JPS63159516A - Production of polycapramide fiber - Google Patents

Production of polycapramide fiber

Info

Publication number
JPS63159516A
JPS63159516A JP30633686A JP30633686A JPS63159516A JP S63159516 A JPS63159516 A JP S63159516A JP 30633686 A JP30633686 A JP 30633686A JP 30633686 A JP30633686 A JP 30633686A JP S63159516 A JPS63159516 A JP S63159516A
Authority
JP
Japan
Prior art keywords
polycapramide
spinning
yarn
spinneret
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30633686A
Other languages
Japanese (ja)
Inventor
Isoo Saito
磯雄 斎藤
Masato Yoshino
吉野 眞人
Kotaro Fujioka
藤岡 幸太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP30633686A priority Critical patent/JPS63159516A/en
Publication of JPS63159516A publication Critical patent/JPS63159516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To stably and efficiently obtain a polycapramide fiber having high strength, good dimensional stability and fatigue resistance, by spinning, drawing and vulcanizing a polycapramide having high polymerization degree in specific condition. CONSTITUTION:A highly polymerized polycapramide having at least >=95mol% epsilon-capramide unit and >=3.0 relative viscosity in sulfuric acid is spun from a spinneret 2 in a melt state and cooled and solidified in a pressure spinning cylinder 11 kept in >=1kg/cm<2> higher pressure than atmospheric pressure. A polymer amount per pore of the spinneret is 2.5g/min and the winding speed is >=1,500m/min and the double refractive index of the wound fiber is >=2X10<-3>. A heating cylinder 3 is provided directly under the spinneret and atmospheric temperature in an area of >=10cm is +30 deg.C higher than a melting point of the polyamide and pressure fluid is blown from a device 5 for blowing a circular cool wind. The resultant spun filament is drawn in maximum draw power of >=90% and total draw power of 1.2-3.5 times by a thermal drawing method having two or more stages.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高強力ポリカプラミド繊維に関するものであり
、特にゴム補強材としてタイヤコード、ベルト類に用い
たとき、高い加硫後強力と改善された寸法安定性、及び
耐疲労性を有するポリカプラミド繊維を安定に、且つ効
率よく製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high-strength polycapramide fiber, which exhibits high strength and improved strength after vulcanization, especially when used as a rubber reinforcing material for tire cords and belts. The present invention relates to a method for stably and efficiently producing polycapramide fibers having dimensional stability and fatigue resistance.

〔従来の技術〕[Conventional technology]

ポリカプラミド繊維は高強力、耐熱性、耐疲労性、及び
ゴムとの接着性等優れた特性を有するため、ゴム補強用
コード素材、例えばタイヤコード、搬送用ベルト、伝動
用ベルト、及びシートベルト、縫糸、漁網、各種カバー
シート等に広く利用されている。
Polycapramide fibers have excellent properties such as high strength, heat resistance, fatigue resistance, and adhesion to rubber, so they are used as cord materials for rubber reinforcement, such as tire cords, conveyor belts, power transmission belts, seat belts, and sewing thread. It is widely used for fishing nets, various cover sheets, etc.

しかし、ポリカプラミド繊維からなるタイヤコードはタ
イヤ加硫工程に於て、一般に150 ’C以上の高温で
加硫され、加硫後直ちに加硫機から取出された時、急激
に収縮し、強力低下が生ずるという欠点がある。ポリカ
プラミド繊維は収縮率が高いため、加硫工程で急激な収
縮を生じ、その収縮によって繊維構造が大きく変化し、
強力低下するのである。
However, tire cords made of polycapramide fibers are generally vulcanized at high temperatures of 150'C or higher during the tire vulcanization process, and when taken out of the vulcanizer immediately after vulcanization, they contract rapidly and lose strength. There is a disadvantage that it occurs. Polycapramide fibers have a high shrinkage rate, so they undergo rapid shrinkage during the vulcanization process, and this shrinkage causes major changes in the fiber structure.
It is strongly reduced.

従って、加硫工程での強力低下を抑えるためにはポリカ
プラミド繊維の熱収縮率を小さくすること、即ち寸法安
定性を改善すること、及びその収縮が起こっても著しい
強力低下が生じないような安定な繊維構造とすることが
必要である。
Therefore, in order to suppress the decrease in strength during the vulcanization process, it is necessary to reduce the heat shrinkage rate of polycapramide fibers, that is, to improve the dimensional stability, and to create a stable structure that does not cause a significant decrease in strength even if the shrinkage occurs. It is necessary to have a fiber structure that is flexible.

ポリカプラミド繊維のかかる寸法安定性の改善、及び寸
法安定性と加硫時の強力低下が改善された繊維、または
その製造方法に間しては、特開昭57−191337号
公報、及び特開昭58−54018号公報等によって提
案されている。またポリカプラミドmatの高強力化を
追求して10g/d以上の高強度を達成した技術として
は、例えば特開昭58−98415、特開昭58−13
6823号公報など多数提案されている。
Improvements in the dimensional stability of polycapramide fibers, fibers with improved dimensional stability and reduced strength during vulcanization, and methods for producing the same are disclosed in JP-A-57-191337 and JP-A-Sho. This method has been proposed in Japanese Patent No. 58-54018 and the like. In addition, examples of technologies that have achieved high strength of 10 g/d or more by pursuing higher strength of polycapramide mats include JP-A-58-98415 and JP-A-58-13.
Many proposals have been made, including Publication No. 6823.

前記特開昭67−19337号公報は相対粘度3.0以
上のポリカプラミド繊維を2000〜4500 m/r
f1inの速度で高速紡糸し、得られた未延伸糸を最大
延伸倍率の少なくとも85%以上で延伸したのち、撚糸
して、ゴム補強用コードとする方法を開示している。そ
してこの方法によって寸法安定性及び加硫時の強力低下
が改善されたポリカプラミド繊維!維が得られている。
The above-mentioned Japanese Patent Application Laid-Open No. 67-19337 discloses that polycapramide fibers having a relative viscosity of 3.0 or more are used at a rate of 2000 to 4500 m/r.
This disclosure discloses a method of high-speed spinning at a speed of f1 inch, stretching the obtained undrawn yarn at a maximum draw ratio of at least 85% or more, and then twisting the yarn to obtain a rubber reinforcing cord. This method improves dimensional stability and strength loss during vulcanization of polycapramide fibers! fiber is obtained.

しかし、該繊維の強度は高々8.5g/dと従来の産業
用繊維に比べむしろ低いレベルでしかない。従って、引
続くタイヤコード加工工程での強力利用率及び加硫時の
強力低下が改善されてはいるものの、加硫コード強力の
絶対値は満足できるレベルに達していない。例えば、こ
の特開の実施例に係わる、第2図によれば、160℃で
加硫した時のコードの切断強力は従来繊維と比較して5
〜10%程度改善されているに過ぎない。また、特開昭
58−54018号公報は低収縮率で耐疲労性の優れた
ポリカプラミド繊維とそれを製造する方法を提案してい
るが、ポリカプラミド繊維の強度は上記と同様9゜1 
g/d 以下であり、タイヤコード加工工程ての強力利
用率は改善されているものの、タイヤコート(処理コー
ド)強力の絶対値は従来のコードに比べてむしろ低い。
However, the strength of this fiber is at most 8.5 g/d, which is rather lower than that of conventional industrial fibers. Therefore, although the strength utilization rate in the subsequent tire cord processing step and the decrease in strength during vulcanization have been improved, the absolute value of the strength of the vulcanized cord has not reached a satisfactory level. For example, according to FIG. 2 related to the embodiment of this patent application, the cutting strength of the cord when vulcanized at 160°C is 55% higher than that of conventional fibers.
The improvement is only about 10%. Furthermore, JP-A-58-54018 proposes a polycapramide fiber with a low shrinkage rate and excellent fatigue resistance, and a method for producing the same, but the strength of the polycapramide fiber is 9°1 as mentioned above.
g/d or less, and although the strength utilization rate in the tire cord processing process has been improved, the absolute value of the tire coat (processed cord) strength is rather lower than that of conventional cords.

即ち、両技術とも、寸法安定性、加硫時強力低下、耐疲
労性等タイヤコードの有用特性の改善は図られてはいる
ものの、原糸自身の強度が低いため、加硫後コード強力
の絶対値が高いタイヤコードを得るという点で不十分で
ある。
In other words, although both technologies have attempted to improve the useful properties of tire cords, such as dimensional stability, decrease in strength during vulcanization, and fatigue resistance, the strength of the yarn itself is low, so the strength of the cord after vulcanization cannot be improved. This is insufficient in terms of obtaining a tire cord with a high absolute value.

一方、特開昭58−98415、特開昭58−1368
23号公報などては繊維の高強度を追求して、低速紡糸
及び特殊な延伸プロセスによって10g/d以上を達成
しているが、かかる方法で得られた繊維は寸法安定性が
十分でなく、加硫後強力は決して高いものではない。
On the other hand, JP-A-58-98415, JP-A-58-1368
Publication No. 23 pursues high fiber strength and achieves 10 g/d or more by low-speed spinning and a special drawing process, but the fibers obtained by such methods do not have sufficient dimensional stability. The strength after vulcanization is by no means high.

