JP2006297383A - Hollow fiber membrane and its manufacturing method - Google Patents

Hollow fiber membrane and its manufacturing method Download PDF

Info

Publication number
JP2006297383A
JP2006297383A JP2006082548A JP2006082548A JP2006297383A JP 2006297383 A JP2006297383 A JP 2006297383A JP 2006082548 A JP2006082548 A JP 2006082548A JP 2006082548 A JP2006082548 A JP 2006082548A JP 2006297383 A JP2006297383 A JP 2006297383A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
polyvinylidene fluoride
resin solution
fluoride resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006082548A
Other languages
Japanese (ja)
Other versions
JP4835221B2 (en
Inventor
Takashi Minaki
尚 皆木
Shinichi Minegishi
進一 峯岸
Masayuki Hanakawa
正行 花川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006082548A priority Critical patent/JP4835221B2/en
Publication of JP2006297383A publication Critical patent/JP2006297383A/en
Application granted granted Critical
Publication of JP4835221B2 publication Critical patent/JP4835221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow fiber membrane which uses a high chemical resistant polyfluorovinylidene resin, and has high strength-elongation capacity and high pure water permeability. <P>SOLUTION: The polyfluorovinylidene resin is dissolved in a solvent to obtain a polyfluorovinylidene resin solution. When the hollow fiber membrane having a fibrous structure oriented in the lengthwise direction of the hollow fiber membrane is manufactured by discharging the polyfluorovinylidene resin solution from a pipe sleeve into cooling liquid to cool and solidify it, the polyfluorovinylidene resin solution is held under a pressure of 0.5 MPa or higher, and at a temperature of (Tc+35°C) to (Tc+60°C) for 10 seconds or longer in a liquid supply line before the discharge from the pipe sleeve. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液状混合物の成分を選択分離するための中空糸膜およびその製造方法に関する。さらに詳しくは、排水処理、浄水処理、工業用水製造などの水処理に用いられる中空糸精密ろ過膜や中空糸限外ろ過膜およびその製造方法に関する。   The present invention relates to a hollow fiber membrane for selectively separating components of a liquid mixture and a method for producing the same. More specifically, the present invention relates to a hollow fiber microfiltration membrane and a hollow fiber ultrafiltration membrane used for water treatment such as wastewater treatment, water purification treatment, and industrial water production, and a production method thereof.

精密ろ過膜や限外ろ過膜などの分離膜は食品工業、医療、用水製造および排水処理分野などをはじめとして様々な方面で利用されている。特に近年では、飲料水製造分野すなわち浄水処理過程においても分離膜が使われるようになってきている。浄水処理などの水処理用途で用いられる場合、処理しなければならない水量が大きいため、単位体積あたり有効膜面積が大きい中空糸膜が一般的に用いられている。さらに該中空糸膜の純水透過性能が優れていれば、膜面積を減らすことが可能となり、装置がコンパクトになるため設備費が節約でき、膜交換費や設置面積の点からも有利になってくる。   Separation membranes such as microfiltration membranes and ultrafiltration membranes are used in various fields including food industry, medicine, water production and wastewater treatment. Particularly in recent years, separation membranes have been used in the field of drinking water production, that is, in the process of water purification. When used in water treatment applications such as water purification, a hollow fiber membrane having a large effective membrane area per unit volume is generally used because of the large amount of water that must be treated. Furthermore, if the hollow fiber membrane has excellent pure water permeation performance, the membrane area can be reduced, and the equipment can be made compact, so that the equipment cost can be saved, and the membrane replacement cost and installation area are advantageous. Come.

また、透過水の殺菌や膜のバイオファウリング防止の目的で次亜塩素酸ナトリウムなどの殺菌剤を膜モジュール部分に添加したり、膜の薬液洗浄として、塩酸、クエン酸、シュウ酸などの酸や水酸化ナトリウム水溶液などのアルカリ、塩素、界面活性剤などで膜を洗浄したりすることがあるため、近年では耐薬品性の高い素材としてポリフッ化ビニリデン系樹脂を用いた分離膜が開発され、利用されている。また、浄水処理分野では、クリプトスポリジウムなどの耐塩素性を有する病原性微生物が飲料水に混入する問題が20世紀終盤から顕在化してきており、中空糸膜には膜が切れて原水が混入しないような高い強伸度特性が要求されている。   In addition, a disinfectant such as sodium hypochlorite is added to the membrane module for the purpose of sterilizing the permeated water and preventing biofouling of the membrane, and acid such as hydrochloric acid, citric acid, and oxalic acid is used for cleaning the membrane. In recent years, separation membranes using polyvinylidene fluoride resin as a highly chemical-resistant material have been developed, as the membrane may be washed with alkali such as sodium hydroxide aqueous solution, chlorine, surfactant, etc. It's being used. Moreover, in the field of water purification treatment, a problem that pathogenic microorganisms having resistance to chlorine such as Cryptosporidium have been mixed in drinking water has become apparent since the end of the 20th century, and the hollow fiber membrane is cut and the raw water is not mixed. Such a high strength and elongation characteristic is required.

これまでに高透水性かつ高強伸度の耐薬品性の高い中空糸膜を課題とし、種々の方法が開示されている。例えば、特許文献1にはポリフッ化ビニリデン系樹脂を良溶媒に溶解したポリマー溶液を、ポリフッ化ビニリデン系樹脂の融点よりかなり低い温度で、口金から押し出して、ポリフッ化ビニリデン系樹脂の非溶媒を含む液体に接触させて非溶媒誘起相分離により非対称多孔構造を形成させる湿式溶液法が開示されている、しかしながら湿式溶液法では、膜厚方向に均一に相分離を起こすことが困難であり、マクロボイドを含む非対称三次元網目構造の膜となるため機械的な破断強度が十分でないという問題がある。また膜構造や膜性能に与える製膜条件因子が多いので、製膜工程の制御が難しく、再現性も乏しいといった欠点がある。   Up to now, various methods have been disclosed with the object of a hollow fiber membrane having high water permeability and high strength and high chemical resistance. For example, Patent Document 1 includes a polymer solution in which a polyvinylidene fluoride resin is dissolved in a good solvent and is extruded from a die at a temperature considerably lower than the melting point of the polyvinylidene fluoride resin, and includes a non-solvent of the polyvinylidene fluoride resin. A wet solution method is disclosed in which an asymmetric porous structure is formed by contact with a liquid by non-solvent induced phase separation. However, in the wet solution method, it is difficult to cause phase separation uniformly in the film thickness direction. There is a problem that the mechanical breaking strength is not sufficient because the film has an asymmetric three-dimensional network structure including. Further, since there are many film forming condition factors to give to the film structure and film performance, there are drawbacks that the film forming process is difficult to control and the reproducibility is poor.

さらに比較的近年では特許文献2で開示されているように、ポリフッ化ビニリデン系樹脂に無機微粒子と有機液状体を溶融混練しポリフッ化ビニリデン系樹脂の融点以上の温度で口金から押し出して冷却固化し、その後有機液状体と無機微粒子を抽出することにより多孔構造を形成する溶融抽出法がある。溶融抽出法の場合、空孔性の制御が容易で、マクロボイドは形成されず比較的均質な三次元網目構造の膜が得られ破断伸度は高いが、破断強度は十分でなく、また無機微粒子の分散性が悪いとピンホールのような欠陥を生じる可能性がある。さらに、溶融抽出法は、製造コストが極めて高くなるという欠点を有している。   In recent years, as disclosed in Patent Document 2, inorganic fine particles and an organic liquid are melt-kneaded into a polyvinylidene fluoride resin and extruded from the die at a temperature equal to or higher than the melting point of the polyvinylidene fluoride resin to be cooled and solidified. Then, there is a melt extraction method in which a porous structure is formed by extracting an organic liquid and inorganic fine particles. In the case of the melt extraction method, it is easy to control the porosity, a macro-void is not formed and a relatively homogeneous three-dimensional network structure film is obtained and the elongation at break is high, but the break strength is not sufficient, and inorganic If the dispersibility of the fine particles is poor, defects such as pinholes may occur. Furthermore, the melt extraction method has the disadvantage that the production cost is extremely high.

また特許文献3ではポリフッ化ビニリデン系樹脂および該樹脂の貧溶媒を含有し、温度が相分離温度以上であるポリフッ化ビニリデン系樹脂溶液を相分離温度以下の冷却浴に吐出し凝固させて中空糸膜を得る方法が開示されている。この方法により得られる中空糸膜は0.3〜30μmの球状構造を有しており強伸度性能は比較的高いが、必ずしも十分でない。   In Patent Document 3, a polyvinylidene fluoride resin and a poor solvent for the resin are contained, and a polyvinylidene fluoride resin solution having a temperature equal to or higher than the phase separation temperature is discharged into a cooling bath having a temperature equal to or lower than the phase separation temperature to be solidified. A method for obtaining a membrane is disclosed. The hollow fiber membrane obtained by this method has a spherical structure of 0.3 to 30 μm and has a relatively high strength elongation performance, but it is not always sufficient.

さらに高い破断強度を有する中空糸膜として、中空糸膜の長軸方向に配向した有機ポリマーの繊維状組織(フィブリル)で構成された膜が報告されている。例えば特許文献4ではポリエチレンを溶融賦形し、アニール処理を施し延伸する、いわゆる延伸開孔法により中空糸膜の長軸方向に配向したミクロフィブリルと中空糸膜の厚さ方向に配向したスタックドラメラとの結節部とから形成されるスリット状微細孔を有する中空繊維膜が開示されている。この膜は破断強度に優れ、製造過程で溶剤を使用しないことから安全性に優れるという特性を有している。しかしながら、溶融紡糸では微細孔を形成するために非常
に高倍率で延伸するので、破断伸度が低く、また十分な純水透過性能を得るには孔径が大きくなってしまう。
Further, as a hollow fiber membrane having a high breaking strength, a membrane composed of an organic polymer fibrous structure (fibril) oriented in the long axis direction of the hollow fiber membrane has been reported. For example, in Patent Document 4, microfibrils oriented in the long axis direction of a hollow fiber membrane and stacked layers oriented in the thickness direction of the hollow fiber membrane by a so-called stretch opening method in which polyethylene is melt-shaped, stretched by annealing, and stretched. A hollow fiber membrane having slit-like micropores formed from a knot portion with a lamella is disclosed. This film is excellent in breaking strength and has excellent safety characteristics because no solvent is used in the production process. However, in melt spinning, drawing is performed at a very high magnification in order to form micropores. Therefore, the elongation at break is low, and the pore diameter becomes large to obtain sufficient pure water permeation performance.

また特許文献5では有機ポリマーの溶液をノズルから押し出し、空中部を通過させ凝固浴で凝固させる紡糸工程において、空中部の水分量を高くし、かつ紡糸ドラフト(引取り速度/吐出線速度)を高くすることで、外表面およびその近傍が中空糸の長さ方向に高度に配向した繊維状組織で構成された中空糸膜が開示されている。しかしこの方法では破断強度を担う繊維状組織の層が非常に薄く、またその層が均一に形成されなければ、もっとも薄い部分に応力が集中し糸切れの原因になるという欠点がある。   Further, in Patent Document 5, in a spinning process in which an organic polymer solution is extruded from a nozzle, passed through the air and allowed to solidify in a coagulation bath, the water content in the air is increased, and a spinning draft (take-off speed / discharge linear speed) is set. A hollow fiber membrane is disclosed in which the outer surface and the vicinity thereof are composed of a fibrous structure highly oriented in the length direction of the hollow fiber by increasing the height. However, this method has a drawback that the fibrous structure layer that bears the breaking strength is very thin, and if the layer is not formed uniformly, stress concentrates on the thinnest part and causes thread breakage.

