JP2008036574A - Membrane module and water-treating method - Google Patents

Membrane module and water-treating method Download PDF

Info

Publication number
JP2008036574A
JP2008036574A JP2006216910A JP2006216910A JP2008036574A JP 2008036574 A JP2008036574 A JP 2008036574A JP 2006216910 A JP2006216910 A JP 2006216910A JP 2006216910 A JP2006216910 A JP 2006216910A JP 2008036574 A JP2008036574 A JP 2008036574A
Authority
JP
Japan
Prior art keywords
membrane
filtration
water
weight
filtration resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006216910A
Other languages
Japanese (ja)
Other versions
JP2008036574A5 (en
Inventor
Eri Shimokoshi
衣理 霜越
Takao Sasaki
崇夫 佐々木
Masayuki Hanakawa
正行 花川
Shinichi Minegishi
進一 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006216910A priority Critical patent/JP2008036574A/en
Publication of JP2008036574A publication Critical patent/JP2008036574A/en
Publication of JP2008036574A5 publication Critical patent/JP2008036574A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane filtration method which enables the membrane filtration of water to be treated, such as ground water, river water, lake and marsh water, sea water and secondarily treated sewage water, to obtain filtrated water, suppresses an increase in filtration resistance for a long period of time, and makes a stable membrane filtration operation possible. <P>SOLUTION: A membrane module for water treatment employs a separation membrane, which comprises a poly(vinylidenefluoride)-based resin, as a membrane filter. In this case, a membrane, which has a filtration resistance increase degree A of 2×10<SP>12</SP>/m<SP>2</SP>or larger, back washing restorability of 50% or larger, a filtration resistance increase degree B of 2×10<SP>12</SP>/m<SP>2</SP>or smaller and an initial filtration resistance of 1×10<SP>12</SP>/m or smaller, is used as the separation membrane. Water filtration processing is carried out by using a membrane filtration device equipped with the membrane module while physical washing is periodically being carried out, thereby producing filtrated water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

浄水処理、工業用水製造、排水処理、逆浸透膜前処理などの水処理に用いられる水処理用分離膜モジュール、及び該膜モジュールを用いた水処理方法に関する。   The present invention relates to a separation membrane module for water treatment used for water treatment such as water purification, industrial water production, wastewater treatment, reverse osmosis membrane pretreatment, and a water treatment method using the membrane module.

精密ろ過膜や限外ろ過膜などの分離膜は、食品工業や医療分野、用水製造、排水処理分野等の様々な方面でろ過処理膜として利用されている。特に近年では、飲料水製造分野すなわち浄水処理過程において分離膜が使われることが多くなってきている。   Separation membranes such as microfiltration membranes and ultrafiltration membranes are used as filtration membranes in various fields such as the food industry, medical field, water production, and wastewater treatment field. Particularly in recent years, separation membranes are increasingly used in the field of drinking water production, that is, in the process of water purification.

緩速ろ過もしくは急速ろ過による水処理と比べて、膜ろ過による水処理は、原水中の不純物を確実に、安定的に除去できる他、設備の設置面積が小さく用地が少なくてすむ、設備設置費が少ないという点で非常に優位である。水不足が深刻化している近年、今後ますます安全な水を安定的に製造する方法として、膜ろ過による水処理の必要性が高まると考えられる。   Compared with water treatment by slow filtration or rapid filtration, water treatment by membrane filtration can remove impurities in raw water reliably and stably, and the installation area of equipment is small and requires less land. It is very advantageous in that there are few. In recent years, when water shortages have become serious, it is considered that the need for water treatment by membrane filtration will increase as a method for stably producing safer water in the future.

特に飲料水製造分野で使われる分離膜では、透過水の殺菌や膜のファウリング低減の目的のために、次亜塩素酸ナトリウムなどの酸化剤を被処理水や逆流洗浄水に添加したり、膜の薬液洗浄として、塩酸、クエン酸、シュウ酸などの酸や水酸化ナトリウム水溶液などのアルカリ、塩素、界面活性剤などで膜を洗浄することが必須であり、これらの薬品に対する高い化学的耐久性が分離膜に要求されている。また、20世紀終盤からクリプトスポリジウムなどの耐塩素性病原性微生物が飲料水に混入する問題が顕在化してきており、膜が破損して被処理水が透過水に混入することがないよう、高い物理的強度と物理的耐久性も分離膜に要求されている。このような背景から近年では高い化学的耐久性と高い物理的強度および物理的耐久性を有する素材としてポリフッ化ビニリデン系樹脂を用いた分離膜が注目され、適用が拡大する傾向にある。   Especially for separation membranes used in the field of drinking water production, for the purpose of sterilizing permeate and reducing membrane fouling, an oxidizing agent such as sodium hypochlorite can be added to treated water and backwash water, It is essential to wash membranes with chemicals such as hydrochloric acid, citric acid and oxalic acid, alkalis such as aqueous sodium hydroxide, chlorine, and surfactants. High chemical durability against these chemicals The separation membrane is required. In addition, since the end of the 20th century, the problem that chlorine-resistant pathogenic microorganisms such as Cryptosporidium are mixed in drinking water has become apparent, and it is so high that the membrane is not damaged and the treated water is not mixed into the permeated water. Physical strength and physical durability are also required for the separation membrane. Against this background, in recent years, a separation membrane using a polyvinylidene fluoride resin as a material having high chemical durability, high physical strength, and physical durability has attracted attention, and the application tends to expand.

膜ろ過処理では、被処理水中に含まれる様々な成分を膜で阻止することによって清澄な透過水を得ることができるが、同時に膜で阻止した成分による膜の目詰まりが起こる。そのため、ろ過運転の継続と共にろ過膜の透水性能が低下し、膜ろ過抵抗が上昇する。この現象を防ぎ、ろ過抵抗の上昇を抑えることができれば、膜を用いた水処理におけるろ過膜の交換頻度を減らし、ろ過圧力の低減により消費電力も節約できるため造水コストと環境負荷の低減に繋がる。   In membrane filtration treatment, clear permeated water can be obtained by blocking various components contained in the water to be treated with the membrane, but at the same time, clogging of the membrane due to components blocked by the membrane occurs. Therefore, with the continuation of the filtration operation, the water permeability of the filtration membrane decreases, and the membrane filtration resistance increases. If this phenomenon can be prevented and the increase in filtration resistance can be suppressed, the frequency of replacement of filtration membranes in water treatment using membranes can be reduced, and power consumption can be saved by reducing filtration pressure, thus reducing water production costs and environmental impact. Connected.

精密ろ過膜や限外ろ過膜を用いた水処理方法では、膜ろ過工程と物理洗浄工程を交互に実施するのが一般的である。被処理水を膜でろ過する膜ろ過工程では、被処理水中から阻止した成分によって細孔の閉塞が進み、ろ過抵抗が上昇する。継いで、物理洗浄工程では膜表面へガスを接触させたり、透過水側から被処理水側へと、ろ過工程とは逆向きに水を流す逆流洗浄を行ったりし、膜表面の細孔内から阻止した成分を洗い流す。この物理洗浄工程において、阻止した成分の一部が膜から剥離され、ろ過抵抗は回復する。しかしながら阻止した成分の全てを除去することは難しく、膜に残る成分によってろ過抵抗は運転の継続と共に上昇を続け、最終的には化学薬品を用いた薬液洗浄や、膜モジュール自身の交換に至る。   In a water treatment method using a microfiltration membrane or an ultrafiltration membrane, the membrane filtration step and the physical cleaning step are generally performed alternately. In the membrane filtration step of filtering the water to be treated with a membrane, pores are blocked by components blocked from the water to be treated, and the filtration resistance is increased. Subsequently, in the physical cleaning process, gas is brought into contact with the membrane surface, or reverse flow cleaning is performed in which water flows in the opposite direction from the filtration process from the permeate side to the treated water side. Wash away any ingredients that have been blocked from. In this physical cleaning step, a part of the blocked component is peeled off from the membrane, and the filtration resistance is restored. However, it is difficult to remove all of the blocked components, and the filtration resistance continues to increase as the operation continues due to the components remaining in the membrane, eventually leading to chemical cleaning using chemicals and replacement of the membrane module itself.

このような長期的なろ過抵抗の上昇を抑えるためには、1回の膜ろ過工程におけるろ過抵抗の上昇幅が小さい膜を使用することが有効であると、従来は考えられてきた。ろ過工程におけるろ過抵抗上昇幅が小さい、すなわちろ過による目詰まりが起こりにくい膜は長期的にも、ろ過抵抗の上昇を抑えることが可能であると考えられるためである。しかし、1回の膜ろ過工程におけるろ過抵抗の上昇幅が小さい膜を膜モジュールに使用しても、長期的なろ過抵抗の上昇は十分に抑制することが困難であった。   In order to suppress such a long-term increase in filtration resistance, it has hitherto been considered that it is effective to use a membrane having a small increase in filtration resistance in a single membrane filtration step. This is because a membrane with a small increase in filtration resistance in the filtration step, that is, a membrane that is not easily clogged by filtration, is considered to be able to suppress an increase in filtration resistance over a long period of time. However, even when a membrane having a small increase in filtration resistance in one membrane filtration step is used for the membrane module, it is difficult to sufficiently suppress long-term increase in filtration resistance.

また、これまでにも、長期間安定に膜ろ過運転を行うための研究が行われており、一般に膜を親水化すれば耐汚れ性が向上すると定性的に言われているため、様々な親水化手段が開示されている。例えば特許文献1において、アルカリ水溶液による親水化処理によってポリフッ化ビニリデン系樹脂製の膜表面を改質する方法などが開示されているが、物理洗浄を含む膜ろ過における優位性や、膜ろ過に運転における安定性について言及されておらず、この手段による親水化膜では、長期的なろ過抵抗の上昇の十分な抑制は困難である。   In addition, research for membrane filtration operation stably for a long time has been conducted so far, and it is generally qualitatively said that if the membrane is hydrophilized, the stain resistance is improved. Means are disclosed. For example, Patent Document 1 discloses a method of modifying a membrane surface made of a polyvinylidene fluoride resin by hydrophilization treatment with an alkaline aqueous solution, etc., but it is superior in membrane filtration including physical cleaning, or operated for membrane filtration. No mention is made of the stability in the above, and it is difficult to sufficiently suppress long-term increase in filtration resistance with a hydrophilic membrane by this means.

特許文献2では、エチレン−ビニルアルコール共重合体の被覆したポリフッ化ビニリデン製中空糸膜が耐汚染性に優れる膜として開示されているが、ろ過工程における透水性能の保持力向上に関する議論がなされるのみであり、物理洗浄を含む膜ろ過における優位性に関しては全く言及されていない。   In Patent Document 2, a hollow fiber membrane made of polyvinylidene fluoride coated with an ethylene-vinyl alcohol copolymer is disclosed as a membrane having excellent contamination resistance. However, there is a discussion on improvement of water permeability retention capability in a filtration process. There is no mention of the superiority in membrane filtration including physical cleaning.

また、特許文献3では、ろ過安定性に優れる膜として表面開孔率の高い膜が開示されており、表面開孔率が高い膜が目詰まりによる透水性能劣化を抑制すると記載されている。しかしながら、物理洗浄、特に逆流洗浄を定期的に行いつつ膜ろ過運転を行う水処理方法において、長期的に安定して膜ろ過するために重要なのは、1回のろ過工程において起こる目詰まりの抑制ではなく、連続運転におけるろ過抵抗の安定性であり、開孔率の大きい膜を使用することでは、長期的なろ過抵抗の上昇を十分に抑制することは困難である。開孔率の大きい膜の場合、膜内部に入り込む成分のために洗浄回復性が悪く、連続運転におけるファウリング抑制が困難なため、と考えられる。   Moreover, in patent document 3, the film | membrane with a high surface opening rate is disclosed as a film | membrane which is excellent in filtration stability, and it describes that the film | membrane with a high surface opening rate suppresses the water-permeable performance deterioration by clogging. However, in the water treatment method in which the membrane filtration operation is performed while periodically performing physical washing, particularly back-flow washing, it is important to suppress clogging that occurs in one filtration step in order to stably perform membrane filtration in the long term. However, it is difficult to sufficiently suppress long-term increase in the filtration resistance by using a membrane having a high filtration rate in continuous operation and having a large open area ratio. In the case of a membrane having a large open area ratio, it is considered that the cleaning recovery property is poor due to the components entering the inside of the membrane and it is difficult to suppress fouling in continuous operation.

このように、従来技術では、分離膜を用いた水ろ過処理用膜モジュールにより水処理する場合において、長期に渡りろ過抵抗の上昇を抑え、安定な膜ろ過運転を可能にすることができるポリフッ化ビニリデン系樹脂系分離膜も膜モジュールも見出されていなかった。   As described above, in the prior art, when water treatment is performed using a membrane module for water filtration treatment using a separation membrane, the increase in filtration resistance can be suppressed over a long period of time, and a stable membrane filtration operation can be performed. No vinylidene resin separation membrane or membrane module was found.

特開昭58−93734号公報JP 58-93734 A 特開2002−233739号公報Japanese Patent Application Laid-Open No. 2002-233739 特許第3781679号公報Japanese Patent No. 3781679

本発明の目的は、地下水、河川水、湖沼水、海水、下水2次処理水などの被処理水を膜ろ過して透過水を得る膜ろ過方法において、長期に渡りろ過抵抗の上昇を抑え、安定な膜ろ過運転を可能にする水処理用膜モジュール、ならびにそれを用いた水処理方法を提供することにある。   The object of the present invention is to suppress the increase in filtration resistance over a long period of time in a membrane filtration method for obtaining permeate by subjecting treated water such as groundwater, river water, lake water, seawater, and secondary treated water to membrane filtration. An object of the present invention is to provide a water treatment membrane module that enables a stable membrane filtration operation, and a water treatment method using the same.