従って本発明の課題は、ゴム補強材としてタイヤコード
、ベルト等に用いた時、高い加硫後強力と改善された寸
法安定性、及び耐疲労性を兼備したポリカプラミドII
Iを安定に、且つ効率的に製造する方法を提供すること
にある。
Therefore, the object of the present invention is to provide polycapramide II which has high strength after vulcanization, improved dimensional stability, and fatigue resistance when used as a rubber reinforcing material in tire cords, belts, etc.
The object of the present invention is to provide a method for stably and efficiently producing I.

〔問題点を解決するための手段〕[Means for solving problems]

少なくとも95モル%以上のε−カプラミド単位からな
り、硫酸相対粘度3.0以上の高重合度を有するポリカ
プラミドを溶融紡糸、延伸してポリカプラミド繊維a維
を製造する方法において、(1)溶融ポリマを紡糸口金
より紡出し、該紡糸口金直下に設けられ、且つ外気圧力
より1kg/cm’以上高圧に深持された加圧紡糸筒内
に導いて冷却固化した後、該加圧紡糸筒下端からシール
ノズルを通して、外気常圧部に導き出して引取ること、
(2)上記方法に於いて紡糸口金直下には少なくとも1
0cm以上の雰囲気が該ポリアミドの融点+30℃以上
の温度にになるよう加熱された筒を設置し、上記紡出糸
条は該高温雰囲気中を通過した後囲まれた領域を通過さ
せた後、急冷され、1500m/分以上の高速で引取っ
て溶融紡糸すること、 (3)該紡糸口金の1孔当たりのポリマ量が2゜5g/
分以上とすること、 (4)上記引取り糸の複屈折が20X10−3以上とす
ること、 からなる条件を満足するよう紡糸した後、2段以上の熱
延伸法によって最高延伸倍率の90%以上で、且つ総合
延伸培率1.2倍以上、3.5倍以下で行うことからな
る。
In a method for producing polycapramide fibers by melt spinning and drawing a polycapramide comprising at least 95 mol% or more of ε-capramide units and having a high degree of polymerization with a sulfuric acid relative viscosity of 3.0 or more, (1) the melt polymer is The material is spun from a spinneret, guided into a pressurized spinning tube installed directly below the spinneret and held at a pressure 1 kg/cm' higher than the outside air pressure, cooled and solidified, and then sealed from the lower end of the pressurized spinneret. passing it through a nozzle and leading it to the outside air normal pressure area and taking it away;
(2) In the above method, at least one
A heated tube is installed so that the atmosphere of 0 cm or more has a temperature of 30° C. or more above the melting point of the polyamide, and the spun yarn passes through the high temperature atmosphere and then through the enclosed area, and then (3) The amount of polymer per hole of the spinneret is 2.5 g/min.
(4) The birefringence of the above-mentioned drawn yarn is 20X10-3 or more; In addition, the stretching is carried out at a total stretching ratio of 1.2 times or more and 3.5 times or less.

〔作用〕[Effect]

本発明法は下記するような特殊な方法を提案するもので
ある。即ち、本発明法は特開昭58−54018号公報
の高速紡糸/延伸法をベースに、特開昭60−1340
11、及び特開昭60−134015号公報で提案した
加圧雰囲気紡糸法、及び従来の高強力ポリカプラミド繊
維の製造に適用される手法などから有用なユニット技術
を効果的に組合せ、且つ本発明の目的に合致するよう改
善を加えて、新規な方法として完成したものである。要
約すれば (1)繊維中への異物の混入を少なくし、均−眩の向上
を図ったこと、 (2)高速紡糸に於いて、口金から紡出される糸条に、
冷却遅延ゾーン、及び急冷ゾーンの効果を効果的に作用
させたこと、及び (3)上記高速紡糸法によって得られた未延伸糸に適し
た延伸法を採用したことによって、従来、高速紡糸/延
伸法によっては不可能であった高強度糸を安定、且つ効
率的に製造する方法を完成し・たことにある。
The method of the present invention proposes a special method as described below. That is, the method of the present invention is based on the high-speed spinning/drawing method disclosed in JP-A-58-54018, and is based on the high-speed spinning/drawing method disclosed in JP-A-60-1340.
11, the pressurized atmosphere spinning method proposed in JP-A No. 60-134015, and the conventional method applied to the production of high-strength polycapramide fibers. This method was completed as a new method by making improvements to meet the purpose. To summarize, (1) we have reduced the amount of foreign matter mixed into the fibers and improved the uniformity of the fibers; (2) we have improved the yarn spun from the spindle during high-speed spinning;
By effectively utilizing the effects of the cooling delay zone and the quenching zone, and (3) by adopting a drawing method suitable for the undrawn yarn obtained by the above-mentioned high-speed spinning method, it is possible to We have completed a method to stably and efficiently produce high-strength yarn, which was not possible using other methods.

次に本発明繊維の製造法を第1図〜第2図を用いて詳述
する。
Next, the method for producing the fiber of the present invention will be explained in detail with reference to FIGS. 1 and 2.

本発明で用いるポリカプラミドは95モル%以上がε−
カプラミド単位からなり、共重合成分を5モル%未満含
有していてもよい。共重合化し得る他のアミド形成単位
としてはアジピン酸、セバシン酸、テレフタル酸、イソ
フタル酸等のジカルボン酸類、テトラメチレンジアミン
、ヘキサメチレンジアミン、メタキシリレンジアミン等
のジアミン類を用いることができろ。また上記ポリカプ
ラミドに5重量%未満相当のポリテトラメチレンアジパ
ミド、ポリヘキサメチレンアジパミド、ポリヘキサメチ
レンアジパミド、ポリ・\キサメチレンテレフタラミド
、ポリへキサメチレンイソフタラミドをブレンドするこ
ともてきる。共重合成分が5モル%、上記ブレンドポリ
マが5重量%以上になると目的とする寸法安定性、及び
、高い加硫後強力は達成できない。
More than 95 mol% of the polycapramide used in the present invention is ε-
It consists of capramide units and may contain less than 5 mol% of a copolymer component. Other amide-forming units that can be copolymerized include dicarboxylic acids such as adipic acid, sebacic acid, terephthalic acid, and isophthalic acid, and diamines such as tetramethylene diamine, hexamethylene diamine, metaxylylene diamine, and the like. Further, less than 5% by weight of polytetramethylene adipamide, polyhexamethylene adipamide, polyhexamethylene adipamide, poly xamethylene terephthalamide, and polyhexamethylene isophthalamide are blended into the above polycapramide. It can also happen. If the copolymerization component is 5 mol% or more and the blend polymer is 5% by weight or more, the desired dimensional stability and high strength after vulcanization cannot be achieved.

本発明ポリカプラミドポリマは硫酸相対粘度3゜0以上
であり、好ましくは3.2〜4.5である。
The polycapramide polymer of the present invention has a sulfuric acid relative viscosity of 3.0° or more, preferably 3.2 to 4.5.

ここでいう@酸相対粘度とは硫酸にポリマ濃度1重量%
となるよう溶解し、25℃で測定した溶渣相対粘度であ
る。
@Acid relative viscosity here means polymer concentration of 1% by weight in sulfuric acid.
This is the relative viscosity of the dissolved solution measured at 25°C.

また本発明のポリカプラミド!IIIは主にゴム補強材
を中心とした産業資材用途に用いるため、熱、光、酸素
等に対して十分な耐久性を付与する目的で酸化防止剤を
含有せしめろことが好ましい。酸化防止剤は例えば酢酸
銅、塩化第2銅、よう化銅等の銅化合物、よう化カリウ
ム、臭化カリウム、トリエチルブチルアンモニウムアイ
オダイド、ペンタヨードベンゼン等のハロゲン化合物、
N、N”−ジ−β−ナフチル−p−フエニレンジアミン
、2−メルカプト・\ンソイミダソール、テトラキス−
[メチレン−3−(3,5−ジ−t−ブチル−4−ヒド
ロキシフェニル)−プロピオネ−トコ−メタン等の有機
抗酸化剤が用いられる。銅化合物は銅として1100p
p以下、特に20〜80ppmが好ましい。従来の高強
力ポリカプラミド繊維より銅塩の量を少なく用いるが、
この場合前記ハロゲン化合物を0.02重量%以上併用
することによって従来繊維と同レベルの耐熱、耐光、耐
酸化性能が保持できる。銅塩と併用するその他の酸化防
止剤は前記ハロゲン化合物、及びあるいはその他の酸化
防止剤とし、それぞれ0.02〜0.6重量%の範囲で
用いる。上記ポリカプラミドポリマは水分率0.1重量
%以下に乾燥して溶融紡糸するが、好ましくはエクスト
ルーダ型紡糸機を用いる。溶融温度は270〜310℃
が好ましい。
Also, the polycapramide of the present invention! Since III is mainly used for industrial materials such as rubber reinforcing materials, it is preferable to contain an antioxidant for the purpose of imparting sufficient durability against heat, light, oxygen, etc. Examples of antioxidants include copper compounds such as copper acetate, cupric chloride, and copper iodide; halogen compounds such as potassium iodide, potassium bromide, triethylbutylammonium iodide, and pentaiodobenzene;
N,N''-di-β-naphthyl-p-phenylenediamine, 2-mercapto\nsoimidazole, tetrakis-
[An organic antioxidant such as methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)-propionate-co-methane is used. Copper compound is 1100p as copper
p or less, particularly preferably 20 to 80 ppm. Although it uses less copper salt than conventional high-strength polycapramide fibers,
In this case, by using 0.02% by weight or more of the halogen compound in combination, the same level of heat resistance, light resistance, and oxidation resistance as conventional fibers can be maintained. Other antioxidants used in combination with the copper salt include the halogen compounds and/or other antioxidants, each of which is used in an amount of 0.02 to 0.6% by weight. The polycapramide polymer is dried to a moisture content of 0.1% by weight or less and then melt-spun, preferably using an extruder type spinning machine. Melting temperature is 270-310℃
is preferred.