特公平1−22003号公報Japanese Patent Publication No. 1-2003 特許第2899903号公報Japanese Patent No. 2899903 国際公開第03/031038号パンフレットInternational Publication No. 03/031038 Pamphlet 特開昭57−66114号公報JP-A-57-66114 特許第2954327号公報Japanese Patent No. 2954327

本発明では上記のような問題点に鑑み、耐薬品性の高いポリフッ化ビニリデン系樹脂を用い、高い強伸度性能をもち、かつ高い純水透過性能を有する中空糸膜を提供することを目的とする。   In the present invention, in view of the problems as described above, an object is to provide a hollow fiber membrane having a high strength and elongation performance and a high pure water permeability performance using a polyvinylidene fluoride resin having high chemical resistance. And

上記課題を解決するための本発明は、
(1)ポリフッ化ビニリデン系樹脂からなる中空糸膜であって、中空糸膜の長さ方向に配向した直径が0.9μm以上3μm以下の繊維状組織が中空糸膜全体の30%以上を占めていることを特徴とする中空糸膜。
(2)ポリフッ化ビニリデン系樹脂からなる中空糸膜であって、中空糸膜の長さ方向に配向した直径が0.9μm以上1.4μm未満の繊維状組織が中空糸膜全体の30%以上を占めており、50kPa、25℃における純水透過性能が0.7m/m・hr以上、破断強度が13MPa以上、かつ破断伸度が150%以上である中空糸膜。
The present invention for solving the above problems is as follows.
(1) A hollow fiber membrane made of a polyvinylidene fluoride-based resin, and a fibrous structure having a diameter of 0.9 μm or more and 3 μm or less oriented in the length direction of the hollow fiber membrane accounts for 30% or more of the entire hollow fiber membrane A hollow fiber membrane characterized by comprising:
(2) A hollow fiber membrane made of a polyvinylidene fluoride-based resin, wherein a fibrous structure having a diameter oriented in the length direction of the hollow fiber membrane of 0.9 μm or more and less than 1.4 μm is 30% or more of the entire hollow fiber membrane A hollow fiber membrane having a pure water permeation performance at 50 kPa and 25 ° C. of 0.7 m 3 / m 2 · hr or more, a breaking strength of 13 MPa or more, and a breaking elongation of 150% or more.

(3)ポリフッ化ビニリデン系樹脂からなる中空糸膜であって、中空糸膜の長さ方向に配向した直径が1.4μm以上3μm以下の繊維状組織が中空糸膜全体の30%以上を占めており、50kPa、25℃における純水透過性能が2.0m/m・hr以上、破断強度が11MPa以上、かつ破断伸度が80%以上である中空糸膜。
(4)前記中空糸膜全体の0.5%以上30%未満を球状組織が占めていることを特徴とする(1)〜(3)のいずれかに記載の中空糸膜。
(3) A hollow fiber membrane made of a polyvinylidene fluoride-based resin, and a fibrous structure having a diameter of 1.4 μm to 3 μm oriented in the length direction of the hollow fiber membrane accounts for 30% or more of the entire hollow fiber membrane A hollow fiber membrane having a pure water permeation performance at 50 kPa and 25 ° C. of 2.0 m 3 / m 2 · hr or more, a breaking strength of 11 MPa or more, and a breaking elongation of 80% or more.
(4) The hollow fiber membrane according to any one of (1) to (3), wherein a spherical structure occupies 0.5% or more and less than 30% of the entire hollow fiber membrane.

(5)ポリフッ化ビニリデン系樹脂を溶媒に溶解してポリフッ化ビニリデン系樹脂溶液とし、該ポリフッ化ビニリデン系樹脂溶液を口金から冷却液体中に吐出することにより冷却固化せしめて、中空糸膜の長さ方向に配向した繊維状組織を有する中空糸膜を製造するに際し、前記ポリフッ化ビニリデン系樹脂溶液を口金から吐出する前の送液ラインのいずれかの箇所において、前記ポリフッ化ビニリデン系樹脂溶液に0.5MPa以上の圧力を加えつつ、前記ポリフッ化ビニリデン系樹脂溶液の温度Tが前記ポリフッ化ビニリデン系樹脂溶液の結晶化温度をTcとした際にTc+35℃≦T≦Tc+60℃を満たした状態で前記ポリフッ化ビニリデン系樹脂溶液を10秒以上滞留させる工程を有する中空糸膜の製造方法。   (5) A polyvinylidene fluoride resin is dissolved in a solvent to obtain a polyvinylidene fluoride resin solution, and the polyvinylidene fluoride resin solution is cooled and solidified by discharging the polyvinylidene fluoride resin solution from a die into a cooling liquid. When producing a hollow fiber membrane having a fibrous structure oriented in the vertical direction, the polyvinylidene fluoride resin solution is added to the polyvinylidene fluoride resin solution at any location on the liquid feed line before discharging the polyvinylidene fluoride resin solution from the die. While applying a pressure of 0.5 MPa or more, the temperature T of the polyvinylidene fluoride resin solution satisfies Tc + 35 ° C. ≦ T ≦ Tc + 60 ° C. when the crystallization temperature of the polyvinylidene fluoride resin solution is Tc. A method for producing a hollow fiber membrane, comprising a step of retaining the polyvinylidene fluoride resin solution for 10 seconds or more.

(6)前記ポリフッ化ビニリデン系樹脂溶液を口金から吐出する前の送液ラインのいずれかの箇所においてポリフッ化ビニリデン系樹脂溶液に0.5MPa以上の圧力を加えるに際し、2以上のポンプで前記ポリフッ化ビニリデン系樹脂溶液を加圧することを特徴とする(5)に記載の中空糸膜の製造方法。
により構成される。
(6) When a pressure of 0.5 MPa or more is applied to the polyvinylidene fluoride resin solution at any part of the liquid feed line before the polyvinylidene fluoride resin solution is discharged from the die, the polyvinyl fluoride resin solution is pumped by two or more pumps. The method for producing a hollow fiber membrane according to (5), wherein the vinylidene fluoride resin solution is pressurized.
Consists of.

本発明によれば、化学的および物理的耐久性が非常に高く、かつ高い純水透過性能を有する中空糸膜が提供される。   According to the present invention, a hollow fiber membrane having very high chemical and physical durability and high pure water permeability is provided.

本発明におけるポリフッ化ビニリデン系樹脂とはフッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂を意味し、複数の種類のフッ化ビニリデン共重合体を含有しても構わない。フッ化ビニリデン共重合体は、フッ化ビニリデン残基構造を有するポリマーであり、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマーなどとの共重合体である。かかる共重合体としては、例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。また、本発明の効果を損なわない程度に、前記フッ素系モノマー以外の例えばエチレンなどのモノマーが共重合されていても良い。   The polyvinylidene fluoride resin in the present invention means a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer, and may contain a plurality of types of vinylidene fluoride copolymers. The vinylidene fluoride copolymer is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and other fluorine-based monomers. Examples of the copolymer include a copolymer of vinylidene fluoride and at least one selected from vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, and trifluoroethylene chloride. Further, a monomer such as ethylene other than the fluorine-based monomer may be copolymerized to such an extent that the effects of the present invention are not impaired.

本発明の中空糸膜の長さ方向断面の電子顕微鏡写真(1000倍)を図1に示す。   The electron micrograph (1000 times) of the cross section of the length direction of the hollow fiber membrane of this invention is shown in FIG.

本発明の中空糸膜は、中空糸膜の長さ方向に配向したポリフッ化ビニリデン系樹脂の繊維状組織を有することが特徴である。ここで組織とは固形物である。また、中空糸膜の長さ方向に配向したとは当該組織の長さ方向と中空糸膜の長さ方向とがなす角度のうち鋭角である部分の角度が20度以内の場合と定義し、繊維状組織とはアスペクト比(長さ/直径)が3以上である組織と定義する。ここで長さとは当該組織の最長径を、直径とは当該組織の中空糸膜の幅方向の最長径を指すものとする。   The hollow fiber membrane of the present invention is characterized by having a fibrous structure of polyvinylidene fluoride resin oriented in the length direction of the hollow fiber membrane. Here, the structure is a solid substance. In addition, the orientation in the length direction of the hollow fiber membrane is defined as the case where the angle of the acute portion of the angle formed by the length direction of the tissue and the length direction of the hollow fiber membrane is within 20 degrees, A fibrous structure is defined as a structure having an aspect ratio (length / diameter) of 3 or more. Here, the length means the longest diameter of the tissue, and the diameter means the longest diameter in the width direction of the hollow fiber membrane of the tissue.

繊維状組織の直径は0.9μm以上3μm以下であることが必要である。繊維状組織の直径が0.9μm未満の場合、繊維状組織間の空隙が小さくなり純水透過性能が著しく低下する。繊維状組織の直径が3μmを超える場合、繊維状組織間の空隙が過度に大きくなり、阻止性能が低下することがある。また繊維状組織の直径が0.9μm以上3μm以下であれば、高い強伸度性能と高い純水透過性能が得られるが、繊維状組織の直径が大きいほど強伸度性能は低く、純水透過性能が高くなる傾向にある。そのため繊維状組織の直径を0.9μm以上1.4μm未満にすることで、強伸度性能を優先的に高くすることができ、1.4μm以上3μm以下にすることで、純水透過性能を優先的に高くすることができる。   The diameter of the fibrous tissue needs to be 0.9 μm or more and 3 μm or less. When the diameter of the fibrous structure is less than 0.9 μm, the gap between the fibrous structures becomes small, and the pure water permeation performance is significantly lowered. When the diameter of the fibrous structure exceeds 3 μm, the gap between the fibrous structures becomes excessively large, and the blocking performance may be lowered. Moreover, if the diameter of the fibrous structure is 0.9 μm or more and 3 μm or less, high strength elongation performance and high pure water permeation performance can be obtained. However, the larger the diameter of the fibrous structure, the lower the strength elongation performance. The transmission performance tends to be high. Therefore, by setting the diameter of the fibrous structure to 0.9 μm or more and less than 1.4 μm, the high elongation performance can be preferentially increased, and by making the diameter of 1.4 μm or more and 3 μm or less, the pure water permeation performance is Can be preferentially high.

