JP2006231274A - Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method - Google Patents

Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method Download PDF

Info

Publication number
JP2006231274A
JP2006231274A JP2005053036A JP2005053036A JP2006231274A JP 2006231274 A JP2006231274 A JP 2006231274A JP 2005053036 A JP2005053036 A JP 2005053036A JP 2005053036 A JP2005053036 A JP 2005053036A JP 2006231274 A JP2006231274 A JP 2006231274A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
water
membrane
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005053036A
Other languages
Japanese (ja)
Other versions
JP2006231274A5 (en
Inventor
Eri Shimokoshi
衣理 霜越
Shinichi Minegishi
進一 峯岸
Masayuki Hanakawa
正行 花川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005053036A priority Critical patent/JP2006231274A/en
Publication of JP2006231274A publication Critical patent/JP2006231274A/en
Publication of JP2006231274A5 publication Critical patent/JP2006231274A5/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow fiber membrane for treating water having a high stain resistance which uses a poly (vinylidene fluoride) based resin with excellent chemical endurance life and physical strength. <P>SOLUTION: In the hollow fiber membrane comprising the poly(vinylidene fluoride) based resin, the average diameter of the pore in the surface of water to be treated side of the hollow fiber membrane is 0.01-0.1 μm, the pore density in the surface of the water to be treated side is 1×10<SP>13</SP>-1×10<SP>5</SP>pieces/m<SP>2</SP>and the opening ratio in the surface of the water to be treated side is 3-30%. The hollow fiber membrane consists of the poly(vinylidene fluoride) based resin is disclosed in which the average diameter of the pore in the surface of water to be treated side of the hollow fiber membrane is 0.01-0.1 μm, the pore density in the surface of the water to be treated side is 1×10<SP>13</SP>-1×10<SP>5</SP>pieces/m<SP>2</SP>and the opening ration in the surface of the water to be treated side is 3-30%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

浄水処理、工業用水製造、排水処理、逆浸透膜前処理などの水処理に用いられる中空糸精密ろ過膜、中空糸限外ろ過膜、およびそれを用いた中空糸膜モジュール、膜ろ過装置、透過水の製造方法に関する。   Hollow fiber microfiltration membranes, hollow fiber ultrafiltration membranes used in water treatment such as water purification, industrial water production, wastewater treatment, reverse osmosis membrane pretreatment, and hollow fiber membrane modules, membrane filtration devices, permeation using the same The present invention relates to a method for producing water.

精密ろ過膜や限外ろ過膜などの分離膜は食品工業や医療分野、用水製造、排水処理分野等の様々な方面で利用されている。特に近年では、飲料水製造分野すなわち浄水処理過程において分離膜が使われることが多くなってきている。   Separation membranes such as microfiltration membranes and ultrafiltration membranes are used in various fields such as the food industry, medical field, water production, and wastewater treatment field. Particularly in recent years, separation membranes are increasingly used in the field of drinking water production, that is, in the process of water purification.

特に飲料水製造分野で使われる分離膜では、透過水の殺菌や膜のファウリング低減の目的で次亜塩素酸ナトリウムなどの酸化剤を被処理水や逆洗水に添加したり、膜の薬液洗浄として、塩酸、クエン酸、シュウ酸などの酸や水酸化ナトリウム水溶液などのアルカリ、塩素、界面活性剤などで膜を洗浄することが必須であり、これらの薬品に対する高い化学的耐久性が求められている。また、20世紀終盤からクリプトスポリジウムなどの耐塩素性病原性微生物が飲料水に混入する問題が顕在化してきており、膜が破損して被処理水が透過水に混入することがないように、高い物理的強度と物理的耐久性も求められている。このような背景から近年では高い化学的耐久性と高い物理的強度および物理的耐久性を有する素材としてポリフッ化ビニリデン系樹脂を用いた分離膜が注目され、今後適用が拡大する傾向にある。   Especially for separation membranes used in the field of drinking water production, oxidizing agents such as sodium hypochlorite are added to treated water and backwash water for the purpose of sterilizing permeated water and reducing membrane fouling. It is essential to clean the membrane with acids such as hydrochloric acid, citric acid and oxalic acid, alkalis such as aqueous sodium hydroxide, chlorine, surfactants, etc., and high chemical durability against these chemicals is required. It has been. In addition, since the end of the 20th century, the problem that chlorine-resistant pathogenic microorganisms such as Cryptosporidium are mixed in drinking water has become obvious, so that the water to be treated is not mixed into the permeated water because the membrane is damaged. High physical strength and physical durability are also required. Against this background, in recent years, a separation membrane using a polyvinylidene fluoride resin as a material having high chemical durability, high physical strength, and physical durability has attracted attention, and its application tends to expand in the future.

浄水処理などの水処理用途で用いられる場合、処理しなければならない水量が大きいため、単位体積あたりの有効膜面積が大きい中空糸膜が一般に多く採用されている。さらに中空糸膜の透水性能が優れていれば、必要膜面積が小さくなり、装置がコンパクトになるため設備費が節約でき、膜交換費やプラントの設置敷地面積の点からも有利になってくる。   When used in water treatment applications such as water purification, a hollow fiber membrane having a large effective membrane area per unit volume is generally employed because of the large amount of water that must be treated. Furthermore, if the water permeability of the hollow fiber membrane is excellent, the required membrane area will be reduced and the equipment will be compact, so that the equipment cost can be saved, and it will be advantageous in terms of membrane replacement costs and plant installation site area. .

しかしながら、透水性能は被処理水中に含まれる様々な成分によって膜が汚れることにより、ろ過運転の継続と共に低下していく。特にポリフッ化ビニリデン系樹脂を用いた分離膜は、ポリフッ化ビニリデン系樹脂が化学的耐久性や物理的強度特性に優れるものの、疎水性の素材であることから汚れやすいため、これまでもポリフッ化ビニリデン系樹脂製中空糸膜の耐汚れ性に対する工夫が施されてきている。   However, the water permeation performance decreases with the continuation of the filtration operation due to contamination of the membrane by various components contained in the water to be treated. In particular, separation membranes using polyvinylidene fluoride resins have excellent chemical durability and physical strength characteristics, but they are hydrophobic and are easily soiled. A device for the stain resistance of a hollow fiber membrane made of a plastic resin has been applied.

膜の汚れ、すなわち“ファウリング”の問題は、極めて複雑な現象であり、水処理分野の分離膜の共通的な課題で、多くの研究者、技術者がファウリングのメカニズム解明やファウリング制御、低ファウリング膜の研究開発にしのぎを削っているが、未だ普遍化、体系化された理論を確立できる段階からはほど遠い状況にある。   The problem of membrane fouling, or “fouling”, is an extremely complex phenomenon, and is a common issue for separation membranes in the field of water treatment. Many researchers and engineers have clarified fouling mechanisms and controlled fouling. However, it is far from being able to establish a generalized and systematic theory, although it is struggling to research and develop low-fouling films.

本発明者らは、これまで自然水中の成分と中空糸膜のファウリングとの関係について鋭意研究を行ってきており、様々な自然水中成分の中で高分子量のフミン質が膜ファウリングの主要な原因物質の1つであることを非特許文献1において明らかにしている。フミン質とは、「植物の残骸や微生物の遺体が微生物による分解を受け、その分解産物から化学的、生物的に合成された高分子有機酸の総称」であり、非特許文献2によれば、フミン質の分子サイズは、高分子フミン質、中分子フミン質、低分子フミン質の3つに大別できる。また、Stokes-Einsteinの式による高分子フミン質の分子径はおおよそ0.1μmより大きく0.45μmより小さいことも述べられている。すなわち分子径0.1μmから0.45μmの高分子フミン質を膜に付着させにくくすることが、自然水を被処理水とする膜ろ過において、中空糸膜のファウリングを低減するための極めて効果的な手段であると言える。   The present inventors have conducted intensive research on the relationship between components in natural water and fouling of hollow fiber membranes. Among various natural water components, high molecular weight humic substances are the main components of membrane fouling. Non-Patent Document 1 clarifies that it is one of the causative substances. The humic substance is “a general term for macromolecular organic acids that are chemically and biologically synthesized from the degradation products of plant remnants and microorganisms and decomposed by microorganisms,” according to Non-Patent Document 2. The molecular size of humic substances can be roughly classified into three types: high molecular humic substances, medium molecular humic substances, and low molecular humic substances. It is also stated that the molecular diameter of the polymer humic substance according to the Stokes-Einstein equation is approximately larger than 0.1 μm and smaller than 0.45 μm. That is, it is extremely effective to reduce fouling of the hollow fiber membrane in membrane filtration using natural water as treated water, making it difficult to attach a high molecular humic substance having a molecular diameter of 0.1 to 0.45 μm to the membrane. It can be said that it is an effective means.

また、ポリフッ化ビニリデン系樹脂製分離膜において膜ファウリングの低減に主眼をおいた発明も開示されている。例えば特許文献1では、ポリフッ化ビニリデン樹脂製の中空糸膜の内外表面及び該微細孔表面をエチレン−ビニルアルコール共重合体で被覆した中空糸膜により耐汚れ性を改善する技術が開示されている。特許文献1では、平均孔径が小さいほど透水抵抗は大きくなり、膜の透水性能が低下して好ましくないこと、大きくなると濁質物質等の阻止性能が下がるため好ましくないことは述べられているものの、孔径とファウリングの関係については一切議論されていない。加えて、特許文献1において実験的に明らかにされている中空糸膜の平均孔径は最小のものでも0.19μmであり、それ未満の平均孔径の中空糸膜の性能については実験的に明らかにされておらず、詳細な検討がなされていないのが現状である。   Also disclosed is an invention that focuses on reducing membrane fouling in a polyvinylidene fluoride resin separation membrane. For example, Patent Document 1 discloses a technique for improving stain resistance by a hollow fiber membrane in which the inner and outer surfaces of a hollow fiber membrane made of polyvinylidene fluoride resin and the surface of the micropores are coated with an ethylene-vinyl alcohol copolymer. . In Patent Document 1, it is stated that the smaller the average pore size, the greater the water permeability resistance, which is not preferable because the water permeability performance of the membrane is lowered, and it is not preferable because the performance to prevent turbid substances and the like is reduced when it is larger, The relationship between the hole diameter and fouling is not discussed at all. In addition, the average pore diameter of the hollow fiber membrane that is experimentally clarified in Patent Document 1 is 0.19 μm even at the minimum, and the performance of the hollow fiber membrane having an average pore diameter smaller than that is experimentally clarified. The current situation is that no detailed examination has been made.

