JP2008253922A - Method for filtering suspension water - Google Patents

Method for filtering suspension water Download PDF

Info

Publication number
JP2008253922A
JP2008253922A JP2007099631A JP2007099631A JP2008253922A JP 2008253922 A JP2008253922 A JP 2008253922A JP 2007099631 A JP2007099631 A JP 2007099631A JP 2007099631 A JP2007099631 A JP 2007099631A JP 2008253922 A JP2008253922 A JP 2008253922A
Authority
JP
Japan
Prior art keywords
layer
hollow fiber
fiber membrane
cross
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007099631A
Other languages
Japanese (ja)
Inventor
Hirokazu Fujimura
宏和 藤村
Masatoshi Hashino
昌年 橋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2007099631A priority Critical patent/JP2008253922A/en
Publication of JP2008253922A publication Critical patent/JP2008253922A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for filtering suspension water, which achieves cost reduction and stable long-term operation. <P>SOLUTION: A module is used in which many porous multilayer hollow fiber membranes are integrated and housed. The porous multilayer hollow fiber membrane has at least two layers on the inside and outside thereof and consists of a thermoplastic resin. At least one layer (A) of the two layers has an isotropic and three-dimensional network structure and pores on the surface thereof the pore size of which is 0.6-1.4 times as large as that of central pores in the cross section and the other layer (B) of two layers has pores on the surface thereof the pore size of which is less than one-half of that of central pores in the cross section. The suspension water is made to flow from the surface of the layer (B) toward that of the layer (A) and filtered. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、河川水や湖沼水や伏流水等の上水、工業用水、下水、下水二次処理水、工業排水、家庭排水、し尿、海水等の、懸濁水を濾過する方法に関する。懸濁水には活性汚泥も含まれる。   The present invention relates to a method for filtering suspended water, such as river water, lake water, underground water, and the like, industrial water, sewage, secondary sewage water, industrial wastewater, domestic wastewater, human waste, seawater, and the like. Suspended water also includes activated sludge.

近年、懸濁水の濾過方法として、処理水の安全性向上や設備の省スペース化という利点を持つ多孔性中空糸膜による濾過方法が広く普及しつつある。多孔性中空糸膜には、クリプトスポリジウムなどのバクテリアや濁質成分を確実に除去できる高い阻止性能、大量の水を処理するための高い透水性能、薬品洗浄や高い運転圧力を含む幅広い運転条件で長期間使用できる高い強度、の3つの性能が要求される。さらには、被処理液に含まれることがある細かい砂や凝集物などによる表面磨耗にも耐える耐磨耗性が要求されることもある。
これらの要求に関して多くの研究がなされている。代表例の1つが膜厚方向の孔径変化が小さい比較的均質な3次元網目構造を有する膜であり、高強度の中空糸膜が得られる(例えば特許文献1参照)。しかしながら、この膜は、必要阻止性能を決定する表面孔径に対して膜内部の孔径がほとんど変わらないため、膜に一定の阻止性能を持たせると。膜全体としての透水抵抗が大きくなって透水性が低くなってしまう。
In recent years, a filtration method using a porous hollow fiber membrane having advantages of improving the safety of treated water and saving the space of equipment has been widely used as a filtration method for suspended water. Porous hollow fiber membranes have a wide range of operating conditions including high blocking performance that can reliably remove bacteria such as Cryptosporidium and turbid components, high water permeability for treating large amounts of water, chemical cleaning and high operating pressure. Three performances of high strength that can be used for a long time are required. Furthermore, wear resistance that can withstand surface wear due to fine sand or agglomerates that may be contained in the liquid to be treated may be required.
Much research has been done on these requirements. One representative example is a membrane having a relatively homogeneous three-dimensional network structure in which the change in pore diameter in the film thickness direction is small, and a high-strength hollow fiber membrane can be obtained (see, for example, Patent Document 1). However, since this membrane has almost no change in the pore diameter inside the membrane with respect to the surface pore diameter that determines the necessary blocking performance, the membrane has a certain blocking performance. The water permeability resistance as a whole film becomes large and the water permeability becomes low.

代表例のもう一つが、膜厚方向に連続的に孔径が大きくなっていく構造である。この構造では、高透水性は達成できるが、膜全体の機械的強度、すなわち耐破裂強度や耐圧縮強度といった機械的強度が著しく低下してしまう。
また、小孔径の阻止層と大孔径の強度支持層とを貼り合わせることで、高い阻止性能と高い透水性能とを併せ持つ多孔性多層中空糸膜を得るアイデアは、例えば特許文献3に開示されている。具体的にはポリエチレン等の結晶性熱可塑性樹脂に溶剤は加えずに溶融押出しを行い中空糸状押出物を延伸開孔法により多孔性多層中空糸膜とする製法が開示されている。延伸開孔法とは中空糸状押出物の長手方向に高倍率延伸を行うことでラメラ結晶スタックを開裂させて開孔させて多孔膜を作製する方法である(非特許文献1)。特許文献1では、同心円状に配置された2つの円環状ノズルから別々に相異なるmI(メルトインデックス)値を持つ結晶性熱可塑性樹脂を溶融押出しを行っている。その理由は、mI値が異なる即ち通常は分子量が異なる樹脂は延伸開孔させると異なる孔径になる性質を利用するためである。この結果、中空糸膜の外層と内層との孔径が異なる多孔性2層中空糸膜が得られる。しかしながら、この製法は、以下のような難点があり、高強度の多孔性多層中空糸膜を得ることができなかった。
Another representative example is a structure in which the hole diameter continuously increases in the film thickness direction. With this structure, high water permeability can be achieved, but the mechanical strength of the entire membrane, that is, mechanical strength such as burst resistance and compression strength is significantly reduced.
An idea of obtaining a porous multilayer hollow fiber membrane having both high blocking performance and high water permeability by bonding a small pore blocking layer and a large pore strength support layer is disclosed in, for example, Patent Document 3. Yes. Specifically, a production method is disclosed in which a hollow thermoplastic extrudate is made into a porous multilayer hollow fiber membrane by a stretch opening method by melt extrusion without adding a solvent to a crystalline thermoplastic resin such as polyethylene. The stretch opening method is a method in which a lamellar crystal stack is cleaved and opened by performing high-strength stretching in the longitudinal direction of the hollow fiber-like extrudate (Non-patent Document 1). In Patent Document 1, crystalline thermoplastic resins having different mI (melt index) values are separately melt-extruded from two annular nozzles arranged concentrically. This is because resins having different mI values, that is, usually having different molecular weights, take advantage of the property of having different pore diameters when stretched and opened. As a result, a porous two-layer hollow fiber membrane in which the pore diameters of the outer layer and the inner layer of the hollow fiber membrane are different is obtained. However, this production method has the following disadvantages, and a high-strength porous multilayer hollow fiber membrane cannot be obtained.

(1)高倍率延伸により延伸軸方向の強度は強くなる。しかし濾過を行う上で肝心の、延伸軸とは垂直方向の強度である破裂強度および圧縮強度はむしろ低下しやすい
(2)原理上、外層と内層とでは分子量やポリマー種を変えざるを得ない。しかし分子量やポリマー種によって通常耐薬品性や機械的強度等の必要物性は異なる。そのため強度の低い樹脂を用いた場合、膜全体の強度が低下する
等の難点があり、高強度の膜を得ることができなかった。また、この製法で得られる膜の構造は、膜厚方向の孔径と比べて中空糸長手方向の孔径が大孔径化した構造であるために、破裂強度および圧縮強度が低い膜になってしまう。
(1) The strength in the direction of the stretching axis is increased by high-strength stretching. However, when performing filtration, the burst strength and compressive strength, which are the strength in the direction perpendicular to the stretch axis, are rather likely to decrease. (2) In principle, the molecular weight and polymer type must be changed between the outer layer and the inner layer. . However, the required physical properties such as chemical resistance and mechanical strength usually differ depending on the molecular weight and polymer type. Therefore, when a low-strength resin is used, there are difficulties such as a decrease in the strength of the entire film, and a high-strength film cannot be obtained. Moreover, the structure of the membrane obtained by this production method is a structure in which the pore diameter in the longitudinal direction of the hollow fiber is larger than the pore diameter in the film thickness direction, so that the membrane has a low burst strength and compressive strength.

昨今、多孔性濾過膜、特に単位容積当たりの充填膜面積を大きくできる中空糸濾過膜の用途が急速に拡大しており、高強度、高阻止性能、高透水性の3つをさらに高いレベルでバランスさせた中空糸膜の出現が望まれている。さらには、耐摩耗性にも優れた中空糸膜の出現が望まれている。
特開平3−215535号公報 特開2001−157827号公報 特開昭60−139815号公報 プラスチック・機能性高分子材料事典編集委員会、「プラスチック・機能性高分子材料事典」、産業調査会、2004年2月、672−679」頁
Recently, the use of porous filtration membranes, especially hollow fiber filtration membranes that can increase the area of the packing membrane per unit volume, has been rapidly expanding, and the three levels of high strength, high blocking performance, and high water permeability are at a higher level. The appearance of a balanced hollow fiber membrane is desired. Furthermore, the appearance of a hollow fiber membrane excellent in wear resistance is desired.
JP-A-3-215535 Japanese Patent Laid-Open No. 2001-157827 JP 60-139815 A Editorial Committee for Encyclopedia of Plastics and Functional Polymer Materials, “Encyclopedia of Plastics and Functional Polymer Materials”, Industry Research Committee, February 2004, 672-679

本発明は、懸濁水の濾過において、低コストかつ安定長期運転が可能となる濾過方法に関する。   The present invention relates to a filtration method that enables low-cost and stable long-term operation in filtration of suspended water.