上記目的を達成するために、本発明の水ろ過処理用膜モジュールは、膜ろ過実験時による特性が特定範囲内の分離膜を、ろ過膜として使用する。ここでの膜ろ過実験は、ろ過圧力50kPaで0.06m/mまでろ過するろ過工程の後、逆洗圧力100kPaで0.025m/m逆流洗浄する逆流洗浄工程を行う操作を、5回繰り返して行う膜ろ過の実験であり、これにより選られたろ過抵抗を縦軸に、横軸を総ろ過水量としてプロットしたグラフを描く。このグラフから求めた特性値で分離膜を特定する。即ち、分離膜のろ過抵抗上昇度Aは、2回目から5回目までのろ過工程におけるろ過抵抗上昇の傾きの平均値である。逆洗回復性は、逆流洗浄することにより回復(低減)したろ過抵抗の割合の平均値である。ろ過抵抗上昇度Bは、逆流洗浄後のろ過工程開始時におけるろ過抵抗値の上昇の傾きの平均値である。 In order to achieve the above-mentioned object, the membrane module for water filtration treatment of the present invention uses a separation membrane having characteristics within a specific range at the time of a membrane filtration experiment as a filtration membrane. In this membrane filtration experiment, after the filtration step of filtering to 0.06 m 3 / m 2 at a filtration pressure of 50 kPa, an operation of performing a back washing step of back washing at 0.025 m 3 / m 2 at a back washing pressure of 100 kPa, This is an experiment of membrane filtration repeated 5 times, and a graph is drawn in which the filtration resistance selected thereby is plotted on the vertical axis and the horizontal axis is plotted on the total filtered water amount. The separation membrane is specified by the characteristic value obtained from this graph. That is, the filtration resistance increase degree A of the separation membrane is an average value of the inclination of the filtration resistance increase in the second to fifth filtration steps. The backwash recovery property is an average value of the ratio of filtration resistance recovered (reduced) by backwashing. The filtration resistance increase degree B is an average value of the increase slope of the filtration resistance value at the start of the filtration process after backwashing.

膜ろ過処理を長期運転する際の安定性を高めるためには、膜モジュールに用いる分離膜は、1回の膜ろ過工程におけるろ過抵抗上昇幅が大きく、洗浄回復性の高い膜、かつ初期ろ過抵抗が高すぎないことが有効であり、これら特性が適正水準にある分離膜を使用することにより、長期にわたってろ過抵抗の上昇を抑制することができ、安定運転を可能にすることができる。   In order to increase the stability when the membrane filtration process is operated for a long time, the separation membrane used in the membrane module has a large filtration resistance increase in one membrane filtration step, a membrane having a high washing recovery property, and an initial filtration resistance. It is effective not to be too high, and by using a separation membrane having these characteristics at appropriate levels, it is possible to suppress an increase in filtration resistance over a long period of time and to enable stable operation.

すなわち本発明は、
(1)ポリフッ化ビニリデン系樹脂からなる分離膜をろ過膜として用いてなる水処理用膜モジュールにおいて、分離膜が、ろ過抵抗上昇度Aが2×1012/m以上、逆洗回復性が50%以上、ろ過抵抗上昇度Bが2×1012/m以下、かつ、初期ろ過抵抗が1×1012/m以下の特性を有する膜である膜モジュール。
(2)上記(1)記載の膜モジュールにおいて、使用される分離膜の孔径が0.1μm以下である膜モジュール。
(3)上記(1)又は(2)記載の膜モジュールにおいて、使用される分離膜の開孔率が20%未満である膜モジュール。
(4)上記(3)に記載の膜モジュールを具備する膜ろ過装置を用い、物理洗浄を定期的に行いながら水処理を行ない透過水を製造する水処理方法。
(5)上記(4)に記載の水処理方法において、物理洗浄に逆流洗浄である水処理方法。
(6)上記(4)に記載の水処理方法において、物理洗浄を行う間隔が10分毎以上60分毎以下である水処理方法。
(7)上記(5)に記載の水処理方法において、使用される分離膜が中空糸膜である水処理方法。
からなるものである。
That is, the present invention
(1) In a membrane module for water treatment using a separation membrane made of polyvinylidene fluoride resin as a filtration membrane, the separation membrane has a filtration resistance increase A of 2 × 10 12 / m 2 or more, and has a backwash recovery property. A membrane module that is a membrane having a characteristic of 50% or more, a filtration resistance increase degree B of 2 × 10 12 / m 2 or less, and an initial filtration resistance of 1 × 10 12 / m or less.
(2) The membrane module according to (1), wherein the pore size of the separation membrane used is 0.1 μm or less.
(3) The membrane module according to the above (1) or (2), wherein the separation membrane used has a porosity of less than 20%.
(4) A water treatment method for producing permeated water by performing water treatment while periodically performing physical cleaning, using a membrane filtration device comprising the membrane module according to (3) above.
(5) The water treatment method according to (4), wherein the physical washing is back-flow washing.
(6) The water treatment method according to (4), wherein the physical cleaning interval is 10 minutes or more and 60 minutes or less.
(7) The water treatment method according to (5), wherein the separation membrane used is a hollow fiber membrane.
It consists of

本発明の膜モジュールや水処理方法を用いると、地下水、河川水、湖沼水、海水、下水2次処理水などの被処理水を膜ろ過して透過水を得る膜ろ過において、膜の汚れを少なくして、安定に長期間運転することができる。これにより、薬品洗浄や膜交換の頻度を下げ、造水コストの低減が実現可能になる。また、本発明では、化学的耐久性、物理的強度および物理的耐久性に優れたポリフッ化ビニリデン系樹脂製分離膜を用いているので、薬品洗浄を繰り返しても長期に渡り膜劣化を防止することができ、この点からも、安定した長期間運転が実現できる。   When the membrane module or water treatment method of the present invention is used, in membrane filtration to obtain permeated water by membrane filtration of ground water, river water, lake water, seawater, sewage secondary treated water, etc. It can be operated stably for a long time with less. As a result, the frequency of chemical cleaning and membrane replacement can be reduced, and water production costs can be reduced. In addition, in the present invention, a polyvinylidene fluoride resin separation membrane excellent in chemical durability, physical strength and physical durability is used, so that even when chemical cleaning is repeated, deterioration of the membrane is prevented over a long period of time. In view of this, stable long-term operation can be realized.

本発明の水処理用膜モジュールは、地下水、河川水、湖沼水、海水および下水2次処理水から選ばれる少なくとも1種からなる被処理水を膜ろ過するために好適に用いられる。この被処理水とは、ろ過工程において前記膜モジュール内に配置された分離膜に供給される原水のことであり、地下水、河川水、湖沼水、海水に代表される自然水が被処理水として用いられ、また、下水の2次処理水も被処理水として用いられる。   The membrane module for water treatment of the present invention is suitably used for membrane filtration of water to be treated consisting of at least one kind selected from groundwater, river water, lake water, seawater and sewage secondary treated water. This treated water is raw water supplied to the separation membrane arranged in the membrane module in the filtration step, and natural water represented by groundwater, river water, lake water, and seawater is treated water. In addition, secondary treated water of sewage is also used as treated water.

また、本発明におけるポリフッ化ビニリデン系樹脂とは、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂のことである。複数の種類のフッ化ビニリデン共重合体を含有しても構わない。フッ化ビニリデン共重合体は、フッ化ビニリデン残基構造を有するポリマーであり、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマー等との共重合体である。共重合体としては、例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。本発明の効果を損なわない範囲で、前記フッ素系モノマー以外の例えばエチレン等のモノマーが共重合されていても良い。また、耐汚れ性を高める目的で、ポリフッ化ビニリデン系樹脂の化学的耐久性および物理的強度を損ねない範囲において、セルロースエステル、脂肪酸ビニルエステル、ビニルピロリドン、エチレンオキサイド、アクリロニトリル、ビニルアルコールなどから選ばれる少なくとも1種を有する親水性高分子を含有しても構わない。またポリフッ化ビニリデン系樹脂の重量平均分子量は、要求される中空糸膜の強度と透水性能によって適宜選択すれば良いが10万〜80万の範囲が好ましい。中空糸膜への加工性を考慮した場合は20万〜60万の範囲がより好ましく、25万〜50万の範囲がさらに好ましい。   Further, the polyvinylidene fluoride resin in the present invention is a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer. A plurality of types of vinylidene fluoride copolymers may be contained. The vinylidene fluoride copolymer is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and other fluorine-based monomers. Examples of the copolymer include a copolymer of vinylidene fluoride and at least one selected from vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, and trifluoroethylene chloride. As long as the effects of the present invention are not impaired, a monomer such as ethylene other than the fluorine-based monomer may be copolymerized. In addition, for the purpose of enhancing the stain resistance, it is selected from cellulose ester, fatty acid vinyl ester, vinyl pyrrolidone, ethylene oxide, acrylonitrile, vinyl alcohol, etc. within the range that does not impair the chemical durability and physical strength of the polyvinylidene fluoride resin. It may contain a hydrophilic polymer having at least one kind. The weight average molecular weight of the polyvinylidene fluoride resin may be appropriately selected depending on the required strength and water permeability of the hollow fiber membrane, but is preferably in the range of 100,000 to 800,000. In consideration of processability to a hollow fiber membrane, the range of 200,000 to 600,000 is more preferable, and the range of 250,000 to 500,000 is more preferable.

膜モジュール内に配置された分離膜において、被処理水が供給される側の表面を被処理水側表面とし、透過水が得られる側の表面を透過水側表面とする。本発明におけるろ過工程は、分離膜の被処理水側表面に原水を任意の圧力で供給し、透過水側表面から透過水を得る操作を指す。   In the separation membrane disposed in the membrane module, the surface on the side to which the water to be treated is supplied is the surface to be treated and the surface on the side from which the permeated water is obtained is the surface on the permeated water side. The filtration step in the present invention refers to an operation of supplying raw water to the treated water side surface of the separation membrane at an arbitrary pressure and obtaining permeated water from the permeated water side surface.

また、物理洗浄とは膜に対して物理的な力を与えて膜を洗浄する操作であり、空気洗浄、エアスクラビング洗浄、逆流洗浄等のいずれか、またはいくつかを組み合わせた操作を指す。逆流洗浄とはろ過工程後、分離膜の透過水側表面に蒸留水を任意の圧力で供給して被処理水側表面へ透過させ、分離膜を洗浄する操作を指す。従ってろ過圧力とはろ過工程において分離膜の被処理水側表面に原水を供給する圧力であり、逆洗圧力とは逆流洗浄工程において透過水側表面に蒸留水を供給する圧力のことを指す。   Further, the physical cleaning is an operation of applying a physical force to the membrane to clean the membrane, and refers to an operation such as air cleaning, air scrubbing cleaning, back-flow cleaning, or some combination thereof. Backflow cleaning refers to an operation of supplying the distilled water to the surface of the permeate side of the separation membrane at an arbitrary pressure after the filtration step and allowing it to permeate the surface of the water to be treated to wash the separation membrane. Therefore, the filtration pressure is a pressure for supplying raw water to the surface of the separation membrane to be treated in the filtration step, and the backwash pressure is a pressure for supplying distilled water to the permeate side surface in the backwashing step.

分離膜の細孔が目詰まりして透水量が減少するとろ過抵抗が上昇する。そのためこれまでの研究では、1回のろ過工程において、ろ過抵抗が上昇しにくい膜を用いることが安定運転に繋がると考えられていた。しかしながら、実際の運転ではろ過工程と物理洗浄工程を交互に実施する膜ろ過方法が主流であるため、安定運転を可能にするには1回のろ過工程におけるろ過抵抗の上昇を抑制するより、物理洗浄工程を含む連続運転におけるろ過抵抗の上昇を抑制することが求められる。つまり、ろ過工程で起こる目詰まりの程度ではなく、洗浄回復性を含んだろ過抵抗値の挙動が重要となる。1回のろ過工程においてろ過抵抗が上昇しても、物理洗浄工程において目詰まりを引き起こした成分が除去できれば、次のろ過工程開始時には透水量が増加してろ過抵抗が減少する。従って、ろ過抵抗の上昇しやすさに関わらず、洗浄性の高い膜であれば連続運転におけるろ過抵抗は低い値を保つことができ、ろ過、逆流洗浄を繰り返す膜ろ過運転において長期的には安定運転が可能となる。   When the pores of the separation membrane are clogged and the water permeation amount decreases, the filtration resistance increases. For this reason, in previous studies, it was considered that the use of a membrane in which the filtration resistance hardly increases in one filtration step leads to stable operation. However, since the membrane filtration method in which the filtration step and the physical cleaning step are alternately performed in the actual operation is the mainstream, in order to enable stable operation, the increase in the filtration resistance in one filtration step is suppressed rather than the physical resistance. It is required to suppress an increase in filtration resistance in continuous operation including a washing step. That is, not the degree of clogging that occurs in the filtration step, but the behavior of the filtration resistance value including the cleaning recovery property is important. Even if the filtration resistance increases in one filtration step, the amount of water permeation increases and the filtration resistance decreases at the start of the next filtration step if the component causing clogging in the physical washing step can be removed. Therefore, regardless of the ease of increase in filtration resistance, if the membrane is highly washable, the filtration resistance in continuous operation can be kept low, and stable in the long term in membrane filtration operation that repeats filtration and backwashing. Driving is possible.

なお、本発明における分離膜の形状は問わないが、物理洗浄として逆流洗浄を実施することが本発明の効果を発現するのに最も効果的であるため、逆流洗浄を容易に実施できる中空糸膜であることが好ましい。   In addition, the shape of the separation membrane in the present invention is not limited. However, since the backwashing as the physical washing is most effective for expressing the effect of the present invention, the hollow fiber membrane that can easily carry out the backwashing. It is preferable that

ところで、1回のろ過工程においてろ過抵抗が上昇しにくい分離膜は、物理洗浄を行うことなく膜ろ過運転を実施する場合には目詰まりし難い膜と言える。しかし、物理洗浄を定期的に行いつつ膜ろ過運転を実施する水処理方法の場合には、1回のろ過工程におけるろ過抵抗の上昇幅よりも、物理洗浄によるろ過抵抗の回復幅の方が、長期的な膜ろ過運転における目詰まり防止のために重要であることが判明した。即ち、1回のろ過工程においてろ過抵抗が上昇しにくい分離膜は洗浄回復性が低いため、結果的に連続運転においてろ過抵抗が上昇しやすいことが分かった。このような傾向が発現するのは、膜表面で阻止される成分が少ないため原水中に含まれる成分の多くが表面を通過し、表面細孔は閉塞しにくいが、一方で膜表面で阻止されない成分が膜内部に入り込み、吸着もしくは細孔構造上の凹部などで阻止されて捕捉されるため、物理洗浄を行っても、内部に入り込んだ成分を除去することが難しく、洗浄回復性が低くなり、阻止された成分が物理洗浄工程で除去されずに蓄積されていき、長期的なろ過抵抗の上昇が大きくなるものと考えられる。   By the way, it can be said that the separation membrane in which the filtration resistance is hardly increased in one filtration step is a membrane that is not easily clogged when the membrane filtration operation is performed without performing physical cleaning. However, in the case of a water treatment method in which membrane filtration operation is carried out while periodically performing physical cleaning, the recovery width of filtration resistance by physical cleaning is more than the increase width of filtration resistance in one filtration step. It proved to be important to prevent clogging in long-term membrane filtration operation. That is, it has been found that the separation membrane in which the filtration resistance is difficult to increase in one filtration step has a low washing recovery property, and as a result, the filtration resistance is likely to increase in continuous operation. This tendency is manifested because there are few components that are blocked on the membrane surface, so most of the components contained in the raw water pass through the surface and the surface pores are difficult to block, but on the other hand, they are not blocked on the membrane surface. Since the components enter the membrane and are trapped by adsorption or recesses on the pore structure, it is difficult to remove the components that have entered the inside even if physical cleaning is performed, resulting in poor cleaning recovery. It is considered that the blocked components are accumulated without being removed in the physical cleaning step, and the long-term increase in filtration resistance is increased.