また、繊維状組織は当該繊維状組織以外の繊維状組織ないしその他の組織と部分的に結合していてもよい。その場合は図2の模式図(1)〜(3)に従い、前記繊維状組織に該当するか否かを判定すればよい。図2において点線は組織の境界線とする。(1)のように組織の境界線が確認できる場合、それぞれに分けて判定する。(2)のように繊維状組織と判定される組織4が確認できる場合、その長さ方向に延長した部分に当たる組織も同一の繊維状組織として判定する(この場合、繊維状組織の長さは2で表される)。(3)のようにアスペクト比は3未満であるが繊維状組織の一部と見られる組織5をその長さ方
向に延長したとき、当該組織以外の繊維状組織の一部と見られる組織5につながる場合、その両組織と延長した部分に当たる組織はすべて同一の組織として判定する(この場合、繊維状組織の長さは2で表される)。
Further, the fibrous tissue may be partially bonded to a fibrous tissue other than the fibrous tissue or other tissues. In that case, what is necessary is just to determine whether it corresponds to the said fibrous structure according to the schematic diagram (1)-(3) of FIG. In FIG. 2, the dotted line is the boundary line of the tissue. When the boundary line of the tissue can be confirmed as in (1), it is determined separately. When the structure 4 determined as a fibrous structure can be confirmed as in (2), the structure corresponding to the portion extending in the length direction is also determined as the same fibrous structure (in this case, the length of the fibrous structure is 2). As shown in (3), when the structure 5 that has an aspect ratio of less than 3 but is regarded as a part of the fibrous structure is extended in the length direction, the structure 5 is regarded as a part of the fibrous structure other than the structure. In this case, all of the tissues and the tissue corresponding to the extended portion are determined as the same tissue (in this case, the length of the fibrous tissue is represented by 2).

さらに、本発明の中空糸膜は、繊維状組織の他に長径が0.9μm以上3μm以下の球状組織を有することが好ましい。球状組織を含有することで繊維状組織間に形成される空隙が増え、純水透過性能が向上する。ここで球状組織とは真円率(長径/短径)が2以下である組織とする。   Further, the hollow fiber membrane of the present invention preferably has a spherical structure having a major axis of 0.9 μm or more and 3 μm or less in addition to the fibrous structure. By containing the spherical structure, voids formed between the fibrous structures are increased, and the pure water permeation performance is improved. Here, the spherical structure is a structure having a perfect circle ratio (major axis / minor axis) of 2 or less.

また、球状組織は近接する当該球状組織以外の球状組織、繊維状組織、ないしその他の組織と部分的に結合していてもよい。その場合、球状組織の一部と考えられる組織の長径7および短径8は図2の模式図(4)〜(6)に示すように直線(点線)を引いて測定し、その真円率が2以下であればその組織は球状組織とする。また球状組織とされた場合、点線を組織の境界線とする。   In addition, the spherical structure may be partially bonded to a spherical structure other than the adjacent spherical structure, a fibrous structure, or other tissues. In this case, the major axis 7 and the minor axis 8 of the tissue considered to be a part of the spherical structure are measured by drawing a straight line (dotted line) as shown in the schematic diagrams (4) to (6) of FIG. Is 2 or less, the structure is a spherical structure. When the structure is a spherical structure, the dotted line is the boundary line of the structure.

前記繊維状組織および球状組織のいずれにも当てはまらない組織は、本発明の繊維状組織でも球状組織でもない組織とする。また、電子顕微鏡写真の奥行き方向に2つの組織が重なって見える場合、その奥側の組織は見えている部分で判定し、手前側の組織の輪郭線をそれら2つの組織の境界線とする。   The tissue that does not correspond to either the fibrous tissue or the spherical tissue is a tissue that is neither the fibrous tissue nor the spherical tissue of the present invention. When two tissues appear to overlap each other in the depth direction of the electron micrograph, the tissue on the back side is determined by the visible part, and the outline of the tissue on the near side is used as the boundary line between the two tissues.

なお、判定に用いられる電子顕微鏡写真の端で組織が途切れている場合、その端を組織の境界線としても占有率に実質的な差は無いので、便宜上そのように取り扱うこととする。   Note that when the tissue is interrupted at the end of the electron micrograph used for the determination, there is no substantial difference in the occupation ratio even if the end is used as the boundary line of the tissue.

本発明の中空糸膜は、中空糸膜の長さ方向に配向した直径が0.9μm以上3μm以下の繊維状組織が中空糸膜全体の30%以上を占めていることが必要であり、好ましくは50%以上である。繊維状組織が中空糸膜全体の30%未満しか占めていない場合、十分な強伸度性能が得られない。また、球状組織は、中空糸膜全体の0.5%以上30%未満を占めていることが好ましく、より好ましくは0.5%以上10%未満である。球状組織が中空糸膜全体の30%以上を占めている場合、十分な強伸度性能が得られないことがあり、また球状組織が中空糸膜全体の0.5%未満しか占めていない場合、十分な純水透過性能が得られないことがあるためである。   In the hollow fiber membrane of the present invention, it is necessary that the fibrous structure having a diameter oriented in the length direction of the hollow fiber membrane of 0.9 μm or more and 3 μm or less occupies 30% or more of the entire hollow fiber membrane, Is 50% or more. When the fibrous structure accounts for less than 30% of the entire hollow fiber membrane, sufficient strength and elongation performance cannot be obtained. Further, the spherical structure preferably accounts for 0.5% or more and less than 30% of the entire hollow fiber membrane, and more preferably 0.5% or more and less than 10%. When the spherical structure occupies 30% or more of the entire hollow fiber membrane, sufficient strength and elongation performance may not be obtained, and when the spherical structure occupies less than 0.5% of the entire hollow fiber membrane This is because sufficient pure water permeation performance may not be obtained.

ここで各組織の占有率(%)は中空糸膜の長さ方向の断面を走査型電子顕微鏡等を用いて繊維状組織および球状組織が明瞭に確認できる倍率、好ましくは1000〜5000倍で、任意の10カ所以上、好ましくは20カ所以上の写真を撮影し、{(その組織の占める面積の平均)/(写真全体の面積の平均)}×100で求められる。ここで、写真全体の面積および組織の占める面積は、写真撮影された各組織の対応する重量に置き換えて求める方法などが好ましく採用できる。すなわち、撮影された写真を紙に印刷し、写真全体に対応する紙の重量およびそこから切り取った組織部分に対応する紙の重量を測定すれば
よい。
Here, the occupation ratio (%) of each structure is a magnification at which the fibrous structure and the spherical structure can be clearly confirmed using a scanning electron microscope or the like in the longitudinal direction of the hollow fiber membrane, preferably 1000 to 5000 times. Photographs are taken at arbitrary 10 or more, preferably 20 or more, and {(average of the area occupied by the tissue) / (average of the area of the entire photograph)} × 100. Here, a method of obtaining the area of the entire photograph and the area occupied by the tissue by replacing it with the corresponding weight of each photographed tissue can be preferably employed. That is, the photographed photograph is printed on paper, and the weight of the paper corresponding to the entire photograph and the weight of the paper corresponding to the tissue portion cut from the photograph are measured.

なお、中空糸膜の外径と膜厚は、膜の破断強度を損なわない範囲で、中空糸膜内部の長さ方向の圧力損失を考慮し、膜モジュールとして純水透過性能が目標値になるように決めればよい。すなわち、中空糸膜の外径が大きいと圧力損失の点で有利になるが、中空糸膜の充填本数が減り膜面積の点で不利になる。一方、中空糸膜の外径が小さい場合は中空糸膜の充填本数を増やせるので膜面積の点で有利になるが、圧力損失の点で不利になる。また、膜厚は膜の破断強度を損なわない範囲で小さい方が好ましい。従って、中空糸膜の外径は0.3〜3mm、より好ましくは0.5〜2mmであり、中空糸膜の膜厚は外径の0
.08〜0.4倍、より好ましくは0.1〜0.3倍である。
The outer diameter and the film thickness of the hollow fiber membrane are within the range that does not impair the breaking strength of the membrane. You can decide as follows. That is, when the outer diameter of the hollow fiber membrane is large, it is advantageous in terms of pressure loss, but the number of filled hollow fiber membranes is reduced, which is disadvantageous in terms of membrane area. On the other hand, when the outer diameter of the hollow fiber membrane is small, the number of filled hollow fiber membranes can be increased, which is advantageous in terms of membrane area but disadvantageous in terms of pressure loss. Further, the film thickness is preferably small as long as the breaking strength of the film is not impaired. Therefore, the outer diameter of the hollow fiber membrane is 0.3 to 3 mm, more preferably 0.5 to 2 mm, and the thickness of the hollow fiber membrane is 0% of the outer diameter.
. It is 08 to 0.4 times, more preferably 0.1 to 0.3 times.

本発明の中空糸膜は、50kPa、25℃における純水透過性能が0.7m/m・hr以上、破断強度が11MPa以上、かつ破断伸度が80%以上が必要である。より好ましくは50kPa、25℃における純水透過性能が0.7m/m・hr以上、破断強度が13MPa以上、かつ破断伸度が150%以上、あるいは50kPa、25℃における純水透過性能が2.0m/m・hr以上、破断強度が11MPa以上、かつ破断伸度が80%以上である。 The hollow fiber membrane of the present invention requires a pure water permeation performance at 50 kPa and 25 ° C. of 0.7 m 3 / m 2 · hr or more, a breaking strength of 11 MPa or more, and a breaking elongation of 80% or more. More preferably, the pure water permeation performance at 50 kPa and 25 ° C. is 0.7 m 3 / m 2 · hr or more, the breaking strength is 13 MPa or more and the elongation at break is 150% or more, or the pure water permeation performance at 50 kPa and 25 ° C. 2.0 m 3 / m 2 · hr or more, breaking strength is 11 MPa or more, and breaking elongation is 80% or more.

なお、水処理用途に好適な高い純水透過性能と高い強伸度性能を両立させた高性能の中空糸膜とするという観点から、50kPa、25℃における純水透過性能が0.7m/m・hr以上5.0m/m・hr以下、破断強度が11MPa以上25MPa以下、かつ破断伸度が80%以上500%以下の範囲、より好ましくは50kPa、25℃における純水透過性能が0.7m/m・hr以上5.0m/m・hr以下、破断強度が13MPa以上25MPa以下、かつ破断伸度が150%以上500%以下の範囲、あるいは50kPa、25℃における純水透過性能が2.0m/m・hr以上5.0m/m・hr以下、破断強度が11MPa以上25MPa以下、かつ破断伸度が80%以上500%以下の範囲とすることである。 The pure water permeation performance at 50 kPa and 25 ° C. is 0.7 m 3 / from the viewpoint of a high-performance hollow fiber membrane that has both high pure water permeation performance suitable for water treatment and high strength and elongation performance. m 2 · hr to 5.0 m 3 / m 2 · hr or less, breaking strength of 11 MPa to 25 MPa, and elongation at break of 80% to 500%, more preferably 50 kPa, pure water permeability at 25 ° C Is 0.7 m 3 / m 2 · hr or more and 5.0 m 3 / m 2 · hr or less, the breaking strength is 13 MPa or more and 25 MPa or less, and the elongation at break is 150% or more and 500% or less, or 50 kPa at 25 ° C. pure water permeability is 2.0m 3 / m 2 · hr or more 5.0m 3 / m 2 · hr or less, breaking strength 11MPa or 25MPa or less, and a breaking elongation of 80% or more 500% or more Is that it in the range.

純水透過性能の測定方法は、中空糸膜1〜10本程度からなる長さ約20cmの小型モジュールを作製し、温度25℃、ろ過差圧16kPaの条件で逆浸透膜処理水を送液し、一定時間の透過水量(m)を測定して得た値を、単位時間(hr)、単位有効膜面積(m)、50kPa当たりに換算して算出した。破断強度と破断伸度の測定方法は、引張試験機を用いて、逆浸透膜処理水で湿潤した状態の試験長50mmの膜をフルスケール5kgの荷重でクロスヘッドスピード50mm/分にて測定し、求めた。 The pure water permeation performance is measured by preparing a small module of about 20 cm in length consisting of about 1 to 10 hollow fiber membranes, and sending reverse osmosis membrane treated water under conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa. The value obtained by measuring the permeated water amount (m 3 ) for a certain time was calculated by converting per unit time (hr), unit effective membrane area (m 2 ), and 50 kPa. The measurement method of the breaking strength and breaking elongation was measured by using a tensile tester and measuring a membrane with a test length of 50 mm wetted with reverse osmosis membrane-treated water under a full scale load of 5 kg at a crosshead speed of 50 mm / min. Asked.