本発明者らは、上記課題を解決するために、鋭意検討を重ねた結果、懸濁水を、内外少なくとも2層からなる多孔性中空糸膜であって、熱可塑性樹脂からなり、前記2層のうちの少なくとも1層(A)は、等方的な三次元網目構造を有して、かつ表面孔径が断面孔径の0.6倍から1.4倍であり、前記2層の他の1層(B)は、表面孔径が断面孔径の1/2未満であることを特徴とする多孔性中空糸膜を用いて濾過をおこなうことが、高い処理水質、高い処理水量、長期間使用できる耐久性、を高いレベルでバランスさせるために有効であることを見出し、本発明に至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, the suspended water is a porous hollow fiber membrane composed of at least two layers inside and outside, and is composed of a thermoplastic resin. At least one of the layers (A) has an isotropic three-dimensional network structure, and the surface hole diameter is 0.6 to 1.4 times the cross-sectional hole diameter. (B) has a high treated water quality, a high treated water amount, and durability that can be used for a long period of time by performing filtration using a porous hollow fiber membrane whose surface pore diameter is less than ½ of the sectional pore diameter. Has been found to be effective for balancing at a high level, leading to the present invention.

すなわち本発明は、
(1)懸濁水を、内外少なくとも2層からなる多孔性多層中空糸膜であって、熱可塑性樹脂からなり、該2層のうちの少なくとも1層(A)は、等方的な三次元網目構造を有して、かつ表面孔径が断面中央孔径の0.6倍から1.4倍であり、該2層の他の1層(B)は、表面孔径が断面中央孔径の1/2未満であることを特徴とする多孔性多層中空糸膜を多数本集積し収納したモジュールを用いて1層(B)の表面から1層(A)の表面へ向けて濾過することを特徴とする濾過方法、および、
(2)前記多孔性中空糸膜の該1層(B)が、等方的な三次元網目構造を有することを特徴とする(1)記載の濾過方法、および、
(3)前記多孔性中空糸膜の該1層(B)の表面孔径が、0.01μm以上5μm未満であることを特徴とする(1)もしくは(2)記載の濾過方法、および、
(4)前記多孔性中空糸膜の該断面中央孔径が、0.1μm以上10μm以下であることを特徴とする(1)から(3)のいずれかに記載の濾過方法、および、
(5)前記多孔性中空糸膜の該1層(B)の表面開孔率が、20%以上80%以下であることを特徴とする請求項1から4のいずれかに記載の濾過方法、および、
(6)前記多孔性中空糸膜の該1層(B)の厚みが、膜厚の1/100以上40/100以下であることを特徴とする(1)から(5)のいずれかに記載の濾過方法、および、
(7)前記多孔性中空糸膜の該1層(A)および該1層(B)の等方率が共に80%以上であることを特徴とする(1)から(6)のいずれかに記載の濾過方法、および、
(8)前記多孔性中空糸膜の膜厚の外表面から内表面の位置による平均孔径の変化量を表す値であるパラメーターQが−0.2≦Q≦0.2となるQの個数が、全平均孔径測定値数に対し80%以上であることを特徴とする(1)から(7)のいずれかに記載の濾過方法、および、
(9)前記多孔性中空糸膜の該熱可塑性樹脂が、ポリオレフィンおよびポリフッ化ビニリデンから選ばれたものであることを特徴とする(1)から(8)のいずれかに記載の濾過方法、および、
(10)前記多孔性中空糸膜の内径が0.4mm以上5mm以下、膜厚が0.2mm以上1mm以下であることを特徴とする(1)から(9)のいずれかに記載の濾過方法、
である。
That is, the present invention
(1) A porous multi-layer hollow fiber membrane comprising at least two layers of suspended water, comprising a thermoplastic resin, and at least one of the two layers (A) is an isotropic three-dimensional network. It has a structure and the surface hole diameter is 0.6 to 1.4 times the cross-sectional central hole diameter, and the other layer (B) of the two layers has a surface hole diameter of less than ½ of the cross-sectional central hole diameter Filtration characterized by filtering from the surface of one layer (B) to the surface of one layer (A) using a module in which a large number of porous multilayer hollow fiber membranes are collected and stored Method and
(2) The filtration method according to (1), wherein the one layer (B) of the porous hollow fiber membrane has an isotropic three-dimensional network structure, and
(3) The filtration method according to (1) or (2), wherein the surface pore diameter of the one layer (B) of the porous hollow fiber membrane is 0.01 μm or more and less than 5 μm, and
(4) The filtration method according to any one of (1) to (3), wherein the cross-sectional central pore diameter of the porous hollow fiber membrane is 0.1 μm or more and 10 μm or less, and
(5) The filtration method according to any one of claims 1 to 4, wherein the surface porosity of the one layer (B) of the porous hollow fiber membrane is 20% or more and 80% or less. and,
(6) The thickness of the one layer (B) of the porous hollow fiber membrane is 1/100 or more and 40/100 or less of the film thickness, according to any one of (1) to (5) Filtration method and
(7) In any one of (1) to (6), the isotropic ratio of the one layer (A) and the one layer (B) of the porous hollow fiber membrane is 80% or more. The filtration method described, and
(8) The number of Qs where the parameter Q, which is a value representing the amount of change in the average pore diameter depending on the position of the inner surface from the outer surface of the porous hollow fiber membrane, is −0.2 ≦ Q ≦ 0.2. The filtration method according to any one of (1) to (7), characterized in that it is 80% or more based on the total average pore diameter measurement value, and
(9) The filtration method according to any one of (1) to (8), wherein the thermoplastic resin of the porous hollow fiber membrane is selected from polyolefins and polyvinylidene fluoride, and ,
(10) The filtration method according to any one of (1) to (9), wherein the porous hollow fiber membrane has an inner diameter of 0.4 mm to 5 mm and a film thickness of 0.2 mm to 1 mm. ,
It is.

本発明により、懸濁水の濾過において、低コストかつ安定長期運転が可能となる。   According to the present invention, low-cost and stable long-term operation is possible in filtration of suspended water.

以下、本発明につき、具体的かつ詳細に説明する。
本発明での懸濁水は微粒子が懸濁した水であって、河川水や湖沼水や伏流水等の上水、工業用水、下水、下水二次処理水、工業排水、家庭排水、し尿、海水等が相当する。懸濁水には活性汚泥も含まれる。
本発明の濾過方法に用いる多孔性中空糸膜は、少なくとも2層を有する熱可塑性樹脂から成る多層膜である。
以下、多孔性2層中空糸膜の模式図(図1参照)を例に、本願の多孔性多層中空糸膜を説明する。
Hereinafter, the present invention will be described specifically and in detail.
Suspended water in the present invention is water in which fine particles are suspended, such as river water, lake water, underground water, etc., industrial water, sewage, sewage secondary treated water, industrial wastewater, domestic wastewater, human waste, seawater Etc. Suspended water also includes activated sludge.
The porous hollow fiber membrane used in the filtration method of the present invention is a multilayer membrane made of a thermoplastic resin having at least two layers.
Hereinafter, the porous multilayer hollow fiber membrane of the present application will be described by taking a schematic diagram of the porous two-layer hollow fiber membrane (see FIG. 1) as an example.

2層のうち大きい孔径を有する層を1層(A)、小さい孔径を有する層を1層(B)とする。また1層(A)を内層、1層(B)を外層として説明する。しかし本願発明はこれによって限定されるものではない。例えば1層(A)、1層(B)の間に別の層が存在していても良いし、1層(A)や1層(B)に他の層が積層されていても良い。
図1(1)は、1層(A)および1層(B)が共に等方的な三次元網目構造である場合の膜厚方向の孔径変化を示す図であり、図1(2)は、1層(B)が異方的な三次元網目構造である場合の孔径変化を示す図であり、図1(3)は図1(1)の外表面側に孔径が小さい層、すなわちスキン層が形成されている場合の孔径変化を示す図である。図1(1)から(3)にそれぞれの中空糸膜断面の膜厚と断面孔径の関係を表すグラフを示す。グラフの縦軸は断面中央孔径に対する、各断面における孔径の比、横軸は全膜厚を1として、外表面から膜厚方向へ進んだ位置の間の距離を表示している。表面の摩耗が生じても阻止性能が変化しにくいため、1層(A)および(B)共に、等方的な三次元網目構造とするのが好ましい。
Of the two layers, a layer having a large pore size is defined as one layer (A), and a layer having a small pore size is defined as one layer (B). In addition, one layer (A) will be described as an inner layer and one layer (B) as an outer layer. However, the present invention is not limited to this. For example, another layer may exist between one layer (A) and one layer (B), or another layer may be laminated on one layer (A) or one layer (B).
FIG. 1 (1) is a diagram showing a change in pore diameter in the film thickness direction when both the first layer (A) and the first layer (B) have an isotropic three-dimensional network structure, and FIG. FIG. 1B is a diagram showing changes in pore diameter when one layer (B) has an anisotropic three-dimensional network structure, and FIG. 1 (3) is a layer having a small pore diameter on the outer surface side of FIG. It is a figure which shows the hole diameter change in case the layer is formed. The graph showing the relationship between the film thickness of each hollow fiber membrane cross section and the cross-sectional pore diameter is shown in FIGS. In the graph, the vertical axis represents the ratio of the hole diameter in each cross section to the cross-sectional central hole diameter, and the horizontal axis represents the distance between the positions proceeding from the outer surface in the film thickness direction, assuming that the total film thickness is 1. Even if surface wear occurs, the blocking performance is unlikely to change, and it is preferable that both layers (A) and (B) have an isotropic three-dimensional network structure.