これに対し、1回のろ過工程でろ過抵抗が上昇しやすい膜は洗浄回復性が高く、連続運転におけるろ過抵抗は低い値を保つことができる。このような膜は膜表面で阻止する成分の量が多く、ろ過抵抗の上昇幅も大きいが、膜内部に成分が殆ど入り込んでいないため、物理洗浄によって膜表面や内部に付着した成分を容易に除去することができ、透水量が回復できるものと考えられる。   In contrast, a membrane in which filtration resistance is likely to increase in a single filtration step has high cleaning recovery, and the filtration resistance in continuous operation can be kept low. Such a membrane has a large amount of components to be blocked on the membrane surface and a large increase in filtration resistance, but since almost no components have entered the membrane, it is easy to remove components adhered to the membrane surface or inside by physical cleaning. It can be removed and the water permeability can be recovered.

以上のことから、長期にわたる安定運転を可能にするための水処理用膜モジュールとするためには、1回のろ過工程におけるろ過抵抗の上昇を抑制することは必ずしも必要でなく、連続運転における全体的なろ過抵抗の上昇を抑えることが重要であると言える。   From the above, in order to make a membrane module for water treatment that enables stable operation over a long period of time, it is not always necessary to suppress an increase in filtration resistance in a single filtration step, and the whole in continuous operation. It can be said that it is important to suppress an increase in typical filtration resistance.

このよう観点から、ポリフッ化ビニリデン系樹脂からなる分離膜をろ過膜として用いてなる水処理用膜モジュールにおいて、1回のろ過工程におけるろ過抵抗の上昇幅がある程度高く、1回の逆洗工程におけるろ過抵抗の回復性がある程度高く、ろ過工程と逆流洗浄工程とを交互に実施する膜ろ過連続運転におけるろ過抵抗上昇の程度がある一定水準以下である分離膜を使用することが、長期に渡りろ過抵抗の上昇を抑え安定な膜ろ過運転を可能であることを見出した。   From this point of view, in a membrane module for water treatment using a separation membrane made of polyvinylidene fluoride resin as a filtration membrane, the increase in filtration resistance in one filtration step is somewhat high, and in one backwash step Filtration over a long period of time can be achieved by using a separation membrane that has a certain degree of recovery of filtration resistance and that has a certain level of increase in filtration resistance in continuous membrane filtration operation that alternately performs the filtration process and the backwashing process. It was found that a stable membrane filtration operation is possible while suppressing an increase in resistance.

そこで、ろ過抵抗の上昇度や逆流洗浄時の回復性(逆洗回復性)を定量的に表すため、実験的に試薬水溶液を用いたろ過実験を行った。また、連続運転におけるろ過抵抗上昇を抑えるには、1回のろ過工程においてろ過抵抗が上昇しにくい分離膜を含むモジュールではなく、むしろ1回のろ過工程においてはろ過抵抗が上昇しやすく、かつ逆洗回復性の高い膜を使用することが有効であることを見出した。これは、前述のように膜表面で原水中に含まれる成分の多くを阻止可能な分離膜を用いることが逆洗回復性の向上に繋がり、結果として、連続運転における安定性を得るためである。   Therefore, in order to quantitatively represent the degree of increase in filtration resistance and the recoverability during backwashing (backwash recoverability), experimental filtration experiments using a reagent aqueous solution were conducted. Moreover, in order to suppress the increase in filtration resistance in continuous operation, it is not a module including a separation membrane in which the filtration resistance is unlikely to increase in one filtration process, but rather the filtration resistance tends to increase in one filtration process and vice versa. It has been found that it is effective to use a film having a high washing recovery property. This is because the use of a separation membrane capable of blocking many of the components contained in the raw water on the membrane surface as described above leads to an improvement in the backwash recovery and, as a result, to obtain stability in continuous operation. .

つまり、本発明の膜モジュールにおいては、ろ過抵抗上昇度A、逆洗回復性、ろ過抵抗上昇度B及び初期ろ過抵抗が特定水準値にある分離膜を用いることにより、本発明の目的を達成するものである。   That is, in the membrane module of the present invention, the object of the present invention is achieved by using a separation membrane having filtration resistance increase degree A, backwash recovery property, filtration resistance increase degree B, and initial filtration resistance at specific level values. Is.

本発明で用いる分離膜のろ過抵抗上昇度Aは1×1012/m以上であり、好ましくは2×1012/m以上、さらに好ましくは3×1012/m以上である。逆洗回復性は50%以上であり、好ましくは70%以上である。ろ過抵抗上昇度Bは2×1012/m以下であり、好ましくは1×1012/m以下、さらに好ましくは8×1011/m11以下である。さらに、初期ろ過抵抗が1×1012/m以下であり、ポリフッ化ビニリデン系樹脂からなる分離膜である。 The separation resistance increase A of the separation membrane used in the present invention is 1 × 10 12 / m 2 or more, preferably 2 × 10 12 / m 2 or more, and more preferably 3 × 10 12 / m 2 or more. The backwash recoverability is 50% or more, preferably 70% or more. The filtration resistance increase degree B is 2 × 10 12 / m 2 or less, preferably 1 × 10 12 / m 2 or less, more preferably 8 × 10 11 / m 11 or less. Furthermore, the initial filtration resistance is 1 × 10 12 / m or less, and the separation membrane is made of a polyvinylidene fluoride resin.

本発明におけるろ過抵抗上昇度Aは、逆洗回復性、ろ過抵抗上昇度B及び初期ろ過抵抗の値は、以下のような条件で、ろ過工程と逆流洗浄工程とを交互に実施する膜ろ過連続運転をモデル的に行うことにより求める。   In the present invention, the filtration resistance increase A is the backwash recovery property, the filtration resistance increase B and the initial filtration resistance are membrane filtration continuous in which the filtration step and the backwashing step are alternately performed under the following conditions. It is obtained by carrying out the model operation.

ろ過圧力50kPaでのろ過工程をろ過水量0.06m/mまで実施し、次いで逆洗圧力100kPaで0.025m/mの水で逆流洗浄する逆流洗浄工程を行ない、再度、上記同様にろ過工程、次いで逆流洗浄工程を順次繰り返す膜ろ過実験を行う。ここで、フミン酸3mg/Lと塩化カルシウム25mg/Lを含む水溶液を膜供給水とし、ろ過工程と逆洗工程を5回繰り返す。総ろ過水量を横軸に、算出したろ過抵抗を縦軸にプロットする。ろ過工程において一定時間あたりに得られる透過水量を記録し、ろ過圧力50kPaを、その透過水量で除することにより、その時におけるろ過抵抗値を求める。 The filtration process at a filtration pressure of 50 kPa was carried out until the filtered water volume was 0.06 m 3 / m 2 , and then the back washing process was performed with a back washing pressure of 0.025 m 3 / m 2 at a back washing pressure of 100 kPa. In addition, a membrane filtration experiment is repeated in which the filtration step and then the backwashing step are sequentially repeated. Here, an aqueous solution containing 3 mg / L of humic acid and 25 mg / L of calcium chloride is used as membrane feed water, and the filtration step and the backwashing step are repeated five times. The total filtration water amount is plotted on the horizontal axis, and the calculated filtration resistance is plotted on the vertical axis. The permeated water amount obtained per fixed time in the filtration step is recorded, and the filtration resistance value at that time is obtained by dividing the filtration pressure 50 kPa by the permeated water amount.

総ろ過水量を横軸に、算出したろ過抵抗を縦軸にプロットしたところ、図1に示すグラフが得られた場合を例にとって、各値の算出方法を説明する。このグラフにおいて、1回目のろ過工程を開始する際のろ過抵抗が初期ろ過抵抗である。   A method of calculating each value will be described by taking as an example the case where the graph shown in FIG. 1 is obtained when the total filtration water amount is plotted on the horizontal axis and the calculated filtration resistance is plotted on the vertical axis. In this graph, the filtration resistance when starting the first filtration step is the initial filtration resistance.

そのグラフにおいて、総ろ過水量とろ過抵抗の関係から、2回目、3回目、4回目、5回目のろ過工程におけるろ過抵抗上昇の傾きをそれぞれ求め、その傾きから算出した平均値をろ過抵抗上昇度Aとする。   In the graph, from the relationship between the total amount of filtered water and the filtration resistance, the slope of the increase in filtration resistance in the second, third, fourth, and fifth filtration steps was obtained, and the average value calculated from the slope was the degree of increase in filtration resistance. A.

そのグラフにおいて、n回目のろ過終了時のろ過抵抗とn+1回目のろ過開始時のろ過抵抗の差(D)が、n回目のろ過終了時のろ過抵抗とn回目のろ過開始時のろ過抵抗の差(U)に対し何%であるかを示す値[(D/U)×100]を求め、n=2,3,4において求めた値の平均値を算出し、逆洗回復性とする。   In the graph, the difference (D) between the filtration resistance at the end of the nth filtration and the filtration resistance at the start of the (n + 1) th filtration is the difference between the filtration resistance at the end of the nth filtration and the filtration resistance at the start of the nth filtration. A value [(D / U) × 100] indicating what percentage of the difference (U) is obtained is calculated, and an average value of the values obtained at n = 2, 3, and 4 is calculated to obtain a backwash recovery property. .

また、ろ過抵抗上昇度Bとは、このグラフにおいて、2回目、3回目、4回目、5回目のろ過工程開始時のろ過抵抗4点を結んだ直線の傾きを指す。ただし、4点が直線上に乗らない場合には、線形近似で直線の傾きを求めてろ過抵抗上昇度Bとする。   Moreover, the filtration resistance increase degree B refers to the slope of a straight line connecting four points of filtration resistance at the start of the second, third, fourth, and fifth filtration steps in this graph. However, when the four points do not lie on the straight line, the slope of the straight line is obtained by linear approximation and is set as the filtration resistance increase degree B.

また、本発明の効果を発揮するためには、膜モジュールに配置する分離膜は、孔径が大きすぎないことが望ましい。なぜならば、膜表面で原水含有成分の多くを阻止することができ、膜内部へ原水含有成分が進入しにくい分離膜の方が、ろ過抵抗上昇度Aが高く、逆洗回復性が高く、ろ過抵抗上昇度Bが低い分離膜となり易いからである。従って、本発明の膜モジュールに使用される分離膜は、被処理水側表面の平均孔径が0.1μm以下であることが好ましく、さらに好ましくは0.08μm以下、特に好ましくは0.06μm以下である。   In order to exert the effect of the present invention, it is desirable that the separation membrane disposed in the membrane module does not have a too large pore diameter. This is because most of the raw water-containing components can be blocked on the membrane surface, and the separation membrane in which the raw water-containing components are less likely to enter the membrane has a higher filtration resistance increase A, higher backwash recovery, and filtration. This is because it tends to be a separation membrane having a low resistance increase B. Therefore, the separation membrane used in the membrane module of the present invention preferably has an average pore diameter on the surface to be treated of 0.1 μm or less, more preferably 0.08 μm or less, particularly preferably 0.06 μm or less. is there.

また、開孔率の大きい膜は必然的に孔径が大きく、従って膜内部へと原水中成分が進入し、逆洗回復性が低下することになる。孔径が上記範囲の値である分離膜の場合、孔数を現実的な範囲で増加させても、開孔率を20%以上に上げることが難しい。従って本発明の膜モジュールに使用される分離膜は被処理水側表面の開孔率が20%未満であることが好ましい。   In addition, a membrane having a large open area inevitably has a large pore size, so that components of raw water enter the membrane and the backwash recovery property is lowered. In the case of a separation membrane having a pore diameter in the above range, it is difficult to increase the aperture ratio to 20% or more even if the number of pores is increased in a practical range. Therefore, it is preferable that the separation membrane used in the membrane module of the present invention has a surface area of the water to be treated of less than 20%.

被処理水側表面の平均孔径、開孔率とは、かかる表面を走査型電子顕微鏡等で観測して把握される細孔について測定すれば良い。被処理水側表面の平均孔径とは、被処理水側表面を走査型電子顕微鏡を用いて1万倍以上の倍率で写真撮影し、10個以上、好ましくは20個以上の任意の細孔の直径を測定して、数平均して求めた値を言う。なお、被処理水側の表面細孔が円状でない場合、画像処理装置等によって、細孔が有する面積と等しい面積を有する円(等価円)を求め、等価円直径を細孔の直径とする方法により求めることができる。被処理水側表面の開孔率とは、平均孔径と細孔密度から次式により計算で求める。   What is necessary is just to measure the average pore diameter of the to-be-processed water side surface, and an opening rate about the pore grasped | ascertained by observing this surface with a scanning electron microscope etc. The average pore diameter on the surface of the water to be treated is that the surface of the water to be treated is photographed at a magnification of 10,000 times or more using a scanning electron microscope, and the number of arbitrary pores of 10 or more, preferably 20 or more. This is the value obtained by measuring the diameter and averaging the numbers. If the surface pores on the treated water side are not circular, a circle having an area equal to the area of the pores (equivalent circle) is obtained by an image processing device or the like, and the equivalent circle diameter is used as the pore diameter. It can be determined by a method. The open area ratio of the surface to be treated is determined from the average pore diameter and the pore density by the following formula.

開孔率(%)=π×(平均孔径/2)×(細孔密度)×100 Opening ratio (%) = π × (average pore diameter / 2) 2 × (pore density) × 100

細孔密度とは、中空糸膜の被処理水側の表面を細孔が明瞭に確認できる倍率で走査型電子顕微鏡等を用いて写真を撮り、その写真の中の細孔を数えて、1m当たりの細孔数に換算したものを細孔密度と定義する。複数の領域など、出来るだけ広域について数えて平均することが好ましい。例えば、本発明の実施例においては走査型電子顕微鏡写真3μm四方あたりの細孔数を数えて算出した。写真を画像処理装置で解析することも採用できる。 The pore density means that the surface of the water to be treated of the hollow fiber membrane is photographed with a scanning electron microscope or the like at such a magnification that the pores can be clearly confirmed, and the pores in the photograph are counted to 1 m The value converted into the number of pores per 2 is defined as the pore density. It is preferable to count and average over a wide area such as a plurality of areas. For example, in the examples of the present invention, the number of pores per 3 μm square of a scanning electron micrograph was counted and calculated. It is also possible to analyze a photograph with an image processing apparatus.