本発明では、例えば以下に示す製造方法で中空糸膜を製造することにより、高い純水透過性能、高い強伸度性能を備えた中空糸膜を得ることができるのである。
まずポリフッ化ビニリデン系樹脂を20〜60重量%程度の比較的高濃度で、該樹脂の貧溶媒もしくは良溶媒に結晶化温度以上の温度で溶解する。樹脂濃度は高くなれば高い強伸度特性を有する中空糸膜が得られるが、高すぎると製造した中空糸膜の空孔率が小さくなり、純水透過性能が低下する。また調整した樹脂溶液の粘度が適正範囲になければ、中空糸膜に成形することができない。
In the present invention, for example, by producing a hollow fiber membrane by the production method described below, a hollow fiber membrane having high pure water permeation performance and high strength elongation performance can be obtained.
First, a polyvinylidene fluoride resin is dissolved at a relatively high concentration of about 20 to 60% by weight in a poor solvent or a good solvent of the resin at a temperature higher than the crystallization temperature. If the resin concentration is high, a hollow fiber membrane having high strength and elongation characteristics can be obtained. However, if the resin concentration is too high, the porosity of the produced hollow fiber membrane is reduced and the pure water permeation performance is lowered. If the viscosity of the adjusted resin solution is not within an appropriate range, it cannot be formed into a hollow fiber membrane.

またここで貧溶媒とは、ポリフッ化ビニリデン系樹脂を60℃未満の低温では5重量%以上溶解させることができないが、60℃以上かつポリフッ化ビニリデン系樹脂の融点以下(例えばポリフッ化ビニリデン系樹脂がポリフッ化ビニリデンホモポリマー単独で構成される場合は178℃程度)の高温領域で5重量%以上溶解させることができる溶媒のことである。貧溶媒に対し60℃未満の低温でもポリフッ化ビニリデン系樹脂を5重量%以上溶解させることが可能な溶媒を良溶媒、ポリフッ化ビニリデン系樹脂の融点または溶媒の沸点まで、ポリフッ化ビニリデン系樹脂溶解も膨潤もさせない溶媒を非溶媒と定義する。   Here, the poor solvent means that the polyvinylidene fluoride resin cannot be dissolved by 5% by weight or more at a low temperature of less than 60 ° C., but it is 60 ° C. or more and below the melting point of the polyvinylidene fluoride resin (for example, polyvinylidene fluoride resin). Is a solvent that can be dissolved by 5 wt% or more in a high temperature region of about 178 ° C. when the polyvinylidene fluoride homopolymer is used alone. Solvent capable of dissolving 5% by weight or more of a polyvinylidene fluoride resin at a low temperature of less than 60 ° C. with respect to a poor solvent, dissolves the polyvinylidene fluoride resin to a good solvent, the melting point of the polyvinylidene fluoride resin or the boiling point of the solvent A solvent that does not swell nor swell is defined as a non-solvent.

ここで本発明に用いられるポリフッ化ビニリデン系樹脂の貧溶媒としてはシクロヘキサノン、イソホロン、γ−ブチロラクトン、メチルイソアミルケトン、プロピレンカーボネート、等の中鎖長のアルキルケトン、エステル、および有機カーボネート等およびその混合溶媒が挙げられる。また良溶媒としてはN−メチル−2−ピロリドン、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド等およびその混合溶媒が挙げられる。   Here, the poor solvent of the polyvinylidene fluoride resin used in the present invention is cyclohexanone, isophorone, γ-butyrolactone, methyl isoamyl ketone, propylene carbonate, etc., medium chain length alkyl ketone, ester, organic carbonate, etc. A solvent is mentioned. Examples of good solvents include N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylacetamide, dimethylformamide, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethyl urea, trimethyl phosphate, and other lower alkyl ketones, esters, amides, and mixed solvents thereof. Can be mentioned.

さらに非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、メタノール、エタノール、四塩化炭素、o−ジクロルベンゼン、トリクロルエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、脂肪族多価アルコール、芳香族多価アルコール、塩素化炭化水素、またはその他の塩素化有機液体およびその混合溶媒などが挙げられる。   Further non-solvents include water, hexane, pentane, benzene, toluene, methanol, ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol, pentanediol. , Hexanediol, aliphatic hydrocarbons such as low molecular weight polyethylene glycol, aromatic hydrocarbons, aliphatic polyhydric alcohols, aromatic polyhydric alcohols, chlorinated hydrocarbons, or other chlorinated organic liquids and mixed solvents thereof Is mentioned.

またここで、本発明の中空糸膜は温度変化により相分離を誘起する熱誘起相分離法により製造される。熱誘起相分離法により製造する場合、主に2種類の相分離機構が利用される。一つは高温時に均一に溶解したポリマー溶液が、降温時に溶液の溶解能力低下が原因でポリマー濃厚相と希薄相に分離し、その後構造が結晶化により固定される液−液相分離法、もう一つが高温時に均一に溶解したポリマー溶液が、降温時にポリマーの結晶化が起こりポリマー固体相と溶媒相に相分離する固−液相分離法である。前者の方法では主に三次元網目構造が、後者の方法では主に球状組織で構成された球状構造が形成される。   Here, the hollow fiber membrane of the present invention is produced by a thermally induced phase separation method in which phase separation is induced by a temperature change. In the case of producing by a thermally induced phase separation method, two types of phase separation mechanisms are mainly used. One is a liquid-liquid phase separation method in which a polymer solution that has been uniformly dissolved at high temperature is separated into a polymer rich phase and a dilute phase due to a decrease in solution dissolving ability at the time of cooling, and then the structure is fixed by crystallization. One is a solid-liquid phase separation method in which a polymer solution that is uniformly dissolved at a high temperature causes crystallization of the polymer when the temperature falls and phase-separates into a polymer solid phase and a solvent phase. The former method mainly forms a three-dimensional network structure, and the latter method forms a spherical structure mainly composed of a spherical structure.

本発明では後者の相分離機構が利用され、固−液相分離が誘起される樹脂濃度および溶媒を選択する必要がある。前者の相分離機構では本発明のような中空糸膜の長さ方向に配向した直径が0.9μm以上3μm以下の繊維状組織を発現させることは困難である。これは構造が固定される前の相分離でポリマー濃厚相は非常に微細な相を形成するので、繊維状組織の直径を0.9μm以上にすることができないためである。このことから、前者の相分離機構では強伸度性能と純水透過性能を両立させることができない。   In the present invention, the latter phase separation mechanism is used, and it is necessary to select a resin concentration and a solvent that induce solid-liquid phase separation. In the former phase separation mechanism, it is difficult to develop a fibrous structure having a diameter of 0.9 μm or more and 3 μm or less oriented in the length direction of the hollow fiber membrane as in the present invention. This is because the polymer-rich phase forms a very fine phase by phase separation before the structure is fixed, and thus the diameter of the fibrous structure cannot be made 0.9 μm or more. For this reason, the former phase separation mechanism cannot achieve both high elongation performance and pure water permeation performance.

次に本発明では、ポリフッ化ビニリデン系樹脂を溶媒に溶解してポリフッ化ビニリデン系樹脂溶液とし、該ポリフッ化ビニリデン系樹脂溶液を中空糸膜紡糸用の二重管式口金の外側の管から吐出し、中空部形成液体を二重管式口金の内側の管から吐出しながら冷却浴中で冷却固化して中空糸膜を得る。このとき図3に示したように、前記樹脂溶液を口金11から吐出する前の送液ライン12のいずれかの箇所13において前記樹脂溶液が0.5MPa以上、より好ましくは1.0MPa以上の圧力を加えられ、かかる状態を維持しつつ、前記ポリフッ化ビニリデン系樹脂溶液の温度Tが、前記ポリフッ化ビニリデン系樹脂溶液の結晶化温度をTcとした際にTc+35℃≦T≦Tc+60℃、より好ましくはTc+40℃≦T≦Tc+55℃を満たした状態で、前記ポリフッ化ビニリデン系樹脂溶液を10秒以上、より好ましくは20秒以上滞留させる工程を有する。   Next, in the present invention, the polyvinylidene fluoride resin is dissolved in a solvent to obtain a polyvinylidene fluoride resin solution, and the polyvinylidene fluoride resin solution is discharged from the outer tube of the double tube die for hollow fiber membrane spinning. Then, the hollow portion forming liquid is obtained by cooling and solidifying in a cooling bath while discharging the hollow portion forming liquid from the tube inside the double tube type die. At this time, as shown in FIG. 3, the pressure of the resin solution is 0.5 MPa or more, more preferably 1.0 MPa or more in any part 13 of the liquid feed line 12 before the resin solution is discharged from the die 11. While maintaining this state, the temperature T of the polyvinylidene fluoride resin solution is preferably Tc + 35 ° C. ≦ T ≦ Tc + 60 ° C. when the crystallization temperature of the polyvinylidene fluoride resin solution is Tc. Has a step of retaining the polyvinylidene fluoride resin solution for 10 seconds or more, more preferably 20 seconds or more in a state where Tc + 40 ° C. ≦ T ≦ Tc + 55 ° C. is satisfied.

加圧手段としては特に限定されないが、図3に示したように送液ライン12に2以上のポンプ9および10を設置し、その間のいずれかの箇所13で加圧する方法が好ましく採用される。ここでポンプとしては、ピストンポンプ、プランジャーポンプ、ダイヤフラムポンプ、ウィングポンプ、ギヤーポンプ、ロータリーポンプ、スクリューポンプなどが挙げられ、2種類以上を用いても構わない。また、前記箇所13でのポリフッ化ビニリデン系樹脂溶液の滞留時間は、吐出速度および前記箇所13内の体積により調整することができる。この工程により結晶化が起こりやすい条件で圧力が加えられるため、結晶の成長が
異方性を有し中空糸膜の長さ方向に配向した繊維状組織が発現したと推測される。
Although it does not specifically limit as a pressurizing means, As shown in FIG. 3, the method of installing two or more pumps 9 and 10 in the liquid feeding line 12, and pressurizing in the somewhere 13 between them is employ | adopted preferably. Here, examples of the pump include a piston pump, a plunger pump, a diaphragm pump, a wing pump, a gear pump, a rotary pump, and a screw pump, and two or more types may be used. Further, the residence time of the polyvinylidene fluoride resin solution at the location 13 can be adjusted by the discharge speed and the volume in the location 13. Since pressure is applied under conditions where crystallization is likely to occur in this step, it is presumed that a fibrous structure in which the crystal growth is anisotropic and oriented in the length direction of the hollow fiber membrane is expressed.