また、一般に膜を親水化すれば耐汚れ性が向上することが定性的に言われており、様々な親水化手段が開示されている。例えば特許文献2において、ポリフッ化ビニリデン系樹脂のアルカリ水溶液による親水化処理によって膜表面を改質する方法などが開示されているが、膜の汚れ性の議論はなされておらず、特に孔径との関係などは全く記載されてない。   Further, it is qualitatively said that the stain resistance is improved if the membrane is made hydrophilic, and various hydrophilization means are disclosed. For example, Patent Document 2 discloses a method for modifying a membrane surface by hydrophilization treatment of an aqueous polyvinylidene fluoride resin with an alkaline solution, but there is no discussion about the soiling property of the membrane, and particularly with respect to the pore size. The relationship is not described at all.

特許文献3では、表面層に所定の平均孔径を有するポリフッ化ビニリデン製中空糸膜が開示されているが、特許文献3において実験的に明らかにされている中空糸膜の平均孔径は最小のものでも0.26μmであり、それ未満の平均孔径の中空糸膜の性能については実験的に明らかにされておらず、詳細な検討がなされていないのが現状であり、さらに膜ファウリングと平均孔径との関係も全く言及されていない。   In Patent Document 3, a hollow fiber membrane made of polyvinylidene fluoride having a predetermined average pore diameter in the surface layer is disclosed, but the average pore diameter of the hollow fiber membrane experimentally clarified in Patent Document 3 is the smallest. However, the performance of the hollow fiber membrane having an average pore diameter of less than 0.26 μm has not been experimentally clarified, and no detailed study has been made. Further, membrane fouling and average pore diameter The relationship with is not mentioned at all.

特許文献4に最大孔径が0.037μm以上0.040μm以下の緻密構造層を有するポリフッ化ビニリデン製中空糸膜が開示されているが、ウイルスを確実に除去することを目的とした医療用途の中空糸膜であり、被処理水側表面は孔径が0.29μm以上0.44μm以下の粗大構造層であるため、高分子フミン質が閉塞してファウリングが加速すると考えられる。   Patent Document 4 discloses a hollow fiber membrane made of polyvinylidene fluoride having a dense structure layer having a maximum pore size of 0.037 μm or more and 0.040 μm or less. However, it is a hollow for medical use intended to surely remove viruses. Since it is a thread membrane and the surface of the water to be treated is a coarse structure layer having a pore diameter of 0.29 μm or more and 0.44 μm or less, it is considered that the polymer humic substance is blocked and fouling is accelerated.

上述のように膜の主要原因物質である高分子フミン質によるファウリング低減を狙った被処理水側表面の平均孔径が0.1μm以下のポリフッ化ビニリデン樹脂製中空糸膜はこれまで知られていなかった。
浄水処理における中空糸UF膜のファウリング物質の把握、水道協会雑誌、Vol.71、No.5、pp.2-13 (2002). 河川水のUF膜ろ過における膜ファウリング発現機構、水道協会雑誌、Vol.69、No.2、pp.12-23 (2000). 特開2002−233739号公報 特開昭58−93734号公報 特許第2899903号公報 国際公開WO03/026779号パンフレット
As described above, hollow fiber membranes made of polyvinylidene fluoride resin having an average pore diameter of 0.1 μm or less on the surface of the water to be treated aimed at reducing fouling due to polymer humic substances that are the main causative substances of the membrane have been known so far. There wasn't.
Understanding the fouling substance of hollow fiber UF membrane in water purification treatment, Journal of Water Supply Association, Vol.71, No.5, pp.2-13 (2002). Mechanism of membrane fouling in river water UF membrane filtration, Journal of Water Supply Association, Vol.69, No.2, pp.12-23 (2000). Japanese Patent Application Laid-Open No. 2002-233739 JP 58-93734 A Japanese Patent No. 2899903 International Publication WO03 / 026679 Pamphlet

本発明の課題は、自然水のろ過を目的としたポリフッ化ビニリデン系樹脂製中空糸膜において、自然水中成分のうち、特に高分子フミン質の目詰まりによる透水性能の低下が小さく、薬液洗浄頻度が少なく、長寿命の中空糸膜を得ることである。   The subject of the present invention is a hollow fiber membrane made of polyvinylidene fluoride resin for the purpose of filtration of natural water. Is to obtain a long-life hollow fiber membrane.

発明者らは上記課題を解決するために鋭意検討した結果、自然水中成分の汚れによる透水性能の低下が小さい高性能ポリフッ化ビニリデン系樹脂製中空糸膜を発明するに至った。すなわち本発明は、
(1)ポリフッ化ビニリデン系樹脂からなる中空糸膜において、前記中空糸膜の被処理水側表面における細孔の平均孔径が0.01μm以上0.1μm以下であり、前記被処理水側表面における細孔密度が1×1013個/m以上1×1015個/m以下であり、かつ、前記被処理水側表面における開孔率が3%以上30%以下であることを特徴とする中空糸膜。
As a result of intensive studies to solve the above problems, the inventors have invented a hollow fiber membrane made of a high-performance polyvinylidene fluoride resin in which the decrease in water permeability due to contamination of natural water components is small. That is, the present invention
(1) In the hollow fiber membrane made of polyvinylidene fluoride resin, the average pore diameter of the pores on the treated water side surface of the hollow fiber membrane is 0.01 μm or more and 0.1 μm or less, and on the treated water side surface The pore density is 1 × 10 13 / m 2 or more and 1 × 10 15 / m 2 or less, and the porosity on the surface to be treated is 3% or more and 30% or less. Hollow fiber membrane.

(2)100kPa,25℃における純水透過性能が0.4m/m・hr以上8m/m・hr以下、破断強力が3N/本以上30kg/本以下であり、かつ、破断伸度が30%以上300%以下である前記中空糸膜。 (2) Pure water permeation performance at 100 kPa and 25 ° C. is 0.4 m 3 / m 2 · hr or more and 8 m 3 / m 2 · hr or less, breaking strength is 3 N / piece or more and 30 kg / piece or less, and elongation at break The hollow fiber membrane having a degree of 30% to 300%.

(3)被処理水側表面が中空糸膜の外側表面である前記中空糸膜。   (3) The said hollow fiber membrane whose to-be-processed water side surface is an outer surface of a hollow fiber membrane.

(4)中空糸膜を用いてなる中空糸膜モジュール。   (4) A hollow fiber membrane module using a hollow fiber membrane.

(5)前記中空糸膜モジュールを有してなる膜ろ過装置。   (5) A membrane filtration device comprising the hollow fiber membrane module.

(6)前記膜ろ過装置を用いて被処理水から透過水を得る水処理方法。
からなるものである。
(6) A water treatment method for obtaining permeate from treated water using the membrane filtration device.
It consists of

化学的耐久性と物理的強度に優れ、自然水中成分の汚れによる透水性能の低下が少なく高い耐汚れ性を有する高性能ポリフッ化ビニリデン系樹脂製中空糸膜が得られ、この膜を用いることにより、造水コストの低減が実現される膜ろ過装置の提供が可能になる。   A hollow fiber membrane made of a high-performance polyvinylidene fluoride resin that has excellent chemical durability and physical strength, has little deterioration in water permeability due to contamination of natural water components, and has high stain resistance. In addition, it is possible to provide a membrane filtration device that can reduce the water production cost.

本発明の中空糸膜は、被処理水側表面における細孔の平均孔径が0.01μm以上0.1μm以下、好ましくは0.01μm以上0.08μm、さらに好ましくは0.02μm以上0.05μm以下であり、かつ、被処理水側表面における細孔密度が1×1013個/m以上1×1015個/m以下、好ましくは2×1013個/m以上8×1014個/m以下、さらに好ましくは3×1013個/m以上6×1014個/m以下であり、かつ、被処理水側表面における開孔率が3%以上30%以下、好ましくは4%以上28%以下、さらに好ましくは5%以上25%以下である細孔を有する。かかる細孔を有する本発明の中空糸膜の一例を図1に示す。図1は走査型電子顕微鏡で撮影した中空糸膜の表面写真であり、黒色部分1が本発明の中空糸膜の被処理水側表面に存在する細孔である。 The hollow fiber membrane of the present invention has an average pore diameter of 0.01 μm or more and 0.1 μm or less, preferably 0.01 μm or more and 0.08 μm, more preferably 0.02 μm or more and 0.05 μm or less on the surface to be treated. And the pore density on the surface to be treated is 1 × 10 13 / m 2 or more and 1 × 10 15 / m 2 or less, preferably 2 × 10 13 / m 2 or more and 8 × 10 14 / M 2 or less, more preferably 3 × 10 13 pieces / m 2 or more and 6 × 10 14 pieces / m 2 or less, and the porosity on the treated water side surface is 3% or more and 30% or less, preferably The pores are 4% or more and 28% or less, more preferably 5% or more and 25% or less. An example of the hollow fiber membrane of the present invention having such pores is shown in FIG. FIG. 1 is a surface photograph of a hollow fiber membrane taken with a scanning electron microscope. Black portions 1 are pores present on the surface to be treated of the hollow fiber membrane of the present invention.

本発明で規定する被処理水とは、中空糸膜ろ過において膜に供給される原水のことであり、例えば浄水処理分野では主に河川水、湖沼水、地下水などの自然水が被処理水となる。被処理水は下水の2次処理水、海水などでも構わない。   The treated water defined in the present invention is raw water supplied to the membrane in hollow fiber membrane filtration.For example, in the water purification treatment field, natural water such as river water, lake water, and groundwater is mainly treated water. Become. The treated water may be sewage secondary treated water or seawater.