本発明においてろ過膜として用いる分離膜は、次のような方法でもって製造することができる。
例えば、球状構造からなるフッ素樹脂系層の上に、所定の親水性高分子を含有させたフッ素樹脂系高分子溶液からなる三次元網目構造層を形成させる方法、又は、2種類以上のフッ素樹脂系高分子溶液(そのうちの1種類は所定の親水性高分子を含有するフッ素樹脂系高分子溶液)を口金から同時に吐出し、三次元網目構造層と球状構造層とを同時に形成させる方法が挙げられる。
The separation membrane used as a filtration membrane in the present invention can be produced by the following method.
For example, a method of forming a three-dimensional network structure layer composed of a fluororesin polymer solution containing a predetermined hydrophilic polymer on a fluororesin layer composed of a spherical structure, or two or more types of fluororesins A method of simultaneously forming a three-dimensional network structure layer and a spherical structure layer by simultaneously discharging a polymer solution (one type of which is a fluororesin polymer solution containing a predetermined hydrophilic polymer) from a die. It is done.

球状構造からなるフッ素樹脂系層の上に、所定の親水性高分子を含有するフッ素樹脂系高分子溶液からなる三次元網目構造層を形成させる方法について、以下に説明する。   A method for forming a three-dimensional network structure layer made of a fluororesin polymer solution containing a predetermined hydrophilic polymer on a fluororesin layer having a spherical structure will be described below.

この製造方法の場合、まず球状構造からなるフッ素樹脂系膜(層)を製造する。フッ素樹脂系高分子を20重量%以上60重量%以下程度の比較的高濃度で、該高分子の貧溶媒または良溶媒に比較的高温で溶解することにより高分子溶液を調製し、該高分子溶液を中空糸膜状または平膜状となるように口金から吐出し、冷却浴中で冷却固化させることにより相分離せしめて、球状構造を形成させる。ここで、貧溶媒とは、上記高分子を、60℃以下の低温では5重量%以上溶解させることができないが、60℃以上かつ高分子の融点以下(例えば、高分子がフッ化ビニリデンホモポリマー単独で構成される場合の融点は178℃程度)の高温領域で5重量%以上溶解させることができる溶媒のことである。これに対し、60℃以下の低温領域でも高分子を5重量%以上溶解させることが可能な溶媒は良溶媒であり、また、高分子の融点または溶媒の沸点の高温にしても、高分子を溶解も膨潤もさせない溶媒は非溶媒である、と定義する。   In the case of this manufacturing method, first, a fluororesin film (layer) having a spherical structure is manufactured. A polymer solution is prepared by dissolving a fluororesin-based polymer at a relatively high concentration of about 20 wt% to 60 wt% in a poor solvent or a good solvent of the polymer at a relatively high temperature. The solution is discharged from the die so as to be in the form of a hollow fiber membrane or a flat membrane, and phase-separated by cooling and solidifying in a cooling bath to form a spherical structure. Here, the poor solvent cannot dissolve the above polymer at 5% by weight or more at a low temperature of 60 ° C. or lower, but it is 60 ° C. or higher and below the melting point of the polymer (for example, the polymer is a vinylidene fluoride homopolymer). In the case of being constituted alone, the melting point is a solvent that can be dissolved by 5 wt% or more in a high temperature region of about 178 ° C.). On the other hand, a solvent capable of dissolving 5% by weight or more of a polymer even in a low temperature region of 60 ° C. or lower is a good solvent. A solvent that does not dissolve or swell is defined as a non-solvent.

フッ素樹脂系高分子の場合の貧溶媒としては、シクロヘキサノン、イソホロン、γ−ブチロラクトン、メチルイソアミルケトン、フタル酸ジメチル、プロピレングリコールメチルエーテル、プロピレンカーボネート、ジアセトンアルコール、グリセロールトリアセテート等の中鎖長のアルキルケトン、エステル、グリコールエステルおよび有機カーボネート等およびそれらの混合溶媒が挙げられる。非溶媒と貧溶媒の混合溶媒であっても、上記貧溶媒の定義を満足するものは、貧溶媒として扱う。また、良溶媒としては、N−メチル−2−ピロリドン、ジメチルスルホキシド、ジメチルアセトアキド、ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド等およびそれらの混合溶媒が挙げられる。さらに、非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、メタノール、エタノール、四塩化炭素、o−ジクロルベンゼン、トリクロルエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、脂肪族多価アルコール、芳香族多価アルコール、塩素化炭化水素、またはその他の塩素化有機液体およびそれらの混合溶媒が挙げられる。   Examples of poor solvents for fluoropolymers include cyclohexanone, isophorone, γ-butyrolactone, methyl isoamyl ketone, dimethyl phthalate, propylene glycol methyl ether, propylene carbonate, diacetone alcohol, and glycerol triacetate. Examples include ketones, esters, glycol esters and organic carbonates, and mixed solvents thereof. Even if it is a mixed solvent of a non-solvent and a poor solvent, what satisfies the definition of the poor solvent is treated as a poor solvent. Examples of good solvents include N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylacetoxide, dimethylformamide, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethyl urea, trimethyl phosphate, and other lower alkyl ketones, esters, amides, and the like. These mixed solvents are mentioned. Further, non-solvents include water, hexane, pentane, benzene, toluene, methanol, ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol, pentane. Aliphatic hydrocarbons such as diol, hexanediol, low molecular weight polyethylene glycol, aromatic hydrocarbons, aliphatic polyhydric alcohols, aromatic polyhydric alcohols, chlorinated hydrocarbons, or other chlorinated organic liquids and mixtures thereof A solvent is mentioned.

上記の方法では、まずフッ素樹脂系高分子を20重量%以上60重量%以下程度の比較的高濃度で、該高分子の貧溶媒または良溶媒に、80〜170℃程度の比較的高温で溶解して高分子溶液を調製することが好ましい。この高分子溶液における濃度が高いほど高い強度、伸度を有する高分子分離膜が得られるが、高過ぎると高分子分離膜の空孔率が小さくなり透過性能が低下する。また、高分子溶液の取り扱い易さや製膜性の観点から、溶液粘度が適正な範囲内にあることが好ましい。従って、高分子溶液の濃度は30重量%以上50重量%以下の範囲とすることがより好ましい。   In the above method, first, the fluororesin polymer is dissolved at a relatively high concentration of about 20 wt% to 60 wt% in a poor solvent or a good solvent of the polymer at a relatively high temperature of about 80 to 170 ° C. Thus, it is preferable to prepare a polymer solution. The higher the concentration in the polymer solution, the higher the strength and elongation of the polymer separation membrane. However, when the concentration is too high, the porosity of the polymer separation membrane decreases and the permeation performance decreases. Moreover, it is preferable that a solution viscosity exists in an appropriate range from a viewpoint of the ease of handling of a polymer solution, and film forming property. Therefore, the concentration of the polymer solution is more preferably in the range of 30% by weight to 50% by weight.

この高分子溶液を中空糸や平膜のような所定の形状にして冷却固化するためには、高分子溶液を口金から冷却浴中に吐出する方法が好ましい。この際、冷却浴に用いる冷却液体としては、温度が5〜50℃であって、濃度が60〜100重量%で貧溶媒もしくは良溶媒を含有する液体を用いることが好ましい。冷却液体中には、貧溶媒、良溶媒以外に非溶媒を、球状構造生成を阻害しない範囲内で含有させてもよい。なお、冷却液体に非溶媒を主成分とする液体を用いると、冷却固化による相分離よりも非溶媒滲入による相分離が優先して生じるので、球状構造が得られ難くなる。また、フッ素樹脂系高分子を比較的高濃度で、該高分子の貧溶媒もしくは良溶媒に比較的高温度で溶解した溶液を、急冷して固化する方法で高分子分離膜を製造する場合、条件によっては、分離膜の構造が球状構造でなく、緻密な網目構造となる場合もあるので、球状構造を形成させるためには、高分子溶液の濃度および温度、用いる溶媒の組成、冷却液体の組成および温度の組み合わせを適正に制御する。   In order to cool and solidify the polymer solution into a predetermined shape such as a hollow fiber or a flat membrane, a method of discharging the polymer solution from the die into a cooling bath is preferable. At this time, as the cooling liquid used for the cooling bath, it is preferable to use a liquid having a temperature of 5 to 50 ° C. and a concentration of 60 to 100% by weight and containing a poor solvent or a good solvent. In the cooling liquid, in addition to the poor solvent and the good solvent, a non-solvent may be contained within a range that does not inhibit the formation of the spherical structure. Note that when a liquid mainly composed of a non-solvent is used as the cooling liquid, the phase separation due to the non-solvent intrusion takes precedence over the phase separation due to cooling and solidification, so that it becomes difficult to obtain a spherical structure. In the case of producing a polymer separation membrane by a method of quenching and solidifying a solution in which a fluororesin polymer is dissolved at a relatively high concentration in a poor solvent or a good solvent of the polymer at a relatively high temperature, Depending on the conditions, the structure of the separation membrane may not be a spherical structure but a dense network structure. In order to form a spherical structure, the concentration and temperature of the polymer solution, the composition of the solvent used, the cooling liquid Properly control the combination of composition and temperature.

ここでの高分子分離膜の形状を中空糸膜とする場合には、調製した高分子溶液を、二重管式口金の外側の管から吐出するとともに、中空部形成用流体を二重管式口金の内側の管から吐出し、冷却浴中で冷却固化して、中空糸膜とすればよい。この際、中空部形成用流体には、通常気体もしくは液体を用いることができるが、本発明においては、冷却液体と同様の濃度が60〜100重量%の貧溶媒もしくは良溶媒を含有する液体を用いることが好ましい。なお、中空部形成用流体は冷却して供給してもよいが、冷却浴の冷却力のみで中空糸膜を固化することが十分可能な場合は、中空部形成流体は冷却せずに供給してもよい。   When the shape of the polymer separation membrane here is a hollow fiber membrane, the prepared polymer solution is discharged from the outer tube of the double-tube type die, and the hollow portion forming fluid is double-tube type. What is necessary is just to discharge from the pipe | tube inside a nozzle | cap | die, and to cool and solidify in a cooling bath and to make a hollow fiber membrane. At this time, a gas or a liquid can be used as the hollow portion forming fluid. However, in the present invention, a liquid containing a poor solvent or a good solvent having a concentration of 60 to 100% by weight similar to the cooling liquid is used. It is preferable to use it. The hollow portion forming fluid may be cooled and supplied. However, if the hollow fiber membrane can be solidified only by the cooling power of the cooling bath, the hollow portion forming fluid is supplied without cooling. May be.

また、高分子分離膜の形状を平膜とする場合には、調製した高分子溶液を、スリット口金から吐出し、冷却浴中で固化し平膜とする。   Further, when the shape of the polymer separation membrane is a flat membrane, the prepared polymer solution is discharged from a slit die and solidified in a cooling bath to obtain a flat membrane.

以上のようにして得られた球状構造からなるフッ素樹脂系膜(層)の上に、所定の親水性高分子を含有するフッ素樹脂系高分子溶液からなる三次元網目構造を形成(積層)させる。その積層方法は、特に限定されないが、以下の方法が好ましい。すなわち、球状構造からなるフッ素樹脂系膜(層)の上に、所定の親水性高分子を含有するフッ素樹脂系高分子溶液を塗布した後、凝固浴に浸漬することにより三次元網目構造を有する層を積層させる方法である。   A three-dimensional network structure made of a fluororesin polymer solution containing a predetermined hydrophilic polymer is formed (laminated) on the fluororesin film (layer) having a spherical structure obtained as described above. . The lamination method is not particularly limited, but the following method is preferable. That is, a three-dimensional network structure is formed by applying a fluororesin polymer solution containing a predetermined hydrophilic polymer on a fluororesin film (layer) having a spherical structure and then immersing it in a coagulation bath. This is a method of laminating layers.

ここで、三次元網目構造を形成させるための、所定の親水性高分子を含有するフッ素樹脂系高分子溶液は、前記した特定の親水性高分子、フッ素樹脂系高分子および溶媒で構成されるものであり、その溶媒としてはフッ素樹脂系高分子の良溶媒を用いることが好ましい。フッ素樹脂系高分子の良溶媒としては、前記した良溶媒を用いることができる。親水性高分子を含有するフッ素樹脂系高分子溶液における高分子濃度は、通常5〜30重量%が好ましく、より好ましくは10〜25重量%の範囲である。5重量%未満では、三次元網目構造層の物理的強度が低下し易く、30重量%を超えると透過性能が低下する傾向にある。   Here, the fluororesin polymer solution containing a predetermined hydrophilic polymer for forming a three-dimensional network structure is composed of the specific hydrophilic polymer, the fluororesin polymer and a solvent described above. As the solvent, it is preferable to use a good solvent of a fluororesin polymer. The good solvent described above can be used as the good solvent for the fluororesin-based polymer. The polymer concentration in the fluororesin polymer solution containing a hydrophilic polymer is usually preferably 5 to 30% by weight, more preferably 10 to 25% by weight. If it is less than 5% by weight, the physical strength of the three-dimensional network structure layer tends to decrease, and if it exceeds 30% by weight, the transmission performance tends to decrease.

また、この親水性高分子を含有するフッ素樹脂系高分子溶液は、フッ素樹脂系高分子や親水性高分子の種類・濃度、溶媒の種類、後述する添加剤の種類・濃度によって、最適の溶解温度が異なってくる。このフッ素樹脂系高分子溶液において再現性良く安定な溶液調製するためには、溶媒の沸点以下の温度で攪拌しながら数時間加熱して、透明な溶液となるようにすることが好ましい。さらに、このフッ素樹脂系高分子溶液を塗布する際の温度も、優れた特性の高分子分離膜を製造するために重要である。例えば、高分子分離膜を安定して製造するためには、フッ素樹脂系高分子溶液の安定性を損なわないように温度を制御し、かつ系外からの非溶媒の侵入を防止することが好ましい。また、塗布時のフッ素樹脂系高分子溶液の温度が高すぎると、球状構造層の表面部分のフッ素樹脂系高分子を溶解して、三次元網目構造層と球状構造層の界面に緻密な層が形成され易くなり、得られる分離膜の透水性能が低下する。逆に、塗布時の溶液温度が低すぎると、塗布中に溶液の一部分がゲル化し、欠点を多く含む分離膜が形成され、分離性能が低下する。このため、塗布時の溶液温度は、溶液の組成や、目的とする分離膜性能等によって最適温度とする必要がある。   In addition, the fluororesin polymer solution containing this hydrophilic polymer is optimally dissolved depending on the type and concentration of the fluororesin polymer and hydrophilic polymer, the type of solvent, and the type and concentration of additives described below. The temperature will be different. In order to prepare a stable solution with good reproducibility in this fluororesin polymer solution, it is preferable to heat it for several hours while stirring at a temperature below the boiling point of the solvent so that a transparent solution is obtained. Furthermore, the temperature at which the fluororesin polymer solution is applied is also important for producing a polymer separation membrane having excellent characteristics. For example, in order to stably produce a polymer separation membrane, it is preferable to control the temperature so as not to impair the stability of the fluororesin polymer solution and to prevent the invasion of a non-solvent from outside the system. . Also, if the temperature of the fluororesin polymer solution at the time of application is too high, the fluororesin polymer on the surface of the spherical structure layer is dissolved, and a dense layer is formed at the interface between the three-dimensional network structure layer and the spherical structure layer. Are easily formed, and the water permeability of the obtained separation membrane is lowered. On the contrary, if the solution temperature at the time of application is too low, a part of the solution gels during application, a separation membrane containing many defects is formed, and the separation performance deteriorates. For this reason, the solution temperature at the time of application | coating needs to be made into optimal temperature by the composition of a solution, the target separation membrane performance, etc.