2層のうちの1層(A)は、いわゆる支持層である。この支持層は耐圧性能等の高い機械的強度を担保すると共に、透水性をできるだけ低下させない機能を有する。
この1層(A)は、等方的な三次元網目構造を有する。ここでいう等方的とは、膜厚方向及び膜円周方向及び膜長手方向のいずれに関しても、孔径の変化が小さく、ほぼ均質な構造であることを意味する。等方的な構造とは、マクロボイド等の強度的に弱い部分が生じにくい構造である。よって多孔性多層中空糸膜の透水性を維持しながら、耐圧性能等の機械的強度を高くすることが可能になる。
One of the two layers (A) is a so-called support layer. This support layer has a function to ensure high mechanical strength such as pressure resistance and to reduce water permeability as much as possible.
This one layer (A) has an isotropic three-dimensional network structure. The term “isotropic” as used herein means that the change in pore diameter is small and the structure is almost homogeneous in any of the film thickness direction, the film circumferential direction, and the film longitudinal direction. An isotropic structure is a structure in which weak portions such as macrovoids are not easily generated. Accordingly, it is possible to increase the mechanical strength such as pressure resistance while maintaining the water permeability of the porous multilayer hollow fiber membrane.

また、本願で言う三次元網目構造とは、模式的には図2で表したような構造を指す。熱可塑性樹脂aが接合して網目を形成し、空隙部bが形成されていることがわかる。また実施例1で得られた実際の多孔性2層中空糸膜における等方的な三次元網目構造の顕微鏡写真の一例を図10に示す。網目を形成する熱可塑性樹脂の太さはほぼ一定である。この三次元網目構造では、図3で模式的に示されるような、いわゆる球晶構造の樹脂の塊状物がほとんど見られない。三次元網目構造の空隙部は、熱可塑性樹脂に囲まれており、空隙部の各部分は互いに連通している。用いられた熱可塑性樹脂のほとんどが、中空糸膜の強度に寄与しうる三次元網目構造を形成しているので、高い強度の支持層を形成することが可能になる。また、耐薬品性も向上する。耐薬品性が向上する理由は明確ではないが、強度に寄与しうる網目を形成する熱可塑性樹脂の量が多いため、網目の一部が薬品に侵されても、層全体としての強度には大きな影響が及ばないためではないかと考えられる。一方、図3で模式的に示されるような、いわゆる球晶構造では、塊状物に樹脂が集まっているため相対的に強度に寄与する熱可塑性樹脂の量が少ないため、一部が薬品に侵されると層全体の強度に影響が及びやすいのではないかと考えられる。参考のため、球晶構造の模式図を図3に示す。図3では、球晶cが部分的に密集しており、その球晶cの密集部分間の間隙が空隙部dであることがわかる。   Further, the three-dimensional network structure referred to in the present application schematically indicates a structure as shown in FIG. It can be seen that the thermoplastic resin a is joined to form a mesh, and the void b is formed. An example of a micrograph of an isotropic three-dimensional network structure in the actual porous two-layer hollow fiber membrane obtained in Example 1 is shown in FIG. The thickness of the thermoplastic resin forming the mesh is substantially constant. In this three-dimensional network structure, a lump of resin having a so-called spherulite structure as schematically shown in FIG. 3 is hardly seen. The void portion of the three-dimensional network structure is surrounded by a thermoplastic resin, and each portion of the void portion communicates with each other. Since most of the used thermoplastic resins form a three-dimensional network structure that can contribute to the strength of the hollow fiber membrane, a high-strength support layer can be formed. In addition, chemical resistance is improved. The reason for the improvement in chemical resistance is not clear, but the amount of thermoplastic resin that forms a network that can contribute to the strength is large. This may be because it does not have a major impact. On the other hand, in the so-called spherulite structure schematically shown in FIG. 3, since the resin is gathered in the lump, the amount of the thermoplastic resin that contributes to the strength is relatively small, so that a part thereof is affected by the chemical. It is thought that the strength of the entire layer is likely to be affected. For reference, a schematic diagram of the spherulite structure is shown in FIG. In FIG. 3, it can be seen that the spherulites c are partially dense, and the gaps between the dense parts of the spherulites c are voids d.

1層(A)の表面孔径は、断面中央孔径の0.6倍以上1.4倍以下である。1層(A)の表面孔径が断面中央孔径の0.6倍以上1.4倍以下であるのは、1層(A)が等方的な三次元網目構造を有することと整合している。0.6倍以上であれば支持層表面での濾過抵抗が大きくなりすぎず、膜全体として実用上十分な高透水性を発現できる。また1.4倍以下であれば高い機械的強度を発現できる。
中空糸膜は、メッシュ状の金属やプラスチック等の支持体上に載せて使用することが一般的である平膜とは異なり、膜自身で濾過圧に耐える強度を発現する必要がある。よって、特に濾過方向に対する強度、すなわち破裂強度および圧縮強度を発現できる膜構造設計が重要である。断面中央付近から中空糸内表面側への孔径の増大を抑止することで、低濾過抵抗と高圧縮強度を両立させることができる。膜断面方向の孔径をこのように制御することにより、高いレベルで阻止性能、機械的強度、透水性のバランスをとることが可能になる。1層(A)の表面孔径は、好ましくは断面中央孔径の0.7倍から1.3倍であり、さらに好ましくは0.8倍から1.2倍である。
The surface pore diameter of one layer (A) is not less than 0.6 times and not more than 1.4 times the central hole diameter of the cross section. The fact that the surface pore diameter of one layer (A) is not less than 0.6 times and not more than 1.4 times the central hole diameter of the cross section is consistent with the fact that one layer (A) has an isotropic three-dimensional network structure. . If it is 0.6 times or more, the filtration resistance on the surface of the support layer does not become too large, and the membrane as a whole can exhibit practically sufficient high water permeability. Moreover, if it is 1.4 times or less, high mechanical strength can be expressed.
Unlike a flat membrane that is generally used on a support made of a mesh-like metal or plastic, the hollow fiber membrane needs to exhibit strength that can withstand filtration pressure. Therefore, it is particularly important to design a membrane structure that can exhibit strength in the filtration direction, that is, burst strength and compressive strength. By suppressing the increase in the hole diameter from the vicinity of the center of the cross section toward the inner surface of the hollow fiber, both low filtration resistance and high compressive strength can be achieved. By controlling the pore diameter in the membrane cross-sectional direction in this way, it becomes possible to balance the blocking performance, mechanical strength, and water permeability at a high level. The surface pore diameter of one layer (A) is preferably 0.7 to 1.3 times, more preferably 0.8 to 1.2 times the central hole diameter of the cross section.

なお、ここにいう1層(A)の表面孔径とは、中空糸膜を外部から観察する場合に、1層(A)が露出している表面に観察される孔の平均孔径を言う。この平均孔径は、以下のようにして測定する。まず走査型電子顕微鏡を用い、多孔性多層中空糸膜の1層(A)が露出している表面を、極力多数の孔の形状が明確に確認できる程度の倍率で撮影する。次に、その写真上で、縦横方向に直交するように各5本の線をほぼ均等な間隔で引き、それらの線が写真中の孔を横切る長さを測定する。そして、それらの測定値の算術平均値を求め、これを平均孔径としている。孔径測定の精度を上げるために、縦横計10本の線が横切る孔径の数は20個以上とするのが好ましい。孔径が0.1μmから1μm程度であれば、5000倍程度の倍率の電子顕微鏡画像を用いるのが適当である。   In addition, the surface pore diameter of 1 layer (A) here means the average hole diameter of the hole observed on the surface which 1 layer (A) exposes when observing a hollow fiber membrane from the outside. This average pore diameter is measured as follows. First, using a scanning electron microscope, the surface on which one layer (A) of the porous multilayer hollow fiber membrane is exposed is photographed at a magnification such that the shape of a large number of holes can be clearly confirmed as much as possible. Next, on the photograph, five lines are drawn at almost equal intervals so as to be orthogonal to the vertical and horizontal directions, and the length of these lines across the hole in the photograph is measured. And the arithmetic average value of those measured values is calculated | required, and this is made into the average hole diameter. In order to increase the accuracy of the hole diameter measurement, it is preferable that the number of hole diameters traversed by the 10 lines in the vertical and horizontal directions is 20 or more. If the pore diameter is about 0.1 μm to 1 μm, it is appropriate to use an electron microscope image with a magnification of about 5000 times.