本発明で規定する表面とは、外側表層の表面の場合には中空糸膜の表層を真上から見たときの面を、内側表層の表面の場合には中空糸膜を切断して表出した中空糸膜の内部を真上から見たときの面を指し、中空糸膜の厚み方向に同様の構造が連続していなくてもよく、また、前記被処理水側表面における細孔の平均孔径、細孔密度、開孔率とは、かかる表面を走査型電子顕微鏡等で観測して把握される細孔(例えば、図1の1の部分)について測定すれば良い。本発明で規定する被処理水側表面とは、自然水などの膜供給水が最初に中空糸膜に触れる表面のことである。一般的に中空糸膜には、上述の通り外側表面と内側表面の2つがあり、本発明においてはいずれの表面も被処理水側表面として構成しうるが、一般に自然水などの濁質を多く含む水をろ過する場合には、中空糸膜の外表面側から内表面側に向かって原水を通水するいわゆる外圧式の方が、物理洗浄によって剥離した汚れを膜モジュール系外に排出しやすいため、被処理水側表面としては中空糸膜の外側表面とすることがより好ましい。   In the case of the outer surface, the surface defined by the present invention is the surface when the surface of the hollow fiber membrane is viewed from directly above, and in the case of the surface of the inner surface, the hollow fiber membrane is cut and exposed. The surface when the inside of the hollow fiber membrane is viewed from directly above, the same structure may not be continuous in the thickness direction of the hollow fiber membrane, and the average pores on the treated water side surface The pore diameter, the pore density, and the aperture ratio may be measured with respect to pores (for example, a portion 1 in FIG. 1) grasped by observing the surface with a scanning electron microscope or the like. The surface to be treated as defined in the present invention is a surface where membrane supply water such as natural water first comes into contact with the hollow fiber membrane. Generally, as described above, a hollow fiber membrane has two surfaces, an outer surface and an inner surface. In the present invention, either surface can be configured as a surface to be treated, but generally has a large amount of turbidity such as natural water. In the case of filtering the contained water, the so-called external pressure type, in which raw water is passed from the outer surface side to the inner surface side of the hollow fiber membrane, easily discharges the dirt peeled off by physical cleaning to the outside of the membrane module system. Therefore, the surface to be treated is more preferably the outer surface of the hollow fiber membrane.

本発明で規定する被処理側表面における細孔の平均孔径とは、被処理水側表面を走査型電子顕微鏡を用いて1万倍以上の倍率で写真撮影し、10個以上、好ましくは20個以上の任意の細孔の直径を測定して、数平均して求めた値を言う。なお、被処理側表面の細孔が円状でない場合、画像処理装置等によって、細孔が有する面積と等しい面積を有する円(等価円)を求め、等価円直径を細孔の直径とする方法により求めることができる。   The average pore diameter of the pores on the surface to be treated as defined in the present invention means that the surface of the water to be treated is photographed at a magnification of 10,000 times or more using a scanning electron microscope, 10 or more, preferably 20 It is the value obtained by measuring the diameter of the above-mentioned arbitrary pores and calculating the number average. When the pores on the surface to be processed are not circular, a method of obtaining a circle (equivalent circle) having an area equal to the area of the pores with an image processing apparatus or the like and setting the equivalent circle diameter as the diameter of the pores It can ask for.

本発明者らは、3種類のミリポア製デュラポアメンブレンフィルター、VVLP(親水性ポリフッ化ビニリデン樹脂製平膜、孔径0.1μm)、GVWP(親水性ポリフッ化ビニリデン樹脂製平膜、孔径0.22μm)、VVHP(疎水性ポリフッ化ビニリデン樹脂製平膜、孔径0.1μm)を用いて膜の汚れ性と親水性/疎水性および平均孔径との関係について、湖水をヘッド差1.8mの定圧でろ過する実験によって検討した。物理洗浄を行わずに前記3種の平膜を用いた平膜セルからの透過水をビーカーに受け、透過水量の経時変化からろ過抵抗推移を算出し、VVLP<VVHP<GVWPの順にろ過抵抗の上昇が大きいことを明らかにした。すなわち、親水性の膜でも平均孔径が0.22μmの場合、平均孔径が0.1μmの疎水性膜よりも汚れやすいという従来の知見とは異なる現象が起こることを見出したのである。つまり、本発明者らは、上述したように、高分子フミン質の分子径が0.1μmから0.45μmであり、かつ、高分子フミン質が膜ファウリング主要原因物質であると考えられることから、たとえ親水性の膜であっても、膜表面における細孔の平均孔径が高分子フミン質と同程度の場合、高分子フミン質が膜の表面の細孔で完全閉塞してファウリングしやすくなることを明らかにし、高分子フミン質よりも小さい平均孔径0.1μm以下の表面を有する膜とすることで、極めてファウリングが起こりにくくなることを明らかにしたのである。ただし、実用的な透水性能を保持させるためには平均孔径が0.01μm以上であることが必要である。   The present inventors have prepared three types of Millipore Durapore membrane filters, VVLP (hydrophilic polyvinylidene fluoride resin flat membrane, pore size 0.1 μm), GVWP (hydrophilic polyvinylidene fluoride resin flat membrane, pore size 0.22 μm). ), VVHP (hydrophobic polyvinylidene fluoride resin flat membrane, pore size 0.1 μm), the relationship between the soiling property of the membrane and the hydrophilic / hydrophobic properties and the average pore size, the lake water at a constant pressure with a head difference of 1.8 m The experiment was conducted by filtering. The permeated water from the flat membrane cell using the above three kinds of flat membranes was received in a beaker without performing physical cleaning, and the filtration resistance transition was calculated from the change in the amount of permeated water over time, and the filtration resistance in the order of VVLP <VVHP <GVWP. Clarified that the rise is large. That is, it has been found that a phenomenon different from the conventional knowledge that a hydrophilic membrane has a mean pore diameter of 0.22 μm and is more easily soiled than a hydrophobic membrane having an average pore diameter of 0.1 μm occurs. That is, as described above, the present inventors believe that the molecular diameter of the polymer humic substance is 0.1 μm to 0.45 μm, and that the polymer humic substance is a main cause of membrane fouling. Therefore, even if the membrane is hydrophilic, if the average pore size of the pores on the membrane surface is the same as that of the polymer humic substance, the polymer humic substance is completely clogged by the pores on the membrane surface and fouling occurs. It was clarified that the fouling hardly occurs by making the film having a surface having an average pore diameter of 0.1 μm or less smaller than that of the polymer humic substance. However, in order to maintain practical water permeability, the average pore diameter needs to be 0.01 μm or more.

上述してきたように、被処理水側表面における細孔の平均孔径を小さくすることで耐ファウリング性が向上し、被処理水のろ過の継続による透水性能の低下が低減できることを見出したが、一方で、単に平均孔径を小さくしただけでは、純水の透水性能が小さくなり、ろ過差圧が高くなってしまって、自然水をろ過したときに長時間の安定運転ができない。   As described above, the fouling resistance is improved by reducing the average pore diameter of the pores on the surface of the water to be treated, and it has been found that the decrease in water permeability performance due to the continued filtration of the water to be treated can be reduced. On the other hand, simply reducing the average pore size decreases the water permeation performance of pure water, increases the filtration differential pressure, and cannot perform stable operation for a long time when natural water is filtered.

そこで本発明者らは、膜全体の透水性能向上などの検討を行った結果、細孔の数すなわち被処理水側表面における細孔密度が1×1013個/m以上であり、かつ被処理水側表面における開孔率が3%以上でないと自然水の連続安定ろ過はできないことを見出すに至った。すなわち、小さな細孔を沢山開けることで、高分子フミン質などの汚れ物質が膜表面に堆積することによって一時的に塞がる細孔の割合を少なく抑えることができ、30分から2時間程度毎に行う物理洗浄間でのろ過抵抗の急上昇が起こらず、安定なろ過運転を継続できることを明らかにしたのである。なお、細孔密度や開孔率を高める製膜技術については後述するとおりである。ただし、被処理水側表面における細孔密度、開孔率が高すぎると膜表面の物理的強度および物理的耐久性の維持に支障をきたす可能性が高く、かかる観点から、前記被処理水側表面における細孔密度は1×1015個/m以下、開孔率30%以下であることが必要とされる。 Therefore, as a result of investigations such as improvement of the water permeability of the entire membrane, the present inventors have found that the number of pores, that is, the pore density on the surface to be treated is 1 × 10 13 / m 2 or more, and It has been found that continuous stable filtration of natural water cannot be performed unless the open area ratio on the treated water side surface is 3% or more. That is, by opening a large number of small pores, it is possible to reduce the proportion of pores that are temporarily clogged by depositing contaminants such as polymer humic substances on the film surface, and every 30 to 2 hours. It has been clarified that the filtration resistance between physical washings does not increase rapidly and that stable filtration operation can be continued. The film forming technique for increasing the pore density and the open area ratio is as described later. However, if the pore density on the surface of the water to be treated and the open area ratio are too high, there is a high possibility of hindering the maintenance of the physical strength and physical durability of the membrane surface. The density of pores on the surface is required to be 1 × 10 15 holes / m 2 or less and the porosity is 30% or less.

ここで、本発明で規定する被処理水側表面における細孔密度とは、中空糸膜の被処理水側の表面を細孔が明瞭に確認できる倍率で走査型電子顕微鏡等を用いて写真を撮り、その写真の中の細孔を数えて、1m当たりの細孔数に換算したものを細孔密度と定義する。複数の領域など、出来るだけ広域について数えて平均することが好ましい。例えば、本発明の実施例においては走査型電子顕微鏡写真3μm四方あたりの細孔数を数えて算出した。写真を画像処理装置で解析することも採用できる。また、本発明で規定する被処理水側表面における開孔率とは、平均孔径と細孔密度から次式により計算で求める。 Here, the pore density on the treated water side surface defined in the present invention is a photograph using a scanning electron microscope or the like at a magnification at which pores can be clearly confirmed on the treated water side surface of the hollow fiber membrane. The number of pores in the photograph is counted and converted to the number of pores per 1 m 2 is defined as the pore density. It is preferable to count and average over a wide area such as a plurality of areas. For example, in the examples of the present invention, the number of pores per 3 μm square of a scanning electron micrograph was counted and calculated. It is also possible to analyze a photograph with an image processing apparatus. Further, the open area ratio on the surface to be treated defined in the present invention is obtained by calculation from the following formula from the average pore diameter and the pore density.

開孔率(%)=π×(平均孔径/2)×(細孔密度)×100。 Opening ratio (%) = π × (average pore diameter / 2) 2 × (pore density) × 100.