尚、紡糸口金(2)からポリマを紡出する直前に、溶融
ポリマ中の異物を除去する目的で紡糸バック(1)内で
濾過をするが、この際、フィルターは20μ以下、好ま
しくはlO〜3μの細孔を有する金網、またはステンレ
スuA繊維の焼結フィルターを用い、前記銅塩を含む酸
化防止剤の分解によって生成した異物、及び紡糸前にポ
リマ中に混入した異物を除去し、紡出糸条中への異物の
混入を極力避けることが重要である。本発明のポリカプ
ラミド繊維に許容される異物の量は例えばバイアツク 
ロイコ社製“旧AC4100”を用い、at維試料をフ
ェノール/四塩化エタン溶液に溶解し・て測定した時、
試料1g中に5μ以上の異物個数が1000個未満であ
る。口金直下には0リング等のシール部材、及び必要に
応じてI’t c m〜10cm程度の断熱板を介して
、加圧紡糸筒(11)を取り付ける。本発明の加圧紡糸
筒は、加熱筒(3)、加圧冷却風吹込み装置(4)、糸
道ダクト(6)、及び糸条出口シール部(7)等から構
成されている。該加圧紡糸筒内に於いては紡糸口金面か
ら少なくとも10cm以上の領域は、紡出された糸条(
Y)の冷却を遅延させるため、該雰囲気を該ポリマの融
点+30℃以上、好ましくは280℃以上、400℃以
下の温度に保つことが必要である。
Immediately before spinning the polymer from the spinneret (2), filtration is performed in the spinning bag (1) for the purpose of removing foreign substances in the molten polymer. Using a wire mesh with pores of 3μ or a sintered filter made of stainless uA fiber, foreign matter generated by the decomposition of the antioxidant containing the copper salt and foreign matter mixed into the polymer before spinning are removed, and then the spinning is performed. It is important to avoid contamination of foreign matter into the yarn as much as possible. The amount of foreign matter permissible in the polycapramide fibers of the present invention is, for example,
When an AT fiber sample was dissolved in a phenol/tetrachloroethane solution and measured using Leuco's "Old AC4100",
The number of foreign particles of 5 μ or more in 1 g of sample is less than 1000. Directly below the spinneret, a pressure spinning tube (11) is attached via a sealing member such as an O-ring and, if necessary, a heat insulating plate with a thickness of I't cm to 10 cm. The pressurized spinning tube of the present invention is composed of a heating tube (3), a pressurized cooling air blowing device (4), a yarn guide duct (6), a yarn outlet seal portion (7), and the like. In the pressurized spinning cylinder, an area of at least 10 cm or more from the spinneret surface contains the spun yarn (
In order to delay the cooling of Y), it is necessary to maintain the atmosphere at a temperature above the melting point of the polymer +30°C, preferably above 280°C and below 400°C.

そのため、5 cm以上、好ましくは10〜100cm
の加熱筒(3)を口金直下に取りつけろ。
Therefore, 5 cm or more, preferably 10 to 100 cm
Attach the heating tube (3) directly below the cap.

該加熱筒の下には紡出糸条の外周より冷風を吹付けるた
めの環状冷却風吹込み装置(5)を取り付ける。紡糸筒
内を高圧状態に加圧するには、該環状冷却風吹込み装置
(9)より加圧流体を導入することによって可能である
。そして加圧流体の吹込みによって糸条が急冷される。
An annular cooling air blowing device (5) for blowing cold air from the outer periphery of the spun yarn is attached below the heating cylinder. The inside of the spinning cylinder can be pressurized to a high pressure state by introducing pressurized fluid from the annular cooling air blowing device (9). The yarn is then rapidly cooled by blowing in pressurized fluid.

加圧流体は空気、窒素、水蒸気、その他重合体に不活性
、または活性な気体を用いることができるが通常は空気
が用いられる。紡糸筒内の圧力は本発明の効果を得るた
めに外気圧力より1kg/C11’以上、好ましくは3
kg/C1’の高圧とすることが必要である。
As the pressurized fluid, air, nitrogen, water vapor, or other gas inert or active to the polymer can be used, but air is usually used. In order to obtain the effects of the present invention, the pressure inside the spinning cylinder is 1 kg/C11' or more, preferably 3 kg/C11' or more, than the outside air pressure.
It is necessary to set the pressure to a high pressure of kg/C1'.

糸条出口は糸条のスムーズな通過を許す程度に開口され
たシールノズル(7)によってシールされている。シー
ルノズルからは糸条に随伴する気流が僅かに漏れる程度
である。該気流の漏れによって糸条の揺れが著し・く起
こったり、糸条各車糸間の交絡が起こらない程度のシー
ルを必要とする。
The yarn outlet is sealed by a seal nozzle (7) that is opened to an extent that allows smooth passage of the yarn. Only a small amount of airflow accompanying the yarn leaked from the seal nozzle. It is necessary to provide a seal that prevents the yarn from shaking significantly due to the leakage of the airflow, and from causing entanglement between the yarns.

例えばシールノズルの孔径は紡出糸条の断面積の3〜2
0、好ましくは5〜10倍である。また、糸条出口のシ
ールノズルとは別に、糸道ダクト下部の糸条出口近傍で
別の位置に気流吹出し部(10)を設けることもある。
For example, the hole diameter of the seal nozzle is 3 to 2 times the cross-sectional area of the spun yarn.
0, preferably 5 to 10 times. Furthermore, in addition to the seal nozzle at the yarn outlet, an air blowing part (10) may be provided at a different position near the yarn outlet at the bottom of the yarn path duct.

該気流吹出し部は加圧紡糸筒内の流体、例えば空気が紡
出糸条との熱交換によって熱くなる場合に吹出させるが
、環状冷風吹込み装置から吹込まれる加圧気流とバラン
スをとり、所定の圧力に保ちながら行う。比較的吐出量
が少なく、糸道ダクト外壁部を介して放熱したり、ある
いは積極的にダクト外壁部を冷却するなどして加圧紡糸
筒内温度が高くならず、十分に糸条冷却が達せられる場
合は、該ダクト下部気流吹出し部は閉じておくことがで
きる。以上の通り、本発明法の特徴の一つは、ポリカプ
ラミドポリマが紡糸口金から紡出され、溶融状態の糸条
が冷却遅延ゾーンを通過した後、環状冷風吹込み装置に
よって急冷固化されるまでの状態変化を加圧雰囲気下で
行うことであり、その理由は次の通:)である。
The airflow blowing section blows out the fluid in the pressurized spinning tube when it becomes hot due to heat exchange with the spun yarn, but balances it with the pressurized airflow blown in from the annular cold air blowing device, Do this while maintaining the specified pressure. The discharge amount is relatively small, and the temperature inside the pressurized spinning cylinder does not rise by dissipating heat through the outer wall of the yarn guide duct or actively cooling the outer wall of the duct, and the yarn cannot be cooled sufficiently. The lower airflow outlet of the duct can be kept closed if the As mentioned above, one of the characteristics of the present invention method is that polycapramide polymer is spun from a spinneret, and after the molten yarn passes through a cooling delay zone, it is rapidly cooled and solidified by an annular cold air blowing device. The reason for this is as follows:).