また、ここにいう断面中央孔径とは、多孔性多層中空糸膜を長さ方向に垂直な断面で切断した場合の断面において、膜厚の中央位置から、全膜厚の10%の範囲内で任意の倍率で走査型電子顕微鏡写真を撮影し、この写真を用いて上記の平均孔径と同様にして孔径の算術平均値を求めたものである。断面中央孔径は、具体的には、0.1μm以上10μm以下であることが好ましい。この範囲で望ましい透水性と機械的強度の良いバランスをとることができる。より好ましくは0.3μm以上8μm以下、さらに好ましくは0.6μm以上6μm以下、さらに好ましくは0.8μm以上4μm以下である。
1層(B)の表面における開孔率は、目的により適宜定めれば良く特に限定されないが、懸濁物質等を含む被処理液の濾過安定性の観点からは20%以上であることが好ましく、より好ましくは23%以上、さらに好ましくは25%以上である。なお、表面部分の機械的強度の観点を高める観点からは、開孔率は80%以下であることが好ましい。より好ましくは60%以下であり、さらに好ましくは50%以下である。開孔率は、例えば、国際公開公報PCT/WO01/53213 A1に記載されているように、電子顕微鏡画像のコピーの上に透明シートを重ね、黒いペン等を用いて孔部分を黒く塗り潰し、その後透明シートを白紙にコピーすることにより、孔部分は黒、非孔部分は白と明確に区別し、その後に市販の画像解析ソフトを利用して求めることができる。
In addition, the cross-sectional central pore diameter referred to here is within a range of 10% of the total film thickness from the central position of the film thickness in the cross section when the porous multilayer hollow fiber membrane is cut in a cross section perpendicular to the length direction. A scanning electron micrograph was taken at an arbitrary magnification, and the arithmetic average value of the pore diameter was obtained using this photograph in the same manner as the above average pore diameter. Specifically, the cross-sectional central hole diameter is preferably 0.1 μm or more and 10 μm or less. A desirable balance between water permeability and mechanical strength can be achieved within this range. More preferably, they are 0.3 micrometer or more and 8 micrometers or less, More preferably, they are 0.6 micrometer or more and 6 micrometers or less, More preferably, they are 0.8 micrometer or more and 4 micrometers or less.
The porosity of the surface of the single layer (B) is not particularly limited as long as it is appropriately determined depending on the purpose, but is preferably 20% or more from the viewpoint of filtration stability of the liquid to be treated containing suspended substances. More preferably, it is 23% or more, and further preferably 25% or more. From the viewpoint of increasing the mechanical strength of the surface portion, the porosity is preferably 80% or less. More preferably, it is 60% or less, More preferably, it is 50% or less. For example, as described in International Publication No. PCT / WO01 / 53213 A1, the aperture ratio is obtained by overlaying a transparent sheet on a copy of an electron microscope image, painting the hole portion black using a black pen, etc. By copying the transparent sheet onto white paper, the hole portion is clearly distinguished from black and the non-hole portion is clearly distinguished from white, and thereafter, it can be obtained using commercially available image analysis software.

2層のうちのもう一つの1層(B)は、いわゆる阻止層である。小さい表面孔径により被処理液中に含まれる異物の膜透過を阻止する機能を発揮する。ここに言う1層(B)の表面孔径とは、中空糸膜を外部から観察する場合に、1層(B)が露出している表面に観察される孔の平均孔径を言う。1層(B)の表面孔径の測定は、1層(A)の表面孔径の測定と同じようにして走査型電子顕微鏡写真を用いて行えばよい。なお、1層(B)の具体的な表面孔径は、0.01μm以上5μm未満であることが好ましい。0.01μm以上であれば、緻密表面の濾過抵抗が小さく、実用上十分な透水性を発現しやすい。また、5μm以下であれば、濾過膜の重要な要求機能である除濁性能の発現が可能になる。より好ましくは0.05μm以上2μm以下、さらに好ましくは0.05μm以上0.5μm以下、もっとも好ましくは0.1μm以上0.5μm以下である。   The other one of the two layers (B) is a so-called blocking layer. A small surface pore diameter exerts a function of blocking the permeation of foreign substances contained in the liquid to be treated. The surface pore diameter of the first layer (B) mentioned here refers to the average pore diameter of the holes observed on the surface where the first layer (B) is exposed when the hollow fiber membrane is observed from the outside. The measurement of the surface pore diameter of one layer (B) may be performed using a scanning electron micrograph in the same manner as the measurement of the surface pore diameter of one layer (A). In addition, it is preferable that the specific surface pore diameter of 1 layer (B) is 0.01 micrometer or more and less than 5 micrometers. If it is 0.01 micrometer or more, the filtration resistance of a dense surface is small, and it will be easy to express practically sufficient water permeability. Moreover, if it is 5 micrometers or less, the expression of the turbidity which is an important required function of a filtration membrane will be attained. More preferably, they are 0.05 micrometer or more and 2 micrometers or less, More preferably, they are 0.05 micrometer or more and 0.5 micrometers or less, Most preferably, they are 0.1 micrometer or more and 0.5 micrometers or less.

この1層(B)は、その表面孔径が上記断面中央孔径の1/2未満である。これにより、1層(B)が望ましい阻止層として機能する。表面孔径の下限は阻止したい対象物の大きさに合わせて適宜選択すればよい。透水性を確保する観点から断面中央孔径の1/1000以上とするのが好ましい。より好ましくは断面中央孔径の1/3以下1/500以上、さらに好ましくは1/4以下1/100以上である。
1層(B)の厚みは、膜厚みの1/100以上40/100未満とするのが好ましい。このように1層(B)の厚みを比較的厚くすることで、被処理液に砂や凝集物等の不溶物が含まれていても使用可能となる。多少磨耗しても、表面孔径が変化しないからである。この厚みの範囲内であれば、望ましい阻止性能と高い透水性能のバランスがとれる。より好ましくは膜厚みの3/100以上20/100以下、さらに好ましくは5/100以上15/100以下である。
This one layer (B) has a surface pore diameter of less than ½ of the cross-sectional central hole diameter. Thereby, one layer (B) functions as a desirable blocking layer. What is necessary is just to select suitably the minimum of the surface hole diameter according to the magnitude | size of the target object to block. From the viewpoint of ensuring water permeability, it is preferable that the cross-sectional central hole diameter is 1/1000 or more. More preferably, it is 1/3 or less and 1/500 or more, more preferably 1/4 or less and 1/100 or more of the central hole diameter of the cross section.
The thickness of one layer (B) is preferably 1/100 or more and less than 40/100 of the film thickness. By making the thickness of one layer (B) relatively thick in this way, it becomes possible to use even if the liquid to be treated contains insoluble substances such as sand and aggregates. This is because the surface pore diameter does not change even when worn slightly. If it is in the range of this thickness, desirable blocking performance and high water permeability can be balanced. More preferably, the film thickness is 3/100 or more and 20/100 or less, and further preferably 5/100 or more and 15/100 or less.

また、1層(B)は、1層(A)と異なり、個々の孔の径が表面から膜内部に向けて徐々に大きくなる異方的な構造としても良い。または、1層(A)と同様に、個々の孔の径が表面からの距離によらずに均一となる等方的な構造としても良い。1層(B)の好ましい構造は、1層(A)と同様の等方的な三次元網目構造である。これにより望ましい阻止能を維持しながら中空糸膜全体の機械強度を高めることができる。
1層(A)と1層(B)の厚みは、以下のように求める。各膜厚部について、実施例の(7)に記載の方法にて各膜厚部の断面孔径を求める。断面中央から1層(B)の表面に向かって、断面中央孔径の0.7倍に最も近い孔径となる膜厚部までの厚みを両層の境界線とし、この境界線から1層(A)の表面までの距離を1層(A)の厚みとし、同様に境界線から1層(B)の表面までの距離を1層(B)の厚みとする。なお、断面中央孔径の0.7倍に最も近い孔径になる断面部が複数ある場合は、断面中央に最も近い点までを1層(A)とする。
Further, unlike the first layer (A), the first layer (B) may have an anisotropic structure in which the diameter of each hole gradually increases from the surface toward the inside of the film. Or it is good also as an isotropic structure where the diameter of each hole becomes uniform irrespective of the distance from the surface similarly to 1 layer (A). A preferable structure of one layer (B) is an isotropic three-dimensional network structure similar to that of one layer (A). Thereby, the mechanical strength of the entire hollow fiber membrane can be increased while maintaining a desirable stopping power.
The thicknesses of the first layer (A) and the first layer (B) are obtained as follows. About each film thickness part, the cross-sectional hole diameter of each film thickness part is calculated | required by the method as described in (7) of an Example. From the center of the cross section toward the surface of one layer (B), the thickness up to the film thickness portion having a hole diameter closest to 0.7 times the central hole diameter of the cross section is taken as the boundary line of both layers, and one layer (A ) Is the thickness of one layer (A), and similarly, the distance from the boundary line to the surface of one layer (B) is the thickness of one layer (B). In addition, when there are a plurality of cross-sectional portions having a hole diameter closest to 0.7 times the cross-sectional central hole diameter, one layer (A) is set up to the point closest to the cross-sectional center.