ここで、前記箇所13でのポリフッ化ビニリデン系樹脂溶液の温度がT>Tc+60℃、または前記箇所13でポリフッ化ビニリデン系樹脂溶液に加えられる圧力が0.5MPa未満、または前記箇所13でのポリフッ化ビニリデン系樹脂溶液の滞留時間が10秒未満では得られる中空糸膜の構造が球状組織で構成されやすく、十分な強伸度性能が得られない。また、前記箇所13でのポリフッ化ビニリデン系樹脂溶液の温度は、より低い方が繊維状組織が形成されやすく繊維状組織の直径が小さくなる傾向にあり、T<Tc+35℃では繊維状組織の直径が0.9μm未満、あるいは球状組織の占有率が0.5%未満になるため十分な純水透過性能が得られなかったり、粘度が高くなり、口金からのポリフッ化ビニリデン系樹脂溶液の吐出が困難となり、結果的に中空糸膜が製造できなくなったりする。   Here, the temperature of the polyvinylidene fluoride resin solution at the location 13 is T> Tc + 60 ° C., or the pressure applied to the polyvinylidene fluoride resin solution at the location 13 is less than 0.5 MPa, or the polyvinyl fluoride at the location 13 If the residence time of the vinylidene chloride resin solution is less than 10 seconds, the structure of the obtained hollow fiber membrane is likely to be composed of a spherical structure, and sufficient strength and elongation performance cannot be obtained. In addition, the lower the temperature of the polyvinylidene fluoride resin solution at the location 13, the easier it is to form a fibrous structure, and the diameter of the fibrous structure tends to be small. At T <Tc + 35 ° C., the diameter of the fibrous structure Is less than 0.9 μm, or the occupation ratio of the spherical structure is less than 0.5%, sufficient pure water permeation performance cannot be obtained, the viscosity becomes high, and the discharge of the polyvinylidene fluoride resin solution from the die is possible. As a result, the hollow fiber membrane cannot be manufactured.

ここで前記ポリフッ化ビニリデン系樹脂溶液の結晶化温度Tcは次のように定義する。示差走査熱量測定(DSC測定)装置を用いて、ポリフッ化ビニリデン系樹脂と溶媒など製膜ポリマー原液組成と同組成の混合物を密封式DSC容器に密封し、昇温速度10℃/minで溶解温度まで昇温し30分保持して均一に溶解した後に、降温速度10℃/minで降温する過程で観察される結晶化ピークの立ち上がり温度をTcとする。   Here, the crystallization temperature Tc of the polyvinylidene fluoride resin solution is defined as follows. Using a differential scanning calorimetry (DSC measurement) apparatus, a mixture of the same composition as the film forming polymer stock solution composition such as a polyvinylidene fluoride resin and a solvent is sealed in a hermetically sealed DSC container, and the melting temperature is 10 ° C./min. The temperature of the crystallization peak is observed, and the rising temperature of the crystallization peak observed in the process of lowering the temperature at a rate of temperature decrease of 10 ° C./min after maintaining for 30 minutes and uniformly dissolving is Tc.

次に本発明に用いられる冷却浴には、熱誘起相分離による固−液相分離を誘起させる必要があることから、結晶化温度より20℃以上低く、濃度が50〜95重量%の貧溶媒あるいは良溶媒と、濃度が5〜50重量%の非溶媒からなる混合液体が好ましい。さらに貧溶媒としては樹脂溶液と同じ貧溶媒を用いることが好ましく採用される。ただし高濃度の良溶媒を用いるときは温度を十分に低くしないと凝固しなかったり、凝固が遅く中空糸膜表面が平滑にならなかったりする場合がある。また、前記の濃度範囲を外れない限りにおいて、貧溶媒、良溶媒を混合しても良い。ただし、高濃度の非溶媒を用いると中空糸膜の外表面に緻密層が形成され透水性が著しく低下する場合がある。また、中空部形成液体には、冷却浴同様、濃度が50〜95重量%の貧溶媒あるいは良溶媒と、濃度が5〜50重量%の非溶媒からなる混合液体が好ましい。さらに貧溶媒としては樹脂溶液と同じ貧溶媒を用いることが好ましく採用される。   Next, in the cooling bath used in the present invention, since it is necessary to induce solid-liquid phase separation by thermally induced phase separation, a poor solvent having a concentration of 50 to 95% by weight lower than the crystallization temperature by 20 ° C. or more. Or the liquid mixture which consists of a good solvent and a non-solvent with a density | concentration of 5 to 50 weight% is preferable. Further, it is preferable to use the same poor solvent as the resin solution as the poor solvent. However, when a high concentration good solvent is used, solidification may not occur unless the temperature is sufficiently lowered, or the hollow fiber membrane surface may not be smooth due to slow solidification. In addition, a poor solvent and a good solvent may be mixed as long as the concentration range is not deviated. However, if a high concentration non-solvent is used, a dense layer may be formed on the outer surface of the hollow fiber membrane, and the water permeability may be significantly reduced. The hollow portion forming liquid is preferably a mixed liquid composed of a poor solvent or a good solvent having a concentration of 50 to 95% by weight and a non-solvent having a concentration of 5 to 50% by weight, like the cooling bath. Further, it is preferable to use the same poor solvent as the resin solution as the poor solvent.

以上の製造工程に加えて、繊維状組織間の空隙を拡大し純水透過性能を向上させることおよび破断強度を強化するために延伸を行うことも有用であり好ましい。延伸の方法は好ましくは50〜140℃、より好ましくは55〜120℃、さらに好ましくは60〜100℃の温度範囲で、好ましくは1.1〜4倍、より好ましくは1.1〜2倍の延伸倍率である。50℃未満の低温雰囲気で延伸した場合、安定して均質に延伸することが困難である。140℃を超える温度で延伸した場合、ポリフッ化ビニリデン系樹脂の融点に近くなるため、構造組織が融解し空隙が拡大せず透水性は向上しない。また、延伸は液体中で行う方が温度制御が容易であり好ましいが、スチームなどの気体中で行っても構わない。液体としては水が簡便で好ましいが、90℃程度以上で延伸する場合には、低分子量のポリエチレングリコールなどを用いることも好ましく採用できる。一方、このような延伸を行わない場合は、延伸を行う場合と比べて、純水透過性能および破断強度は低下するが、破断伸度および阻止性能は向上する。したがって、延伸工程の有無および延伸工程の延伸倍率は中空糸膜の用途に応じて適宜設定することができる。   In addition to the above manufacturing steps, it is also useful and preferable to perform stretching in order to enlarge the voids between the fibrous structures to improve the pure water permeation performance and to strengthen the breaking strength. The stretching method is preferably 50 to 140 ° C, more preferably 55 to 120 ° C, still more preferably 60 to 100 ° C, preferably 1.1 to 4 times, more preferably 1.1 to 2 times. It is a draw ratio. When stretching in a low temperature atmosphere of less than 50 ° C., it is difficult to stably and uniformly stretch. When it is stretched at a temperature exceeding 140 ° C., it becomes close to the melting point of the polyvinylidene fluoride resin, so that the structural structure is melted and the voids are not enlarged and the water permeability is not improved. Further, stretching is preferably performed in a liquid because temperature control is easy, but may be performed in a gas such as steam. As the liquid, water is convenient and preferable, but when stretching at about 90 ° C. or higher, it is also possible to preferably employ a low molecular weight polyethylene glycol or the like. On the other hand, when such stretching is not performed, pure water permeation performance and breaking strength are reduced, but breaking elongation and blocking performance are improved as compared with the case of stretching. Therefore, the presence / absence of the stretching step and the stretching ratio of the stretching step can be appropriately set according to the use of the hollow fiber membrane.

以下に具体的な実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。ここで本発明に関連するパラメーターは以下の方法で測定した。   Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to these examples. Here, parameters related to the present invention were measured by the following methods.

(1)ポリフッ化ビニリデン系樹脂溶液の結晶化温度Tc セイコー電子製DSC−6200を用いて、ポリフッ化ビニリデン系樹脂と溶媒など製膜ポリマー原液組成と同組成の混合物を密封式DSC容器に密封し、昇温速度10℃/minで溶解温度まで昇温し30分保持して均一に溶解した後に、降温速度10℃/minで降温する過程で観察される結晶化ピークの立ち上がり温度を結晶化温度Tcとした。   (1) Crystallization temperature Tc of polyvinylidene fluoride resin solution Using DSC-6200 manufactured by Seiko Denshi, a mixture of the same composition as the film forming polymer stock solution composition such as polyvinylidene fluoride resin and solvent is sealed in a sealed DSC container. The rising temperature of the crystallization peak observed in the process of lowering the temperature at a cooling rate of 10 ° C./min after raising the temperature to the dissolution temperature at a heating rate of 10 ° C./min and holding it for 30 minutes to dissolve uniformly is the crystallization temperature. Tc.

(2)中空糸膜の純水透過性能
純水透過性能の測定方法は、中空糸膜1〜10本程度からなる長さ約20cmの小型モジュールを作製し、温度25℃、ろ過差圧16kPaの条件で逆浸透膜処理水を送液し、一定時間の透過水量(m)を測定して得た値を、単位時間(hr)、単位有効膜面積(m)、50kPa当たりに換算して算出した。
(2) Pure water permeation performance of hollow fiber membrane The pure water permeation performance was measured by preparing a small module of about 20 cm in length consisting of about 1 to 10 hollow fiber membranes, at a temperature of 25 ° C and a filtration differential pressure of 16 kPa. The value obtained by feeding the reverse osmosis membrane treated water under the conditions and measuring the permeated water amount (m 3 ) for a certain time was converted to unit time (hr), unit effective membrane area (m 2 ), per 50 kPa. Calculated.

(3)中空糸膜の破断強度、破断伸度
引張試験機((株)東洋ボールドウィン製TENSILON/RTM―100)を用いて、逆浸透膜処理水で湿潤させた中空糸膜を試験長50mm、フルスケール5kgの加重でクロスヘッドスピード50mm/分にて測定し求めた。
(3) Breaking strength and breaking elongation of hollow fiber membrane Using a tensile tester (TENSILON / RTM-100 manufactured by Toyo Baldwin Co., Ltd.), a hollow fiber membrane wetted with reverse osmosis membrane treated water was tested with a test length of 50 mm. Measurement was made at a crosshead speed of 50 mm / min with a full scale load of 5 kg.

(4)繊維状組織の平均直径
中空糸膜の長さ方向の断面を走査型電子顕微鏡等を用いて3000倍で写真を撮影し、10個の繊維状組織の直径を平均して求めた。
(4) Average diameter of fibrous structure A cross section in the length direction of the hollow fiber membrane was photographed at a magnification of 3000 using a scanning electron microscope or the like, and the diameters of 10 fibrous structures were averaged.

(5)組織の占有率
中空糸膜の長さ方向の断面を走査型電子顕微鏡等を用いて3000倍で任意の20カ所の写真を撮影し、{(組織の占める面積の平均)/(写真全体の面積の平均)}×100で求めた。ここで写真全体の面積および組織の占める面積は、撮影された写真を紙に印刷し、写真全体に対応する紙の重量およびそこから切り取った組織部分に対応する紙の重量としてそれぞれ置き換えて求めた。
(5) Occupancy rate of tissue Take 20 photographs of the hollow fiber membrane in the longitudinal direction at 3000 times using a scanning electron microscope or the like, and {(average of the area occupied by the tissue) / (photo The average of the entire area)} × 100. Here, the area of the entire photograph and the area occupied by the tissue were obtained by printing the photographed photograph on paper and replacing it with the weight of the paper corresponding to the entire photograph and the weight of the paper corresponding to the tissue portion cut out therefrom. .