一般に高速紡糸/延伸した繊維の単糸繊度を従来の高強
力ポリアミド繊維と同等に保持するためには口金孔光た
りの吐出量を増加させねばならない。通常のタイヤコー
ド用ポリカプラミド繊維の単糸繊度は約6デニールであ
る。本発明のように1500n/min以上の紡糸速度
からなる高速紡糸/延伸法を採用し、且つ延伸糸の単糸
繊度を極端に小さくならないよう3デニ一ル以上、好ま
しくは4デニ一ル以上、より好ましくは従来の高強力ポ
リアミド繊維と同様約6デニールとするためには紡糸口
金からの溶融ポリマ吐出量は少なくとも2.5g/分以
上と多くしなければならない。もし、口金孔当たりの吐
出量を増やさないで高速紡糸/延伸法を採用し、且つ、
本発明と同様、高速紡糸/延伸法による生産効率の利点
を生かそうとすると、紡糸口全光たりのフィラメント数
を多くする必要があるが、その結果フィラメント間隔が
狭くなり、フィラメント間衝突が起こって糸切れが発生
し・やすい。また、各フィラメントか均一に冷却されに
くくなるのでフィラメント間の物性差が増大し、タイヤ
コード性能としても、幾つかの欠点、ηりえば耐疲労性
や接着性が低下するなどの現象が認められる。
Generally, in order to maintain the single filament fineness of high-speed spun/drawn fibers to be the same as that of conventional high-strength polyamide fibers, the discharge amount per spinneret hole must be increased. The single yarn fineness of a typical polycapramide fiber for tire cords is about 6 denier. As in the present invention, a high-speed spinning/drawing method consisting of a spinning speed of 1500 n/min or more is adopted, and the single fiber fineness of the drawn yarn is 3 denier or more, preferably 4 denier or more, so as not to become extremely small. More preferably, the amount of molten polymer discharged from the spinneret must be as high as at least 2.5 g/min in order to obtain a denier of about 6 denier, similar to conventional high-strength polyamide fibers. If a high-speed spinning/drawing method is adopted without increasing the discharge amount per die hole, and
Similar to the present invention, in order to take advantage of the production efficiency of the high-speed spinning/drawing method, it is necessary to increase the number of filaments per spinneret, but as a result, the filament spacing becomes narrow and collisions between filaments occur. Thread breakage occurs easily. In addition, since it becomes difficult for each filament to cool uniformly, the difference in physical properties between the filaments increases, resulting in some defects in tire cord performance, such as a decrease in fatigue resistance and adhesion. .

一般に高速紡糸では、紡出され、冷却固化されるまでに
受ける変形速度が大きいが、その急激な変形に追随でき
る曳糸性を特徴とする特に本発明の高重合度ポリカプラ
ミド繊維の場合には高速紡糸時の曳糸性を確保するため
に溶融状態の紡出糸条を口金直下で急冷することは避け
ねばならない。そのために口金直下、少なくとも10c
m以上、好ましくは10−100cmの領域をポリカプ
ラミドの融点+30℃以上の温度雰囲気にする。
Generally, in high-speed spinning, the deformation rate is high before being spun and cooled and solidified. However, in the case of the highly polymerized polycapramide fiber of the present invention, which is characterized by spinnability that can follow such rapid deformation, the high speed In order to ensure stringiness during spinning, it is necessary to avoid rapidly cooling the molten spun yarn directly under the spinneret. Therefore, directly below the base, at least 10c
An atmosphere with a temperature of at least 30° C. above the melting point of polycapramide is applied to an area of 10 to 100 cm or more.

口金直下の高温雰囲気領域を通過した糸条は次に急冷さ
れる。溶融ポリカプラミド糸条の冷却固化過程で、結晶
化速度の速い温度域、通常は120〜210℃を直ちに
通過させる二とが必要である。本発明の高速紡糸法に於
ては、冷却固化された!lli維は既に配向結晶化しつ
つあるか、ある(弓よ配向結晶化の生ずる前駆的な配向
状態となっている。結晶化速度の速い温度域に長時間滞
留すると、配向結晶とは別に大きな球晶状結晶が生成す
る。
The yarn that has passed through the high-temperature atmosphere area directly below the cap is then rapidly cooled. During the cooling and solidification process of the molten polycapramide yarn, it is necessary to immediately pass through a temperature range where the crystallization rate is high, usually 120 to 210°C. In the high-speed spinning method of the present invention, it is solidified by cooling! Lli fibers are already in the process of oriented crystallization (or are in a precursor orientation state where bow-to-bow oriented crystallization occurs.If they remain in a temperature range where the crystallization rate is high for a long time, they will form large spheres in addition to oriented crystals. Crystalline crystals are formed.

この球晶状結晶が多く生成すると、引続く延伸工程で十
分延伸されず、高強力糸が1与られない。結晶化速度の
速い温度領域での滞留時間は外部からの冷却条件、糸条
の速度、糸条の持つ熱容量、糸条を構成するフィラメン
トの表面積等によって決る。前記したように高速紡糸/
延伸で単糸繊度3デニ一ル以上を得ようとすると、口金
孔当たりの吐出量は3g/分と大きくなるので、急速冷
却が出来ず、沢山の球晶が生成して高強度糸が得られな
かった。そのため高速紡糸/延伸法では一般に単糸デニ
ールを小さくして解決せざるを得なかったが、前記した
ように単糸デニールを小さくすることによる別の障害が
あるため、高速紡糸/延伸して3デニ一ル以上、好まし
くは4デニ一ル以上、より好ましくは約6デニールの単
糸繊度を深持した高強力ポリアミド繊維を得ろことが望
まれていた。
If a large number of these spherulite crystals are produced, the yarn will not be sufficiently stretched in the subsequent drawing step, and a high strength yarn will not be obtained. The residence time in the temperature range where the crystallization rate is high is determined by the external cooling conditions, the speed of the yarn, the heat capacity of the yarn, the surface area of the filaments constituting the yarn, etc. As mentioned above, high speed spinning/
If you try to obtain a single yarn fineness of 3 denier or more by drawing, the discharge rate per spinneret hole will be as large as 3 g/min, so rapid cooling will not be possible, and many spherulites will be produced, resulting in a high-strength yarn. I couldn't. For this reason, in high-speed spinning/drawing methods, it was generally necessary to reduce the single yarn denier to solve the problem, but as mentioned above, there are other obstacles caused by reducing the single yarn denier, so high-speed spinning/drawing methods have no choice but to solve the problem. It has been desired to obtain a high strength polyamide fiber having a deep single filament fineness of at least 1 denier, preferably at least 4 denier, and more preferably at least about 6 denier.

本発明は高速紡糸によって3デニ一ル以上の単糸繊度を
有する高強力ポリアミド!!IIを得ろ方法を提案する
ものであり、そのポイントは口金直下での高温雰囲気下
での冷却遅延と、該高温雰囲気ゾーン直下での急冷を効
果的に行なうためここ、口金面から、少なくとも糸条が
冷却固化されろ点迄の雰囲気を外気より1kg/帽′以
上、好まし・くは3 k g / ui“以上の加圧雰
囲電下で紡糸することである。この方法を採用すること
によって、球晶状結晶の少ない透明性の良いポリカプラ
ミドf!A維が得られる。加圧雰囲気紡糸によって、高
温雰囲気ゾーン、急冷ゾーン共に空気密度が高くなるの
で熱伝達がよくなり、紡出糸条の冷却遅延とそれに引続
く急冷がそれぞれ効果的に達成される。かかる効果は、
従来のユニフロー型冷却装置、及び環状吹出し型冷却装
置等によって、冷風速度を高めたり、冷風温度を下げた
り、または冷却ゾーンを長くしても達せられない。紡出
糸条は上記加圧紡糸筒を出た後、給油装置(12)て油
剤を付与されてから引き取りロール(13)で速度を制
御され、一旦巻取機(15)で巻取られるか、または延
沖ロール(14)との間で連続して延沖した後巻取られ
る。給油装置(12)は加圧紡糸筒内(11)に設けろ
こともてきる。通常は前記シールノズル部から給油し、
所謂ガ、イド給油装置の機能を持たせることも好ましい
。より好ましくは該シールノズル部で一部の油剤を付与
し、シールノズルを出た後所定量の油剤付着量となるよ
う更に給油する方法が採用される。 引取り速度(紡糸
速度とも言う)は1500m/分以上好ましくは200
0〜6000m/分てδろ。この引取り糸の複屈折は2
0X10”〜45X10”1である。引取り速度150
0m/分未満、複屈折が20XIO”未満では引き続い
て延沖した繊維の寸法安定性が劣り、加硫時の強力低下
が大きく、本発明の効果が得られない。また、この場合
には紡糸筒内を外気圧力より1kg/c?I!’以上に
加圧すると安定な紡糸引取りが困難である。一方、45
×lO“3を超えると、引続く本発明の延伸法を適用し
ても目的とする高強力ポリアミド繊維は得られない。
The present invention is a high-strength polyamide that has a single yarn fineness of 3 denier or more by high-speed spinning! ! This paper proposes a method to obtain II.The key point is to delay cooling in a high-temperature atmosphere directly below the cap and to effectively perform rapid cooling directly under the high-temperature atmosphere zone. The method is to spin under a pressurized atmosphere with an electric current of at least 1 kg/ui', preferably at least 3 kg/ui' from the outside air, until the material is cooled and solidified.This method is adopted. By this method, polycapramide f!A fibers with good transparency and few spherulite crystals can be obtained.By pressurized atmosphere spinning, the air density is high in both the high temperature atmosphere zone and the quenching zone, which improves heat transfer and improves the spun yarn. A cooling delay followed by a rapid cooling are each effectively achieved.
Conventional uniflow type cooling devices, annular blowout type cooling devices, etc. cannot achieve this goal even by increasing the cooling air velocity, lowering the cooling air temperature, or lengthening the cooling zone. After the spun yarn leaves the pressurized spinning tube, it is applied with a lubricant by a lubricating device (12), its speed is controlled by a take-up roll (13), and it is once wound up by a winder (15). , or is rolled up after continuous rolling with the rolling roll (14). The oil supply device (12) may also be provided within the pressurized spinning cylinder (11). Normally, oil is supplied from the seal nozzle part,
It is also preferable to have the function of a so-called guide oil supply device. More preferably, a method is adopted in which a part of the oil is applied at the seal nozzle portion and further oil is added so that a predetermined amount of oil adheres after exiting the seal nozzle. The take-up speed (also called spinning speed) is 1500 m/min or more, preferably 200 m/min or more.
0-6000m/min delta. The birefringence of this drawn thread is 2
0x10" to 45x10"1. Pick up speed 150
When the birefringence is less than 0 m/min and the birefringence is less than 20XIO'', the dimensional stability of the subsequently spread fiber is poor, and the strength decreases greatly during vulcanization, and the effects of the present invention cannot be obtained. If the inside of the cylinder is pressurized to 1 kg/c?I!' or more than the outside air pressure, it is difficult to take off the spinning yarn stably.On the other hand, 45
If it exceeds ×lO"3, the desired high-strength polyamide fiber cannot be obtained even if the subsequent drawing method of the present invention is applied.