1層(A)の等方率は80%以上であることが好ましい。これは、1層(A)が極めて等方的な構造であることを意味する。80%以上であれば、高い透水性能を維持しつつ、高い強度が発現できる。1層(A)の等方率は、より好ましくは90%以上、さらに好ましくは95%以上である。
なお、1層(A)の等方率とは上記で測定した1層(A)に含まれる各膜厚部のうち、断面中央孔径の0.8倍以上1.2倍以下の断面孔径である膜厚部の数を1層(A)に含まれる膜厚部の総数で除した比率である。
また同様に、1層(B)の等方率が80%以上であることも好ましい。これは、同様に、1層(B)が極めて等方的な構造であることを意味する。80%以上であれば、高い阻止性能を発現でき、さらに1層(B)の表面が被処理液に砂や凝集物等の不溶物により磨耗した場合でも阻止性能の低下を極力抑えることができる。1層(B)の等方率は、1層(B)の厚みの1/2にあたる膜厚部における断面孔径を断面中央孔径(B)とし、1層(B)に含まれる各膜厚部のうち、断面中央孔径(B)の0.8倍以上1.2倍以下の断面孔径である膜厚部の数を1層(B)に含まれる膜厚部の総数で除した比率である。1層(B)の等方率は、より好ましくは90%以上、さらに好ましくは95%以上である。なお、1層(B)が全膜厚に対して極めて薄い場合は、1層(B)の断面孔径の点数を増やして本測定をおこなう。両層においてそれぞれ20点以上の断面孔径を測定することが適当である。
The isotropic rate of one layer (A) is preferably 80% or more. This means that one layer (A) has a very isotropic structure. If it is 80% or more, high strength can be expressed while maintaining high water permeability. The isotropic ratio of one layer (A) is more preferably 90% or more, and still more preferably 95% or more.
In addition, the isotropic ratio of one layer (A) is a cross-sectional hole diameter of 0.8 to 1.2 times the cross-sectional central hole diameter in each film thickness part included in one layer (A) measured above. It is a ratio obtained by dividing the number of film thickness parts by the total number of film thickness parts included in one layer (A).
Similarly, the isotropic rate of one layer (B) is preferably 80% or more. This also means that one layer (B) has a very isotropic structure. If it is 80% or more, high blocking performance can be expressed, and even if the surface of one layer (B) is worn out by insoluble material such as sand or agglomerates in the liquid to be treated, the decrease in blocking performance can be suppressed as much as possible. . The isotropic ratio of one layer (B) is the thickness of each layer included in one layer (B), with the cross-sectional hole diameter at the film thickness corresponding to 1/2 of the thickness of one layer (B) being the central hole diameter (B). Of these, the ratio is obtained by dividing the number of film thickness parts having a cross-sectional hole diameter of 0.8 times or more and 1.2 times or less of the center hole diameter (B) by the total number of film thickness parts included in one layer (B). . The isotropic ratio of one layer (B) is more preferably 90% or more, and still more preferably 95% or more. In addition, when one layer (B) is very thin with respect to the total film thickness, the number of points of the cross-sectional hole diameter of one layer (B) is increased and this measurement is performed. It is appropriate to measure cross-sectional pore diameters of 20 points or more in both layers.

さらに、1層(A)および1層(B)の等方率が共に80%以上であることが最も好ましい。共に80%以上であれば、阻止層と強度支持層で無駄なく構成された膜構造であるため、阻止性能、透水性能および強度のバランスが高い膜を最も好適に得ることができる。両層の等方率は、より好ましくは90%以上、さらに好ましくは95%以上、である。
本願で言う等方性は下記に示すパラメーターQで表すこともできる。
パラメーターQとは、外表面から内表面に至る膜厚の各位置における孔径の変化率を表す値である。具体的には下記のようにして求める。
膜厚の各位置での断面孔径を、外表面から内表面の位置順に並べる。
ここで、外表面孔径をD、断面孔径を外表面側から順にD、D、・・・D、内表面孔径をDとする。
Furthermore, it is most preferable that the isotropic rates of the first layer (A) and the first layer (B) are both 80% or more. If both are 80% or more, since the membrane structure is composed of the blocking layer and the strength support layer without waste, a membrane having a high balance of blocking performance, water permeability and strength can be most suitably obtained. The isotropic ratio of both layers is more preferably 90% or more, and still more preferably 95% or more.
The isotropy referred to in the present application can also be expressed by the parameter Q shown below.
The parameter Q is a value representing the change rate of the hole diameter at each position of the film thickness from the outer surface to the inner surface. Specifically, it is obtained as follows.
The cross-sectional hole diameters at each position of the film thickness are arranged in the order of the position from the outer surface to the inner surface.
Here, the outer surface pore size D 0, D 1, D 2 in order to cross the pore diameter from the outer surface side, · · · D N, the inner surface hole diameter and D i.

このときQは一般式で下記のように表される。
Q=(D−DN−1)/D
外表面孔径に関する計算をする場合は
Q=(D−D)/D
内表面孔径に関する計算をする場合は
Q=(D−D)/D
である。
本願発明の多孔性多層中空糸膜は−0.2≦Q≦0.2となるQの個数がQの全測定値数に対し80%以上であることが好ましい。より好ましくは85%以上、さらに好ましくは90%以上である。この範囲であれば、孔径がそろっている部分が膜の大部分を占めるため、阻止性能、透水性能および強度のバランスが高い膜を得ることができる。
At this time, Q is represented by the following general formula.
Q = (D N −D N−1 ) / D N
Q = (D 1 −D 0 ) / D 1 when calculating the outer surface pore diameter
Q = (D i −D N ) / D i when calculating the inner surface pore diameter
It is.
In the porous multilayer hollow fiber membrane of the present invention, the number of Q satisfying −0.2 ≦ Q ≦ 0.2 is preferably 80% or more with respect to the total number of measured values of Q. More preferably, it is 85% or more, More preferably, it is 90% or more. If it is this range, since the part with which the hole diameter is equal occupies most of a film | membrane, a film | membrane with the balance of blocking performance, water permeability performance, and intensity | strength can be obtained.

また、−0.1≦Q≦0.1となるQの個数がQの全測定値数に対し50%以上であることも好ましい。より好ましくは60%以上、さらに好ましくは70%以上である。
このパラメーターQが−0.2より小さい、又は0.2より大きい部分は膜厚位置による孔径の変化が特に大きいことが示されている。
なおこのときの外表面孔径、内表面孔径は前述の方法で測定し、断面孔径の測定は実施例の測定方法(7)により測定する。
なお、1層(A)と1層(B)は、いずれが中空糸膜の外側にあっても良く、目的に応じて適宜配置すればよいが、阻止層を中空糸膜の外側に配置することが安定した運転を長期間継続する観点から好ましい。
It is also preferable that the number of Q satisfying −0.1 ≦ Q ≦ 0.1 is 50% or more with respect to the total number of measured values of Q. More preferably, it is 60% or more, More preferably, it is 70% or more.
It is shown that the change of the hole diameter depending on the film thickness position is particularly large in the part where the parameter Q is less than −0.2 or greater than 0.2.
In addition, the outer surface hole diameter and the inner surface hole diameter at this time are measured by the above-described method, and the cross-sectional hole diameter is measured by the measuring method (7) of the example.
One layer (A) and one layer (B) may be on the outside of the hollow fiber membrane and may be appropriately arranged according to the purpose, but the blocking layer is arranged on the outside of the hollow fiber membrane. Is preferable from the viewpoint of maintaining stable operation for a long period of time.

中空糸膜の内径は0.4mm以上5mm以下が好ましい。0.4mm以上であれば中空糸膜内を流れる液体の圧損が大きくなりすぎず、5mm以下であれば比較的薄い膜厚で十分な圧縮強度や破裂強度を発現しやすい。より好ましくは0.5mm以上3mm以下であり、さらに好ましくは0.6mm以上1mm以下である。
膜厚は0.1mm以上1mm以下が好ましい。0.1mm以上であれば十分な圧縮強度や破裂強度を発現しやすく、1mm以下であれば十分な透水性能が発現しやすい。より好ましくは0.15mm以上0.8mm以下、さらに好ましくは0.2mm以上0.6mm以下である。
The inner diameter of the hollow fiber membrane is preferably 0.4 mm or more and 5 mm or less. If it is 0.4 mm or more, the pressure loss of the liquid flowing in the hollow fiber membrane does not become excessive, and if it is 5 mm or less, sufficient compressive strength and bursting strength are easily developed with a relatively thin film thickness. More preferably, they are 0.5 mm or more and 3 mm or less, More preferably, they are 0.6 mm or more and 1 mm or less.
The film thickness is preferably from 0.1 mm to 1 mm. If it is 0.1 mm or more, sufficient compressive strength and burst strength are easily developed, and if it is 1 mm or less, sufficient water permeability is easily developed. More preferably, they are 0.15 mm or more and 0.8 mm or less, More preferably, they are 0.2 mm or more and 0.6 mm or less.

このような好ましい構造の中空糸膜は、透水性能と阻止性能と機械的強度とが高いレベルでバランスしており、広い運転条件に対応しながら高い性能を発揮する。また、被処理液に濁質成分として無機成分を含んだ微粒子や有機不溶物、例えば砂や凝集物等の不溶物が含まれていても阻止性能が変化しにくく、高い耐摩耗性を有する。
本願発明の目的に対して特に好ましい膜物性は、0.2μmのユニフォームラテックス球の阻止率が95%以上、かつ、純水透水率が5000L/m/hr/0.1mPa以上、かつ、圧縮強度が0.3mPa以上の膜である。
中空糸膜を構成する熱可塑性樹脂としてはポリオレフィン或いはポリフッ化ビニリデンが膜の物性から好ましく用いられる。
The hollow fiber membrane having such a preferable structure balances water permeability performance, blocking performance and mechanical strength at a high level, and exhibits high performance while accommodating a wide range of operating conditions. Further, even if the liquid to be treated contains fine particles containing an inorganic component as a turbid component or an organic insoluble material, for example, an insoluble material such as sand or agglomerated material, the blocking performance hardly changes and has high wear resistance.
Particularly preferred film properties for the purposes of the present invention are: the blocking rate of uniform latex spheres of 0.2 μm is 95% or more, the water permeability of pure water is 5000 L / m 2 /hr/0.1 mPa or more, and compression The film has a strength of 0.3 mPa or more.
As the thermoplastic resin constituting the hollow fiber membrane, polyolefin or polyvinylidene fluoride is preferably used from the physical properties of the membrane.

