中空糸膜の構造形態は、外径が1345μm、内径が715μm、分離機能層の平均厚さが50μm、分離機能層外表面の平均孔径が0.03μm、支持膜の厚さが265μm、球状(構造)の平均直径が2.6μmであったが、三次元網目構造内(断面)に孔径5μmを超えるマクロボイドが数カ所みられた。純水透過性能が0.26m/m/hr、ウイルス除去性能が4.2logであった。また破断強度が7.6MPa、破断伸度50%であり、琵琶湖水におけるろ過抵抗上昇度は、0.83×1012/mを示した。膜特性としては、耐汚れ性に優れていたが、ウイルス除去性能、破断強度が顕著に低下した。なお評価結果を表2にまとめた。
<比較例5>
溶融粘度2200Pa・sのフッ化ビニリデンホモポリマー10重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S:三酢酸セルロース)8重量%、N−メチル−2−ピロリドンを82重量%の割合に温度110℃で溶解し、溶液粘度8.6Pa・sコート溶液を得た以外は、実施例1と同様の条件で支持膜にコーティングして複合中空糸膜を得た。
The structure of the obtained composite hollow fiber membrane has an outer diameter of 1345 μm, an inner diameter of 715 μm, an average thickness of the separation functional layer of 50 μm, an average pore diameter of the outer surface of the separation functional layer of 0.03 μm, and a thickness of the support membrane. The average diameter of 265 μm and spherical (structure) was 2.6 μm, but several macrovoids having a pore diameter exceeding 5 μm were found in the three-dimensional network structure (cross section). The pure water permeation performance was 0.26 m 3 / m 2 / hr, and the virus removal performance was 4.2 log. The breaking strength was 7.6 MPa, the breaking elongation was 50%, and the increase in filtration resistance in Lake Biwa water was 0.83 × 10 12 / m 2 . As the film characteristics, it was excellent in stain resistance, but the virus removal performance and the breaking strength were remarkably reduced. The evaluation results are summarized in Table 2.
<Comparative Example 5>
10% by weight of vinylidene fluoride homopolymer having a melt viscosity of 2200 Pa · s, 8% by weight of cellulose acetate (Eastman Chemical Co., CA435-75S: cellulose triacetate), 82% by weight of N-methyl-2-pyrrolidone A composite hollow fiber membrane was obtained by coating the support membrane under the same conditions as in Example 1 except that the solution was melted at 110 ° C. to obtain a solution viscosity of 8.6 Pa · s.

得られた複合中空糸膜の構造形態は、外径が1350μm、内径が706μm、分離機能層の平均厚さが55μm、分離機能層外表面の平均孔径が0.03μm、支持膜の厚さが267μm、球状(構造)の平均直径が2.6μmであったが、三次元網目構造内(断面)に孔径5μmを超えるマクロボイドが多数みられた。純水透過性能が0.28m/m/hr、ウイルス除去性能が3.8logであった。また破断強度が7.0MPa、破断伸度42%であり、琵琶湖水におけるろ過抵抗上昇度は、0.78×1012/mを示した。膜特性としては、耐汚れ性に優れていたがウイルス除去性能、破断強度が顕著に低下した。なお評価結果を表2にまとめた。
<比較例6>
溶融粘度700Pa・sのフッ化ビニリデンホモポリマー14重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S:三酢酸セルロース)3重量%、N−メチル−2−ピロリドン77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社、商品名イオネット(登録商標)T-20C)3重量%、水を3重量%の割合に温度95℃で溶解し、溶液粘度0.6Pa・sコート溶液を得た以外は、実施例1と同様の条件で支持膜にコーティングして複合中空糸膜を得た。
The structure of the obtained composite hollow fiber membrane has an outer diameter of 1350 μm, an inner diameter of 706 μm, an average thickness of the separation functional layer of 55 μm, an average pore diameter of the outer surface of the separation functional layer of 0.03 μm, and a thickness of the support membrane. The average diameter of 267 μm and spherical shape (structure) was 2.6 μm, but many macrovoids having a pore diameter of more than 5 μm were observed in the three-dimensional network structure (cross section). The pure water permeation performance was 0.28 m 3 / m 2 / hr, and the virus removal performance was 3.8 log. The breaking strength was 7.0 MPa, the breaking elongation was 42%, and the increase in filtration resistance in Lake Biwa water was 0.78 × 10 12 / m 2 . As the film characteristics, it was excellent in stain resistance, but the virus removal performance and breaking strength were remarkably lowered. The evaluation results are summarized in Table 2.
<Comparative Example 6>
14% by weight of vinylidene fluoride homopolymer having a melt viscosity of 700 Pa · s, 3% by weight of cellulose acetate (Eastman Chemical Co., CA435-75S: cellulose triacetate), 77% by weight of N-methyl-2-pyrrolidone, polyoxyethylene palm Oil Fatty Acid Sorbitan (Sanyo Kasei Co., Ltd., trade name Ionette (registered trademark) T-20C) 3% by weight, water 3% dissolved at a temperature of 95 ° C. to obtain a solution viscosity of 0.6 Pa · s coating solution Except for the above, a support membrane was coated under the same conditions as in Example 1 to obtain a composite hollow fiber membrane.