尚、第1図、及び第2図に示した紡糸工程と延伸工程が
分離された2工程法に於いて、紡糸速度3000m/分
未満では、ポリカプラミド繊維は縦膨潤を起こし・、そ
のままでは正常な巻取りかできない。そのため、本発明
に係る繊維を3000m/分未満の未延伸糸から製造す
る場合は紡出糸条を引取りロール(13)で引取った後
、連、続して2倍以下の延伸を延伸ロール(14)との
間で行なった後巻取る。この際、引取りロールは無加熱
のまま、又は100℃以下、延伸ロールは150℃以下
に加熱した加熱ロールを用いろことが好ましい。上記縦
膨潤を防ぐために行なう延伸は縦膨潤を起こさず正常な
巻取りが可能な、なろべく低い倍率を選ぶことが好まし
く、紡速3000m/分の引取り糸の複屈折的35X1
0°3とほぼ同等となるようにすればよい。
In addition, in the two-step method in which the spinning process and the drawing process are separated as shown in Figures 1 and 2, if the spinning speed is less than 3000 m/min, the polycapramide fiber will undergo longitudinal swelling and will not return to its normal state. I can only wind it. Therefore, when producing the fiber according to the present invention from an undrawn yarn at a speed of less than 3000 m/min, the spun yarn is taken off with a take-up roll (13), and then continuously stretched by less than 2 times. It is then wound up with the roll (14). At this time, it is preferable to leave the take-up roll unheated or to use a heating roll heated to 100°C or lower, and the stretching roll to 150°C or lower. It is preferable to select a stretching ratio as low as possible, which does not cause longitudinal swelling and allows normal winding, in order to prevent the above-mentioned longitudinal swelling.
It is sufficient if the angle is approximately equal to 0°3.

次に上記巻取った未延伸糸(16)を本発明に係る延伸
法に於いて最高延伸倍率の90%以上で延伸する。ここ
で最高延伸倍率とは長さ500m以上の延伸繊維が得ら
れる最高の延伸倍率をいう。
Next, the wound undrawn yarn (16) is drawn by the drawing method according to the present invention at a maximum drawing ratio of 90% or more. The maximum draw ratio herein refers to the highest draw ratio at which drawn fibers having a length of 500 m or more can be obtained.

延伸方法は2段以上の多段熱延伸が好まし・く、上記本
発明に係る未延伸糸は既に高配向か達成されているので
、総合延伸倍率は3.5倍以下、通常は3.0〜1.4
培である。尚、総合延伸倍率とは上記紡出糸を引取りロ
ールで引取った後、連続して縦膨潤を防ぐ目的で行なっ
た延伸を含む全延伸倍率を意味する。
Multi-stage hot stretching of two or more stages is preferred as the stretching method, and since the undrawn yarn according to the present invention has already achieved high orientation, the total stretching ratio is 3.5 times or less, usually 3.0. ~1.4
It is cultivation. Incidentally, the total stretching ratio refers to the total stretching ratio including the continuous stretching performed for the purpose of preventing longitudinal swelling after the above-mentioned spun yarn is taken up with a take-up roll.

上記本発明法によって得られるポリカプラミド繊維は残
留伸度が10〜20%であり、従来のポリカプラミド繊
維よりも低伸度まで高倍率で延伸される。本発明のポリ
カプラミド繊維は酸化防止剤の分解異物を僅かしか含ま
ない均一な繊維てあり、且つ下記する特殊な延伸法と併
せ、低伸度まで安定して延伸することが可能である。ま
た延伸後も高配向状態の繊維構造が保持されていること
が特徴である。
The polycapramide fiber obtained by the method of the present invention has a residual elongation of 10 to 20%, and can be drawn at a higher magnification to a lower elongation than conventional polycapramide fibers. The polycapramide fiber of the present invention is a uniform fiber that contains only a small amount of decomposed foreign substances of antioxidants, and can be stably drawn to low elongation levels in combination with the special drawing method described below. Further, it is characterized in that the highly oriented fiber structure is maintained even after stretching.

本発明の延伸方法の1例を第2図に示したが、具体的に
述べると次の通りである。本発明に於ける延伸ロールは
通常使用されている積極駆動ロール2対を利用したネル
ソンロールユニット、または、手貞極駆動ロールとフリ
ーロールの4且み合わせが用いられる。FR(フィート
ロール=17)とIDR(第1ドローロール:18)間
は1.05〜2.0、IDRと2DR(第2ドローロー
ル:19)間は1.1〜1.50.2DRと3DR(第
3ドローロール:20)間は1.05〜1゜50.3D
RとRR(張力調整ロール:21)間は0.90〜1.
10となるよう延伸倍率を配分する。FRは非加熱〜1
00°C,IDRは60〜150℃、2DRは100〜
200°C13DRは150〜220°C,RRは非加
熱〜200℃として用いろ。
An example of the stretching method of the present invention is shown in FIG. 2, and the details are as follows. The stretching rolls used in the present invention are a commonly used Nelson roll unit using two pairs of actively driven rolls, or a combination of four manually driven rolls and a free roll. 1.05 to 2.0 between FR (feet roll = 17) and IDR (first draw roll: 18), and 1.1 to 1.50.2 DR between IDR and 2DR (second draw roll: 19). Between 3DR (third draw roll: 20) is 1.05~1°50.3D
The distance between R and RR (tension adjustment roll: 21) is 0.90 to 1.
The stretching ratio is distributed so that it becomes 10. FR is non-heated~1
00°C, IDR is 60~150°C, 2DR is 100~
200°C Use 150 to 220°C for 13DR and 200°C to 200°C for RR.

IDRと2DR及び2DRと3DR間にはスリットヒー
ター(22)または過熱蒸気(23)等の非接触加熱体
を設ける。IDRと2DR間にスリットヒーターを用い
る場合は80〜250℃の高温雰囲気中を少なくとも0
.02秒以上滞在できるようにし、過熱蒸気を用いる場
合は高温加圧蒸気ノズルからノズル温度150〜300
Cの高温蒸気を噴射せしめる。また2DRと3DR間に
設置する場合、スリットヒーターは1000以上、過熱
蒸気は200℃以上として、IDRと2[)8間よりも
それぞれ高い温度に設定し・てiテなう。本発明繊維の
製造に於けろ延伸方法で上記非接触加熱体と加熱ロール
群とを用いろことが好ましく、特にFRと最終ドローロ
ールの間に配置し・た中間ロール群・\の糸条の巻1寸
回数は各々2回以下とすることがより好ましい。加熱ロ
ールで付与する熱量は延伸に必要な最少限にとどめろこ
とが好ましいからである。最終ドローロール、及び゛引
続く熱固定のためのロールへの糸条巻付は回数は、熱固
定の必要度に合せて選び通常は5〜12回である。
A non-contact heating element such as a slit heater (22) or superheated steam (23) is provided between the IDR and 2DR and between 2DR and 3DR. When using a slit heater between the IDR and 2DR, the temperature is at least 0 in a high temperature atmosphere of 80 to 250℃.
.. 02 seconds or more, and when using superheated steam, the nozzle temperature is 150 to 300 from the high temperature pressurized steam nozzle.
The high temperature steam of C is injected. When installing between 2DR and 3DR, set the slit heater to 1000 or higher and the superheated steam to 200°C or higher, each at a higher temperature than between IDR and 2[)8. In the production of the fibers of the present invention, it is preferable to use the above-mentioned non-contact heating body and heating roll group in the gyroscope drawing method. It is more preferable that the number of times per winding is two or less. This is because the amount of heat applied by the heating rolls is preferably kept to the minimum necessary for stretching. The number of times the yarn is wound around the final draw roll and the roll for subsequent heat setting is selected depending on the degree of heat setting required, and is usually 5 to 12 times.