(実施例1)
重量平均分子量41.7万のフッ化ビニリデンホモポリマー28重量%とジメチルスルホキシド72重量%を120℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは20℃であった。該溶液を2つのギヤーポンプを設置することによりその間のライン上で2.0MPaに加圧し、64〜66℃で22秒間滞留させた後、二重管式口金の外側の管から吐出し、同時にジメチルスルホキシド90重量%水溶液を二重管式口金の内側の管から吐出し、ジメチルスルホキシド85重量%水溶液からなる温度10℃の浴中で固化させた。その後90℃の水中で1.4倍に延伸した。得られた中空糸膜の性能と構造を表
1に示す。
Example 1
28% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 72% by weight of dimethyl sulfoxide were dissolved at 120 ° C. Tc of this vinylidene fluoride homopolymer solution was 20 ° C. The solution was pressurized to 2.0 MPa on the line between the two by installing two gear pumps, allowed to stay at 64 to 66 ° C. for 22 seconds, and then discharged from the outer pipe of the double-tube type base. A 90% by weight aqueous solution of sulfoxide was discharged from the inner tube of the double-tube type die, and solidified in a bath composed of 85% by weight aqueous solution of dimethyl sulfoxide at a temperature of 10 ° C. Thereafter, the film was stretched 1.4 times in 90 ° C. water. The performance and structure of the obtained hollow fiber membrane are shown in Table 1.

(実施例2)
重量平均分子量41.7万のフッ化ビニリデンホモポリマー28重量%とジメチルスルホキシド72重量%を120℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは20℃であった。該溶液を2つのギヤーポンプを設置することによりその間のライン上で1.8MPaに加圧し、66〜68℃で235秒間滞留させた後、二重管式口金の外側の管から吐出し、同時にジメチルスルホキシド90重量%水溶液を二重管式口金の内側の管から吐出し、ジメチルスルホキシド85重量%水溶液からなる温度8℃の浴中で固化させた。その後85℃の水中で1.5倍に延伸した。得られた中空糸膜の性能と構造を表
1に示す。
(Example 2)
28% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 72% by weight of dimethyl sulfoxide were dissolved at 120 ° C. Tc of this vinylidene fluoride homopolymer solution was 20 ° C. The solution was pressurized to 1.8 MPa on the line between them by installing two gear pumps, allowed to stay at 66-68 ° C. for 235 seconds, then discharged from the outer tube of the double-tube base, and simultaneously dimethyl A 90% by weight aqueous solution of sulfoxide was discharged from the inner tube of the double-tube base, and solidified in a bath composed of 85% by weight aqueous solution of dimethyl sulfoxide at a temperature of 8 ° C. Thereafter, the film was stretched 1.5 times in water at 85 ° C. The performance and structure of the obtained hollow fiber membrane are shown in Table 1.

(実施例3)
重量平均分子量41.7万のフッ化ビニリデンホモポリマー36重量%とγ−ブチロラクトン64重量%を150℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは48℃であった。該溶液を2つのギヤーポンプを設置することによりその間のライン上で1.1MPaに加圧し、98〜100℃で19秒間滞留させた後、二重管式口金の外側の管から吐出し、同時にγ−ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出し、γ−ブチロラクトン85重量%水溶液からなる温度13℃の浴中で固化させた。その後85℃の水中で1.5倍に延伸した。得られた中空糸膜の性能と構造を表1に
示す。
(Example 3)
36% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 64% by weight of γ-butyrolactone were dissolved at 150 ° C. The vinylidene fluoride homopolymer solution had a Tc of 48 ° C. The solution was pressurized to 1.1 MPa on the line between them by installing two gear pumps, allowed to stay at 98-100 ° C. for 19 seconds, and then discharged from the outer tube of the double-tube type die. -A 85% by weight aqueous solution of butyrolactone was discharged from the inner tube of the double-tube base, and solidified in a bath at a temperature of 13 ° C consisting of an 85% by weight aqueous solution of γ-butyrolactone. Thereafter, the film was stretched 1.5 times in water at 85 ° C. The performance and structure of the obtained hollow fiber membrane are shown in Table 1.

(実施例4)
重量平均分子量41.7万のフッ化ビニリデンホモポリマー36重量%とγ−ブチロラクトン64重量%を150℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは48℃であった。該溶液を2つのギヤーポンプを設置することによりその間のライン上で1.2MPaに加圧し、101〜103℃で250秒間滞留させた後、二重管式口金の外側の管から吐出し、同時にγ−ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出し、γ−ブチロラクトン85重量%水溶液からなる温度13℃の浴中で固化させた。その後85℃の水中で1.5倍に延伸した。得られた中空糸膜の性能と構造を表1に示す。
Example 4
36% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 64% by weight of γ-butyrolactone were dissolved at 150 ° C. The Tc of this vinylidene fluoride homopolymer solution was 48 ° C. The solution was pressurized to 1.2 MPa on a line between the two by installing two gear pumps, allowed to stay at 101-103 ° C. for 250 seconds, and then discharged from the outer pipe of the double-tube type base. -A 85% by weight aqueous solution of butyrolactone was discharged from the inner tube of the double-tube base, and solidified in a bath at a temperature of 13 ° C consisting of an 85% by weight aqueous solution of γ-butyrolactone. Thereafter, the film was stretched 1.5 times in water at 85 ° C. The performance and structure of the obtained hollow fiber membrane are shown in Table 1.

(実施例5)
重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とγ−ブチロラクトン62重量%を150℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは51℃であった。該溶液を2つのギヤーポンプを設置することによりその間のライン上で1.4MPaに加圧し、101〜103℃で23秒間滞留させた後、二重管式口金の外側の管から吐出し、同時にγ−ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出し、γ−ブチロラクトン85重量%水溶液からなる温度13℃の浴中で固化させた。その後85℃の水中で1.5倍に延伸した。得られた中空糸膜の性能と構造を表1に示す。
(Example 5)
38% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 62% by weight of γ-butyrolactone were dissolved at 150 ° C. The vinylidene fluoride homopolymer solution had a Tc of 51 ° C. The solution was pressurized to 1.4 MPa on the line between them by installing two gear pumps, allowed to stay at 101-103 ° C. for 23 seconds, and then discharged from the outer pipe of the double-tube type base, -A 85% by weight aqueous solution of butyrolactone was discharged from the inner tube of the double-tube base, and solidified in a bath at a temperature of 13 ° C consisting of an 85% by weight aqueous solution of γ-butyrolactone. Thereafter, the film was stretched 1.5 times in water at 85 ° C. The performance and structure of the obtained hollow fiber membrane are shown in Table 1.

(実施例6)
重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とγ−ブチロラクトン62重量%を160℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは51℃であった。該溶液を2つのギヤーポンプを設置することによりその間のライン上で1.1MPaに加圧し、103〜105℃で19秒間滞留させた後、二重管式口金の外側の管から吐出し、同時にγ−ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出し、γ−ブチロラクトン85重量%水溶液からなる温度13℃の浴中で固化させた。その後85℃の水中で1.5倍に延伸した。得られた中空糸膜の性能と構造を表1に示す。
(Example 6)
38% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 62% by weight of γ-butyrolactone were dissolved at 160 ° C. The vinylidene fluoride homopolymer solution had a Tc of 51 ° C. The solution was pressurized to 1.1 MPa on the line between them by installing two gear pumps, allowed to stay at 103-105 ° C. for 19 seconds, and then discharged from the outer pipe of the double-tube type base, -A 85% by weight aqueous solution of butyrolactone was discharged from the inner tube of the double-tube base, and solidified in a bath at a temperature of 13 ° C consisting of an 85% by weight aqueous solution of γ-butyrolactone. Thereafter, the film was stretched 1.5 times in water at 85 ° C. The performance and structure of the obtained hollow fiber membrane are shown in Table 1.

(実施例7)
重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とγ−ブチロラクトン62重量%を160℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは51℃であった。該溶液を2つのギヤーポンプを設置することによりその間のライン上で1.3MPaに加圧し、102〜104℃で21秒間滞留させた後、二重管式口金の外側の管から吐出し、同時にγ−ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出し、γ−ブチロラクトン85重量%水溶液からなる温度13℃の浴中で固化させた。その後85℃の水中で1.5倍に延伸した。得られた中空糸膜の性能と構造を表
1に示す。
(Example 7)
38% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and 62% by weight of γ-butyrolactone were dissolved at 160 ° C. The vinylidene fluoride homopolymer solution had a Tc of 51 ° C. The solution was pressurized to 1.3 MPa on the line between them by installing two gear pumps and allowed to stay at 102-104 ° C. for 21 seconds, then discharged from the outer pipe of the double-tube base, and at the same time γ -A 85% by weight aqueous solution of butyrolactone was discharged from the inner tube of the double-tube base, and solidified in a bath at a temperature of 13 ° C consisting of an 85% by weight aqueous solution of γ-butyrolactone. Thereafter, the film was stretched 1.5 times in water at 85 ° C. The performance and structure of the obtained hollow fiber membrane are shown in Table 1.

(実施例8)
重量平均分子量35.8万のフッ化ビニリデンホモポリマー52重量%とプロピレンカーボネート48重量%を170℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは72℃であった。該溶液を2つのギヤーポンプを設置することによりその間のライン上で1.6MPaに加圧し、125〜127℃で25秒間滞留させた後、二重管式口金の外側の管から吐出し、同時にプロピレンカーボネート100重量%水溶液を二重管式口金の内側の管から吐出し、プロピレンカーボネート85重量%水溶液からなる温度5℃の浴中で固化させた。その後80℃の水中で1.8倍に延伸した。得られた中空糸膜の性能と構造を表1に示す。
(Example 8)
52% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 358,000 and 48% by weight of propylene carbonate were dissolved at 170 ° C. The vinylidene fluoride homopolymer solution had a Tc of 72 ° C. The solution was pressurized to 1.6 MPa on the line between them by installing two gear pumps and allowed to stay at 125-127 ° C. for 25 seconds, then discharged from the outer pipe of the double-tube base, and at the same time propylene A carbonate 100% by weight aqueous solution was discharged from the inner tube of the double-tube base, and solidified in a bath composed of 85% by weight propylene carbonate aqueous solution at a temperature of 5 ° C. Thereafter, the film was stretched 1.8 times in water at 80 ° C. The performance and structure of the obtained hollow fiber membrane are shown in Table 1.

(実施例9)
重量平均分子量35.8万のフッ化ビニリデンホモポリマー52重量%とプロピレンカーボネート48重量%を170℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは72℃であった。該溶液を2つのギヤーポンプを設置することによりその間のライン上で1.9MPaに加圧し、123〜125℃で240秒間滞留させた後、二重管式口金の外側の管から吐出し、同時にプロピレンカーボネート100重量%水溶液を二重管式口金の内側の管から吐出し、プロピレンカーボネート85重量%水溶液からなる温度5℃の浴中で固化させた。その後80℃の水中で1.6倍に延伸した。得られた中空糸膜の性能と構造を表1に示す。
Example 9
52% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 358,000 and 48% by weight of propylene carbonate were dissolved at 170 ° C. The vinylidene fluoride homopolymer solution had a Tc of 72 ° C. The solution was pressurized to 1.9 MPa on the line between them by installing two gear pumps, allowed to stay at 123-125 ° C. for 240 seconds, then discharged from the outer pipe of the double-tube type die, and at the same time propylene A carbonate 100% by weight aqueous solution was discharged from the inner tube of the double-tube base, and solidified in a bath composed of 85% by weight propylene carbonate aqueous solution at a temperature of 5 ° C. Thereafter, the film was stretched 1.6 times in water at 80 ° C. The performance and structure of the obtained hollow fiber membrane are shown in Table 1.