また、本発明において、濁質成分が無機成分を含んだ微粒子や有機不溶物である懸濁水を濾過する際には、濾過を多数の膜を集積したモジュールを用いておこなうことができる。モジュールの形態は中空糸膜束が外筒で囲われたケーシングタイプあるいは外筒が無く中空糸膜がむきだしとなっているシェルレスタイプでも良い。また、モジュールの断面形状も円型や角型などでも良い。さらに、原水を直接膜により濾過しても良いし、あるいは凝集剤やオゾン等の酸化剤の添加を前処理としておこなった後に膜により濾過しても良い。濾過方式としては、全量濾過方式でもクロスフロー濾過方式でも良い。加圧濾過方式あるいは陰圧濾過方式でも良い。さらに、運転方法として、膜表面に堆積した被濾過物を除去する目的で用いられるエアースクラビングや逆圧洗浄を別々にこなっても良いし、同時におこなっても良い。また、逆圧洗浄に用いられる液体としては、次亜塩素酸ナトリウムや二酸化塩素、オゾン等の酸化剤等も好適に用いることができる。   In addition, in the present invention, when filtering suspended water, which is a fine particle containing an inorganic component as a turbid component or an organic insoluble matter, the filtration can be performed using a module in which a large number of membranes are integrated. The form of the module may be a casing type in which a hollow fiber membrane bundle is surrounded by an outer cylinder or a shellless type in which there is no outer cylinder and the hollow fiber membrane is exposed. Further, the cross-sectional shape of the module may be circular or square. Furthermore, the raw water may be filtered directly through a membrane, or may be filtered through a membrane after adding an oxidizing agent such as a flocculant or ozone as a pretreatment. The filtration method may be a whole amount filtration method or a cross flow filtration method. A pressure filtration system or a negative pressure filtration system may be used. Furthermore, as an operation method, air scrubbing and back pressure cleaning used for the purpose of removing the filtration object deposited on the membrane surface may be performed separately or simultaneously. Moreover, as a liquid used for back pressure washing | cleaning, oxidizing agents, such as sodium hypochlorite, chlorine dioxide, ozone, etc. can be used suitably.

本発明を実施例に基づいてさらに具体的に説明する。以下に諸物性の測定方法について説明する。なお、測定は測定温度の記載があるものを除き、全て25℃で行った。
(1)糸径(mm)、偏平率
中空糸膜を膜長手方向に垂直な向きにカミソリ等で薄く切り、断面を顕微鏡で観察した。中空糸の内径の長径と短径、外径の長径と短径を測定し、以下の式により、それぞれ内径と外径を決定した。
The present invention will be described more specifically based on examples. Hereinafter, methods for measuring various physical properties will be described. In addition, all measurements were performed at 25 ° C. except for the measurement temperature.
(1) Thread diameter (mm), flatness The hollow fiber membrane was thinly cut with a razor or the like in a direction perpendicular to the longitudinal direction of the membrane, and the cross section was observed with a microscope. The major and minor diameters of the inner diameter of the hollow fiber and the major and minor diameters of the outer diameter were measured, and the inner diameter and the outer diameter were determined by the following equations, respectively.

Figure 2008253922
Figure 2008253922

Figure 2008253922
Figure 2008253922

また、内径の長径を内径の短径で割ることで偏平率を決定した。
(2)純水透水率(L/m/hr/0.1mPa)
中空糸膜を50質量%のエタノール水溶液中に30分間浸漬させた後、水中に30分間浸漬し、中空糸膜を湿潤化した。10cm長の湿潤中空糸膜の一端を封止し、他端の中空部内へ注射針を入れた。注射針から0.1mPaの圧力にて純水を中空部内へ注入し、外表面へと透過してくる純水の透過水量を測定した。純水透水率を以下の式により決定した。
The flatness was determined by dividing the major axis of the inner diameter by the minor axis of the inner diameter.
(2) Pure water permeability (L / m 2 /hr/0.1 mPa)
The hollow fiber membrane was immersed in a 50% by mass ethanol aqueous solution for 30 minutes and then immersed in water for 30 minutes to wet the hollow fiber membrane. One end of a 10 cm long wet hollow fiber membrane was sealed, and an injection needle was inserted into the hollow part at the other end. Pure water was injected into the hollow part from the injection needle at a pressure of 0.1 mPa, and the amount of permeated water permeated to the outer surface was measured. Pure water permeability was determined by the following equation.

Figure 2008253922
Figure 2008253922

ここでいう膜有効長とは、注射針が挿入されている部分を除いた、正味の膜長を指す。
(3)破断強度(mPa)、破断伸度(%)
引張り、破断時の荷重と変位を以下の条件で測定した。
サンプル:(2)の方法で作成した湿潤中空糸膜
測定機器:インストロン型引張試験機(島津製作所製AgS−5D)チャック間距離:5cm
引張り速度:20cm/分
以下の式により破断強度および破断伸度を決定した。
The effective membrane length here refers to the net membrane length excluding the portion where the injection needle is inserted.
(3) Breaking strength (mPa), elongation at break (%)
The load and displacement at the time of pulling and breaking were measured under the following conditions.
Sample: Wet hollow fiber membrane prepared by the method of (2) Measuring instrument: Instron type tensile tester (AgS-5D manufactured by Shimadzu Corp.) Distance between chucks: 5 cm
Tensile speed: 20 cm / min The breaking strength and breaking elongation were determined according to the following equations.

Figure 2008253922
Figure 2008253922

Figure 2008253922
Figure 2008253922

ここに膜断面積は以下の式により求められる。   Here, the film cross-sectional area is obtained by the following equation.

Figure 2008253922
Figure 2008253922

(4)ラテックス阻止率(%)
粒子径0.208μmの粒径が単分散のラテックス(JSR(株)製、商品名:STADEX、固形分1質量%)を、0.5質量%SDS(ドデシルスルホン酸ナトリウム)水溶液にて希釈し、ラテックス濃度0.01質量%の懸濁液を調整した。100mLのラテックス懸濁液をビーカーに入れ、チューブポンプにて有効長約12cmの湿潤中空糸膜に対し、線速0.1m/秒にて外表面から0.03mPaの圧力にて供給し、中空糸膜の両端(大気開放)から透過液を出すことでラテックス懸濁液の濾過を行った。濾過液はビーカーに戻し、液的に閉鎖系にて濾過を行った。濾過10分後に中空糸膜の両端からの透過液およびビーカーから供給液をそれぞれサンプリングし、吸光度計を用いて600Nmの吸光度を測定し、以下の式によりラテックス阻止率を決定した。
(4) Latex rejection (%)
A monodisperse latex with a particle diameter of 0.208 μm (manufactured by JSR Corporation, trade name: STADEX, solid content 1 mass%) is diluted with an aqueous 0.5 mass% SDS (sodium dodecyl sulfonate) solution. A suspension having a latex concentration of 0.01% by mass was prepared. 100 mL of latex suspension is placed in a beaker and supplied to a wet hollow fiber membrane having an effective length of about 12 cm with a tube pump at a linear velocity of 0.1 m / second from the outer surface at a pressure of 0.03 mPa. The latex suspension was filtered by discharging the permeate from both ends (open to the atmosphere) of the yarn membrane. The filtrate was returned to the beaker and filtered in a closed system. Ten minutes after the filtration, the permeate from both ends of the hollow fiber membrane and the feed solution from the beaker were sampled, the absorbance at 600 Nm was measured using an absorptiometer, and the latex rejection was determined by the following equation.

Figure 2008253922
Figure 2008253922

(5)圧縮強度(mPa)
約5cm長の湿潤中空糸膜の一端を封止し、他端を大気開放とし、外表面より40℃の純水を加圧し大気開放端より透過水を出した。このとき膜供給水を循環させることなくその全量を濾過する方式、即ち全量濾過方式を取った。加圧圧力を0.1mPaより0.01mPa刻みで昇圧し、各圧力にて15秒間圧力を保持し、この15秒間に大気開放端より出てくる透過水をサンプリングした。中空糸膜の中空部がつぶれないうちは加圧圧力が増すにつれて透過水量(質量)の絶対値も増してゆくが、加圧圧力が中空糸膜の圧縮強度を超えると中空部が潰れて閉塞が始まるため、透過水量の絶対値は加圧圧力が増すにも関わらず、低下する。透過水量の絶対値が極大になる加圧圧力を圧縮強度とした。
(5) Compressive strength (mPa)
One end of a wet hollow fiber membrane having a length of about 5 cm was sealed, the other end was opened to the atmosphere, pure water at 40 ° C. was pressurized from the outer surface, and permeate was discharged from the open end of the atmosphere. At this time, the whole amount was filtered without circulating the membrane feed water, that is, the whole amount filtration method was adopted. The pressurizing pressure was increased from 0.1 mPa in steps of 0.01 mPa, the pressure was maintained at each pressure for 15 seconds, and the permeated water that emerged from the open end of the atmosphere was sampled for 15 seconds. While the hollow part of the hollow fiber membrane is not crushed, the absolute value of the amount of permeated water (mass) increases as the pressurized pressure increases. However, when the pressurized pressure exceeds the compressive strength of the hollow fiber membrane, the hollow part is crushed and blocked. Therefore, the absolute value of the amount of permeated water decreases as the pressurizing pressure increases. The compression pressure at which the absolute value of the amount of permeated water was maximized was taken as the compressive strength.