3DR(20)を通過した糸条はRR(21)との間で
0.90〜1.05で弛緩、ないし若干の伸張を加えな
がら巻取り機(24)で巻取る。
The yarn that has passed through the 3DR (20) is relaxed or slightly stretched by 0.90 to 1.05 between the yarn and the RR (21) and is wound up by a winder (24).

上記方法によれば最高延伸培率の0.90以上、通常は
0.95以上で安定して延伸することができる。
According to the above method, it is possible to stably stretch the film at a maximum stretching ratio of 0.90 or more, usually 0.95 or more.

かかる方法によって下記の特性を有する高強度、低収縮
率ポリアミド繊維が安定に、且つ効率よく製造できる。
By this method, high-strength, low-shrinkage polyamide fibers having the following characteristics can be stably and efficiently produced.

強   度     T/D≧log/d伸   度 
     E=10〜20%沸騰水収縮率  △S≦1
0% また本発明によって製造されろ上記特性を有する繊維は
次の繊維構造パラメータによって特徴づけられる。
Strength T/D≧log/d Elongation
E=10-20% boiling water shrinkage rate △S≦1
0% The fibers produced according to the invention and having the above properties are also characterized by the following fiber structure parameters.

複屈折 △n≧58X10°3 密  度     ρ≧1.142g/ccDSC融点
   Tm≧217℃ 結晶配向度   fc≧0.92 非晶分子配向度 F=0.70〜0.85[実施例] 次に実施例に基づいて説明するが、本発明に係る繊維特
性及び繊維構造パラメータの測定法は次の通りである。
Birefringence △n≧58X10°3 Density ρ≧1.142g/ccDSC melting point Tm≧217°C Crystal orientation fc≧0.92 Amorphous molecular orientation F=0.70 to 0.85 [Example] Next The method for measuring fiber properties and fiber structure parameters according to the present invention will be explained based on examples as follows.

(イ)強度 T/D、伸度 E、及び初期引張抵抗度 
M 1 JIS−L1017によった。試料をかぜ状にとり、2
0℃、65%RHの温湿度調節された部屋に24時間以
上放置後、“テンシロン UTL−4L”型引張試験機
(東洋ボールドウィン(株製)を用い、試長25cm、
引張速度30cm/minて測定した。
(a) Strength T/D, elongation E, and initial tensile resistance
M1 According to JIS-L1017. Take the sample in the form of a cold, and
After being left in a temperature-humidity controlled room at 0°C and 65% RH for more than 24 hours, it was tested using a "Tensilon UTL-4L" type tensile tester (manufactured by Toyo Baldwin Co., Ltd.) with a sample length of 25 cm.
Measurement was performed at a tensile speed of 30 cm/min.

(ロ)沸騰水収縮率 △S 試料をかぜ状にとり、20℃、65%RHの温湿度調節
室で24時間以上放置した後、試料の0゜13/dに相
当する荷重を掛けて測定した長さり。
(B) Boiling water shrinkage rate △S A sample was taken in the form of a cold, left in a temperature and humidity controlled room at 20°C and 65% RH for more than 24 hours, and then measured by applying a load equivalent to 0°13/d of the sample. Length.

の試料を布袋に入れ、無緊張状態で沸騰水中30分間処
理する。処理後のサンプルを風乾し、上記温湿度調節室
で24時間以上放置し、再び上記荷重をか゛けて測定し
た長さLoから次式によって算出した。
The sample was placed in a cloth bag and treated in boiling water for 30 minutes without tension. The treated sample was air-dried, left in the temperature and humidity control room for 24 hours or more, and then the load was applied again, and the measured length Lo was calculated using the following formula.

沸騰水収縮率(%’)= (L−Lo) /LO(ハ)
複屈折 △n ニコン偏光顕微鏡POH型を用い、ベレックコンベンセ
ーター法で常法によって求めた。
Boiling water shrinkage rate (%') = (L-Lo) /LO (c)
Birefringence △n It was determined using a Nikon polarizing microscope POH type using a conventional Berek convenscator method.

(ニ)密度 ρ 四塩化炭素−トルエンからなる密度勾配管を用い、25
℃で測定した。
(d) Density ρ Using a density gradient tube made of carbon tetrachloride-toluene, 25
Measured at °C.

(ホ)DSC融点 Tm Perkin−E1mer社製のDSC−IB型て昇温
速度10kminl  、試料量4.0mg、感度4m
cal・s−1フルスケールで測定した融解曲線のピー
ク温度とした。
(E) DSC melting point Tm DSC-IB model manufactured by Perkin-E1mer, heating rate 10 kminl, sample amount 4.0 mg, sensitivity 4 m
It was taken as the peak temperature of the melting curve measured at cal·s-1 full scale.

(へ)結晶配向度 fc 理学電機製広角X線散乱装置D3−F型を用いて、Cu
Kαを線源として測定した。結晶部の配向関数をfcと
して(200)赤道線干渉のデバイ環上に沿った強度分
布曲線の半価幅HOから次式により算出した。
(f) Crystal orientation fc Using a wide-angle X-ray scattering device D3-F manufactured by Rigaku, Cu
Measurements were made using Kα as a radiation source. It was calculated by the following formula from the half-width HO of the intensity distribution curve along the Debye ring of (200) equatorial line interference, where fc is the orientation function of the crystal part.

fc = (1800−HO)/1800(ト)非晶分
子配向間数 F 試料を蛍光剤゛Whitex  RP” (住友化学園
製)の0.2重量%水溶i夜に20°Cて2時間浸漬し
、次いで十分洗浄した後風乾して測定試料とした。日本
分光■製FOM−19光光度計を用い、偏光蛍光の相対
強度を測定し、次式によりFを求めた。
fc = (1800-HO)/1800 (g) Number of amorphous molecule orientations F The sample was immersed in a 0.2% by weight aqueous solution of the fluorescent agent "Whitex RP" (manufactured by Sumitomo Chemical) at 20°C for 2 hours overnight. Then, the sample was thoroughly washed and air-dried to prepare a measurement sample.The relative intensity of the polarized fluorescence was measured using a FOM-19 photometer manufactured by JASCO ■, and F was determined by the following formula.

F= 1−B/A 但し、A : !Ii維軸刃軸方向光蛍光の相対強度B
:繊維軸と直角方向の相対強度 〔実施例〕 無水酢酸銅0.015重量%(銅として52ppm)、
よう化カリウム0.1重量%、及び臭化カリウム0.1
重量%を含むηr=3.8のカブラミドチップをエクス
トルーダー型紡糸機て紡出した。吐出量は延伸糸として
の繊度が紡速3000m/分未満では約473デニール
(D) 、3000m/分以上では約315Dとなるよ
うに調整した。また口金は孔径0.3mmφで、口金孔
歯たりの吐出量を変化させるため、総吐出量及び口金孔
数を変化させてテストした。ポリマ温度は290°Cと
した。約100メツシュ粗さの金属パウダー、及び7μ
の細孔を有するステンレスWA′m維の焼結フィルター
を順次配置してなるパック内を通過させて濾過した後、
70金紡糸孔から紡出し、た。
F= 1-B/A However, A: ! Relative intensity B of Ii fiber axis blade axial optical fluorescence
: Relative strength in the direction perpendicular to the fiber axis [Example] 0.015% by weight of anhydrous copper acetate (52 ppm as copper),
Potassium iodide 0.1% by weight, and potassium bromide 0.1%
Cabramid chips containing ηr=3.8 were spun using an extruder type spinning machine. The discharge amount was adjusted so that the fineness of the drawn yarn was about 473 denier (D) at spinning speeds of less than 3,000 m/min, and about 315 denier (D) at spinning speeds of 3,000 m/min or more. Further, the mouthpiece had a hole diameter of 0.3 mmφ, and in order to change the discharge amount per tooth of the mouthpiece hole, tests were conducted by changing the total discharge amount and the number of mouthpiece holes. The polymer temperature was 290°C. Metal powder with a roughness of about 100 mesh, and 7μ
After filtering through a pack consisting of sequentially arranged stainless steel WA'm fiber sintered filters having pores of
It was spun from a 70k gold spinning hole.