(比較例1)
2つのギヤーポンプ間の溶液圧力を0.2MPaにした以外は実施例3と同様にして中空糸膜を得た。得られた中空糸膜の性能と構造を表1に示す。
(Comparative Example 1)
A hollow fiber membrane was obtained in the same manner as in Example 3 except that the solution pressure between the two gear pumps was 0.2 MPa. The performance and structure of the obtained hollow fiber membrane are shown in Table 1.

(比較例2)
2つのギヤーポンプ間の溶液温度を118〜120℃にした以外は実施例3と同様にして中空糸膜を得た。得られた中空糸膜の性能と構造を表1に示す。
(Comparative Example 2)
A hollow fiber membrane was obtained in the same manner as in Example 3 except that the solution temperature between the two gear pumps was 118 to 120 ° C. The performance and structure of the obtained hollow fiber membrane are shown in Table 1.

(比較例3)
2つのギヤーポンプ間の溶液温度を79〜81℃にした以外は実施例3と同様にして中空糸膜を得た。得られた中空糸膜の性能と構造を表1に示す。
(比較例4)
2つのギヤーポンプ間の溶液温度を73〜75℃にした以外は実施例3と同様にしたが、口金からの吐出が困難で中空糸膜は得られなかった。
(Comparative Example 3)
A hollow fiber membrane was obtained in the same manner as in Example 3 except that the solution temperature between the two gear pumps was 79 to 81 ° C. The performance and structure of the obtained hollow fiber membrane are shown in Table 1.
(Comparative Example 4)
Except that the solution temperature between the two gear pumps was set to 73 to 75 ° C., the same procedure as in Example 3 was performed, but it was difficult to discharge from the die, and a hollow fiber membrane could not be obtained.

(比較例5)
2つのギヤーポンプ間の溶液滞留時間を5秒にした以外は実施例3と同様にして中空糸膜を得た。得られた中空糸膜の性能と構造を表1に示す。
(Comparative Example 5)
A hollow fiber membrane was obtained in the same manner as in Example 3 except that the solution residence time between the two gear pumps was 5 seconds. The performance and structure of the obtained hollow fiber membrane are shown in Table 1.

本発明の一実施態様に係る中空糸膜の長さ方向の断面写真である。It is a cross-sectional photograph of the length direction of the hollow fiber membrane which concerns on one embodiment of this invention. 本発明で規定する中空糸膜の長さ方向に配向した繊維状組織と球状組織の模式図である。It is a schematic diagram of the fibrous structure and spherical structure oriented in the length direction of the hollow fiber membrane prescribed | regulated by this invention. 本発明の一実施態様に係る中空糸膜の製造工程である。It is a manufacturing process of the hollow fiber membrane which concerns on one embodiment of this invention.

符号の説明Explanation of symbols

1 中空糸膜の長さ方向に配向した繊維状組織
2 長さ
3 直径
4 繊維状組織と判定される組織
5 アスペクト比は3未満であるが繊維状組織の一部と見られる組織
6 球状組織
7 長径
8 短径
9 ポンプ
10 ポンプ
11 口金
12 送液ライン
13 送液ラインのうち、樹脂溶液を所定圧力以上で加圧しつつ所定の温度で所定時間滞留させる箇所
DESCRIPTION OF SYMBOLS 1 Fibrous structure orientated in the length direction of hollow fiber membrane 2 Length 3 Diameter 4 Structure determined to be fibrous structure 5 Structure having an aspect ratio of less than 3 but considered to be a part of fibrous structure 6 Spherical structure 7 Long diameter 8 Short diameter 9 Pump 10 Pump 11 Cap 12 Liquid feed line 13 Of the liquid feed line, the resin solution is pressurized at a predetermined pressure or higher and kept at a predetermined temperature for a predetermined time.

Claims (6)

ポリフッ化ビニリデン系樹脂からなる中空糸膜であって、中空糸膜の長さ方向に配向した直径が0.9μm以上3μm以下の繊維状組織が中空糸膜全体の30%以上を占めていることを特徴とする中空糸膜。 A hollow fiber membrane made of a polyvinylidene fluoride-based resin, and a fibrous structure having a diameter of 0.9 μm or more and 3 μm or less oriented in the length direction of the hollow fiber membrane accounts for 30% or more of the entire hollow fiber membrane A hollow fiber membrane characterized by ポリフッ化ビニリデン系樹脂からなる中空糸膜であって、中空糸膜の長さ方向に配向した直径が0.9μm以上1.4μm未満の繊維状組織が中空糸膜全体の30%以上を占めており、50kPa、25℃における純水透過性能が0.7m/m・hr以上、破断強度が13MPa以上、かつ破断伸度が150%以上である中空糸膜。 A hollow fiber membrane made of a polyvinylidene fluoride-based resin, wherein a fibrous structure having a diameter oriented in the length direction of the hollow fiber membrane of 0.9 μm or more and less than 1.4 μm accounts for 30% or more of the entire hollow fiber membrane. A hollow fiber membrane having a pure water permeation performance at 50 kPa and 25 ° C. of 0.7 m 3 / m 2 · hr or more, a breaking strength of 13 MPa or more, and a breaking elongation of 150% or more. ポリフッ化ビニリデン系樹脂からなる中空糸膜であって、中空糸膜の長さ方向に配向した直径が1.4μm以上3μm以下の繊維状組織が中空糸膜全体の30%以上を占めており、50kPa、25℃における純水透過性能が2.0m/m・hr以上、破断強度が11MPa以上、かつ破断伸度が80%以上である中空糸膜。 A hollow fiber membrane made of a polyvinylidene fluoride-based resin, the fibrous structure having a diameter oriented in the length direction of the hollow fiber membrane of 1.4 μm or more and 3 μm or less occupies 30% or more of the entire hollow fiber membrane, A hollow fiber membrane having a pure water permeation performance at 50 kPa and 25 ° C. of 2.0 m 3 / m 2 · hr or more, a breaking strength of 11 MPa or more, and a breaking elongation of 80% or more. 前記中空糸膜全体の0.5%以上30%未満を球状組織が占めていることを特徴とする請求項1〜3のいずれかに記載の中空糸膜。 The hollow fiber membrane according to any one of claims 1 to 3, wherein a spherical structure occupies 0.5% or more and less than 30% of the entire hollow fiber membrane. ポリフッ化ビニリデン系樹脂を溶媒に溶解してポリフッ化ビニリデン系樹脂溶液とし、該ポリフッ化ビニリデン系樹脂溶液を口金から冷却液体中に吐出することにより冷却固化せしめて、中空糸膜の長さ方向に配向した繊維状組織を有する中空糸膜を製造するに際し、前記ポリフッ化ビニリデン系樹脂溶液を口金から吐出する前の送液ラインのいずれかの箇所において、前記ポリフッ化ビニリデン系樹脂溶液に0.5MPa以上の圧力を加えつつ、前記ポリフッ化ビニリデン系樹脂溶液の温度Tが前記ポリフッ化ビニリデン系樹脂溶液の結晶化温度をTcとした際にTc+35℃≦T≦Tc+60℃を満たした状態で前記ポ
リフッ化ビニリデン系樹脂溶液を10秒以上滞留させる工程を有する中空糸膜の製造方法。
A polyvinylidene fluoride resin is dissolved in a solvent to obtain a polyvinylidene fluoride resin solution, and the polyvinylidene fluoride resin solution is cooled and solidified by discharging the polyvinylidene fluoride resin solution from a die into a cooling liquid, so that the length of the hollow fiber membrane is increased. In producing a hollow fiber membrane having an oriented fibrous structure, 0.5 MPa is applied to the polyvinylidene fluoride resin solution at any location on the liquid feed line before discharging the polyvinylidene fluoride resin solution from the die. While the above pressure is applied, the polyfluorination is performed in a state where the temperature T of the polyvinylidene fluoride resin solution satisfies Tc + 35 ° C. ≦ T ≦ Tc + 60 ° C. when the crystallization temperature of the polyvinylidene fluoride resin solution is Tc. A method for producing a hollow fiber membrane, comprising a step of retaining a vinylidene resin solution for 10 seconds or more.
前記ポリフッ化ビニリデン系樹脂溶液を口金から吐出する前の送液ラインのいずれかの箇所においてポリフッ化ビニリデン系樹脂溶液に0.5MPa以上の圧力を加えるに際し、2以上のポンプで前記ポリフッ化ビニリデン系樹脂溶液を加圧することを特徴とする請求項5に記載の中空糸膜の製造方法。 When applying a pressure of 0.5 MPa or more to the polyvinylidene fluoride resin solution at any location on the liquid feed line before discharging the polyvinylidene fluoride resin solution from the die, the polyvinylidene fluoride system is applied with two or more pumps. 6. The method for producing a hollow fiber membrane according to claim 5, wherein the resin solution is pressurized.
JP2006082548A 2005-03-25 2006-03-24 Hollow fiber membrane and method for producing the same Active JP4835221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082548A JP4835221B2 (en) 2005-03-25 2006-03-24 Hollow fiber membrane and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005087896 2005-03-25
JP2005087896 2005-03-25
JP2006082548A JP4835221B2 (en) 2005-03-25 2006-03-24 Hollow fiber membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006297383A true JP2006297383A (en) 2006-11-02
JP4835221B2 JP4835221B2 (en) 2011-12-14

Family

ID=37466101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082548A Active JP4835221B2 (en) 2005-03-25 2006-03-24 Hollow fiber membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP4835221B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104743A1 (en) * 2014-12-26 2016-06-30 東レ株式会社 Porous hollow fiber membrane
WO2017038224A1 (en) * 2015-08-31 2017-03-09 東レ株式会社 Porous hollow fiber membrane
WO2017056594A1 (en) * 2015-09-29 2017-04-06 東レ株式会社 Porous molded body
WO2017115769A1 (en) 2015-12-28 2017-07-06 東レ株式会社 Hollow fiber membrane module and method for operating same
WO2017146211A1 (en) * 2016-02-25 2017-08-31 東レ株式会社 Porous hollow fiber membrane
WO2017209150A1 (en) 2016-05-31 2017-12-07 東レ株式会社 Hollow fiber membrane module
WO2017209151A1 (en) 2016-05-31 2017-12-07 東レ株式会社 Porous hollow-fiber membrane and production process therefor
WO2017222063A1 (en) * 2016-06-24 2017-12-28 東レ株式会社 Composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and operation method for composite porous hollow fiber membrane module
WO2017222062A1 (en) * 2016-06-24 2017-12-28 東レ株式会社 Composite porous hollow fiber membrane, production method for composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and operation method for composite porous hollow fiber membrane module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103638830B (en) * 2013-12-20 2015-12-09 北京膜华材料科技有限公司 For the preparation method of the hot method Pvdf Microporous Hollow Fiber Membrane of drinking water treatment
WO2015163429A1 (en) 2014-04-25 2015-10-29 東レ株式会社 Method for operating clarifying-film module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51150582A (en) * 1975-06-19 1976-12-24 Nippon Carbide Kogyo Kk Manufacturing of elongation films of poly vinyliden fluoride resin
JPS63159516A (en) * 1986-12-24 1988-07-02 Toray Ind Inc Production of polycapramide fiber
JPH0332821A (en) * 1973-10-03 1991-02-13 Natl Res Dev Corp High molecular substance
JPH0680794A (en) * 1992-09-02 1994-03-22 Kureha Chem Ind Co Ltd Vinylidene fluoride resin film, its use and its production
WO2003031038A1 (en) * 2001-10-04 2003-04-17 Toray Industries, Inc. Hollow fiber film and method for production thereof
JP2003320228A (en) * 2002-05-07 2003-11-11 Toray Ind Inc Manufacturing method for microporous membrane and microporous membrane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332821A (en) * 1973-10-03 1991-02-13 Natl Res Dev Corp High molecular substance
JPS51150582A (en) * 1975-06-19 1976-12-24 Nippon Carbide Kogyo Kk Manufacturing of elongation films of poly vinyliden fluoride resin
JPS63159516A (en) * 1986-12-24 1988-07-02 Toray Ind Inc Production of polycapramide fiber
JPH0680794A (en) * 1992-09-02 1994-03-22 Kureha Chem Ind Co Ltd Vinylidene fluoride resin film, its use and its production
WO2003031038A1 (en) * 2001-10-04 2003-04-17 Toray Industries, Inc. Hollow fiber film and method for production thereof
JP2003320228A (en) * 2002-05-07 2003-11-11 Toray Ind Inc Manufacturing method for microporous membrane and microporous membrane