中空糸状の高分子分離膜を製造する場合において、球状構造からなるフッ素樹脂系中空糸膜(層)の外表面上に、所定の親水性高分子を含有するフッ素樹脂系高分子溶液を塗布する方法としては、中空糸膜を高分子溶液中に浸漬する方法や、中空糸膜の表面に高分子溶液を滴下する方法が好ましい。また、中空糸膜の内表面側に、所定の親水性高分子を含有するフッ素樹脂系高分子溶液を塗布する方法としては、高分子溶液を中空糸膜内部に注入する方法などが好ましい。この際に高分子溶液の塗布量を制御する方法としては、塗布への高分子溶液の供給量自体を制御する方法や、高分子分離膜を高分子溶液に浸漬し、若しくは高分子分離膜に高分子溶液を塗布した後に、付着した高分子溶液の一部を掻き取ったり、エアナイフを用いて吹き飛ばすことにより塗布量調整する方法を用いることができる。   When producing a hollow fiber polymer separation membrane, a fluororesin polymer solution containing a predetermined hydrophilic polymer is applied on the outer surface of a fluororesin hollow fiber membrane (layer) having a spherical structure. As a method, a method of immersing the hollow fiber membrane in the polymer solution or a method of dropping the polymer solution on the surface of the hollow fiber membrane is preferable. Moreover, as a method of applying a fluororesin polymer solution containing a predetermined hydrophilic polymer to the inner surface side of the hollow fiber membrane, a method of injecting the polymer solution into the hollow fiber membrane is preferable. At this time, as a method for controlling the coating amount of the polymer solution, a method for controlling the supply amount of the polymer solution to the coating itself, a method in which the polymer separation membrane is immersed in the polymer solution, After applying the polymer solution, a method of adjusting the coating amount by scraping off a part of the attached polymer solution or blowing it off using an air knife can be used.

また、塗布後に浸漬する凝固浴には、フッ素樹脂系高分子の非溶媒を含むことが好ましい。この非溶媒としては、前記したような非溶媒が好ましく用いられる。塗布された樹脂溶液を非溶媒に接触させることにより、非溶媒誘起相分離が生じ、三次元網目構造層が形成される。所定の親水性高分子を含有させたフッ素樹脂系高分子溶液を塗布した後に凝固浴に浸漬させる本発明の場合、凝固浴として、極性の高い非溶媒、例えば水を用いることが好ましい。   Moreover, it is preferable that the coagulation bath immersed after application | coating contains the non-solvent of a fluororesin type polymer. As the non-solvent, a non-solvent as described above is preferably used. By bringing the applied resin solution into contact with a non-solvent, non-solvent-induced phase separation occurs, and a three-dimensional network structure layer is formed. In the case of the present invention in which a fluororesin polymer solution containing a predetermined hydrophilic polymer is applied and then immersed in a coagulation bath, it is preferable to use a highly polar non-solvent such as water as the coagulation bath.

三次元網目構造層の表面における細孔の平均孔径を所望範囲内(例えば1nm以上1μm以下)に制御するための方法は、フッ素樹脂系高分子溶液中に含有させる親水性高分子の種類や濃度によって異なるが、例えば、以下の方法を採用することができる。   The method for controlling the average pore diameter of the pores on the surface of the three-dimensional network structure layer within a desired range (for example, 1 nm or more and 1 μm or less) depends on the type and concentration of the hydrophilic polymer contained in the fluororesin polymer solution. For example, the following method can be adopted although it differs depending on the case.

親水性高分子を含有するフッ素樹脂系高分子溶液に、孔径を制御するための添加剤を配合すると、三次元網目構造を形成する際に、または、三次元網目構造を形成した後に、その添加剤が溶出され、表面における細孔の平均孔径を制御することができる。   When an additive for controlling the pore size is added to a fluororesin polymer solution containing a hydrophilic polymer, it is added when forming a three-dimensional network structure or after forming a three-dimensional network structure. The agent is eluted, and the average pore diameter of the pores on the surface can be controlled.

この孔径制御用の添加剤としては、以下の有機化合物や無機化合物が挙げられる。有機化合物としては、フッ素樹脂系高分子溶液に用いる溶媒および非溶媒誘起相分離を起こす非溶媒の両方に溶解するものが好ましく用いられ、例えば、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレンイミン、ポリアクリル酸、デキストランなどの水溶性ポリマー、界面活性剤、グリセリン、糖類などを挙げることができる。無機化合物としては、フッ素樹脂系高分子溶液に用いる溶媒および非溶媒誘起相分離を起こす非溶媒の両方に溶解するものが好ましく、例えば、塩化カルシウム、塩化マグネシウム、塩化リチウム、硫酸バリウムなどを挙げることができる。また、この添加剤を用いずに、凝固浴における非溶媒の種類、濃度および温度の調整によって相分離速度を制御し、表面の平均孔径を制御することも可能である。一般的には、相分離速度が速いと表面の平均孔径が小さくなり、相分離速度が遅いと表面の平均孔径が大きくなる。また、その高分子溶液に非溶媒を添加することにより、相分離速度を制御することもできる。   Examples of the pore diameter control additive include the following organic compounds and inorganic compounds. As the organic compound, those that are soluble in both the solvent used in the fluororesin polymer solution and the non-solvent that causes non-solvent-induced phase separation are preferably used. For example, polyvinyl pyrrolidone, polyethylene glycol, polyethylene imine, polyacrylic acid, Examples thereof include water-soluble polymers such as dextran, surfactants, glycerin, and saccharides. The inorganic compound is preferably one that is soluble in both the solvent used for the fluororesin polymer solution and the non-solvent that causes non-solvent-induced phase separation, such as calcium chloride, magnesium chloride, lithium chloride, and barium sulfate. Can do. Further, without using this additive, it is also possible to control the phase separation rate by adjusting the type, concentration and temperature of the non-solvent in the coagulation bath, and to control the average pore diameter of the surface. In general, when the phase separation rate is high, the average pore size on the surface becomes small, and when the phase separation rate is low, the average pore size on the surface becomes large. In addition, the phase separation rate can be controlled by adding a non-solvent to the polymer solution.

上記した三次元網目構造を形成させる方法において、三次元網目構造層形成用の高分子溶液がフッ素樹脂系高分子とセルロースエステルとを含み、フッ素樹脂系高分子に対するセルロースエステルの割合が20重量%以上50重量%未満である場合には、フッ素樹脂系高分子の良溶媒を含有する凝固浴を用いることが好ましい。この場合、凝固浴中に、フッ素樹脂系高分子の良溶媒成分を10重量%以上60重量%以下、好ましくは20重量%以上50重量%以下含有することが好ましい。凝固浴中に含まれる良溶媒成分を上記範囲に調整することにより、塗布されたセルロースエステル・フッ素樹脂系高分子溶液へ非溶媒が侵入する速度が低下し、三次元網目構造層中のマクロボイド(長径5μm以上)の形成を抑止することができる。   In the above-described method for forming a three-dimensional network structure, the polymer solution for forming a three-dimensional network structure layer contains a fluororesin polymer and a cellulose ester, and the ratio of the cellulose ester to the fluororesin polymer is 20% by weight. When the content is less than 50% by weight, it is preferable to use a coagulation bath containing a good solvent for the fluororesin-based polymer. In this case, the good solvent component of the fluororesin polymer is contained in the coagulation bath in an amount of 10 wt% to 60 wt%, preferably 20 wt% to 50 wt%. By adjusting the good solvent component contained in the coagulation bath to the above range, the rate at which the non-solvent penetrates into the applied cellulose ester / fluororesin polymer solution is reduced, and the macrovoids in the three-dimensional network structure layer Formation of (major axis of 5 μm or more) can be suppressed.

また、フッ素樹脂系高分子に対するセルロースエステルの割合が50重量%以上75重量%以下である場合には、フッ素樹脂系高分子の良溶媒成分を含有しない凝固浴、例えば、非溶媒のみからなる凝固浴中を用いることができ、このような凝固浴を用いても、マクロボイドの存在しない三次元網目構造層を形成することができる。   Further, when the ratio of the cellulose ester to the fluororesin polymer is 50% by weight or more and 75% by weight or less, the coagulation bath does not contain a good solvent component of the fluororesin polymer, for example, coagulation composed only of a non-solvent The inside of the bath can be used, and even when such a coagulation bath is used, a three-dimensional network structure layer free from macrovoids can be formed.

以下に具体的実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。   The present invention will be described below with reference to specific examples, but the present invention is not limited to these examples.

(1)ミニチュア膜モジュールによるろ過実験
外筒内に中空糸膜7本を収納して端部固定した長さ15mmのミニチュア膜モジュールを作製した(図2)。この膜モジュールにおいて、B端では中空糸膜が封止されていて、D端では中空糸膜が開口している。
(1) Filtration experiment with a miniature membrane module A miniature membrane module having a length of 15 mm was prepared by housing seven hollow fiber membranes in an outer cylinder and fixing the ends (FIG. 2). In this membrane module, the hollow fiber membrane is sealed at the B end, and the hollow fiber membrane is open at the D end.

圧力計を設置した10Lのステンレス製加圧タンクADVANTEC PRESSURE VRSSEL DV−10に原水を入れ、同様に圧力計を設置した40Lのステンレス製加圧タンクADVANTEC PRESSURE VRSSEL DV−40に和光純薬製蒸留水を入れた。それぞれのタンクには水の流出口に2方コックを接続した。原水には、フミン酸(和光純薬製)30mgと塩化カルシウム(ナカライテスク製 一級)250mgを和光純薬蒸留水10Lに溶解させたものを用いた。   Raw water is put into a 10 L stainless steel pressurized tank ADVANTEC PRESURE VRSSEL DV-10 with a pressure gauge installed, and Wako Pure Chemical distilled water is added to a 40 L stainless steel pressurized tank ADVANTEC PRESSURE VRSSEL DV-40 with a pressure gauge installed in the same manner. Put. Each tank was connected to a two-way cock at the water outlet. As raw water, 30 mg of humic acid (manufactured by Wako Pure Chemical Industries) and 250 mg of calcium chloride (manufactured by Nacalai Tesque) were dissolved in 10 L of Wako Pure Chemical distilled water.

原水入り加圧タンク(以下、原水タンク)の2方コックとミニチュア膜モジュールのA点をテフロン(登録商標)チューブで3方コックを介して接続し、蒸留水入り加圧タンク(以下、蒸留水タンク)の2方コックとミニチュア膜モジュールのB点をテフロン(登録商標)チューブで接続した。ミニチュア膜モジュールのC点は樹脂キャップにより封止し、D点から透過水が出るようにした。なお、C点のような接続端の設けてないミニチュア膜モジュールを用いてもよい。   Connect the two-way cock of the pressurized tank with raw water (hereinafter referred to as raw water tank) and the point A of the miniature membrane module with a Teflon (registered trademark) tube via the three-way cock, and pressurize the tank with distilled water (hereinafter referred to as distilled water). The two-way cock of the tank) and point B of the miniature membrane module were connected with a Teflon (registered trademark) tube. The point C of the miniature membrane module was sealed with a resin cap so that permeated water was discharged from point D. In addition, you may use the miniature membrane module which does not provide the connection end like C point.

まず、0.4MPaの圧縮空気をSMCレギュレーター(AF2000−02,AR2000−02G)で50KPaに調整して原水タンクに圧力をかけ、2方コックを開にしてミニチュア膜モジュール内に原水を送液した。このとき、ミニチュア膜モジュールとの間にある三方コックはタンクと膜モジュール間のみを開とし、また、蒸留水タンクとB点との間の2方コックは閉とした。   First, 0.4 MPa compressed air was adjusted to 50 KPa with an SMC regulator (AF2000-02, AR2000-02G), pressure was applied to the raw water tank, the two-way cock was opened, and raw water was fed into the miniature membrane module. . At this time, the three-way cock between the miniature membrane module was opened only between the tank and the membrane module, and the two-way cock between the distilled water tank and point B was closed.

透過水重量をパソコンに接続した電子天秤 AND HF−6000で5秒毎に測定し、連続記録プログラムAND RsCom ver.2.40を用いて記録した。本実験で得られるデータは5秒あたりの透過水重量であるから、ろ過抵抗を以下に示す式を用いて算出した。   The permeate weight was measured every 5 seconds with an electronic balance AND HF-6000 connected to a personal computer, and the continuous recording program AND RsCom ver. Recorded using 2.40. Since the data obtained in this experiment is the permeated water weight per 5 seconds, the filtration resistance was calculated using the following equation.

ろ過抵抗 =(ろ過圧力)×10×5×(膜面積)×10/((粘度×(5秒あたりの透過水重量)×(密度)) Filtration resistance = (filtration pressure) × 10 3 × 5 × (membrane area) × 10 6 / ((viscosity × (permeated water weight per 5 seconds) × (density))

総ろ過水量0.06m/mまでろ過工程を続けた後、原水タンクの2方コックを閉としてろ過工程を終了した。次いで、ミニチュア膜モジュールとの間にある3方コックを3方向とも開の状態にし、ミニチュア膜モジュールの透過水出口(D点)を樹脂キャップで封止した。 After continuing the filtration step to a total filtered water amount of 0.06 m 3 / m 2 , the two-way cock of the raw water tank was closed to complete the filtration step. Next, the three-way cock between the miniature membrane module was opened in all three directions, and the permeate outlet (point D) of the miniature membrane module was sealed with a resin cap.

0.4MPaの圧縮空気をSMCレギュレーター(AF2000−02,AR2000−02G)で100KPaに調整して蒸留水タンクに圧力をかけ、2方コックを開にしてミニチュアモジュール内に蒸留水を送液した。この操作によって逆洗工程が開始された。3方コックから流出する逆洗排水が100mlとなるまで逆洗工程を続けた後、蒸留水タンクの2方コックを閉として逆洗工程を終了した。   0.4 MPa compressed air was adjusted to 100 KPa with an SMC regulator (AF2000-02, AR2000-02G), pressure was applied to the distilled water tank, the two-way cock was opened, and distilled water was fed into the miniature module. By this operation, the backwash process was started. The backwashing process was continued until the backwashing drainage flowing out from the 3-way cock reached 100 ml, and then the backwashing process was completed by closing the 2-way cock of the distilled water tank.