本発明におけるポリフッ化ビニリデン系樹脂とは、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂のことである。複数の種類のフッ化ビニリデン共重合体を含有しても構わない。フッ化ビニリデン共重合体は、フッ化ビニリデン残基構造を有するポリマーであり、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマー等との共重合体である。共重合体としては、例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。本発明の効果を損なわない範囲で、前記フッ素系モノマー以外の例えばエチレン等のモノマーが共重合されていても良い。また、耐汚れ性を高める目的で、ポリフッ化ビニリデン系樹脂の化学的耐久性および物理的強度を損ねない範囲において、セルロースエステル、脂肪酸ビニルエステル、ビニルピロリドン、エチレンオキサイド、アクリロニトリル、ビニルアルコールなどから選ばれる少なくとも1種を有する親水性高分子を含有しても構わない。またポリフッ化ビニリデン系樹脂の重量平均分子量は、要求される中空糸膜の強度と透水性能によって適宜選択すれば良いが10万〜80万の範囲が好ましい。中空糸膜への加工性を考慮した場合は20万〜60万の範囲がより好ましく、25万〜50万の範囲がさらに好ましい。   The polyvinylidene fluoride resin in the present invention is a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer. A plurality of types of vinylidene fluoride copolymers may be contained. The vinylidene fluoride copolymer is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and other fluorine-based monomers. Examples of the copolymer include a copolymer of vinylidene fluoride and at least one selected from vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, and trifluoroethylene chloride. As long as the effects of the present invention are not impaired, a monomer such as ethylene other than the fluorine-based monomer may be copolymerized. In addition, for the purpose of enhancing the stain resistance, it is selected from cellulose ester, fatty acid vinyl ester, vinyl pyrrolidone, ethylene oxide, acrylonitrile, vinyl alcohol, etc. within a range that does not impair the chemical durability and physical strength of the polyvinylidene fluoride resin. It may contain a hydrophilic polymer having at least one kind. The weight average molecular weight of the polyvinylidene fluoride resin may be appropriately selected depending on the required strength and water permeability of the hollow fiber membrane, but is preferably in the range of 100,000 to 800,000. In consideration of processability to a hollow fiber membrane, the range of 200,000 to 600,000 is more preferable, and the range of 250,000 to 500,000 is more preferable.

本発明の中空糸膜は、100kPa,25℃における純水透過性能が0.4m/m・hr以上8m/m・hr以下の範囲にあることが好ましく、より好ましくは0.6m/m・hr以上6m/m・hr以下、さらに好ましくは0.8m/m・hr以上5m/m・hr以下であり、また、破断強力が3N/本以上30N/本以下の範囲にあることが好ましく、より好ましくは4N/本以上25N/本以下、さらに好ましくは5N/本以上20N/本以下であり、かつ、破断伸度が30%以上300%以下の範囲にあることが好ましく、好ましくは40%以上250%以下、さらに好ましくは50%以上200%以下である。この範囲にあることにより、通常の使用条件で、十分な透水性能を発揮するとともに、破断を起こさない中空糸膜とすることができる。なお、中空糸膜の純水透過性能は、逆浸透膜処理水を25℃で1.5mの水位差を駆動力に小型モジュール(長さ約20cm、中空糸膜の本数1〜10本程度)に送液し、一定時間の透過水量を測定して得た値を、100kPa当たりに換算して算出する。透水性能は、ポンプ等で一定の圧力に加圧して得た値を100kPa当たりに換算して求めてもよい。水温についても、25℃以外で測定し、評価液体の粘性から25℃での値に換算してもよい。破断強伸度は、引張試験機を用いて、試験長50mmでフルスケール2000gもしくは5000gの加重をクロスヘッドスピード50mm/分で10回測定し、平均して求める。 The hollow fiber membrane of the present invention preferably has a pure water permeation performance at 100 kPa and 25 ° C. in the range of 0.4 m 3 / m 2 · hr to 8 m 3 / m 2 · hr, more preferably 0.6 m. 3 / m 2 · hr or more and 6 m 3 / m 2 · hr or less, more preferably 0.8 m 3 / m 2 · hr or more and 5 m 3 / m 2 · hr or less, and the breaking strength is 3 N / piece or more and 30 N / N or less, more preferably 4 N / line or more and 25 N / line or less, more preferably 5 N / line or more and 20 N / line or less, and the elongation at break is 30% or more and 300% or less. It is preferable to be in the range, preferably 40% to 250%, more preferably 50% to 200%. By being in this range, it is possible to obtain a hollow fiber membrane that exhibits sufficient water permeability under normal use conditions and that does not break. In addition, the pure water permeation performance of the hollow fiber membrane is a small module (about 20 cm in length, about 1 to 10 hollow fiber membranes) using reverse osmosis membrane treated water as a driving force with a water level difference of 1.5 m at 25 ° C. The value obtained by measuring the amount of permeated water for a certain time is calculated by converting per 100 kPa. The water permeation performance may be obtained by converting a value obtained by pressurizing to a constant pressure with a pump or the like per 100 kPa. The water temperature may also be measured at a temperature other than 25 ° C. and converted to a value at 25 ° C. from the viscosity of the evaluation liquid. The tensile strength at break is determined by measuring a load of a full scale of 2000 g or 5000 g at a test length of 50 mm 10 times at a crosshead speed of 50 mm / min and averaging the results.

上述の中空糸膜は、原液流入口や透過液流出口などを備えたケーシングに収容され、中空糸膜モジュールとして使用される。中空糸膜を複数本束ねて円筒状の容器に納め、両端または片端をポリウレタンやエポキシ樹脂等で固定し、透過水を回収できるようにしたり、平板状に中空糸膜の両端を固定して透過水を回収できるようにする。なお、本発明の中空糸膜モジュールは、上記中空糸膜の被処理水側表面を被処理水側に配置して構成することが好ましい。すなわち、被処理水を中空糸膜の外側表面に接触させて中空糸膜の内側から透過水を得る場合には前記外側表面を被処理水側表面として配置された中空糸膜モジュールとし、他方、被処理水を中空糸膜の内側表面に接触させて中空糸膜の外側から透過水を得る場合には前記内側表面を被処理水側表面として配置された中空糸膜モジュールとすることが好ましい。   The above-described hollow fiber membrane is accommodated in a casing having a raw solution inlet and a permeate outlet and is used as a hollow fiber membrane module. Bundle multiple hollow fiber membranes into a cylindrical container and fix both ends or one end with polyurethane or epoxy resin to collect permeate, or fix both ends of the hollow fiber membrane in a flat plate shape for permeation Allow water to be recovered. In addition, it is preferable that the hollow fiber membrane module of this invention arrange | positions the to-be-processed water side surface of the said hollow fiber membrane on the to-be-processed water side, and is comprised. That is, when obtaining the permeated water from the inside of the hollow fiber membrane by bringing the water to be treated into contact with the outer surface of the hollow fiber membrane, the outer surface is a hollow fiber membrane module disposed as the surface to be treated, When permeate water is obtained from the outside of the hollow fiber membrane by bringing the water to be treated into contact with the inner surface of the hollow fiber membrane, the hollow fiber membrane module is preferably disposed with the inner surface as the surface to be treated.

また、上述の中空糸膜モジュールは、少なくとも原液側(被処理水側)に加圧手段もしくは透過液側(透過水側)に吸引手段を設けて、透過水の製造を行う膜ろ過装置として用いられる。加圧手段としてはポンプを用いてもよいし、また水位差による圧力を利用してもよい。また、吸引手段としては、ポンプやサイフォンを利用すればよい。かかる膜ろ過装置に、表流水、湖沼水、地下水などの被処理水を供給することで、透過水を造水コストの低減が実現できるのである。   Further, the hollow fiber membrane module described above is used as a membrane filtration device for producing permeated water by providing a pressurizing means at least on the stock solution side (treated water side) or a suction means on the permeate side (permeate water side). It is done. A pump may be used as the pressurizing means, or a pressure due to a water level difference may be used. Moreover, what is necessary is just to utilize a pump and a siphon as a suction means. By supplying water to be treated such as surface water, lake water, and groundwater to such a membrane filtration device, it is possible to reduce the cost of producing permeated water.

本発明の中空糸膜の例えば以下に説明する製造方法によって実施される。   The hollow fiber membrane of the present invention is carried out, for example, by the production method described below.

ポリフッ化ビニリデン系樹脂を20重量%から60重量%以下程度の比較的高濃度で、該ポリフッ化ビニリデン系樹脂の貧溶媒または良溶媒に比較的高温で溶解して該ポリフッ化ビニリデン系樹脂溶液を調製し、該ポリフッ化ビニリデン系樹脂溶液を冷却固化することにより相分離せしめて、球状構造を有する中空糸膜を形成させる。ポリフッ化ビニリデン系樹脂濃度は高くなれば高い強度、伸度を有する中空糸膜が得られるが、高すぎると中空糸膜の空孔率が小さくなり透過性能が低下する。また、該ポリフッ化ビニリデン系樹脂溶液の粘度が適正な範囲に無ければ、取り扱いが困難であり、製膜することができなくなる。   A polyvinylidene fluoride resin solution is dissolved at a relatively high temperature in a poor solvent or a good solvent of the polyvinylidene fluoride resin at a relatively high concentration of about 20 wt% to 60 wt% or less. The polyvinylidene fluoride resin solution is prepared and phase-separated by cooling and solidifying to form a hollow fiber membrane having a spherical structure. If the concentration of the polyvinylidene fluoride resin is increased, a hollow fiber membrane having high strength and elongation can be obtained. However, if the concentration is too high, the porosity of the hollow fiber membrane is reduced and the permeation performance is lowered. Further, if the viscosity of the polyvinylidene fluoride resin solution is not within an appropriate range, it is difficult to handle and it becomes impossible to form a film.