得られた複合中空糸膜の構造形態は、外径が1345μm、内径が739μm、分離機能層の平均厚さが38μm、分離機能層外表面の平均孔径が0.02μm、支持膜の厚さが265μm、球状(構造)の平均直径が2.6μmであって、純水透過性能が0.16m/m/hr、ウイルス除去性能が3.2logであったが、三次元網目構造内(断面)に孔径5μmを超えるマクロボイドが多数みられた。また破断強度が7.8MPa、破断伸度85%であり、琵琶湖水におけるろ過抵抗上昇度は、2.3×1012/mを示した。膜特性としては、ウイルス除去性能、純水透過性能、および破断強度が顕著に低下した。なお評価結果を表2にまとめた。
<比較例7>
溶融粘度2000Pa・sのフッ化ビニリデンホモポリマー10重量%をN−メチル−2−ピロリドンを90重量%の割合として温度140℃で溶解し、溶液粘度13Pa・sコート溶液を得た以外は、実施例1と同様の条件で支持膜にコーティングして複合中空糸膜を得た。
The structure of the obtained composite hollow fiber membrane has an outer diameter of 1345 μm, an inner diameter of 739 μm, an average thickness of the separation functional layer of 38 μm, an average pore diameter of the outer surface of the separation functional layer of 0.02 μm, and a thickness of the support membrane. 265 μm, spherical (structure) average diameter was 2.6 μm, pure water permeation performance was 0.16 m 3 / m 2 / hr, and virus removal performance was 3.2 log. Many macrovoids having a pore diameter exceeding 5 μm were observed in the cross section). The breaking strength was 7.8 MPa, the breaking elongation was 85%, and the increase in filtration resistance in Lake Biwa water was 2.3 × 10 12 / m 2 . As membrane characteristics, virus removal performance, pure water permeation performance, and breaking strength were significantly reduced. The evaluation results are summarized in Table 2.
<Comparative Example 7>
Except that 10% by weight of vinylidene fluoride homopolymer having a melt viscosity of 2000 Pa · s was dissolved at a temperature of 140 ° C. at a rate of 90% by weight of N-methyl-2-pyrrolidone, and a solution viscosity of 13 Pa · s was obtained. The support membrane was coated under the same conditions as in Example 1 to obtain a composite hollow fiber membrane.

得られた複合中空糸膜の構造形態は、外径が1380μm、内径が742μm、分離機能層に孔径5μmを超えるマクロボイドが多数みられた。膜特性としては、純水透過性能が0.55m/m/hr、ウイルス除去性能が2.2log、破断強度が7.4MPa、破断伸度80%であり、琵琶湖水におけるろ過抵抗上昇度は、2.4×1012/mを示した。なお評価結果を表2にまとめた。 As for the structural form of the obtained composite hollow fiber membrane, many macrovoids having an outer diameter of 1380 μm, an inner diameter of 742 μm, and a pore size exceeding 5 μm were observed in the separation functional layer. As membrane characteristics, pure water permeation performance is 0.55 m 3 / m 2 / hr, virus removal performance is 2.2 log, breaking strength is 7.4 MPa, breaking elongation is 80%, and the degree of filtration resistance increase in Lake Biwa water Showed 2.4 × 10 12 / m 2 . The evaluation results are summarized in Table 2.

本発明によればコーティングによる簡便な方法で高いウイルス除去性能、純水透過性能、かつ物理的強度を有するコーティング層を積層したポリフッ化ビニリデン系複合膜を製造する方法、及びポリフッ化ビニリデン系複合膜を提供する。これにより水処理用途に使用した場合、透過水の水質向上と長期再生使用が可能になる。   INDUSTRIAL APPLICABILITY According to the present invention, a method for producing a polyvinylidene fluoride-based composite film in which a coating layer having high virus removal performance, pure water permeation performance, and physical strength is laminated by a simple method by coating, and the polyvinylidene fluoride-based composite film I will provide a. Thereby, when it uses for a water treatment use, the water quality improvement of permeated water and long-term reproduction use are attained.