第1図のように該口金、紡糸バック、及び以下の加熱筒
、断熱板、環状冷風吹込み装置、下部にシールノズルを
有するダクトによって加圧紡糸筒が構成され、それぞれ
は相互に密閉して接続されている。該加圧紡糸筒の構成
要素は以下の仕様及び条件とし・た。口金直下には長さ
30 c mの加熱筒を取り付け、口金下界囲気温度を
300°Cとなるよう加熱した。雰囲気温度とは加熱筒
上端より15cm下の位置で、且つ最外周糸条より1c
mJすれた位置で測定した温度である。
As shown in Fig. 1, a pressurized spinning tube is constituted by the spinneret, the spinning bag, the following heating tube, a heat insulating plate, an annular cold air blowing device, and a duct having a seal nozzle at the bottom, and each of them is sealed from the other. It is connected. The components of the pressurized spinning tube had the following specifications and conditions. A heating tube with a length of 30 cm was attached directly below the cap, and the surrounding air temperature under the cap was heated to 300°C. Ambient temperature is a position 15 cm below the upper end of the heating cylinder and 1 cm below the outermost thread.
This is the temperature measured at a position just below mJ.

該加熱筒の下には1cm長さの断熱板を介して30cm
長さの環状冷風吹込み装置を取り付けた。
A 30cm insulating plate is placed under the heating cylinder through a 1cm long heat insulating plate.
A long annular cold air blower was installed.

更に該環状冷風吹込み装置の下部には、下端に紡出糸条
の出口部となるシールノズルが取り付けられである長さ
3mのダクトを取り付けた。尚、シールノズルはセラミ
ック製であり、その孔径は2mmである。シールノズル
上部からは加圧紡糸筒内で冷却固化した糸条に水系エマ
ルジョンを0゜1重量%付着するよう付与し、糸条のシ
ールノズル面での擦過を防いだ。上記環状冷風吹込み装
置からは温度約30°Cの圧縮空気を整流して吹込み加
圧紡糸筒内を所定の圧力に保持して紡糸を行った。
Furthermore, a duct with a length of 3 m was attached to the lower part of the annular cold air blowing device, and a seal nozzle serving as an outlet for the spun yarn was attached to the lower end. Note that the seal nozzle is made of ceramic and has a hole diameter of 2 mm. A water-based emulsion was applied from the upper part of the seal nozzle to the yarn cooled and solidified in the pressurized spinning cylinder so as to adhere to 0.1% by weight to prevent the yarn from being scratched on the seal nozzle surface. Compressed air at a temperature of about 30° C. was rectified from the annular cold air blowing device, and the inside of the spinning cylinder was kept at a predetermined pressure for spinning.

上記加圧紡糸筒から引出された紡出糸条は、糸条に対向
して2段に配置した給油ロールによって水系エマルジョ
ンを糸条に対して約1重量%となるよう付与した。次に
糸条は所定の速度で回転する引取りロールで引き取りそ
のまま巻取るか、または連続して延伸ロールとの間で延
伸した後巻取った。。次いで引き取った未延伸糸は第2
図に示した延伸機で3段延伸及び熱処理した後巻取り、
延伸糸とした。ここで、IDR,2DRへの糸条巻付は
回数はいずれも2回とした。つぎに延伸糸は4本または
6本合糸して1890D原糸とした。
The spun yarn drawn out from the pressurized spinning tube was coated with an aqueous emulsion in an amount of about 1% by weight based on the yarn by oil supply rolls arranged in two stages facing the yarn. Next, the yarn was taken up by a take-up roll rotating at a predetermined speed and wound up as is, or it was continuously stretched between drawing rolls and then wound up. . Next, the undrawn yarn taken out is transferred to the second
After 3-stage stretching and heat treatment using the drawing machine shown in the figure, winding
It was made into a drawn yarn. Here, the yarn was wound around the IDR and 2DR twice. Next, four or six drawn yarns were combined to obtain a 1890D yarn.

紡糸及び延伸条件を第1表に、また得られた原糸特性を
第2表に示した。
The spinning and drawing conditions are shown in Table 1, and the properties of the obtained yarn are shown in Table 2.

次で原糸は32T/10cmの下撚をかけた後、下撚コ
ード2本合わせて下撚とは反対方向に32T/10cm
の上撚をかけ生コードとした。次にリツラー社製ディッ
ピンク機によって接着剤付与及び熱処理をした。RFL
液に浸漬し、付着量5%となるよう)夜濃度及び液切り
条件を調整した。
Next, the raw yarn is first twisted to 32T/10cm, and then the two first twisted cords are twisted to 32T/10cm in the opposite direction to the first twist.
It was twisted into a raw cord. Next, adhesive was applied and heat treated using a dippin machine manufactured by Ritzler. R.F.L.
The sample was immersed in the liquid, and the night concentration and liquid draining conditions were adjusted so that the adhesion amount was 5%.

次に乾燥ゾーンを130でて90秒間定長で通過させ、
熱処理ゾーンは200C140秒間、熱処理ゾーン出口
の応力(張力を処理コード繊度て除した値)が約1g/
dとなるようストレッチをかけて通過させた。ノルマル
ゾーンは200℃で40秒間、1%の弛緩を与えて通過
させた。
Next, pass through a drying zone at a constant speed of 130 for 90 seconds,
The heat treatment zone was heated to 200C for 140 seconds, and the stress at the exit of the heat treatment zone (the value obtained by dividing the tension by the treated cord fineness) was approximately 1 g/
It was stretched so that it passed. The normal zone was passed through at 200° C. for 40 seconds with 1% relaxation.

上記処理したコードは次にゴム加硫処理を行ない、加硫
後強力を測定した。加硫処理条件は以下の通りである。
The treated cords were then subjected to rubber vulcanization treatment, and the strength after vulcanization was measured. The vulcanization treatment conditions are as follows.

処理コードを未加硫ゴムトッピングシートに平行に並へ
、別の未加硫ゴムシートと合わせてモールドにセットし
、160.170.180℃に設定したヒートプレス機
でそれぞれ30分間加硫処理した。ヒートプレス機から
モールドを取り出した後直ちにモールドを水冷し、ゴム
中のコードを急激に自由収縮させた。次いてゴムシート
からコードを取り出し、24時間以上20℃、65%R
Hの温湿度調整室に放置した後加硫後強力を測定した。
The treated cord was placed parallel to the unvulcanized rubber topping sheet, set in a mold together with another unvulcanized rubber sheet, and vulcanized for 30 minutes using a heat press machine set at 160, 170, and 180°C. . Immediately after taking out the mold from the heat press machine, the mold was cooled with water to allow the cord in the rubber to rapidly contract freely. Next, take out the cord from the rubber sheet and store it at 20℃ and 65%R for more than 24 hours.
The strength after vulcanization was measured after being left in a temperature/humidity controlled room.

処理コート及び加硫後コートの特性を第3表に示した。The properties of the treated coat and the post-vulcanization coat are shown in Table 3.

尚、コート特性の測定方法は次の通りである。The coating properties were measured as follows.

(1)乾熱収縮率 △SO 処理条件を177℃のオーブン中で1テなった以外は前
記した原糸の沸瞭水収縮率と同じ方法で測定した。
(1) Dry heat shrinkage rate △SO The dry heat shrinkage rate was measured in the same manner as the boiling water shrinkage rate of the yarn described above, except that the processing conditions were changed to 1 degree in an oven at 177°C.

(2)中間伸度 ME 前記した強度及び伸度と同様、コードの荷重−仲良曲線
に於いて10. 1 1昭時沖度を求め、中間伸度とし
た。
(2) Intermediate elongation ME Similar to the above-mentioned strength and elongation, 10. 11 The offshore degree was determined and taken as the intermediate elongation.

(3)強力利用率 生コード : (生コード強力/原糸強力×2)×10
0 % 処理コード:(処理コード強力/生コード強力)XIQ
O% 加硫コード:(加硫コード強力/処理コード強力)X1
00  % (4)GY疲労寿命 、JIS  L−10173,2,2,1(1)A法に
よった。
(3) Strong utilization rate raw cord: (Strong raw cord/Strong yarn strength x 2) x 10
0% Processing code: (Strong processing code/Strong raw code) XIQ
O% Vulcanization code: (Strong vulcanization code/Strong processing code) X1
00% (4) GY fatigue life, according to JIS L-10173, 2, 2, 1 (1) A method.

第1表の製造条件に於いて、比較例(1)〜(5)はい
ずれも本発明の範囲を満足していない。
Under the manufacturing conditions shown in Table 1, none of Comparative Examples (1) to (5) satisfied the scope of the present invention.