ここで、貧溶媒とは、ポリフッ化ビニリデン系樹脂を60℃以下の低温では、5重量%以上溶解させることができないが、60℃以上かつポリフッ化ビニリデン系樹脂の融点以下(例えば、高分子がフッ化ビニリデンホモポリマー単独で構成される場合は178℃程度)の高温領域で5重量%以上溶解させることができる溶媒のことである。貧溶媒に対し、60℃以下の低温領域でもポリフッ化ビニリデン系樹脂を5重量%以上溶解させることができる可能な溶媒を良溶媒、ポリフッ化ビニリデン系樹脂の融点または溶媒の沸点まで、ポリフッ化ビニリデン系樹脂を溶解も膨潤もさせない溶媒を非溶媒と定義する。ポリフッ化ビニリデン系樹脂中空糸膜の場合、貧溶媒としては、シクロヘキサノン、イソホロン、γ−ブチロラクトン、メチルイソアミルケトン、フタル酸ジメチル、プロピレングリコールメチルエーテル、プロピレンカーボネート、ジアセトンアルコール、グリセロールトリアセテート等の中鎖長のアルキルケトン、エステル、グリコールエステルおよび有機カーボネート等およびそれらの混合溶媒が挙げられる。非溶媒と貧溶媒の混合溶媒であっても、上記貧溶媒の定義を満足するものは、貧溶媒であると定義する。また良溶媒としては、N−メチル−2−ピロリドン、ジメチルスルホキシド、ジメチルアセトアキド、ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド等およびそれらの混合溶媒が挙げられる。該ポリフッ化ビニリデン系樹脂溶液を冷却固化するにあたっては、二重管式口金の外側の管から該ポリフッ化ビニリデン系樹脂溶液を冷却浴中に吐出する方法が好ましい。この際、冷却浴に用いる冷却液体としては温度が5℃から50℃であり、濃度が60重量%から100重量%の貧溶媒もしくは良溶媒を含有する液体を用いて固化させることが好ましい。冷却液体には、貧溶媒、良溶媒以外に非溶媒を含有していても良いが、冷却液体に非溶媒を主成分とする液体を用いると、冷却固化による相分離よりも非溶媒滲入による相分離が優先し、球状構造が得られにくくなる。また、中空部形成流体を二重管式口金の内側の管から吐出しながら冷却浴中で固化することで中空糸膜とする。この際、中空部形成流体には、通常気体もしくは液体を用いることができるが、本発明においては、冷却液体と同様の濃度が60重量%から100重量%の貧溶媒もしくは良溶媒を含有する液体を用いることが好ましく採用できる。ここで非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、メタノール、エタノール、四塩化炭素、o−ジクロルベンゼン、トリクロルエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、脂肪族多価アルコール、芳香族多価アルコール、塩素化炭化水素、またはその他の塩素化有機液体およびそれらの混合溶媒が挙げられる。   Here, the poor solvent means that the polyvinylidene fluoride resin cannot be dissolved by 5% by weight or more at a low temperature of 60 ° C. or less, but it is 60 ° C. or more and the melting point of the polyvinylidene fluoride resin or less (for example, the polymer is It is a solvent that can be dissolved in an amount of 5% by weight or more in a high temperature region of about 178 ° C. when it is composed of vinylidene fluoride homopolymer alone. A solvent capable of dissolving 5% by weight or more of a polyvinylidene fluoride resin in a low temperature region of 60 ° C. or lower with respect to a poor solvent is a good solvent, up to the melting point of the polyvinylidene fluoride resin or the boiling point of the solvent. A solvent that does not dissolve or swell the resin is defined as a non-solvent. In the case of a polyvinylidene fluoride resin hollow fiber membrane, as a poor solvent, cyclohexanone, isophorone, γ-butyrolactone, methyl isoamyl ketone, dimethyl phthalate, propylene glycol methyl ether, propylene carbonate, diacetone alcohol, glycerol triacetate, etc. Long alkyl ketones, esters, glycol esters, organic carbonates and the like, and mixed solvents thereof. Even a mixed solvent of a non-solvent and a poor solvent is defined as a poor solvent if it satisfies the definition of the poor solvent. Examples of good solvents include N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylacetoxide, dimethylformamide, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethylurea, trimethyl phosphate, and other lower alkyl ketones, esters, amides, and the like. The mixed solvent is mentioned. In cooling and solidifying the polyvinylidene fluoride resin solution, a method of discharging the polyvinylidene fluoride resin solution from the outer tube of the double tube die into the cooling bath is preferable. At this time, the cooling liquid used in the cooling bath is preferably solidified using a liquid containing a poor solvent or a good solvent having a temperature of 5 to 50 ° C. and a concentration of 60 to 100% by weight. The cooling liquid may contain a non-solvent in addition to the poor solvent and the good solvent. However, when a liquid containing a non-solvent as a main component is used as the cooling liquid, the phase caused by non-solvent infiltration rather than phase separation by cooling solidification is used. Separation is prioritized, making it difficult to obtain a spherical structure. Moreover, it is set as a hollow fiber membrane by solidifying in a cooling bath, discharging a hollow part formation fluid from the pipe | tube inside a double tube | pipe type nozzle | cap | die. At this time, a gas or a liquid can be normally used as the hollow portion forming fluid, but in the present invention, a liquid containing a poor solvent or a good solvent having a concentration similar to that of the cooling liquid of 60 wt% to 100 wt%. Can be preferably used. Examples of the non-solvent include water, hexane, pentane, benzene, toluene, methanol, ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol, and pentane. Aliphatic hydrocarbons such as diol, hexanediol, low molecular weight polyethylene glycol, aromatic hydrocarbons, aliphatic polyhydric alcohols, aromatic polyhydric alcohols, chlorinated hydrocarbons, or other chlorinated organic liquids and mixtures thereof A solvent is mentioned.

次いで、以上のようにして得られた球状構造からなるポリフッ化ビニリデン系樹脂中空糸膜の上に、非溶媒誘起相分離法によって得られる三次元網目構造を積層させる。すなわち球状構造からなるポリフッ化ビニリデン系樹脂中空糸膜の上に、非溶媒誘起相分離を起こすポリフッ化ビニリデン系樹脂溶液を塗布した後、凝固浴に浸漬することで三次元網目構造を有する層を積層させる方法である。ここで、三次元網目構造を形成させるためのポリフッ化ビニリデン系樹脂溶液に、被処理水側の平均孔径を小さくして、かつ細孔密度と開孔率が高くなるよう、以下に示すように開孔剤として界面活性剤を添加することが本発明の特徴である。   Next, a three-dimensional network structure obtained by a non-solvent induced phase separation method is laminated on the polyvinylidene fluoride resin hollow fiber membrane having a spherical structure obtained as described above. In other words, a polyvinylidene fluoride resin hollow fiber membrane having a spherical structure is coated on a polyvinylidene fluoride resin solution that causes non-solvent-induced phase separation, and then immersed in a coagulation bath to form a layer having a three-dimensional network structure. It is a method of laminating. Here, in the polyvinylidene fluoride resin solution for forming a three-dimensional network structure, as shown below, the average pore diameter on the treated water side is reduced and the pore density and the porosity are increased. It is a feature of the present invention that a surfactant is added as a pore opening agent.

すなわち、前述した三次元網目構造を形成させるためのポリフッ化ビニリデン系樹脂溶液はポリフッ化ビニリデン系樹脂および良溶媒を主成分として構成されるものであるが、そこに平均孔径や細孔密度、開孔率を変化させるために、開孔剤と称した別の成分を添加する。非溶媒誘起相分離法においてポリマー溶液にポリマーと良溶媒以外の成分を添加することは従来技術においても知られているが、本発明の特徴は開孔剤に少なくとも1種類以上の界面活性剤を添加することである。界面活性剤は親水性の部分と疎水性の部分を有するため、ポリフッ化ビニリデン系樹脂と溶媒、その他成分にミクロに分散し、凝固、水洗後に膜から溶媒と共に溶出して、微細な細孔を多数形成する。界面活性剤の添加量が多くなるとポリフッ化ビニリデン系樹脂溶液の安定性が徐々に損なわれ、ポリフッ化ビニリデン系樹脂溶液がゲル化(ポリフッ化ビニリデン系樹脂が相分離/不溶化する)してしまうが、ポリフッ化ビニリデン系樹脂溶液の安定性が損なわれない範囲において、臨界ミセル濃度の2倍を超える過剰の界面活性剤を添加することが界面活性剤の表面張力低下効果が最大となり好ましい。この過剰な界面活性剤の添加によりミセルが微細な構造を形成するためのミクロ相分離の起点となり、小さな多孔構造が形成される。さらに三次元編み目構造全体の相分離/凝固を制御する目的で、界面活性剤の他に有機化合物および/または無機化合物および/または前述した非溶媒を添加することも好ましく採用される。有機化合物としては、ポリフッ化ビニリデン系樹脂溶液に用いる溶媒および非溶媒誘起相分離を起こす非溶媒の両方に溶解するものが好ましく用いられる。例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレンイミン、ポリアクリル酸、デキストランなどの水溶性ポリマー、グリセリン、糖類などを挙げることができる。無機化合物としても、フッ素樹脂系高分子溶液に用いる溶媒および非溶媒誘起相分離を起こす非溶媒の両方に溶解するものが好ましく、例えば、塩化カルシウム、塩化マグネシウム、塩化リチウム、硫酸バリウムなどを挙げることができる。耐汚れ性をさらに高める目的で、前述したセルロースエステル、脂肪酸ビニルエステル、ビニルピロリドン、エチレンオキサイド、アクリロニトリル、ビニルアルコールなどから選ばれる少なくとも1種を有する親水性高分子を含有することも好ましく採用できる。   That is, the above-mentioned polyvinylidene fluoride resin solution for forming the three-dimensional network structure is composed mainly of a polyvinylidene fluoride resin and a good solvent, and there are an average pore diameter, pore density, In order to change the porosity, another component called a pore opening agent is added. Although it is known in the prior art to add components other than the polymer and the good solvent to the polymer solution in the non-solvent induced phase separation method, the feature of the present invention is that at least one surfactant is added to the pore opening agent. Is to add. Since the surfactant has a hydrophilic part and a hydrophobic part, it is dispersed microscopically in the polyvinylidene fluoride resin and solvent and other components, and after coagulation and washing, it elutes with the solvent from the membrane to form fine pores. Many are formed. When the addition amount of the surfactant is increased, the stability of the polyvinylidene fluoride resin solution is gradually impaired, and the polyvinylidene fluoride resin solution is gelled (the polyvinylidene fluoride resin is phase-separated / insolubilized). As long as the stability of the polyvinylidene fluoride resin solution is not impaired, it is preferable to add an excess of the surfactant exceeding the critical micelle concentration because the effect of reducing the surface tension of the surfactant is maximized. By adding this excessive surfactant, the micelle becomes a starting point for microphase separation for forming a fine structure, and a small porous structure is formed. Further, for the purpose of controlling the phase separation / solidification of the entire three-dimensional stitch structure, it is also preferable to add an organic compound and / or an inorganic compound and / or the aforementioned non-solvent in addition to the surfactant. As the organic compound, those that are soluble in both the solvent used for the polyvinylidene fluoride resin solution and the non-solvent that causes non-solvent-induced phase separation are preferably used. Examples thereof include water-soluble polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polyethylene imine, polyacrylic acid, and dextran, glycerin, and saccharides. As the inorganic compound, those that are soluble in both the solvent used for the fluororesin polymer solution and the non-solvent that causes non-solvent-induced phase separation are preferable. Examples include calcium chloride, magnesium chloride, lithium chloride, and barium sulfate. Can do. For the purpose of further improving the stain resistance, it is also possible to preferably employ a hydrophilic polymer having at least one selected from cellulose ester, fatty acid vinyl ester, vinyl pyrrolidone, ethylene oxide, acrylonitrile, vinyl alcohol and the like.