Claims (2)

溶融粘度2500Pa・s以上のポリフッ化ビニリデン系樹脂を50重量%以上88重量%以下、かつセルロースエステルを12重量%以上50重量%以下含有し、平均孔径0.01μm以上1μm以下の三次元網目構造を有し、厚さが5μm以上100μm以下であって、実質的に5μm以上のマクロボイドを有しない分離機能層が、平均直径0.1μm以上5μm以下の球状構造を有するポリフッ化ビニリデン系支持膜に積層されて形成されていることを特徴とするポリフッ化ビニリデン系複合膜。   A three-dimensional network structure containing a polyvinylidene fluoride resin having a melt viscosity of 2500 Pa · s or more and 50 wt% or more and 88 wt% or less, a cellulose ester of 12 wt% or more and 50 wt% or less, and an average pore size of 0.01 μm or more and 1 μm or less. And a separation functional layer having a thickness of 5 μm or more and 100 μm or less and having substantially no macrovoid of 5 μm or more has a spherical structure having an average diameter of 0.1 μm or more and 5 μm or less. A polyvinylidene fluoride-based composite film, characterized in that it is laminated on the surface. 溶融粘度2500Pa・s以上のポリフッ化ビニリデン系樹脂を8重量%以上14重量%以下、かつセルロースエステルを2重量%以上12重量%以下含有し、溶液粘度が1Pa・s以上100Pa・s以下のコート溶液を、ポリフッ化ビニリデン系支持膜にコーティングしながら、2秒以下の空走時間を経て凝固浴中で凝固させることで、該ポリフッ化ビニリデン系支持膜に分離機能層を形成するポリフッ化ビニリデン系複合膜の製造方法。   A coating containing 8% by weight to 14% by weight of a polyvinylidene fluoride resin having a melt viscosity of 2500 Pa · s or more, 2% by weight to 12% by weight of a cellulose ester, and a solution viscosity of 1 Pa · s to 100 Pa · s. A polyvinylidene fluoride system in which a separation functional layer is formed on the polyvinylidene fluoride support membrane by coating the solution on the polyvinylidene fluoride support membrane and coagulating in a coagulation bath after a free running time of 2 seconds or less. A method for producing a composite membrane.
JP2009216681A 2008-09-19 2009-09-18 Polyvinylidene fluoride-based multiple membrane and method for producing the same Pending JP2010094670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009216681A JP2010094670A (en) 2008-09-19 2009-09-18 Polyvinylidene fluoride-based multiple membrane and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008240732 2008-09-19
JP2009216681A JP2010094670A (en) 2008-09-19 2009-09-18 Polyvinylidene fluoride-based multiple membrane and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010094670A true JP2010094670A (en) 2010-04-30