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901883B2 (en) 2014-12-26 2018-02-27 Toray Industries, Inc. Porous hollow fiber membrane
KR101969663B1 (en) 2014-12-26 2019-04-16 도레이 카부시키가이샤 Porous hollow fiber membrane
WO2016104743A1 (en) * 2014-12-26 2016-06-30 東レ株式会社 Porous hollow fiber membrane
JPWO2016104743A1 (en) * 2014-12-26 2017-06-08 東レ株式会社 Porous hollow fiber membrane
EP3238814B1 (en) * 2014-12-26 2020-08-12 Toray Industries, Inc. Porous hollow fiber membrane
CN107106998A (en) * 2014-12-26 2017-08-29 东丽株式会社 Porous hollow cortina
CN107106998B (en) * 2014-12-26 2018-06-12 东丽株式会社 Porous hollow cortina
KR101784141B1 (en) 2014-12-26 2017-10-10 도레이 카부시키가이샤 Porous hollow fiber membrane
KR20170116165A (en) 2014-12-26 2017-10-18 도레이 카부시키가이샤 Porous hollow fiber membrane
AU2015368335B2 (en) * 2014-12-26 2018-06-14 Toray Industries, Inc. Porous hollow fiber membrane
US10456753B2 (en) 2015-08-31 2019-10-29 Toray Industries, Inc. Porous hollow fiber membrane
US20180369757A1 (en) * 2015-08-31 2018-12-27 Toray Industries, Inc. Porous hollow fiber membrane
KR102382287B1 (en) * 2015-08-31 2022-04-05 도레이 카부시키가이샤 porous hollow fiber membrane
WO2017038224A1 (en) * 2015-08-31 2017-03-09 東レ株式会社 Porous hollow fiber membrane
KR20180043285A (en) 2015-08-31 2018-04-27 도레이 카부시키가이샤 Porous hollow fiber membrane
WO2017056594A1 (en) * 2015-09-29 2017-04-06 東レ株式会社 Porous molded body
CN108137843A (en) * 2015-09-29 2018-06-08 东丽株式会社 Porous formed body
CN108430610A (en) * 2015-12-28 2018-08-21 东丽株式会社 Hollow fiber membrane module and its method of operation
US11141698B2 (en) 2015-12-28 2021-10-12 Toray Industries, Inc. Hollow fiber membrane module and method for operating same
CN108430610B (en) * 2015-12-28 2021-04-09 东丽株式会社 Hollow fiber membrane module and method for operating same
WO2017115769A1 (en) 2015-12-28 2017-07-06 東レ株式会社 Hollow fiber membrane module and method for operating same
EP3398674A4 (en) * 2015-12-28 2019-06-19 Toray Industries, Inc. Hollow fiber membrane module and method for operating same
US20190070565A1 (en) * 2016-02-25 2019-03-07 Toray Industries, Inc. Porous hollow fiber membrane
KR20180114067A (en) 2016-02-25 2018-10-17 도레이 카부시키가이샤 Porous hollow fiber membrane
JPWO2017146211A1 (en) * 2016-02-25 2018-12-13 東レ株式会社 Porous hollow fiber membrane
WO2017146211A1 (en) * 2016-02-25 2017-08-31 東レ株式会社 Porous hollow fiber membrane
KR102524285B1 (en) * 2016-02-25 2023-04-24 도레이 카부시키가이샤 porous hollow fiber membrane
US11058996B2 (en) 2016-02-25 2021-07-13 Toray Industries, Inc. Porous hollow fiber membrane
JP6264508B1 (en) * 2016-05-31 2018-01-24 東レ株式会社 Hollow fiber membrane module
AU2017272761B2 (en) * 2016-05-31 2021-12-23 Toray Industries, Inc. Porous hollow-fiber membrane and production process therefor
WO2017209150A1 (en) 2016-05-31 2017-12-07 東レ株式会社 Hollow fiber membrane module
WO2017209151A1 (en) 2016-05-31 2017-12-07 東レ株式会社 Porous hollow-fiber membrane and production process therefor
JPWO2017209151A1 (en) * 2016-05-31 2019-03-28 東レ株式会社 Porous hollow fiber membrane and method for producing the same
KR20190014507A (en) 2016-05-31 2019-02-12 도레이 카부시키가이샤 Porous hollow fiber membrane and manufacturing method thereof
KR20190013771A (en) 2016-05-31 2019-02-11 도레이 카부시키가이샤 Hollow fiber membrane module
KR102281519B1 (en) * 2016-05-31 2021-07-26 도레이 카부시키가이샤 hollow fiber membrane module
EP3466526A4 (en) * 2016-05-31 2020-01-22 Toray Industries, Inc. Hollow fiber membrane module
EP3466527A4 (en) * 2016-05-31 2020-02-26 Toray Industries, Inc. Porous hollow-fiber membrane and production process therefor
CN109195689A (en) * 2016-05-31 2019-01-11 东丽株式会社 Hollow fiber membrane module
CN109195694A (en) * 2016-05-31 2019-01-11 东丽株式会社 Porous hollow cortina and its manufacturing method
US10974199B2 (en) 2016-05-31 2021-04-13 Toray Industries, Inc. Hollow fiber membrane module
CN109195694B (en) * 2016-05-31 2021-09-24 东丽株式会社 Porous hollow fiber membrane and method for producing same
KR102267825B1 (en) * 2016-05-31 2021-06-24 도레이 카부시키가이샤 Porous hollow fiber membrane and manufacturing method thereof
CN109195689B (en) * 2016-05-31 2021-09-07 东丽株式会社 Hollow fiber membrane module
US11020709B2 (en) 2016-06-24 2021-06-01 Toray Industries, Inc. Composite porous hollow fiber membrane, production method for composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and operation method for composite porous hollow fiber membrane module
WO2017222062A1 (en) * 2016-06-24 2017-12-28 東レ株式会社 Composite porous hollow fiber membrane, production method for composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and operation method for composite porous hollow fiber membrane module
KR102281508B1 (en) 2016-06-24 2021-07-26 도레이 카부시키가이샤 Composite porous hollow fiber membrane, manufacturing method of composite porous hollow fiber membrane, operating method of composite porous hollow fiber membrane module and composite porous hollow fiber membrane module
CN109414658B (en) * 2016-06-24 2021-08-03 东丽株式会社 Composite porous hollow fiber membrane, preparation method thereof, membrane module and operation method
KR102274763B1 (en) 2016-06-24 2021-07-08 도레이 카부시키가이샤 Operation method of composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and composite porous hollow fiber membrane module
KR20190022545A (en) 2016-06-24 2019-03-06 도레이 카부시키가이샤 Composite Porous Hollow Fiber Membrane, Manufacturing Method of Composite Porous Hollow Fiber Membrane, Operation Method of Composite Porous Hollow Fiber Membrane Module and Composite Porous Hollow Fiber Membrane Module
WO2017222063A1 (en) * 2016-06-24 2017-12-28 東レ株式会社 Composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and operation method for composite porous hollow fiber membrane module
JPWO2017222063A1 (en) * 2016-06-24 2019-02-07 東レ株式会社 Composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and method of operating composite porous hollow fiber membrane module
US11235989B2 (en) 2016-06-24 2022-02-01 Toray Industries, Inc. Composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and operation method for composite porous hollow fiber membrane module
CN109414658A (en) * 2016-06-24 2019-03-01 东丽株式会社 Compound porous matter hollow-fibre membrane, the manufacturing method of compound porous matter hollow-fibre membrane, compound porous matter hollow fiber film assembly and compound porous matter hollow fiber film assembly operation method
KR20190022546A (en) 2016-06-24 2019-03-06 도레이 카부시키가이샤 Operation method of composite porous hollow fiber membrane, composite porous hollow fiber membrane module and composite porous hollow fiber membrane module

Also Published As

Publication number Publication date
JP4835221B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4835221B2 (en) Hollow fiber membrane and method for producing the same
JP5641553B2 (en) Method for producing hollow fiber membrane
JP5068168B2 (en) Vinylidene fluoride resin hollow fiber porous membrane
JP5062798B2 (en) Method for producing hollow fiber membrane
JP5036033B2 (en) Porous membrane for water treatment and method for producing the same
JP4987471B2 (en) Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof
JP6245281B2 (en) Porous hollow fiber membrane
JP5050499B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
EP2145675A1 (en) Vinylidene fluoride resin hollow-fiber porous membrane and process for production of the same
JP2010094670A (en) Polyvinylidene fluoride-based multiple membrane and method for producing the same
JP2009226338A (en) Vinylidene fluoride type resin hollow filament porous membrane and method for manufacruring the same
WO2007125709A1 (en) Porous water treatment membrane made of vinylidene fluoride-based resin with little contamination and method of producing the same
JP3724412B2 (en) Hollow fiber membrane manufacturing method and hollow fiber membrane module
JP4781691B2 (en) Porous membrane and method for producing the same
JPWO2017222063A1 (en) Composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and method of operating composite porous hollow fiber membrane module
WO2007123004A1 (en) Porous hollow-fiber membrane of vinylidene fluoride resin and process for producing the same
JP2006281202A (en) Hollow fiber membrane, dipped type membrane module using it, separating apparatus, and production method of hollow fiber membrane
WO2009119373A1 (en) Hollow-fiber membrane and process for production thereof
KR102267825B1 (en) Porous hollow fiber membrane and manufacturing method thereof
KR102524285B1 (en) porous hollow fiber membrane
KR20070031330A (en) Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same
JP4832739B2 (en) Method for producing vinylidene fluoride resin porous membrane
WO2011027878A1 (en) Porous vinylidene fluoride resin membrane and process for producing same
JP2018171557A (en) Porous hollow fiber membrane
JPWO2017038224A1 (en) Porous hollow fiber membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4835221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3