以上の操作を1つの膜モジュールに対して5回連続して実施し、総ろ過水量を横軸に、算出したろ過抵抗を縦軸にプロットした。   The above operation was continuously performed 5 times for one membrane module, and the total filtration water amount was plotted on the horizontal axis and the calculated filtration resistance was plotted on the vertical axis.

ここでプロットの開始は、各回のろ過開始30秒後からとした。また、ろ過抵抗の上昇に伴い透水量が減少するため、5秒ごとの増加量の絶対値が減少する。ろ過抵抗は増加量から前記式に従って算出するため、増加量が減少するとそのばらつきが算出されるろ過抵抗に与える影響が大きくなる。従って、透水量の減少が著しい場合には、適宜作成したグラフの移動平均近似をとってグラフを修正した。   Here, the plot was started 30 seconds after the start of each filtration. Moreover, since the water permeation amount decreases as the filtration resistance increases, the absolute value of the increase amount every 5 seconds decreases. Since the filtration resistance is calculated from the increase amount according to the above formula, when the increase amount decreases, the variation has a greater effect on the calculated filtration resistance. Therefore, when the decrease in water permeability was significant, the graph was corrected by taking a moving average approximation of the graph created as appropriate.

(2)ろ過抵抗上昇度A
ろ過実験の結果から作成した総ろ過水量−ろ過抵抗のグラフ、場合によっては前記グラフを移動平均近似をとったグラフにおいて、総ろ過水量とろ過抵抗の関係から、2回目、3回目、4回目、5回目のろ過工程それぞれの傾きを求めて算出した平均値をろ過抵抗上昇度Aとした。
(2) Filtration resistance increase A
In the graph of total filtration water amount-filtration resistance created from the results of the filtration experiment, and in some cases, the graph obtained by taking the moving average approximation in the graph, from the relationship between the total filtration water amount and the filtration resistance, the second time, the third time, the fourth time, The average value calculated by obtaining the slope of each of the fifth filtration steps was defined as the filtration resistance increase A.

(3)ろ過抵抗上昇度B
また、同グラフにおいて、2回目、3回目、4回目、5回目のろ過工程開始時のろ過抵抗4点を結んだ直線の傾きをろ過抵抗上昇度Bとした。ただし、4点が直線上に乗らない場合には、線形近似で直線の傾きを求めてろ過抵抗上昇度Aとした。
(3) Filtration resistance increase B
In the graph, the slope of the straight line connecting the four filtration resistances at the start of the second, third, fourth, and fifth filtration steps was defined as a filtration resistance increase B. However, when the four points did not lie on a straight line, the slope of the straight line was obtained by linear approximation and used as the filtration resistance increase A.

(4)逆洗回復性
n回目のろ過終了時のろ過抵抗とn+1回目のろ過開始時のろ過抵抗の差が、n回目のろ過終了時のろ過抵抗とn回目のろ過開始時のろ過抵抗の差の何%であるかを示す値で、n=2,3,4の平均値を逆洗回復性とした。
(4) Backwash recovery property The difference between the filtration resistance at the end of the nth filtration and the filtration resistance at the start of the (n + 1) th filtration is the difference between the filtration resistance at the end of the nth filtration and the filtration resistance at the start of the nth filtration. It is a value indicating what percentage of the difference, and the average value of n = 2, 3, 4 was defined as the backwash recovery property.

(5)孔径と開孔率
中空糸膜の平均孔径は、被処理水側表面である中空糸外表面を走査型電子顕微鏡(S−800)(日立製作所製)を用いて3万倍で写真撮影し、30個の任意の細孔の孔径を測定し、数平均して求めた。また、開孔率は、平均孔径を求めた写真の中の3μm四方あたりの細孔数を数えて算出して1m当たりの細孔数に換算して求めた細孔密度と平均孔径とから、次式により計算して求めた。
(5) Pore diameter and open area ratio The average pore diameter of the hollow fiber membrane is 30,000 times using a scanning electron microscope (S-800) (manufactured by Hitachi, Ltd.) on the outer surface of the hollow fiber that is the surface to be treated. Images were taken, the diameters of 30 arbitrary pores were measured, and the number average was obtained. In addition, the open area ratio is calculated by counting the number of pores per 3 μm square in the photograph for which the average pore diameter was obtained, and converting it into the number of pores per 1 m 2 and the average pore diameter. And calculated by the following formula.

開孔率(%)=π×(平均孔径/2)×(細孔密度)×100 Opening ratio (%) = π × (average pore diameter / 2) 2 × (pore density) × 100

(6)小型膜モジュール連続ろ過実験
直径3cm、長さ50cm、有効膜面積が0.3mとなるように小型膜モジュールを作製し、琵琶湖水を膜ろ過流速3m/dで定流量外圧全ろ過運転を行った。60分毎に5ppm次亜塩素酸ナトリウム水溶液による逆流洗浄を30秒、空気によるエアースクラビングを1分行った。1週間のろ過運転を実施した。1週間のろ過差圧推移を計測し、次式により、1日平均のろ過差圧上昇速度(kPa/日)を算出した。
(6) Small membrane module continuous filtration experiment A small membrane module was prepared so that the diameter was 3 cm, the length was 50 cm, and the effective membrane area was 0.3 m 2, and Lake Biwa water was filtered at a constant flow rate and external pressure at a membrane filtration flow rate of 3 m / d. Drove. Every 60 minutes, backwashing with a 5 ppm sodium hypochlorite aqueous solution was performed for 30 seconds, and air scrubbing with air was performed for 1 minute. A one-week filtration operation was performed. The change in filtration differential pressure during one week was measured, and the daily average increase rate of filtration differential pressure (kPa / day) was calculated according to the following formula.

ろ過差圧上昇速度(kPa/日)=(P−P)/T Filtration differential pressure increase rate (kPa / day) = (P 1 −P 0 ) / T

ここで運転評価開始時点の物理洗浄直後のろ過差圧をP(kPa)、運転評価終了時点の該ろ過差圧をP(kPa)、運転期間をT(日)とする。ここで、運転初期のろ過差圧が30kPa程度であり、薬液洗浄の目安がろ過差圧100kPaから150kPa程度であることから、運転開始時からろ過差圧が100kPaを超えるまでの月数をろ過差圧上昇速度から求め、安定運転可能月数とした。 Here, the filtration differential pressure immediately after the physical cleaning at the start of the operation evaluation is P 0 (kPa), the filtration differential pressure at the end of the operation evaluation is P 1 (kPa), and the operation period is T (day). Here, the filtration differential pressure in the initial stage of operation is about 30 kPa, and the standard for chemical solution washing is about 100 kPa to 150 kPa of the filtration differential pressure, so the number of months from the start of operation until the filtration differential pressure exceeds 100 kPa is filtered. It was calculated from the pressure rise rate and was taken as the number of months that stable operation was possible.

<実施例1>
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ-ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解した。この高分子溶液をγ-ブチロラクトンを中空部形成液体として随拌させながら口金から吐出し、温度20℃のγ-ブチロラクトン80重量%水溶液からなる冷却浴中で固化して球状構造からなる中空糸膜を作製した。
<Example 1>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 38% by weight and 62% by weight, respectively. This polymer solution is discharged from a base while stirring γ-butyrolactone as a hollow portion forming liquid and solidified in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 20 ° C. to form a hollow fiber membrane having a spherical structure Was made.

次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを13重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S:三酢酸セルロース)を4重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社、商品名イオネットT−20C)を3重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調整した。この製膜原液を球状構造からなる中空糸膜表面に均一に塗布し、すぐに30重量%N-メチル-2-ピロリドン水溶液中で凝固させて球状構造層の上に三次元網目構造層を形成させた中空糸膜を製作した。   Next, 13% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 4% by weight of cellulose acetate (Eastman Chemical Co., CA435-75S: cellulose triacetate), and 77% of N-methyl-2-pyrrolidone A polymer solution is prepared by mixing and dissolving 3% by weight of polyoxyethylene coconut oil fatty acid sorbitan (Sanyo Kasei Co., Ltd., trade name Ionette T-20C) at a temperature of 95 ° C. at a rate of 3% by weight. did. This membrane stock solution is uniformly applied to the surface of a hollow fiber membrane having a spherical structure, and immediately solidified in a 30% by weight aqueous solution of N-methyl-2-pyrrolidone to form a three-dimensional network structure layer on the spherical structure layer. A hollow fiber membrane was produced.

得られたポリフッ化ビニリデン製中空糸膜は被処理水側表面の平均孔径が0.01μm、開孔率0.05%であった。得られたポリフッ化ビニリデン製中空糸膜を用いて、前述した有効膜面積が0.004mのミニチュア膜モジュールを作成し、ミニチュア膜モジュールろ過実験を実施した。 The obtained hollow fiber membrane made of polyvinylidene fluoride had an average pore diameter of 0.01 μm on the surface to be treated and a porosity of 0.05%. Using the obtained hollow fiber membrane made of polyvinylidene fluoride, the above-mentioned miniature membrane module having an effective membrane area of 0.004 m 2 was prepared, and a miniature membrane module filtration experiment was performed.

その結果、初期ろ過抵抗は8.0×1011/m、ろ過抵抗上昇度Aは4.8×1012/m、ろ過抵抗上昇度Bは5.3×1011/m、逆洗回復性は92%であった。
この膜を用いて小型モジュールを作製し、琵琶湖水を原水とした連続ろ過実験を実施したところ、ろ過差圧上昇速度は0.12kPa/日であり、100kPa到達まで19ヶ月かかる計算となり、長期間安定運転が可能であると言える。
As a result, the initial filtration resistance was 8.0 × 10 11 / m, the filtration resistance increase A was 4.8 × 10 12 / m 2 , and the filtration resistance increase B was 5.3 × 10 11 / m 2 . The recoverability was 92%.
A small module was made using this membrane, and a continuous filtration experiment was conducted using Lake Biwa as raw water. The rate of increase in the filtration differential pressure was 0.12 kPa / day, and it took 19 months to reach 100 kPa. It can be said that stable operation is possible.

<実施例2>
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ-ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解した。この高分子溶液をγ-ブチロラクトンを中空部形成液体として随拌させながら口金から吐出し、温度20℃のγ-ブチロラクトン80重量%水溶液からなる冷却浴中で固化して球状構造からなる中空糸膜を作製した。
<Example 2>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 38% by weight and 62% by weight, respectively. This polymer solution is discharged from a base while stirring γ-butyrolactone as a hollow portion forming liquid and solidified in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 20 ° C. to form a hollow fiber membrane having a spherical structure Was made.

次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテートプロピオネート(イーストマンケミカル社、CAP482−0.5)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社、商品名イオネットT−20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調整した。この製膜原液を球状構造からなる中空糸膜表面に均一に塗布し、すぐに水浴中で凝固させて球状構造層の上に三次元網目構造層を形成させた中空糸膜を製作した。   Next, 14% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate propionate (Eastman Chemical Co., CAP482-0.5), and N-methyl-2-pyrrolidone 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (Sanyo Kasei Co., Ltd., trade name Ionette T-20C) 5% by weight and water 3% by mixing and dissolving at a temperature of 95 ° C. to obtain a polymer solution It was adjusted. This membrane-forming stock solution was uniformly applied to the surface of a hollow fiber membrane having a spherical structure, and immediately solidified in a water bath to produce a hollow fiber membrane having a three-dimensional network structure layer formed on the spherical structure layer.

得られたポリフッ化ビニリデン製中空糸膜は被処理水側表面の平均孔径が0.05μm、開孔率12%であった。得られたポリフッ化ビニリデン製中空糸膜を用いて、前述した有効膜面積が0.004mのミニチュア膜モジュールを作成し、ミニチュア膜モジュールろ過実験を実施した。 The obtained hollow fiber membrane made of polyvinylidene fluoride had an average pore diameter of 0.05 μm on the surface to be treated and a porosity of 12%. Using the obtained hollow fiber membrane made of polyvinylidene fluoride, the above-mentioned miniature membrane module having an effective membrane area of 0.004 m 2 was prepared, and a miniature membrane module filtration experiment was performed.

その結果、初期ろ過抵抗は5.0×1011/m、ろ過抵抗上昇度Aは2.1×1012/m、ろ過抵抗上昇度Bは7.0×1011/m、逆洗回復性は76%であった。
この膜を用いて小型モジュールを作製し、琵琶湖水を原水とした連続ろ過実験を実施したところ、ろ過差圧上昇速度は0.14kPa/日であり、100kPa到達まで17ヶ月かかる計算となり、長期間安定運転が可能であると言える。
As a result, the initial filtration resistance was 5.0 × 10 11 / m, the filtration resistance increase A was 2.1 × 10 12 / m 2 , and the filtration resistance increase B was 7.0 × 10 11 / m 2 . The recoverability was 76%.
A small module was made using this membrane, and a continuous filtration experiment was conducted using Lake Biwa water as raw water. The rate of increase in the filtration differential pressure was 0.14 kPa / day, and it took 17 months to reach 100 kPa. It can be said that stable operation is possible.

<実施例3>
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ-ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解した。この高分子溶液をγ-ブチロラクトンを中空部形成液体として随拌させながら口金から吐出し、温度20℃のγ-ブチロラクトン80重量%水溶液からなる冷却浴中でこかして球状構造からなる中空糸膜を作製した。
<Example 3>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 38% by weight and 62% by weight, respectively. The polymer solution was discharged from the base while stirring γ-butyrolactone as a hollow part forming liquid, and crushed in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 20 ° C. to form a hollow fiber membrane having a spherical structure. Produced.

次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S:三酢酸セルロース)を3重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社、商品名イオネットT−20C)を3重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調整した。この製膜原液を球状構造からなる中空糸膜表面に均一に塗布し、すぐに30重量%N-メチル-2-ピロリドン水溶液中で凝固させて球状構造層の上に三次元網目構造層を形成させた中空糸膜を製作した。   Subsequently, 14% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 3% by weight of cellulose acetate (Eastman Chemical Co., CA435-75S: cellulose triacetate), and 77% of N-methyl-2-pyrrolidone A polymer solution is prepared by mixing and dissolving 3% by weight of polyoxyethylene coconut oil fatty acid sorbitan (Sanyo Kasei Co., Ltd., trade name Ionette T-20C) at a temperature of 95 ° C. at a rate of 3% by weight. did. This membrane stock solution is uniformly applied to the surface of a hollow fiber membrane having a spherical structure, and immediately solidified in a 30% by weight aqueous solution of N-methyl-2-pyrrolidone to form a three-dimensional network structure layer on the spherical structure layer. A hollow fiber membrane was produced.