その結果、第2、及び第3表のa維及びタイヤコート特
性に於いて、本発明にかかる実施例−1〜実施例−5が
高強度、寸法安定性、高耐疲労性、高加硫後強度等全て
優れているのに対し、比較例−(1)、(2)及び比較
例−(6)は強度、寸法安定性、耐疲労性、加硫液強力
とも劣る。比較例−(3)は強度、寸法安定性はよいが
耐疲労性、加硫液強力が劣る。比較例−(4)は強度は
高いが、他の特性が劣る。比較例(5)は、寸法安定性
、耐疲労性がよく、また加硫後強力利用率も良いが、処
理コード強力が低いため、加硫液強力の絶対値は高くな
い。
As a result, in terms of the a-fiber and tire coat properties in Tables 2 and 3, Examples 1 to 5 according to the present invention had high strength, dimensional stability, high fatigue resistance, and high vulcanization. In contrast, Comparative Examples (1) and (2) and Comparative Example (6) are inferior in strength, dimensional stability, fatigue resistance, and vulcanizing fluid strength, while the after strength is excellent. Comparative Example (3) has good strength and dimensional stability, but is poor in fatigue resistance and vulcanizing fluid strength. Comparative example (4) has high strength but is inferior in other properties. Comparative Example (5) has good dimensional stability, fatigue resistance, and good strength utilization after vulcanization, but the treated cord strength is low, so the absolute value of the vulcanizing solution strength is not high.

以上の通り、有用なタイヤコード特性を満足するために
は、本発明で特定する方法によって製造されたポリカプ
ラミド系繊維であることが必要である。
As mentioned above, in order to satisfy useful tire cord characteristics, it is necessary that the polycapramide fiber is produced by the method specified in the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明の効果は下記の通りである。 The effects of the present invention are as follows.

(1)本発明法によって得られるポリカプラミド繊維は
強度が10 g/d以上、通常はl1g/d以上と高く
、また寸法安定性、耐疲労性も優れているので各種産業
用途、例えばタイヤコード、〜゛l\l\ルト用ヘルド
等のコム補強用コート、およびローブ、シートベルト、
縫糸、漁網、各挿カバーシート等に用いた時耐久性に優
れた製品となる。
(1) The polycapramide fiber obtained by the method of the present invention has a high strength of 10 g/d or more, usually 11 g/d or more, and also has excellent dimensional stability and fatigue resistance, so it can be used in various industrial applications, such as tire cords, etc. ~゛l\l\ Com reinforcing coats such as healds, robes, seat belts, etc.
It becomes a product with excellent durability when used for sewing thread, fishing nets, various cover sheets, etc.

(2)原糸強度のみならず、引き続くタイヤコード加工
工程に於ける強力利用率が高いため、生コード、処理コ
ード強度とも高く、特にタイヤ加工時の加硫工程に於け
る強力低下が小さいので、加硫後のコード強力が従来の
ポリアミF’ * Slからなるタイヤコードに比較し
・少なくとも10%以上、通常は15%以上高い。この
特徴を生7))せばこれまでにない高耐久性タイヤが得
られ、また材料使用量を削減できるので、軽量なタイヤ
が得られる。
(2) Not only the raw yarn strength but also the strength utilization rate in the subsequent tire cord processing process is high, so both the raw cord and the treated cord strength are high, and the decrease in strength is particularly small in the vulcanization process during tire processing. The strength of the cord after vulcanization is at least 10% higher, usually 15% higher than that of a conventional tire cord made of polyamide F'*Sl. By taking advantage of this feature7)), a tire with unprecedented high durability can be obtained, and since the amount of material used can be reduced, a lightweight tire can be obtained.

り3)本発明法によれば、上記有用な特性を有するポリ
カプラミド*維が高速紡糸/延伸法によって生産効率よ
く、且つ収率よく製造できるため、大幅な製造コストダ
ウンが達成できる。
3) According to the method of the present invention, polycapramide* fibers having the above-mentioned useful properties can be produced with high production efficiency and high yield by a high-speed spinning/drawing method, so that a significant reduction in production costs can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る紡糸工程の一実施態様を示す工程
図である。第2図は本発明に係る延伸法の一実施態様を
示す工程図である。
FIG. 1 is a process diagram showing one embodiment of the spinning process according to the present invention. FIG. 2 is a process diagram showing one embodiment of the stretching method according to the present invention.

Claims (1)

【特許請求の範囲】 少なくとも95モル%以上のε−カプラミド単位からな
り、硫酸相対粘度3.0以上の高重合度を有するポリカ
プラミドを溶融紡糸、延伸してポリカプラミド繊維を製
造する方法において、(1)溶融ポリマを紡糸口金より
紡出し、該紡糸口金直下に設けられ、且つ外気圧力より
1kg/cm^2以上高圧に保持された加圧紡糸筒内に
導いて冷却固化した後、該加圧紡糸筒下端からシールノ
ズルを通して、外気常圧部に導き出して引取ること、(
2)上記方法に於いて紡糸口金直下には少なくとも10
cm以上の雰囲気が該ポリアミドの融点+30℃以上の
温度にになるよう加熱された筒を設置し、上記紡出糸条
は該高温雰囲気中を通過した後囲まれた領域を通過させ
た後、急冷され、1500m/分以上の高速で引取って
溶融紡糸すること、 (3)該紡糸口金の1孔当たりのポリマ量が2.5g/
分以上とすること、 (4)上記引取り糸の複屈折が20×10^−^3以上
とすること、 からなる条件を満足するよう紡糸した後、2段以上の熱
延伸法によって最高延伸倍率の90%以上で、且つ総合
延伸倍率1.2倍以上、3.5倍以下で行うことを特徴
とするポリカプラミド繊維の製造方法。
[Scope of Claims] A method for producing polycapramide fibers by melt-spinning and stretching polycapramide, which is composed of at least 95 mol% of ε-capramide units and has a high degree of polymerization with a relative viscosity of sulfuric acid of 3.0 or more. ) The molten polymer is spun from a spinneret, guided into a pressurized spinning tube that is provided directly below the spinneret and maintained at a pressure 1 kg/cm^2 or more higher than the outside air pressure, cooled and solidified, and then the pressurized fiber is spun. Pass the seal nozzle from the bottom end of the cylinder to the outside air normal pressure area and take it out.
2) In the above method, at least 10
A heated cylinder is installed so that the atmosphere over cm is at a temperature higher than the melting point of the polyamide + 30°C, and the spun yarn passes through the high temperature atmosphere and then through the enclosed area, and then (3) The amount of polymer per hole of the spinneret is 2.5 g/min.
(4) The birefringence of the drawn yarn is 20×10^-^3 or more. After spinning to satisfy the following conditions: A method for producing polycapramide fiber, which is carried out at a stretching ratio of 90% or more, and at a total stretching ratio of 1.2 times or more and 3.5 times or less.
JP30633686A 1986-12-24 1986-12-24 Production of polycapramide fiber Pending JPS63159516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30633686A JPS63159516A (en) 1986-12-24 1986-12-24 Production of polycapramide fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30633686A JPS63159516A (en) 1986-12-24 1986-12-24 Production of polycapramide fiber

Publications (1)

Publication Number Publication Date
JPS63159516A true JPS63159516A (en) 1988-07-02

Family

ID=17955876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30633686A Pending JPS63159516A (en) 1986-12-24 1986-12-24 Production of polycapramide fiber

Country Status (1)

Country Link
JP (1) JPS63159516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297383A (en) * 2005-03-25 2006-11-02 Toray Ind Inc Hollow fiber membrane and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297383A (en) * 2005-03-25 2006-11-02 Toray Ind Inc Hollow fiber membrane and its manufacturing method

Similar Documents

Publication Publication Date Title
AU606462B2 (en) High-tenacity conjugated fiber and process for preparation thereof
JP2004218189A (en) Polyketone processed cord and method for producing the same
KR100441899B1 (en) Process for manufacturing continuous polyester filament yarn
JP3229084B2 (en) Method for producing polyester fiber
JP2000129530A (en) Production of synthetic fiber
JPS5854018A (en) Polycapramide fiber and its production
JPS63159516A (en) Production of polycapramide fiber
JPS5860012A (en) Polyhexamethylene adipamide fiber and its preparation
JP3291812B2 (en) High strength polyhexamethylene adipamide fiber
JPS63165547A (en) Polyester tire cord having high modulus of elasticity and its production
JPS6088116A (en) Polyhexamethylene adipamide fiber having high dimensional stability and fatigue resistance
JPS62133109A (en) Polycarproamide yarn
JP3234295B2 (en) Method for producing polyhexamethylene adipamide fiber
JPH08199426A (en) Highly strong polyamide fiber and its production
JPH0440449B2 (en)
JPH03294537A (en) Cord for reinforcing rubber hose
JPS6022106B2 (en) Manufacturing method of nylon 6 dip cord
JPH1018126A (en) Production of high strength polyamide fiber
JPS63159521A (en) High-tenacity polyamide fiber
JPH04174713A (en) Production of high-strength polyamide yarn
JPS58186607A (en) Preparation of polyester filamentary yarn having high tenacity
JPH0931748A (en) High-strength polyamide monofilament and its production
JPH02221408A (en) High strength polyhexamethylene adipamide fiber having good fatigue resistance
JPH0441A (en) Toothed belt
JPS5926518A (en) Preparation of twist yarn of polyester having high strength