Family

ID=42256734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216681A Pending JP2010094670A (en) 2008-09-19 2009-09-18 Polyvinylidene fluoride-based multiple membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010094670A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304238A (en) * 2011-07-29 2012-01-04 中国科学院宁波材料技术与工程研究所 Renewable cellulose composite film and preparation method thereof
WO2012063669A1 (en) * 2010-11-09 2012-05-18 東レ株式会社 Process for production of separation membrane
WO2013073828A1 (en) * 2011-11-16 2013-05-23 엘지전자 주식회사 Hydrophilic polyvinylidene fluoride-based hollow-fiber separation membrane, and method for manufacturing same
WO2013180272A1 (en) 2012-06-01 2013-12-05 三菱レイヨン株式会社 Hollow porous film
KR101397796B1 (en) * 2012-09-28 2014-05-20 도레이케미칼 주식회사 PVDF asymmetric porous hollow fiber membrane
WO2014112689A1 (en) * 2013-01-21 2014-07-24 엘지전자 주식회사 Method for manufacturing hydrophilized hollow fiber membrane by continuous process using extruder
WO2019066061A1 (en) * 2017-09-28 2019-04-04 東レ株式会社 Porous hollow fiber membrane and method for producing same
CN112426889A (en) * 2020-11-16 2021-03-02 罗洪发 Modified PVC hollow fiber ultrafiltration membrane and preparation method thereof
US10974204B2 (en) 2016-06-17 2021-04-13 Asahi Kasei Kabushiki Kaisha Porous membrane and process for producing porous membrane
CN113457465A (en) * 2021-07-16 2021-10-01 桐乡市健民过滤材料有限公司 Polyvinylidene fluoride hollow fiber ultrafiltration membrane and preparation method thereof
WO2023054228A1 (en) 2021-09-28 2023-04-06 東レ株式会社 Porous membrane and method for manufacturing porous membrane
WO2024087772A1 (en) * 2022-10-27 2024-05-02 杭州科百特过滤器材有限公司 Virus-removing composite membrane and preparation process therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063669A1 (en) * 2010-11-09 2012-05-18 東レ株式会社 Process for production of separation membrane
CN102304238A (en) * 2011-07-29 2012-01-04 中国科学院宁波材料技术与工程研究所 Renewable cellulose composite film and preparation method thereof
KR101462939B1 (en) * 2011-11-16 2014-11-19 엘지전자 주식회사 Hydrophilic Polyvinylidene Fluoride Based Hollow Fiber Membrane and Preparing Method Thereof
WO2013073828A1 (en) * 2011-11-16 2013-05-23 엘지전자 주식회사 Hydrophilic polyvinylidene fluoride-based hollow-fiber separation membrane, and method for manufacturing same
WO2013180272A1 (en) 2012-06-01 2013-12-05 三菱レイヨン株式会社 Hollow porous film
US9694327B2 (en) 2012-06-01 2017-07-04 Mitsubishi Rayon Co., Ltd. Hollow porous membrane
KR101397796B1 (en) * 2012-09-28 2014-05-20 도레이케미칼 주식회사 PVDF asymmetric porous hollow fiber membrane
US9597830B2 (en) 2013-01-21 2017-03-21 Lg Electronics Inc. Method for manufacturing hydrophilized hollow fiber membrane by continuous process using extruder
WO2014112689A1 (en) * 2013-01-21 2014-07-24 엘지전자 주식회사 Method for manufacturing hydrophilized hollow fiber membrane by continuous process using extruder
US10974204B2 (en) 2016-06-17 2021-04-13 Asahi Kasei Kabushiki Kaisha Porous membrane and process for producing porous membrane
WO2019066061A1 (en) * 2017-09-28 2019-04-04 東レ株式会社 Porous hollow fiber membrane and method for producing same
CN111107926A (en) * 2017-09-28 2020-05-05 东丽株式会社 Porous hollow fiber membrane and method for producing same
CN112426889A (en) * 2020-11-16 2021-03-02 罗洪发 Modified PVC hollow fiber ultrafiltration membrane and preparation method thereof
CN113457465A (en) * 2021-07-16 2021-10-01 桐乡市健民过滤材料有限公司 Polyvinylidene fluoride hollow fiber ultrafiltration membrane and preparation method thereof
WO2023054228A1 (en) 2021-09-28 2023-04-06 東レ株式会社 Porous membrane and method for manufacturing porous membrane
WO2024087772A1 (en) * 2022-10-27 2024-05-02 杭州科百特过滤器材有限公司 Virus-removing composite membrane and preparation process therefor

Similar Documents

Publication Publication Date Title
JP5732719B2 (en) Separation membrane and manufacturing method thereof
JP2010094670A (en) Polyvinylidene fluoride-based multiple membrane and method for producing the same
KR101292485B1 (en) Fluororesin polymer separation membrane and process for producing the same
JP5066810B2 (en) Polymer separation membrane and production method thereof
WO2008001426A1 (en) Polymer separation membrane and process for producing the same
JP5050499B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
JPWO2019066061A1 (en) Porous hollow fiber membrane and its manufacturing method
JP2006297383A (en) Hollow fiber membrane and its manufacturing method
JP2009082882A (en) Polyvinylidene fluoride based composite hollow fiber membrane, and its manufacturing method
JP5292890B2 (en) Composite hollow fiber membrane
JP2012187575A (en) Composite membrane and method for manufacturing the same
JP2011036848A (en) Separation membrane made of polyvinylidene fluoride resin and method for manufacturing the same
JPWO2015104871A1 (en) Porous hollow fiber membrane, method for producing the same, and water purification method
JP5109263B2 (en) Fluororesin polymer separation membrane and method for producing the same
JP2006231274A (en) Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method
WO2012063669A1 (en) Process for production of separation membrane
WO2009119373A1 (en) Hollow-fiber membrane and process for production thereof
JPWO2019049858A1 (en) Filtration method using porous membrane
JP2008036559A (en) Method of oxidization processing fluororesin-based polymer separation membrane
JP2010075851A (en) Porous film and method for manufacturing the same
JP6832440B2 (en) Method of producing brewed liquor using a porous membrane
WO2022249839A1 (en) Separation membrane and method for producing same
JP2024049374A (en) Porous hollow fiber membrane and method for producing same
JP2018144005A (en) Porous hollow fiber membrane and manufacturing method of the same
JP2008036574A (en) Membrane module and water-treating method