得られたポリフッ化ビニリデン製中空糸膜は被処理水側表面の平均孔径が0.014μm、開孔率0.8%であった。得られたポリフッ化ビニリデン製中空糸膜を用いて、前述した有効膜面積が0.004mのミニチュア膜モジュールを作成し、ミニチュア膜モジュールろ過実験を実施した。 The obtained hollow fiber membrane made of polyvinylidene fluoride had an average pore diameter of 0.014 μm on the surface to be treated and a porosity of 0.8%. Using the obtained hollow fiber membrane made of polyvinylidene fluoride, the above-mentioned miniature membrane module having an effective membrane area of 0.004 m 2 was prepared, and a miniature membrane module filtration experiment was performed.

その結果、初期ろ過抵抗は9.0×1011/m、ろ過抵抗上昇度Aは4.0×1012/m、ろ過抵抗上昇度Bは4.0×1011/m、逆洗回復性は95%であった。
この膜を用いて小型モジュールを作製し、琵琶湖水を原水とした連続ろ過実験を実施したところ、ろ過差圧上昇速度は0.1kPa/日であり、100kPa到達まで23ヶ月かかる計算となり、長期間安定運転が可能であると言える。
As a result, the initial filtration resistance was 9.0 × 10 11 / m, the filtration resistance increase A was 4.0 × 10 12 / m 2 , the filtration resistance increase B was 4.0 × 10 11 / m 2 , and backwashing. The recoverability was 95%.
A small module was made using this membrane, and a continuous filtration experiment was conducted using Lake Biwa water as raw water. The rate of increase in the filtration differential pressure was 0.1 kPa / day, and it took 23 months to reach 100 kPa. It can be said that stable operation is possible.

<実施例4>
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ-ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解した。この高分子溶液をγ-ブチロラクトンを中空部形成液体として随拌させながら口金から吐出し、温度20℃のγ-ブチロラクトン80重量%水溶液からなる冷却浴中でこかして球状構造からなる中空糸膜を作製した。
<Example 4>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 38% by weight and 62% by weight, respectively. The polymer solution was discharged from the base while stirring γ-butyrolactone as a hollow part forming liquid, and crushed in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 20 ° C. to form a hollow fiber membrane having a spherical structure. Produced.

次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを12重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S:三酢酸セルロース)を3重量%、N-メチル-2-ピロリドンを79重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社、商品名イオネットT−20C)を3重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調整した。この製膜原液を球状構造からなる中空糸膜表面に均一に塗布し、すぐに30重量%N-メチル-2-ピロリドン水溶液中で凝固させて球状構造層の上に三次元網目構造層を形成させた中空糸膜を製作した。   Next, 12% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 3% by weight of cellulose acetate (Eastman Chemical Co., CA435-75S: cellulose triacetate), and 79% of N-methyl-2-pyrrolidone A polymer solution is prepared by mixing and dissolving 3% by weight of polyoxyethylene coconut oil fatty acid sorbitan (Sanyo Kasei Co., Ltd., trade name Ionette T-20C) at a temperature of 95 ° C. at a rate of 3% by weight. did. This membrane stock solution is uniformly applied to the surface of a hollow fiber membrane having a spherical structure, and immediately solidified in a 30% by weight aqueous solution of N-methyl-2-pyrrolidone to form a three-dimensional network structure layer on the spherical structure layer. A hollow fiber membrane was produced.

得られたポリフッ化ビニリデン製中空糸膜は被処理水側表面の平均孔径が0.02μm、開孔率10%であった。得られたポリフッ化ビニリデン製中空糸膜を用いて、前述した有効膜面積が0.004mのミニチュア膜モジュールを作成し、ミニチュア膜モジュールろ過実験を実施した。 The obtained polyvinylidene fluoride hollow fiber membrane had an average pore size of 0.02 μm on the surface to be treated and a porosity of 10%. Using the obtained hollow fiber membrane made of polyvinylidene fluoride, the above-mentioned miniature membrane module having an effective membrane area of 0.004 m 2 was prepared, and a miniature membrane module filtration experiment was performed.

その結果、初期ろ過抵抗は6.6×1011/m、ろ過抵抗上昇度Aは3.8×1012/m、ろ過抵抗上昇度Bは5.3×1011/m、逆洗回復性は90%であった。
この膜を用いて小型モジュールを作製し、琵琶湖水を原水とした連続ろ過実験を実施したところ、ろ過差圧上昇速度は0.15kPa/日であり、100kPa到達まで16ヶ月かかる計算となり、長期間安定運転が可能であると言える。
As a result, the initial filtration resistance was 6.6 × 10 11 / m, the filtration resistance increase A was 3.8 × 10 12 / m 2 , and the filtration resistance increase B was 5.3 × 10 11 / m 2 . The recoverability was 90%.
A small module was made using this membrane, and a continuous filtration experiment was conducted using Lake Biwa water as raw water. As a result, the rate of increase in the filtration differential pressure was 0.15 kPa / day, and it took 16 months to reach 100 kPa. It can be said that stable operation is possible.

<実施例5>
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ-ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解した。この高分子溶液をγ-ブチロラクトンを中空部形成液体として随拌させながら口金から吐出し、温度20℃のγ-ブチロラクトン80重量%水溶液からなる冷却浴中でこかして球状構造からなる中空糸膜を作製した。
<Example 5>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 38% by weight and 62% by weight, respectively. The polymer solution was discharged from the base while stirring γ-butyrolactone as a hollow part forming liquid, and crushed in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 20 ° C. to form a hollow fiber membrane having a spherical structure. Produced.

次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテートプロピオネート(イーストマンケミカル社、CA435−75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社、商品名イオネットT−20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調整した。この製膜原液を球状構造からなる中空糸膜表面に均一に塗布し、すぐに30重量%N-メチル-2-ピロリドン水溶液中で凝固させて球状構造層の上に三次元網目構造層を形成させた中空糸膜を製作した。   Subsequently, 14% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate propionate (Eastman Chemical Co., CA435-75S: cellulose triacetate), N-methyl-2- Pyrrolidone is 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (Sanyo Kasei Co., Ltd., trade name Ionet T-20C) is 5% by weight, and water is 3% by weight at a temperature of 95 ° C. The solution was adjusted. This membrane stock solution is uniformly applied to the surface of a hollow fiber membrane having a spherical structure, and immediately solidified in a 30% by weight aqueous solution of N-methyl-2-pyrrolidone to form a three-dimensional network structure layer on the spherical structure layer. A hollow fiber membrane was produced.

得られたポリフッ化ビニリデン製中空糸膜は被処理水側表面の平均孔径が0.04μm、開孔率10%であった。得られたポリフッ化ビニリデン製中空糸膜を用いて、前述した有効膜面積が0.004mのミニチュア膜モジュールを作成し、ミニチュア膜モジュールろ過実験を実施した。 The obtained hollow fiber membrane made of polyvinylidene fluoride had an average pore size of 0.04 μm on the surface to be treated and a porosity of 10%. Using the obtained hollow fiber membrane made of polyvinylidene fluoride, the above-mentioned miniature membrane module having an effective membrane area of 0.004 m 2 was prepared, and a miniature membrane module filtration experiment was performed.

その結果、初期ろ過抵抗は5.2×1011/m、ろ過抵抗上昇度Aは3.1×1012/m、ろ過抵抗上昇度Bは9.0×1012/m、逆洗回復性は70%であった。
この膜を用いて小型モジュールを作製し、琵琶湖水を原水とした連続ろ過実験を実施したところ、ろ過差圧上昇速度は0.16kPa/日であり、100kPa到達まで15ヶ月かかる計算となり、長期間安定運転が可能であると言える。
As a result, the initial filtration resistance was 5.2 × 10 11 / m, the filtration resistance increase A was 3.1 × 10 12 / m 2 , and the filtration resistance increase B was 9.0 × 10 12 / m 2 , backwashing. The recoverability was 70%.
A small module was made using this membrane, and a continuous filtration experiment was conducted using Lake Biwa as raw water. The rate of increase in the filtration differential pressure was 0.16 kPa / day, and it took 15 months to reach 100 kPa. It can be said that stable operation is possible.

<実施例6>
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ-ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解した。この高分子溶液をγ-ブチロラクトンを中空部形成液体として随拌させながら口金から吐出し、温度20℃のγ-ブチロラクトン80重量%水溶液からなる冷却浴中でこかして球状構造からなる中空糸膜を作製した。
<Example 6>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 38% by weight and 62% by weight, respectively. The polymer solution was discharged from the base while stirring γ-butyrolactone as a hollow part forming liquid, and crushed in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 20 ° C. to form a hollow fiber membrane having a spherical structure. Produced.

次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテートプロピオネート(イーストマンケミカル社、CAB551−0.2)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社、商品名イオネットT−20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調整した。この製膜原液を球状構造からなる中空糸膜表面に均一に塗布し、すぐに水浴中で凝固させて球状構造層の上に三次元網目構造層を形成させた中空糸膜を製作した。   Then, 14% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate propionate (Eastman Chemical Co., CAB551-0.2), and N-methyl-2-pyrrolidone 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (Sanyo Kasei Co., Ltd., trade name Ionette T-20C) 5% by weight and water 3% by mixing and dissolving at a temperature of 95 ° C. to obtain a polymer solution It was adjusted. This membrane-forming stock solution was uniformly applied to the surface of a hollow fiber membrane having a spherical structure, and immediately solidified in a water bath to produce a hollow fiber membrane having a three-dimensional network structure layer formed on the spherical structure layer.

得られたポリフッ化ビニリデン製中空糸膜は被処理水側表面の平均孔径が0.06μm、開孔率17であった。得られたポリフッ化ビニリデン製中空糸膜を用いて、前述した有効膜面積が0.004mのミニチュア膜モジュールを作成し、ミニチュア膜モジュールろ過実験を実施した。 The obtained hollow fiber membrane made of polyvinylidene fluoride had an average pore diameter of 0.06 μm and a porosity of 17 on the surface to be treated. Using the obtained hollow fiber membrane made of polyvinylidene fluoride, the above-mentioned miniature membrane module having an effective membrane area of 0.004 m 2 was prepared, and a miniature membrane module filtration experiment was performed.

その結果、初期ろ過抵抗は4.6×1011/m、ろ過抵抗上昇度Aは2.2×1012/m、ろ過抵抗上昇度Bは7.2×1011/m、逆洗回復性は84%であった。
この膜を用いて小型モジュールを作製し、琵琶湖水を原水とした連続ろ過実験を実施したところ、ろ過差圧上昇速度は0.15kPa/日であり、100kPa到達まで16ヶ月かかる計算となり、長期間安定運転が可能であると言える。
As a result, the initial filtration resistance was 4.6 × 10 11 / m, the filtration resistance increase A was 2.2 × 10 12 / m 2 , and the filtration resistance increase B was 7.2 × 10 11 / m 2 . The recoverability was 84%.
A small module was made using this membrane, and a continuous filtration experiment was conducted using Lake Biwa water as raw water. As a result, the rate of increase in the filtration differential pressure was 0.15 kPa / day, and it took 16 months to reach 100 kPa. It can be said that stable operation is possible.

<実施例7>
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ-ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解した。この高分子溶液をγ-ブチロラクトンを中空部形成液体として随拌させながら口金から吐出し、温度20℃のγ-ブチロラクトン80重量%水溶液からなる冷却浴中でこかして球状構造からなる中空糸膜を作製した。
<Example 7>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 38% by weight and 62% by weight, respectively. The polymer solution was discharged from the base while stirring γ-butyrolactone as a hollow part forming liquid, and crushed in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 20 ° C. to form a hollow fiber membrane having a spherical structure. Produced.

次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、ポリ酢酸ビニル(ナカライテスク社、75%エタノール溶液、重合度500)を1.25重量%、N-メチル-2-ピロリドンを76.75重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社、商品名イオネットT−20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調整した。この製膜原液を球状構造からなる中空糸膜表面に均一に塗布し、すぐに水浴中で凝固させて球状構造層の上に三次元網目構造層を形成させた中空糸膜を製作した。   Subsequently, 14% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1.25% by weight of polyvinyl acetate (Nacalai Tesque, 75% ethanol solution, polymerization degree 500), N-methyl-2- Pyrrolidone was mixed and dissolved at a temperature of 95 ° C. at a ratio of 76.75% by weight, polyoxyethylene coconut oil fatty acid sorbitan (Sanyo Chemical Co., Ltd., trade name Ionet T-20C) at 5% by weight and water at 3% by weight. A polymer solution was prepared. This membrane-forming stock solution was uniformly applied to the surface of a hollow fiber membrane having a spherical structure, and immediately solidified in a water bath to produce a hollow fiber membrane having a three-dimensional network structure layer formed on the spherical structure layer.

得られたポリフッ化ビニリデン製中空糸膜は被処理水側表面の平均孔径が0.04μm、開孔率8%であった。得られたポリフッ化ビニリデン製中空糸膜を用いて、前述した有効膜面積が0.004mのミニチュア膜モジュールを作成し、ミニチュア膜モジュールろ過実験を実施した。 The obtained hollow fiber membrane made of polyvinylidene fluoride had an average pore diameter of 0.04 μm on the surface to be treated and a porosity of 8%. Using the obtained hollow fiber membrane made of polyvinylidene fluoride, the above-mentioned miniature membrane module having an effective membrane area of 0.004 m 2 was prepared, and a miniature membrane module filtration experiment was performed.

その結果、初期ろ過抵抗は5.0×1011/m、ろ過抵抗上昇度Aは3.4×1012/m、ろ過抵抗上昇度Bは1.5×1012/m、逆洗回復性は63%であった。
この膜を用いて小型モジュールを作製し、琵琶湖水を原水とした連続ろ過実験を実施したところ、ろ過差圧上昇速度は0.18kPa/日であり、100kPa到達まで13ヶ月かかる計算となり、長期間安定運転が可能であると言える。
As a result, the initial filtration resistance was 5.0 × 10 11 / m, the filtration resistance increase A was 3.4 × 10 12 / m 2 , and the filtration resistance increase B was 1.5 × 10 12 / m 2 . The recoverability was 63%.
Using this membrane, a small module was fabricated and a continuous filtration experiment was conducted using Lake Biwa as raw water. The rate of increase in the filtration differential pressure was 0.18 kPa / day, and it took 13 months to reach 100 kPa. It can be said that stable operation is possible.

<比較例1>
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ-ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解した。この高分子溶液をγ-ブチロラクトンを中空部形成液体として随拌させながら口金から吐出し、温度20℃のγ-ブチロラクトン80重量%水溶液からなる冷却浴中でこかして球状構造からなる中空糸膜を作製した。
<Comparative Example 1>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 38% by weight and 62% by weight, respectively. The polymer solution was discharged from the base while stirring γ-butyrolactone as a hollow part forming liquid, and crushed in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 20 ° C. to form a hollow fiber membrane having a spherical structure. Produced.