(6)内外表面孔径および断面中央孔径(μm)
走査型電子顕微鏡により、20個以上の孔の形状が確認できる写真を用いて多孔性中空糸膜の内外両表面孔径および断面中央孔径を測定した。A4版の写真を縦横各々6分割するよう、縦横方向に直交する各5本の線を均等な間隔で引き、その線が写真中の空孔部を横切る長さを測定し、その長さの平均値を算術平均により算出し、それぞれ内外表面孔径および断面中央孔径とした。孔径が0.1μm〜1μm程度であれば、5000倍程度の倍率の走査型顕微鏡像が適切である。なお、断面中央孔径に関しては、膜厚の中央位置から全膜厚の10%の範囲を対象にして測定した。
(6) Inner and outer surface hole diameters and cross-sectional center hole diameters (μm)
Using a scanning electron microscope, the inner and outer surface pore diameters and the cross-sectional central pore diameter of the porous hollow fiber membrane were measured using photographs capable of confirming the shape of 20 or more pores. In order to divide the A4 version of the photograph into six parts each in vertical and horizontal directions, draw five lines perpendicular to the vertical and horizontal directions at equal intervals, measure the length of the lines across the holes in the picture, The average value was calculated by arithmetic average, and the inner and outer surface hole diameters and the cross-sectional center hole diameter were used. If the pore diameter is about 0.1 μm to 1 μm, a scanning microscope image with a magnification of about 5000 times is appropriate. In addition, about the cross-sectional center hole diameter, it measured considering the range of 10% of the total film thickness from the center position of a film thickness.

(7)各膜厚部における断面孔径および1層(A)と1層(B)の厚み
走査型電子顕微鏡により、中空糸膜の断面を撮影し、20個以上の孔の形状が確認できる写真を用いた。A4版の写真上で、外表面からの距離が等しい線(すなわち同じ膜厚になる点を結んだ線)を、全膜厚を101等分する間隔で100本引き、その線が写真中の空孔部を横切る長さを測定した。その長さの平均値を算術平均により算出して、各膜厚部における断面孔径を求めた。走査型電子顕微鏡写真の倍率が十分に高い場合は、外表面からの距離が等しい線を直線で近似しても良い。断面中央から1層(B)の表面に向かって、断面中央孔径の0.7倍に最も近くなる点を両層の境界線とし、1層(A)の表面から境界線までの距離を1層(A)の厚み、1層(B)の表面から境界線までの距離を1層(B)の厚みとした。孔径が0.1μm〜1μm程度であれば、5000倍程度の倍率の走査型顕微鏡像が適切である。本願では、全膜厚を14分割して撮影した。即ち、中空糸膜の断面の5000倍の電子顕微鏡写真14枚を用いて前述の測定を行った。また、倍率が十分に高いため、外表面からの距離が等しい線を直線で近似した。
(7) Cross-sectional hole diameter and thickness of 1 layer (A) and 1 layer (B) in each film thickness part Photograph of a cross section of a hollow fiber membrane taken with a scanning electron microscope, and a photograph showing the shape of 20 or more holes Was used. On the A4 photo, 100 lines with the same distance from the outer surface (that is, a line connecting points having the same film thickness) are drawn at intervals equal to the total film thickness of 101. The length across the void was measured. The average value of the length was calculated by arithmetic average, and the cross-sectional pore diameter in each film thickness portion was obtained. When the magnification of the scanning electron micrograph is sufficiently high, lines having the same distance from the outer surface may be approximated by a straight line. From the center of the cross section toward the surface of one layer (B), the point closest to 0.7 times the cross-sectional center hole diameter is the boundary line of both layers, and the distance from the surface of the single layer (A) to the boundary line is 1 The thickness of the layer (A) and the distance from the surface of the first layer (B) to the boundary line were defined as the thickness of the first layer (B). If the pore diameter is about 0.1 μm to 1 μm, a scanning microscope image with a magnification of about 5000 times is appropriate. In the present application, the entire film thickness was divided into 14 images. That is, the above-mentioned measurement was performed using 14 electron micrographs of 5000 times the cross section of the hollow fiber membrane. In addition, since the magnification was sufficiently high, lines with the same distance from the outer surface were approximated by straight lines.

(8)1層(A)の等方率(%)
(7)で測定した1層(A)の各膜厚部における断面孔径のうち、断面中央孔径の0.8倍以上1.2倍以下である膜厚部の数を、1層(A)に含まれる膜厚部の総数で除した比率を1層(A)の等方率とした。
(9)1層(B)の等方率(%)
(7)で測定した1層(B)の厚みを20等分する間隔で中空糸の断面が示す円と同心円状に線を引き、その線が写真中の空孔部を横切る長さを測定し、その長さの平均値を算術平均により算出し、1層(B)の各膜厚部における断面孔径を求めた。
1層(B)の厚みの1/2の厚み部における断面孔径を断面中央孔径(B)とし、測定した1層(B)の各膜厚部のうち、断面中央孔径(B)の0.8倍以上1.2倍以下である膜厚部の数を、1層(B)に含まれる膜厚部の総数20で除した比率を1層(B)の等方率とした。
(10)最大孔径(μm)(バブルポイント法)
ASTm F316-03に準拠し、膜の最大孔径を測定した。
(11)平均孔径(μm)(ハーフドライ法)
ASTm F316-03に準拠し、膜の最小孔径層の平均孔径を測定した。
(8) Isotropic rate (%) of 1 layer (A)
Of the cross-sectional hole diameters in each film thickness part of one layer (A) measured in (7), the number of film thickness parts that are 0.8 times or more and 1.2 times or less the cross-sectional center hole diameter is 1 layer (A). The ratio divided by the total number of film thickness parts contained in the film was defined as the isotropic ratio of one layer (A).
(9) Isotropic rate (%) of 1 layer (B)
A line is drawn concentrically with the circle indicated by the cross section of the hollow fiber at intervals equal to the thickness of one layer (B) measured in (7), and the length of the line crossing the hole in the photograph is measured. And the average value of the length was computed by the arithmetic mean, and the cross-sectional hole diameter in each film thickness part of 1 layer (B) was calculated | required.
The cross-sectional hole diameter in the thickness part of 1/2 of the thickness of one layer (B) is defined as the cross-sectional central hole diameter (B), and among the measured film thickness parts of one layer (B), the cross-sectional central hole diameter (B) is 0. A ratio obtained by dividing the number of film thickness portions that is 8 times or more and 1.2 times or less by the total number 20 of film thickness portions included in one layer (B) was defined as the isotropic ratio of one layer (B).
(10) Maximum pore size (μm) (bubble point method)
The maximum pore size of the membrane was measured according to ASTm F316-03.
(11) Average pore diameter (μm) (half dry method)
Based on ASTm F316-03, the average pore size of the minimum pore size layer of the membrane was measured.

(12)加圧型ケーシングタイプの中空糸膜モジュールの作製
以下のようにして、膜面積50mの加圧型中空糸膜モジュール(図4)を作製した。
複数の多孔性中空糸膜を束ねた後、中空糸束の片側端部面中空部を目止め処理し、内径150mm、長さ2000mmの、ポリサルフォン製円筒状モジュールケースに収納し、目止め処理をおこなった端部には、接着治具のみを、目止め処理を行なっていない他方端部には、多孔性中空糸膜と平行に、外径11mmのポリプロピレン製棒状物を合計24本配置した後に液密的に接着治具を取り付けた。
上記接着治具が両側に取り付けられたモジュールケースを2液性エポキシ樹脂により、遠心注型した。
遠心注型後、接着治具、ポリプロピレン製棒状物を取り除き、取り除いて出来た通路を外圧ろ過時の原水及びエアバブリング用空気の導入口とした。エポキシ接着部が充分に硬化した後、封止処理をおこなった側の接着端部を切断し、中空糸中空部を開口させ、外圧ろ過時の透過水の排出孔とした。
以上のようにして、中空糸膜束から成る加圧型ケーシングタイプの中空糸膜モジュールを得た。
(12) Production of Pressurized Casing Type Hollow Fiber Membrane Module A pressurized hollow fiber membrane module (FIG. 4) having a membrane area of 50 m 2 was produced as follows.
After bundling a plurality of porous hollow fiber membranes, the hollow portion of one end face of the hollow fiber bundle is sealed, and stored in a polysulfone cylindrical module case having an inner diameter of 150 mm and a length of 2000 mm. After placing a total of 24 sticks made of polypropylene having an outer diameter of 11 mm in parallel with the porous hollow fiber membrane on the other end not subjected to the sealing treatment, only the bonding jig is provided at the end which has been performed. A bonding jig was attached in a liquid-tight manner.
The module case with the bonding jig attached on both sides was centrifugally cast with a two-component epoxy resin.
After the centrifugal casting, the bonding jig and the polypropylene rod were removed, and the passage formed was used as an inlet for raw water and air bubbling air during external pressure filtration. After the epoxy adhesive portion was sufficiently cured, the adhesive end portion on the side subjected to the sealing treatment was cut to open the hollow fiber hollow portion, which was used as a permeate discharge hole during external pressure filtration.
As described above, a pressurized casing type hollow fiber membrane module comprising hollow fiber membrane bundles was obtained.