ポリフッ化ビニリデン系樹脂溶液中のポリフッ化ビニリデン系樹脂濃度は、通常5〜30重量%が好ましく、より好ましくは10〜20重量%の範囲である。5重量%未満では、三次元網目構造層の物理的強度が低下し、30重量%を超えると透過性能が低下する。該ポリフッ化ビニリデン系樹脂溶液は、ポリフッ化ビニリデン系樹脂の濃度や溶媒の種類、界面活性剤などの添加剤の種類・濃度によって溶解温度が異なるが、おおよそ溶解温度は40℃以上120℃以下程度である。溶媒の沸点以下の温度で攪拌しながら数時間加熱して、透明な溶液にすることが好ましい。   The concentration of the polyvinylidene fluoride resin in the polyvinylidene fluoride resin solution is usually preferably 5 to 30% by weight, more preferably 10 to 20% by weight. If it is less than 5% by weight, the physical strength of the three-dimensional network structure layer is lowered, and if it exceeds 30% by weight, the transmission performance is lowered. The dissolution temperature of the polyvinylidene fluoride resin solution varies depending on the concentration of the polyvinylidene fluoride resin, the type of solvent, and the type and concentration of additives such as surfactants, but the dissolution temperature is approximately 40 ° C to 120 ° C. It is. It is preferable to heat for several hours while stirring at a temperature below the boiling point of the solvent to make a transparent solution.

上述したように調整したポリフッ化ビニリデン系樹脂溶液を前記球状構造からなるポリフッ化ビニリデン系樹脂中空糸膜の上に塗布した後、非溶媒を主成分とする凝固浴に浸漬することで三次元網目構造を有する層を積層させる。以上のような製膜方法により本発明の中空糸膜を得ることができる。   After applying the polyvinylidene fluoride resin solution prepared as described above onto the polyvinylidene fluoride resin hollow fiber membrane having the spherical structure, it is immersed in a coagulation bath containing a non-solvent as a main component to form a three-dimensional network. A layer having a structure is stacked. The hollow fiber membrane of the present invention can be obtained by the film forming method as described above.

以下に具体的実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。   The present invention will be described below with reference to specific examples, but the present invention is not limited to these examples.

実施例における中空糸膜の平均孔径は、被処理水側表面である中空糸外表面を走査型電子顕微鏡(S−800)(日立製作所製)を用いて3万倍で写真撮影し、30個の任意の細孔の孔径を測定し、数平均して求めた。また、細孔密度は、平均孔径を求めた写真の中の3μm四方あたりの細孔数を数えて算出し、1m当たりの細孔数に換算して求めた。開孔率は、求めた平均孔径と細孔密度から次式により計算して求めた。 The average pore diameter of the hollow fiber membranes in the examples was obtained by photographing the outer surface of the hollow fiber, which is the surface to be treated, at a magnification of 30,000 using a scanning electron microscope (S-800) (manufactured by Hitachi, Ltd.). The pore diameters of the arbitrary pores were measured and obtained by number averaging. In addition, the pore density was calculated by counting the number of pores per 3 μm square in the photograph for which the average pore diameter was obtained, and converting it to the number of pores per 1 m 2 . The open area ratio was calculated from the calculated average pore diameter and pore density by the following formula.

開孔率(%)=π×(平均孔径/2)×(細孔密度)×100。 Opening ratio (%) = π × (average pore diameter / 2) 2 × (pore density) × 100.

純水透過性能は、次のように求めた。まず、中空糸膜4本からなる長さ200mmのミニチュアモジュールを作製し、温度25℃、ろ過差圧16kPaの条件下に、逆浸透膜ろ過水の外圧全ろ過を5分間行い、その間の透過量(m)を求めた。次に、その透過量(m)を単位時間(h)および有効膜面積(m)あたりの値に換算し、さらに(100/16)倍することにより、圧力100kPaにおける値に換算して純水透過性能を求めた。 The pure water permeation performance was determined as follows. First, a miniature module having a length of 200 mm consisting of four hollow fiber membranes was prepared, and the external pressure total filtration of reverse osmosis membrane filtered water was performed for 5 minutes under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa. (M 3 ) was determined. Next, the permeation amount (m 3 ) is converted into a value per unit time (h) and effective membrane area (m 2 ), and further converted to a value at a pressure of 100 kPa by multiplying by (100/16). Pure water permeation performance was determined.

破断強力および破断伸度は、引張試験機(TENSILON/RTM−100)(東洋ボールドウィン製)を用いて、測定長さ50mmの試料を引張速度50mm/分で測定した。1種類の中空糸膜に対して10回の測定を行い、数平均して破断強力と破断伸度を求めた。   The breaking strength and breaking elongation were measured using a tensile testing machine (TENSILON / RTM-100) (manufactured by Toyo Baldwin) at a tensile speed of 50 mm / min. Ten measurements were performed on one type of hollow fiber membrane, and the number average and the breaking strength and breaking elongation were determined.

耐汚れ性については、次の運転性評価によって求めた。直径3cm、長さ50cm、有効膜面積が0.3mとなるように作製した中空糸膜モジュールを用いて、琵琶湖水を膜ろ過流速3m/dで定流量外圧全ろ過運転を行った。60分毎に、5ppm次亜塩素酸ナトリウム水溶液による逆洗を30秒、空気によるエアースクラビングを1分行った。1ヶ月間のろ過差圧推移を計測して、次式により1日平均のろ過差圧上昇速度(kPa/日)を算出して比較した。 The stain resistance was determined by the following drivability evaluation. Using a hollow fiber membrane module prepared to have a diameter of 3 cm, a length of 50 cm, and an effective membrane area of 0.3 m 2 , a constant flow rate external pressure total filtration operation was performed on Lake Biwa water at a membrane filtration flow rate of 3 m / d. Every 60 minutes, backwashing with a 5 ppm sodium hypochlorite aqueous solution was performed for 30 seconds, and air scrubbing with air was performed for 1 minute. The change in filtration pressure difference during one month was measured, and the daily average filtration pressure increase rate (kPa / day) was calculated and compared using the following formula.

ろ過差圧上昇速度(kPa/日)=(P−P)/T。 Filtration differential pressure increase rate (kPa / day) = (P 1 −P 0 ) / T.

ここで運転評価開始時点の物理洗浄直後のろ過差圧をP(kPa)、運転評価終了時点の該ろ過差圧をP(kPa)、運転期間をT(日)とする。ろ過差圧上昇速度が0.35kPa/日程度以下であれば、6ヶ月の運転で約60kPaのろ過差圧上昇である。運転初期ろ過差圧が20〜30kPa程度であり、薬液洗浄の目安がろ過差圧100kPaから150kPa程度であることを考えれば、ろ過差圧上昇速度が0.35kPa/日のろ過運転は薬液洗浄間隔が6ヶ月程度となり、該中空糸膜は耐汚れ性が高く、安定運転が可能と言える。 Here, the filtration differential pressure immediately after the physical cleaning at the start of the operation evaluation is P 0 (kPa), the filtration differential pressure at the end of the operation evaluation is P 1 (kPa), and the operation period is T (day). If the filtration differential pressure increase rate is about 0.35 kPa / day or less, the filtration differential pressure increase is about 60 kPa after 6 months of operation. Considering that the initial filtration differential pressure is about 20 to 30 kPa and the standard for chemical cleaning is about 100 to 150 kPa, the filtration differential pressure increase rate is 0.35 kPa / day. Thus, it can be said that the hollow fiber membrane has high stain resistance and can be stably operated.

<実施例1>
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ−ブチロラクトンとを、それぞれ36重量%と64重量%の割合で170℃の温度で溶解した。このポリマー溶液をγ−ブチロラクトンを中空部形成液体として随伴させながら口金から吐出し、γ−ブチロラクトン水溶液からなる冷却浴中で冷却、相分離、凝固/固化して球状構造からなる中空糸膜を作製した。
<Example 1>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 36% by weight and 64% by weight, respectively. The polymer solution is discharged from the die with accompanying γ-butyrolactone as a hollow portion forming liquid, and cooled, phase separated, and solidified / solidified in a cooling bath made of an aqueous γ-butyrolactone to produce a hollow fiber membrane having a spherical structure. did.

重量平均分子量28.4万のフッ化ビニリデンホモポリマーとポリオキシエチレンヤシ油ソルビタンとジメチルスルホキシドを、それぞれ13重量%と5重量%と82重量%の割合で混合し、100℃の温度で溶解した。このポリマー溶液を前記中空糸膜の外表面に塗布し、30℃の水で凝固し、その後水洗により脱溶媒して本発明の中空糸膜を得た。   A vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, polyoxyethylene coconut oil sorbitan and dimethyl sulfoxide were mixed at a ratio of 13% by weight, 5% by weight and 82% by weight, respectively, and dissolved at a temperature of 100 ° C. . This polymer solution was applied to the outer surface of the hollow fiber membrane, solidified with water at 30 ° C., and then desolvated by washing with water to obtain the hollow fiber membrane of the present invention.

得られた中空糸膜の外表面すなわち被処理水側表面における細孔の平均孔径は、0.03μm、細孔密度8.0×1013個/m、開孔率5.7%、純水透過性能は0.8m/m・hr、破断強力10.8N/本、破断伸度115%であった。琵琶湖水のろ過抵抗上昇速度は0.22kPa/日であり、耐汚れ性が高く、安定なろ過運転を行うことができた。 The average pore diameter of the pores on the outer surface of the obtained hollow fiber membrane, that is, the surface to be treated is 0.03 μm, the pore density is 8.0 × 10 13 pores / m 2 , the porosity is 5.7%, The water permeation performance was 0.8 m 3 / m 2 · hr, the breaking strength was 10.8 N / piece, and the breaking elongation was 115%. The rate of increase in filtration resistance of Lake Biwa water was 0.22 kPa / day, and the soil resistance was high, and stable filtration operation could be performed.

<実施例2>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーとモノオレイン酸ポリオキシエチレンソルビタンとジメチルスルホキシドを、それぞれ13重量%と5重量%と82重量%の割合で混合し、100℃の温度で溶解した。このポリマー溶液を実施例1と同様な中空糸膜の外表面に塗布し、35℃の水で凝固して、その後水洗により脱溶媒して本発明の中空糸膜を得た。
<Example 2>
A vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, polyoxyethylene sorbitan monooleate, and dimethyl sulfoxide were mixed at a ratio of 13 wt%, 5 wt%, and 82 wt%, respectively, and dissolved at a temperature of 100 ° C. did. This polymer solution was applied to the outer surface of the same hollow fiber membrane as in Example 1, solidified with water at 35 ° C., and then desolvated by washing with water to obtain the hollow fiber membrane of the present invention.

得られた中空糸膜の外表面すなわち被処理水側表面における細孔の平均孔径が0.04μm、細孔密度が9.3×1013個/m、開孔率が11.7%、純水透過性能が1.6m/m・hr、破断強力10.8N/本、破断伸度113%であった。琵琶湖水のろ過抵抗上昇速度は0.31kPa/日であり、耐汚れ性が高く、安定なろ過運転を行うことができた。 The average pore diameter of the pores on the outer surface of the obtained hollow fiber membrane, that is, the surface to be treated is 0.04 μm, the pore density is 9.3 × 10 13 pores / m 2 , the open area ratio is 11.7%, The pure water permeation performance was 1.6 m 3 / m 2 · hr, the breaking strength was 10.8 N / piece, and the breaking elongation was 113%. The rate of increase in filtration resistance of Lake Biwa water was 0.31 kPa / day, and the soil resistance was high, and stable filtration operation could be performed.