次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを13重量%、重量平均分子量2万のポリエチレングリコールを5重量%、ジメチルホルムアミドを79重量%、水を3重量%の割合で85℃の温度で混合溶解して高分子溶液を調整した。この製膜原液を球状構造からなる中空糸膜表面に均一に塗布し、すぐに水浴中で凝固させて球状構造層の上に三次元網目構造層を形成させた中空糸膜を製作した。   Next, 13% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 5% by weight of polyethylene glycol having a weight average molecular weight of 20,000, 79% by weight of dimethylformamide, and 3% by weight of water at 85 ° C. The polymer solution was prepared by mixing and dissolving at a temperature of. This membrane-forming stock solution was uniformly applied to the surface of a hollow fiber membrane having a spherical structure, and immediately solidified in a water bath to produce a hollow fiber membrane having a three-dimensional network structure layer formed on the spherical structure layer.

得られたポリフッ化ビニリデン製中空糸膜は被処理水側表面の平均孔径が0.05μm、開孔率6%であった。得られたポリフッ化ビニリデン製中空糸膜を用いて、前述した有効膜面積が0.004mのミニチュア膜モジュールを作成し、ミニチュア膜モジュールろ過実験を実施した。 The obtained hollow fiber membrane made of polyvinylidene fluoride had an average pore diameter of 0.05 μm on the surface to be treated and a porosity of 6%. Using the obtained hollow fiber membrane made of polyvinylidene fluoride, the above-mentioned miniature membrane module having an effective membrane area of 0.004 m 2 was prepared, and a miniature membrane module filtration experiment was performed.

その結果、初期ろ過抵抗は3.0×1011/m、ろ過抵抗上昇度Aは2.6×1012/m、ろ過抵抗上昇度Bは5.8×1012/m、逆洗回復性は76%であった。
この膜を用いて小型モジュールを作製し、琵琶湖水を原水とした連続ろ過実験を実施したところ、ろ過差圧上昇速度は0.22kPa/日であり、10ヶ月で100kPaに到達した。
As a result, the initial filtration resistance was 3.0 × 10 11 / m, the filtration resistance increase A was 2.6 × 10 12 / m 2 , and the filtration resistance increase B was 5.8 × 10 12 / m 2 , backwashing. The recoverability was 76%.
When a small module was produced using this membrane and a continuous filtration experiment was conducted using Lake Biwa water as raw water, the rate of increase in the filtration differential pressure was 0.22 kPa / day, reaching 100 kPa in 10 months.

<比較例2>
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ-ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解した。この高分子溶液をγ-ブチロラクトンを中空部形成液体として随拌させながら口金から吐出し、温度20℃のγ-ブチロラクトン80重量%水溶液からなる冷却浴中でこかして球状構造からなる中空糸膜を作製した。
<Comparative example 2>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 38% by weight and 62% by weight, respectively. The polymer solution was discharged from the base while stirring γ-butyrolactone as a hollow part forming liquid, and crushed in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 20 ° C. to form a hollow fiber membrane having a spherical structure. Produced.

次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを13重量%、モノオレイン酸ポリオキシエチレンソルビタンを5重量%、ジメチルスルホキシドを82重量%の割合で100℃の温度で混合溶解して高分子溶液を調整した。この製膜原液を球状構造からなる中空糸膜表面に均一に塗布し、すぐに水浴中で凝固させて球状構造層の上に三次元網目構造層を形成させた中空糸膜を製作した。
得られたポリフッ化ビニリデン製中空糸膜は被処理水側表面の平均孔径が0.04μm、開孔率9%であった。得られたポリフッ化ビニリデン製中空糸膜を用いて、前述した有効膜面積が0.004mのミニチュア膜モジュールを作成し、ミニチュア膜モジュールろ過実験を実施した。このろ過実験により選られた総ろ過水量−ろ過抵抗のグラフを図4に示す。
Next, 13% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 5% by weight of polyoxyethylene sorbitan monooleate, and 82% by weight of dimethyl sulfoxide were mixed and dissolved at a temperature of 100 ° C. A polymer solution was prepared. This membrane-forming stock solution was uniformly applied to the surface of a hollow fiber membrane having a spherical structure, and immediately solidified in a water bath to produce a hollow fiber membrane having a three-dimensional network structure layer formed on the spherical structure layer.
The obtained hollow fiber membrane made of polyvinylidene fluoride had an average pore diameter of 0.04 μm on the surface to be treated and a porosity of 9%. Using the obtained hollow fiber membrane made of polyvinylidene fluoride, the above-mentioned miniature membrane module having an effective membrane area of 0.004 m 2 was prepared, and a miniature membrane module filtration experiment was performed. FIG. 4 shows a graph of total filtration water amount-filtration resistance selected by this filtration experiment.

その結果、初期ろ過抵抗は4.0×1011/m、ろ過抵抗上昇度Aは2.7×1012/m、ろ過抵抗上昇度Bは9.2×1012/m、逆洗回復性は81%であった。
この膜を用いて小型モジュールを作製し、琵琶湖水を原水とした連続ろ過実験を実施したところ、ろ過差圧上昇速度は0.32kPa/日であり、わずか7ヶ月で100kPaに到達した。
As a result, the initial filtration resistance was 4.0 × 10 11 / m, the filtration resistance increase A was 2.7 × 10 12 / m 2 , and the filtration resistance increase B was 9.2 × 10 12 / m 2 . The recoverability was 81%.
A small module was produced using this membrane, and a continuous filtration experiment was conducted using Lake Biwa water as raw water. As a result, the rate of increase in the differential pressure of filtration was 0.32 kPa / day, reaching 100 kPa in only 7 months.

<比較例3>
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ-ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解した。この高分子溶液をγ-ブチロラクトンを中空部形成液体として随拌させながら口金から吐出し、温度20℃のγ-ブチロラクトン80重量%水溶液からなる冷却浴中でこかして球状構造からなる中空糸膜を作製した。
<Comparative Example 3>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 38% by weight and 62% by weight, respectively. The polymer solution was discharged from the base while stirring γ-butyrolactone as a hollow part forming liquid, and crushed in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 20 ° C. to form a hollow fiber membrane having a spherical structure. Produced.

次いで、得られたポリフッ化ビニリデン製中空糸膜を用いて、前述した有効膜面積が0.004mのミニチュア膜モジュールを作成した。和光純薬フミン酸が3mg/L、塩化カルシウムが25mg/Lとなるよう和光純薬製蒸留水に溶解させたものを原水とし、ろ過圧力50kPaでろ過工程をろ過水量0.06m/mまで実施し、次いで逆洗圧力100kPaで0.025m/m逆洗する逆洗工程を実施する実験を5回連続して実施した。 Subsequently, using the obtained hollow fiber membrane made of polyvinylidene fluoride, the above-described miniature membrane module having an effective membrane area of 0.004 m 2 was prepared. What was dissolved in Wako Pure Chemical Industries distilled water so that Wako Pure Chemical Humic Acid would be 3 mg / L and Calcium Chloride 25 mg / L was used as raw water, and the filtration step was performed at a filtration pressure of 50 kPa, and the filtered water volume was 0.06 m 3 / m 2 Then, an experiment for carrying out the backwashing step of backwashing 0.025 m 3 / m 2 at a backwashing pressure of 100 kPa was carried out 5 times in succession.

得られたポリフッ化ビニリデン製中空糸膜は被処理水側表面の平均孔径が0.3μm、開孔率22%であった。得られたポリフッ化ビニリデン製中空糸膜を用いて、前述した有効膜面積が0.004mのミニチュア膜モジュールを作成し、ミニチュア膜モジュールろ過実験を実施した。 The obtained hollow fiber membrane made of polyvinylidene fluoride had an average pore diameter of 0.3 μm on the surface to be treated and a porosity of 22%. Using the obtained hollow fiber membrane made of polyvinylidene fluoride, the above-mentioned miniature membrane module having an effective membrane area of 0.004 m 2 was prepared, and a miniature membrane module filtration experiment was performed.

その結果、初期ろ過抵抗は2.0×1011/m、ろ過抵抗上昇度Aは3.2×1012/m、ろ過抵抗上昇度Bは1.5×1013/m、逆洗回復性は32%であった。
この膜を用いて小型モジュールを作製し、琵琶湖水を原水とした連続ろ過実験を実施したところ、ろ過差圧上昇速度は0.82kPa/日であり、わずか3ヶ月で100kPaに到達した。
As a result, the initial filtration resistance was 2.0 × 10 11 / m, the filtration resistance increase A was 3.2 × 10 12 / m 2 , and the filtration resistance increase B was 1.5 × 10 13 / m 2 . The recoverability was 32%.
A small module was produced using this membrane, and a continuous filtration experiment was conducted using Lake Biwa water as raw water. As a result, the rate of increase in the filtration differential pressure was 0.82 kPa / day, reaching 100 kPa in just 3 months.

Figure 2008036574
Figure 2008036574

Figure 2008036574
Figure 2008036574

本発明の膜モジュールは、地下水、河川水、湖沼水、海水、下水2次処理水などを膜ろ過する際に利用することができる。
The membrane module of the present invention can be used for membrane filtration of groundwater, river water, lake water, seawater, sewage secondary treated water, and the like.

ろ過実験による総ろ過水量−ろ過抵抗のグラフの一例を示す。An example of the graph of the total amount of filtrate water-filtration resistance by a filtration experiment is shown. ろ過実験に用いたミニチュア膜モジュールの概略を示す斜視図である。It is a perspective view which shows the outline of the miniature membrane module used for filtration experiment. 実施例1で用いた分離膜についてろ過実験した総ろ過水量−ろ過抵抗のグラフである。It is a graph of the total filtration water amount-filtration resistance which carried out filtration experiment about the separation membrane used in Example 1. FIG. 比較例3で用いた分離膜についてろ過実験した総ろ過水量−ろ過抵抗のグラフである。It is a graph of the total filtration water amount-filtration resistance which carried out filtration experiment about the separation membrane used by the comparative example 3. FIG.

Claims (7)

ポリフッ化ビニリデン系樹脂からなる分離膜をろ過膜として用いてなる水処理用膜モジュールにおいて、分離膜が、ろ過抵抗上昇度Aが2×1012/m以上、逆洗回復性が50%以上、ろ過抵抗上昇度Bが2×1012/m以下、かつ、初期ろ過抵抗が1×1012/m以下の特性を有する膜であることを特徴とする膜モジュール。 In a membrane module for water treatment using a separation membrane made of a polyvinylidene fluoride resin as a filtration membrane, the separation membrane has a filtration resistance increase A of 2 × 10 12 / m 2 or more, and a backwash recovery property of 50% or more. A membrane module characterized in that the membrane has a characteristic that the filtration resistance increase degree B is 2 × 10 12 / m 2 or less and the initial filtration resistance is 1 × 10 12 / m or less. 請求項1記載の膜モジュールにおいて、使用される分離膜の孔径が0.1μm以下である膜モジュール。 The membrane module according to claim 1, wherein the separation membrane used has a pore diameter of 0.1 µm or less. 請求項1又は2記載の膜モジュールにおいて、使用される分離膜の開孔率が20%未満である膜モジュール。 The membrane module according to claim 1 or 2, wherein the separation membrane used has a porosity of less than 20%. 請求項3に記載の膜モジュールを具備する膜ろ過装置を用い、物理洗浄を定期的に行いながら水処理を行ない透過水を製造する水処理方法。 A water treatment method for producing permeated water by using a membrane filtration apparatus comprising the membrane module according to claim 3 to perform water treatment while periodically performing physical cleaning. 請求項4に記載の水処理方法において、物理洗浄が逆流洗浄である水処理方法。 The water treatment method according to claim 4, wherein the physical cleaning is backflow cleaning. 請求項4に記載の水処理方法において、物理洗浄を行う間隔が10分毎以上60分毎以下である水処理方法。 5. The water treatment method according to claim 4, wherein the physical cleaning interval is 10 minutes or more and 60 minutes or less. 請求項5に記載の水処理方法において、使用される分離膜が中空糸膜である水処理方法。
The water treatment method according to claim 5, wherein the separation membrane used is a hollow fiber membrane.
JP2006216910A 2006-08-09 2006-08-09 Membrane module and water-treating method Pending JP2008036574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006216910A JP2008036574A (en) 2006-08-09 2006-08-09 Membrane module and water-treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216910A JP2008036574A (en) 2006-08-09 2006-08-09 Membrane module and water-treating method

Publications (2)

Publication Number Publication Date
JP2008036574A true JP2008036574A (en) 2008-02-21
JP2008036574A5 JP2008036574A5 (en) 2009-11-26

Family

ID=39172193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216910A Pending JP2008036574A (en) 2006-08-09 2006-08-09 Membrane module and water-treating method

Country Status (1)

Country Link
JP (1) JP2008036574A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278425A (en) * 1987-06-26 1990-03-19 Rhone Poulenc Rech Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride
JPH04310223A (en) * 1991-04-08 1992-11-02 Asahi Chem Ind Co Ltd Polyfluorovinylidene resin membrane and method for production thereof
WO2003106545A1 (en) * 2002-06-14 2003-12-24 東レ株式会社 Porous membrane and method of manufacturing the porous membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278425A (en) * 1987-06-26 1990-03-19 Rhone Poulenc Rech Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride
JPH04310223A (en) * 1991-04-08 1992-11-02 Asahi Chem Ind Co Ltd Polyfluorovinylidene resin membrane and method for production thereof
WO2003106545A1 (en) * 2002-06-14 2003-12-24 東レ株式会社 Porous membrane and method of manufacturing the porous membrane

Similar Documents

Publication Publication Date Title
EP2008706B1 (en) Highly durable porous pvdf film, method of producing the same and washing method and filtration method using the same
AU2006345112B2 (en) Polymer separation membrane and process for producing the same
JP5066810B2 (en) Polymer separation membrane and production method thereof
JP4626319B2 (en) Porous membrane, method for producing the same, and solid-liquid separator
AU2006346599B8 (en) Fluororesin polymer separation membrane and process for producing the same
JPWO2003031038A1 (en) Hollow fiber membrane and method for producing the same
JP2010094670A (en) Polyvinylidene fluoride-based multiple membrane and method for producing the same
JP5050499B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
JP2006231274A (en) Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method
JP5109263B2 (en) Fluororesin polymer separation membrane and method for producing the same
JP2008036559A (en) Method of oxidization processing fluororesin-based polymer separation membrane
JP4572531B2 (en) Membrane stock solution for separation membrane and separation membrane
WO1998058728A1 (en) Polyacrylonitrile-base hollow-fiber filtration membrane
JP2008036574A (en) Membrane module and water-treating method
JP2006224051A (en) Porous membrane, porous membrane element, and membrane filter apparatus
WO2024071005A1 (en) Porous membrane and desalination method
JPWO2019049857A1 (en) Filtration method using porous membrane
JP2023096360A (en) Water treatment method and water treatment apparatus
JP2007283288A (en) Porous membrane and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090807

A521 Written amendment

Effective date: 20091013

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20110204

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025