<実施例3>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーと水とN-メチル-2-ピロリドンとポリオキシエチレンヤシ油ソルビタンを、それぞれ14重量%と1重量%と80重量%と5重量%の割合で混合し、90℃の温度で溶解した。このポリマー溶液を実施例1と同様の中空糸膜の外表面に塗布し、30℃の水で凝固して、その後水洗により脱溶媒して本発明の中空糸膜を得た。
<Example 3>
A vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, water, N-methyl-2-pyrrolidone, and polyoxyethylene coconut oil sorbitan in a proportion of 14% by weight, 1% by weight, 80% by weight and 5% by weight, respectively. And dissolved at a temperature of 90 ° C. This polymer solution was applied to the outer surface of the same hollow fiber membrane as in Example 1, solidified with water at 30 ° C., and then desolvated by washing with water to obtain the hollow fiber membrane of the present invention.

得られた中空糸膜の外表面すなわち被処理水側表面における細孔の平均孔径は0.05μm、細孔密度は1.1×1014個/m、開孔率は21.6%、純水透過性能は1.6m/m・hr、破断強力は9.8N/本、破断伸度は108%であった。琵琶湖水のろ過抵抗上昇速度は0.20kPa/日であり、耐汚れ性が高く、安定なろ過運転を行うことができた。 The average pore diameter of the pores on the outer surface of the obtained hollow fiber membrane, that is, the surface to be treated is 0.05 μm, the pore density is 1.1 × 10 14 / m 2 , the open area ratio is 21.6%, The pure water permeation performance was 1.6 m 3 / m 2 · hr, the breaking strength was 9.8 N / piece, and the breaking elongation was 108%. The rate of increase in filtration resistance of Lake Biwa water was 0.20 kPa / day, and the soil resistance was high, and stable filtration operation could be performed.

<実施例4>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーとモノオレイン酸ポリオキシエチレンソルビタンと水とジメチルホルムアミドを、それぞれ11重量%と5重量%と2重量%と82重量%の割合で混合し、100℃の温度で溶解した。このポリマー溶液を実施例1と同様な中空糸膜の外表面に塗布し、40℃の水で凝固して、その後水洗により脱溶媒して本発明の中空糸膜を得た。
<Example 4>
A vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, polyoxyethylene sorbitan monooleate, water and dimethylformamide were mixed at a ratio of 11% by weight, 5% by weight, 2% by weight and 82% by weight, respectively. Dissolved at a temperature of 100 ° C. This polymer solution was applied to the outer surface of a hollow fiber membrane similar to that in Example 1, solidified with water at 40 ° C., and then desolvated by washing with water to obtain the hollow fiber membrane of the present invention.

得られた中空糸膜の被処理水側表面における細孔の平均孔径は0.08μm、細孔密度は2.1×1013個/m、開孔率は10.6%、純水透過性能は1.6m/m・hr、破断強力は11.8N/本、破断伸度は105%であった。琵琶湖水のろ過抵抗上昇速度は0.34kPa/日であり、耐汚れ性が高く、安定なろ過運転を行うことができた。 The average pore diameter of the pores on the treated water side surface of the obtained hollow fiber membrane was 0.08 μm, the pore density was 2.1 × 10 13 pores / m 2 , the open area ratio was 10.6%, and pure water permeation The performance was 1.6 m 3 / m 2 · hr, the breaking strength was 11.8 N / piece, and the breaking elongation was 105%. The rate of increase in filtration resistance of Lake Biwa water was 0.34 kPa / day, and the soil resistance was high, and a stable filtration operation could be performed.

<実施例5>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーとセルロースアセテートとN-メチル-2-ピロリドンとモノオレイン酸ポリオキシエチレンソルビタンを、それぞれ15重量%と1重量%と77重量%と7重量%との割合で混合し、110℃の温度で溶解した。このポリマー溶液を実施例1と同様な中空糸膜の外表面に塗布し、25℃の水で凝固して、その後水洗により脱溶媒して本発明の中空糸膜を得た。
<Example 5>
A vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, cellulose acetate, N-methyl-2-pyrrolidone and polyoxyethylene sorbitan monooleate were 15% by weight, 1% by weight, 77% by weight and 7% by weight, respectively. And dissolved at a temperature of 110 ° C. This polymer solution was applied to the outer surface of a hollow fiber membrane similar to that in Example 1, solidified with water at 25 ° C., and then desolvated by washing with water to obtain the hollow fiber membrane of the present invention.

得られた中空糸膜の被処理水側表面における細孔の平均孔径は0.01μm、細孔密度は6.8×1014個/m、開孔率は5.3%、純水透過性能は0.9m/m・hr、破断強力は10.8N/本、破断伸度112%であった。琵琶湖水のろ過抵抗上昇速度は0.25kPa/日であり、耐汚れ性が高く、安定なろ過運転を行うことができた。 The average pore diameter of the pores on the treated water side surface of the obtained hollow fiber membrane was 0.01 μm, the pore density was 6.8 × 10 14 pores / m 2 , the open area ratio was 5.3%, and pure water permeation was achieved. The performance was 0.9 m 3 / m 2 · hr, the breaking strength was 10.8 N / piece, and the breaking elongation was 112%. The rate of increase in filtration resistance of Lake Biwa water was 0.25 kPa / day, and the soil resistance was high, and stable filtration operation could be performed.

<実施例6>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーとポリオキシエチレンヤシ油ソルビタンとジメチルスルホキシドを、それぞれ13重量%と4重量%と83重量%の割合で混合し、100℃の温度で溶解した。このポリマー溶液を実施例1と同様な中空糸膜の外表面に塗布し、35℃の水で凝固して、その後水洗により脱溶媒して本発明の中空糸膜を得た。
<Example 6>
A vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, polyoxyethylene coconut oil sorbitan and dimethyl sulfoxide were mixed at a ratio of 13% by weight, 4% by weight and 83% by weight, respectively, and dissolved at a temperature of 100 ° C. . This polymer solution was applied to the outer surface of the same hollow fiber membrane as in Example 1, solidified with water at 35 ° C., and then desolvated by washing with water to obtain the hollow fiber membrane of the present invention.

得られた中空糸膜の被処理水側表面における細孔の平均孔径は0.03μm、細孔密度は5.2×1013個/m、開孔率は3.7%、純水透過性能は0.8m/m・hr、破断強力は11.8N/本、破断伸度は112%であった。琵琶湖水のろ過抵抗上昇速度は0.30kPa/日であり、耐汚れ性が高く、安定なろ過運転を行うことができた。 The average pore diameter of the pores on the treated water side surface of the obtained hollow fiber membrane was 0.03 μm, the pore density was 5.2 × 10 13 pores / m 2 , the open area ratio was 3.7%, and pure water permeation was achieved. The performance was 0.8 m 3 / m 2 · hr, the breaking strength was 11.8 N / piece, and the breaking elongation was 112%. The rate of increase in filtration resistance of Lake Biwa water was 0.30 kPa / day, and the soil resistance was high, and stable filtration operation could be performed.

<比較例1>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーと分子量2万のポリエチレングリコールと水とジメチルホルムアミドを、それぞれ13重量%と5重量%と3重量%と79重量%の割合で混合し、100℃の温度で溶解した。このポリマー溶液を実施例1と同様な中空糸膜の外表面に塗布し、60℃の水で凝固して、その後水洗により脱溶媒して本発明の中空糸膜を得た。
<Comparative Example 1>
A vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, a polyethylene glycol having a molecular weight of 20,000, water and dimethylformamide were mixed in a ratio of 13% by weight, 5% by weight, 3% by weight and 79% by weight, respectively. Dissolved at a temperature of ° C. This polymer solution was applied to the outer surface of a hollow fiber membrane similar to that in Example 1, solidified with water at 60 ° C., and then desolvated by washing with water to obtain the hollow fiber membrane of the present invention.

得られた中空糸膜の被処理水側表面における細孔の平均孔径は0.4μm、細孔密度は7.1×1011個/m、開孔率は8.9%、純水透過性能は1.8m/m・hr、破断強力は9.8N/本、破断伸度は103%であった。琵琶湖水のろ過抵抗上昇速度は350kPa/日と耐汚れ性が著しく悪く、数時間しかろ過運転を行うことができなかった。 The average pore diameter of the pores on the treated water side surface of the obtained hollow fiber membrane is 0.4 μm, the pore density is 7.1 × 10 11 pores / m 2 , the aperture ratio is 8.9%, and pure water permeation is performed. The performance was 1.8 m 3 / m 2 · hr, the breaking strength was 9.8 N / piece, and the breaking elongation was 103%. The rate of increase in filtration resistance of Lake Biwa water was 350 kPa / day, and the stain resistance was remarkably poor, and the filtration operation could only be performed for several hours.

<比較例2>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーとジメチルスルホキシドを、それぞれ15重量%と85重量%の割合で混合し、100℃の温度で溶解した。このポリマー溶液を実施例1と同様な中空糸膜の外表面に塗布し、60℃の水で凝固して、その後水洗により脱溶媒して本発明の中空糸膜を得た。
<Comparative example 2>
A vinylidene fluoride homopolymer having a weight average molecular weight of 284,000 and dimethyl sulfoxide were mixed at a ratio of 15 wt% and 85 wt%, respectively, and dissolved at a temperature of 100 ° C. This polymer solution was applied to the outer surface of a hollow fiber membrane similar to that in Example 1, solidified with water at 60 ° C., and then desolvated by washing with water to obtain the hollow fiber membrane of the present invention.

得られた中空糸膜の被処理水側表面における細孔の平均孔径は0.03μm、細孔数3.7×1013個/m、開孔率 2.6%、純水透過性能は0.5m/m・hr、破断強力は11.8N/本、破断伸度は122%であった。琵琶湖水のろ過抵抗上昇速度は0.95kPa/日と耐汚れ性が悪かった。 The average pore diameter of the pores on the treated water side surface of the obtained hollow fiber membrane is 0.03 μm, the number of pores is 3.7 × 10 13 pores / m 2 , the open area ratio is 2.6%, and the pure water permeation performance is 0.5 m 3 / m 2 · hr, breaking strength was 11.8 N / piece, and breaking elongation was 122%. The filtration resistance increase rate of Lake Biwa water was 0.95 kPa / day, and the soil resistance was poor.

<比較例3>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーと水とジメチルホルムアミドを、それぞれ12重量%と3重量%と85重量%の割合で混合し、100℃の温度で溶解した。このポリマー溶液を実施例1と同様な中空糸膜の外表面に塗布し、40℃の水で凝固して、その後水洗により脱溶媒して本発明の中空糸膜を得た。
<Comparative Example 3>
A vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, water and dimethylformamide were mixed at a ratio of 12% by weight, 3% by weight and 85% by weight, respectively, and dissolved at a temperature of 100 ° C. This polymer solution was applied to the outer surface of a hollow fiber membrane similar to that in Example 1, solidified with water at 40 ° C., and then desolvated by washing with water to obtain the hollow fiber membrane of the present invention.

得られた中空糸膜の被処理水側表面における細孔の平均孔径は0.09μm、細孔数6.7×1012個/m、開孔率は4.3%、透水性能は1.6m/m・hr、破断強力は9.8N/本、破断伸度は103%であった。琵琶湖水のろ過抵抗上昇速度は4.5kPa/日と耐汚れ性が悪く、3週間のろ過運転で薬液洗浄時期を迎えた。 The average pore diameter of the pores on the treated water side surface of the obtained hollow fiber membrane was 0.09 μm, the number of pores was 6.7 × 10 12 / m 2 , the open area ratio was 4.3%, and the water permeability was 1 .6m 3 / m 2 · hr, breaking strength is 9.8 N / present, elongation at break was 103%. The rate of increase in filtration resistance of Lake Biwa water was 4.5 kPa / day, indicating poor soil resistance, and the chemical cleaning period was reached after 3 weeks of filtration operation.

本発明は、化学的耐久性と物理的強度に優れるポリフッ化ビニリデン系樹脂を用いて、汚れにくく、高透水性能を長時間維持する高性能中空糸膜を提供するものである。本発明の中空糸膜は、飲料水製造、浄水処理、下水、排水処理、海水淡水化前処理などの水処理分野において、低造水コストを発現する膜ろ過装置に利用することができる。   The present invention provides a high-performance hollow fiber membrane that uses a polyvinylidene fluoride resin excellent in chemical durability and physical strength, is resistant to contamination and maintains high water permeability for a long time. The hollow fiber membrane of the present invention can be used for a membrane filtration device that exhibits low water production costs in water treatment fields such as drinking water production, water purification treatment, sewage, wastewater treatment, and seawater desalination pretreatment.

本発明の中空糸膜の被処理水側表面写真の一例である。It is an example of the to-be-processed water side surface photograph of the hollow fiber membrane of this invention.

符号の説明Explanation of symbols

1 細孔   1 pore

Claims (6)

ポリフッ化ビニリデン系樹脂からなる中空糸膜において、前記中空糸膜の被処理水側表面における細孔の平均孔径が0.01μm以上0.1μm以下であり、前記被処理水側表面における細孔密度が1×1013個/m以上1×1015個/m以下であり、かつ、前記被処理水側表面における開孔率が3%以上30%以下であることを特徴とする中空糸膜。 In the hollow fiber membrane made of polyvinylidene fluoride resin, the average pore diameter of the hollow fiber membrane on the treated water side surface is 0.01 μm or more and 0.1 μm or less, and the pore density on the treated water side surface 1 × 10 13 pieces / m 2 or more and 1 × 10 15 pieces / m 2 or less, and the porosity of the treated water side surface is 3% or more and 30% or less. film. 100kPa,25℃における純水透過性能が0.4m/m・hr以上8m/m・hr以下、破断強力が3N/本以上30N/本以下であり、かつ、破断伸度が30%以上300%以下である請求項1に記載の中空糸膜。 Pure water permeation performance at 100 kPa and 25 ° C. is 0.4 m 3 / m 2 · hr or more and 8 m 3 / m 2 · hr or less, breaking strength is 3 N / piece or more and 30 N / piece or less, and elongation at break is 30 The hollow fiber membrane according to claim 1, wherein the hollow fiber membrane is not less than 300% and not more than 300%. 前記被処理水側表面が中空糸膜の外側表面である請求項1または2に記載の中空糸膜。 The hollow fiber membrane according to claim 1 or 2, wherein the treated water side surface is an outer surface of the hollow fiber membrane. 請求項1〜3のいずれかに記載の中空糸膜を用いてなる中空糸膜モジュール。 The hollow fiber membrane module which uses the hollow fiber membrane in any one of Claims 1-3. 請求項4に記載の中空糸膜モジュールを有してなる膜ろ過装置。 A membrane filtration apparatus comprising the hollow fiber membrane module according to claim 4. 請求項5に記載の膜ろ過装置を用いて被処理水から透過水を得る水処理方法。 A water treatment method for obtaining permeate from treated water using the membrane filtration device according to claim 5.
JP2005053036A 2005-02-28 2005-02-28 Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method Pending JP2006231274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053036A JP2006231274A (en) 2005-02-28 2005-02-28 Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053036A JP2006231274A (en) 2005-02-28 2005-02-28 Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method

Publications (2)

Publication Number Publication Date
JP2006231274A true JP2006231274A (en) 2006-09-07
JP2006231274A5 JP2006231274A5 (en) 2008-05-01

Family

ID=37039499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053036A Pending JP2006231274A (en) 2005-02-28 2005-02-28 Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method

Country Status (1)

Country Link
JP (1) JP2006231274A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117740A1 (en) * 2007-03-23 2008-10-02 Kureha Corporation Vinylidene fluoride resin hollow-fiber porous membrane and process for production of the same
JP2008253922A (en) * 2007-04-05 2008-10-23 Asahi Kasei Chemicals Corp Method for filtering suspension water
JP2010535616A (en) * 2007-08-08 2010-11-25 アクア ソリューション インターナショナル ナームロゼ フェンノートシャップ Capillary membrane filter with manually operated backwash pump
JP2013031832A (en) * 2011-07-06 2013-02-14 Mitsubishi Rayon Co Ltd Method for manufacturing porous membrane, and microfiltration membrane
CN111051246A (en) * 2017-09-07 2020-04-21 旭化成株式会社 Filtration method using porous membrane
WO2024070989A1 (en) * 2022-09-30 2024-04-04 東レ株式会社 Separation membrane, method for manufacturing same, filtration method, and membrane filtration device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599934A (en) * 1979-01-26 1980-07-30 Asahi Chem Ind Co Ltd Preparation of porous vinylidene fluoride resin membrane
JPS5656202A (en) * 1979-10-15 1981-05-18 Asahi Chem Ind Co Ltd Hollow porous membrane yarn made of polyvinylidene fluoride type resin
JPH03284326A (en) * 1990-03-29 1991-12-16 Kuraray Co Ltd Porous hollow fiber membrane
WO2001053213A1 (en) * 2000-01-18 2001-07-26 Asahi Kasei Kabushiki Kaisha Method for purifying suspended water by membrane filtration
WO2003106545A1 (en) * 2002-06-14 2003-12-24 東レ株式会社 Porous membrane and method of manufacturing the porous membrane
JP2004202438A (en) * 2002-12-26 2004-07-22 Toray Ind Inc Porous membrane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599934A (en) * 1979-01-26 1980-07-30 Asahi Chem Ind Co Ltd Preparation of porous vinylidene fluoride resin membrane
JPS5656202A (en) * 1979-10-15 1981-05-18 Asahi Chem Ind Co Ltd Hollow porous membrane yarn made of polyvinylidene fluoride type resin
JPH03284326A (en) * 1990-03-29 1991-12-16 Kuraray Co Ltd Porous hollow fiber membrane
WO2001053213A1 (en) * 2000-01-18 2001-07-26 Asahi Kasei Kabushiki Kaisha Method for purifying suspended water by membrane filtration
WO2003106545A1 (en) * 2002-06-14 2003-12-24 東レ株式会社 Porous membrane and method of manufacturing the porous membrane
JP2004202438A (en) * 2002-12-26 2004-07-22 Toray Ind Inc Porous membrane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117740A1 (en) * 2007-03-23 2008-10-02 Kureha Corporation Vinylidene fluoride resin hollow-fiber porous membrane and process for production of the same
JP2008253922A (en) * 2007-04-05 2008-10-23 Asahi Kasei Chemicals Corp Method for filtering suspension water
JP2010535616A (en) * 2007-08-08 2010-11-25 アクア ソリューション インターナショナル ナームロゼ フェンノートシャップ Capillary membrane filter with manually operated backwash pump
JP2013031832A (en) * 2011-07-06 2013-02-14 Mitsubishi Rayon Co Ltd Method for manufacturing porous membrane, and microfiltration membrane
CN111051246A (en) * 2017-09-07 2020-04-21 旭化成株式会社 Filtration method using porous membrane
CN111051246B (en) * 2017-09-07 2022-07-05 旭化成株式会社 Filtration method using porous membrane
WO2024070989A1 (en) * 2022-09-30 2024-04-04 東レ株式会社 Separation membrane, method for manufacturing same, filtration method, and membrane filtration device

Similar Documents

Publication Publication Date Title
US8931647B2 (en) Highly durable porous PVDF film, method of producing the same and washing method and filtration method using the same
JP5062798B2 (en) Method for producing hollow fiber membrane
JP4626319B2 (en) Porous membrane, method for producing the same, and solid-liquid separator
JP5066810B2 (en) Polymer separation membrane and production method thereof
AU2006346599B2 (en) Fluororesin polymer separation membrane and process for producing the same
JP2010094670A (en) Polyvinylidene fluoride-based multiple membrane and method for producing the same
JP5050499B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
JP2006231274A (en) Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method
WO2019066061A1 (en) Porous hollow fiber membrane and method for producing same
JP5109263B2 (en) Fluororesin polymer separation membrane and method for producing the same
JP3317975B2 (en) Polyacrylonitrile hollow fiber filtration membrane
JP2008036559A (en) Method of oxidization processing fluororesin-based polymer separation membrane
JPWO2009119373A1 (en) Hollow fiber membrane and method for producing the same
JP2015110212A (en) Hollow fiber membrane for microfiltration
WO2020100763A1 (en) Filtration method in which porous membrane is used
JP3979751B2 (en) Method for filtering oxidant-containing water
JP4380380B2 (en) Method for producing liquid separation membrane
JPWO2019049857A1 (en) Filtration method using porous membrane
JP2008036574A (en) Membrane module and water-treating method
JPH1177041A (en) Removal of microorganism from water
JP2007283288A (en) Porous membrane and its manufacturing method
JP2007117933A (en) Manufacturing method of composite separation membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308