(13)陰圧型シェルレスタイプの中空糸膜モジュールの作製
特願2005-507211に記載の方法と同様にして、膜面積25mの陰圧型中空糸膜モジュール(図5)を作製した。
複数の多孔性中空糸膜の両端をウレタン樹脂で接着固定し、一方の端部の外周に液密に接着固定されたカートリッジヘッドと他方端部外周に液密に接着固定された下部リングとを有し、円筒型の中空糸膜モジュールを作成した。カートリッジヘッド側、及び下部リング側接着固定層の濾過部界面間の有効長が2000mmであった。中空糸両端の接着固定層の直径は約150mmであった。カートリッジヘッド側の中空糸末端は開口してろ過水排出孔となっており、下部リング側接着固定層には(12)と同様の方法で通路を設け、下部リングの下方にエアバブリング用エア排出孔を設け、エアを下部リング内に一旦受けてから、上記通路を通り、エアバブリングできる構造となっている。下部リング側の中空糸膜は目止め処理をせずに接着しており、端部は封止されている。
以上のようにして、陰圧型シェルレスタイプの中空糸膜モジュールを作成した。
(13) Production of negative pressure type shellless type hollow fiber membrane module A negative pressure type hollow fiber membrane module (FIG. 5) having a membrane area of 25 m 2 was produced in the same manner as described in Japanese Patent Application No. 2005-507221.
Both ends of a plurality of porous hollow fiber membranes are bonded and fixed with urethane resin, and a cartridge head fixed in a liquid-tight manner on the outer periphery of one end portion and a lower ring fixed in a liquid-tight manner on the outer periphery of the other end portion. A cylindrical hollow fiber membrane module was prepared. The effective length between the filtration part interfaces of the cartridge head side and the lower ring side adhesive fixing layer was 2000 mm. The diameter of the adhesive fixing layer at both ends of the hollow fiber was about 150 mm. The end of the hollow fiber on the cartridge head side opens to form a filtrate drain hole. A passage is provided in the lower ring side adhesive fixing layer in the same manner as in (12), and air is discharged for air bubbling below the lower ring. A hole is provided so that air can be once bubbled through the passage after the air is once received in the lower ring. The hollow fiber membrane on the lower ring side is bonded without sealing, and the end is sealed.
As described above, a negative pressure shellless type hollow fiber membrane module was produced.

(14)中空糸膜モジュールの透水量測定実験1(加圧)
(12)で得られた中空糸膜モジュールを使用し、原水として濁度が5〜10度、水温が18〜25℃の河川表流水を用いた。透水量は、ポンプによる加圧により、外圧の全量濾過方式で膜間差圧が25℃換算で約35kPa、約400時間安定となる条件での透水量を測定した。
上記の濾過運転は、濾過/(逆洗とエアバブリング)のサイクル運転とした。それぞれのサイクルは、濾過/(逆洗とエアバブリング)タイムサイクル:29分/1分であり、逆洗時の逆洗流量は、2.3L/分/モジュール、エアバブリング時のエアー流量は、4.6NL/分/モジュールとした。
(14) Experiment 1 for measuring water permeability of hollow fiber membrane module (pressurization)
Using the hollow fiber membrane module obtained in (12), river surface water having a turbidity of 5 to 10 degrees and a water temperature of 18 to 25 ° C. was used as raw water. The amount of water permeation was measured by pressurizing with a pump under the condition that the transmembrane differential pressure was stabilized at about 35 kPa in terms of 25 ° C. and stabilized for about 400 hours by the external pressure total filtration method.
The filtration operation was a cycle operation of filtration / (back washing and air bubbling). Each cycle is filtration / (backwash and air bubbling) time cycle: 29 minutes / 1 minute, the backwash flow rate during backwash is 2.3 L / min / module, and the air flow rate during air bubbling is 4.6 NL / min / module.

(15)中空糸膜モジュールの透水量測定実験2(陰圧)
(13)で得られた中空糸膜モジュールを使用し、約0.35mの容積の浸漬槽に浸漬した。また、原水として濁度が5〜10度、水温が18〜25℃の河川表流水を用いた。透水量は、吸引ポンプにより膜の中空部を陰圧にして、全量濾過方式で膜間差圧が25℃換算で約30kPa、約400時間安定となる条件での透水量を測定した。
上記の濾過運転は、濾過/(逆洗とエアバブリング)/ドレインのサイクル運転とした。
ドレインは、物理洗浄(逆洗およびエアバブリング)工程や濾過工程において槽内に蓄積した懸濁物質を槽外に排出する工程である。
それぞれのサイクルは、濾過/(逆洗とエアバブリング)/ドレインタイムサイクル:28.5分/1分/0.5分であり、逆洗時の逆洗流量は、2.3L/分/モジュール、エアバブリング時のエアー流量は、4.6NL/分/モジュールとした。
(15) Water permeability measurement experiment 2 of hollow fiber membrane module (negative pressure)
The hollow fiber membrane module obtained in (13) was used and immersed in an immersion bath having a volume of about 0.35 m 3 . Moreover, river surface water with a turbidity of 5 to 10 degrees and a water temperature of 18 to 25 ° C. was used as raw water. The amount of water permeation was measured under conditions where the membrane hollow portion was negative pressured by a suction pump and the transmembrane differential pressure was stable at about 30 kPa in terms of 25 ° C. for about 400 hours by a total filtration method.
The filtration operation was a cycle operation of filtration / (backwashing and air bubbling) / drain.
The drain is a step of discharging suspended substances accumulated in the tank in the physical washing (back washing and air bubbling) process and the filtration process to the outside of the tank.
Each cycle is filtration / (backwash and air bubbling) / drain time cycle: 28.5 min / 1 min / 0.5 min, and the backwash flow rate during backwash is 2.3 L / min / module The air flow rate during air bubbling was 4.6 NL / min / module.

(16)中空糸膜モジュールの透水量測定実験3(陰圧)
(13)で得られた中空糸膜モジュールを使用し、8mの容積の活性汚泥槽に浸漬した。また、原水としてBODが750mg/Lである製糖工場排水を用いた。活性汚泥中のmLSS濃度は約10g/Lで一定とした。透水量は、吸引ポンプにより膜の中空部を陰圧にして、全量濾過方式で膜間差圧が25℃換算で約20kPa、約200時間安定となる条件での透水量を測定した。
上記の濾過運転は、膜曝気量6Nm/時間の空気を常に曝気しつつ、濾過/逆洗のサイクル運転とした。濾過/逆洗のタイムサイクルは濾過/逆洗:9分/1分、逆洗時の逆洗流量は濾過時の流量と同流量とした。
(16) Water permeability measurement experiment 3 (negative pressure) of the hollow fiber membrane module
The hollow fiber membrane module obtained in (13) was used and immersed in an activated sludge tank having a volume of 8 m 3 . Moreover, the sugar factory waste water whose BOD is 750 mg / L was used as raw water. The mLSS concentration in the activated sludge was constant at about 10 g / L. The amount of water permeation was measured under the condition that the hollow portion of the membrane was set to a negative pressure by a suction pump, and the transmembrane differential pressure was about 20 kPa in terms of 25 ° C. and stable for about 200 hours by a total filtration method.
The filtration operation described above was a cycle operation of filtration / backwashing while constantly aeration of air with a membrane aeration amount of 6 Nm 3 / hour. The filtration / backwash time cycle was filtration / backwash: 9 minutes / 1 minute, and the backwash flow rate during backwashing was the same as the flow rate during filtration.

[実施例1]
熱可塑性樹脂としてフッ化ビニリデンホモポリマー、有機液体としてフタル酸ジ(2−エチルヘキシル)とフタル酸ジブチルとの混合物、無機微粉として微粉シリカを用い、図6に示す中空糸成型用ノズルを用いて押出し機2台による2層中空糸膜の溶融押出しを行った。外層用の溶融混練物(a)として組成がフッ化ビニリデンホモポリマー:フタル酸ジ(2−エチルヘキシル):フタル酸ジブチル:微粉シリカ=34:33.8:6.8:25.4(質量比)の溶融混練物を、内層用の溶融混練物(b)として組成がフッ化ビニリデンホモポリマー:フタル酸ジ(2−エチルヘキシル):フタル酸ジブチル:微粉シリカ=36:35.3:5.0:23.7(質量比)の溶融混練物を、中空部形成用流体として空気を、それぞれ用い、共に240℃の樹脂温度にて、外径2.00mm、内径0.92mmの中空糸成形用ノズルから、吐出線速14.2m/分、すなわち紡口吐出パラメーターRが440/秒、外層:内層の膜厚比=10:90になるような量比にて押出した。ここでいうノズルの外径とは、図6においては吐出口の最外径を指す。また、ノズルの内径とは内層用溶融混練物吐出口と中空部形成用流体吐出口との間の隔壁下端の最大径を指す。
[Example 1]
Extruded using a vinylidene fluoride homopolymer as a thermoplastic resin, a mixture of di (2-ethylhexyl) phthalate and dibutyl phthalate as an organic liquid, finely divided silica as an inorganic fine powder, and a hollow fiber molding nozzle shown in FIG. Two-layer hollow fiber membranes were melt-extruded by two machines. As the melt-kneaded product (a) for the outer layer, the composition is vinylidene fluoride homopolymer: di (2-ethylhexyl) phthalate: dibutyl phthalate: fine powder silica = 34: 33.8: 6.8: 25.4 (mass ratio) )) As a melt-kneaded product (b) for the inner layer, and the composition is vinylidene fluoride homopolymer: di (2-ethylhexyl) phthalate: dibutyl phthalate: finely divided silica = 36: 35.3: 5.0 : 23.7 (mass ratio) of the melt-kneaded product and air as a hollow portion forming fluid, respectively, for forming hollow fibers having an outer diameter of 2.00 mm and an inner diameter of 0.92 mm at a resin temperature of 240 ° C. From the nozzle, extrusion was performed at a discharge linear velocity of 14.2 m / min, that is, a spin nozzle discharge parameter R of 440 / second, and an outer layer: inner layer thickness ratio = 10: 90. The outer diameter of the nozzle here refers to the outermost diameter of the discharge port in FIG. The inner diameter of the nozzle refers to the maximum diameter of the lower end of the partition wall between the inner layer melt-kneaded product discharge port and the hollow portion forming fluid discharge port.

押出した中空糸状押出物は、60cmの空中走行を経た後40℃の水浴中に導き入れることで冷却固化させ、40m/分の速度でかせに巻き取った。得られた2層中空糸を塩化メチレン中に浸漬させてフタル酸ジ(2−エチルヘキシル)およびフタル酸ジブチルを抽出除去した後、乾燥させた。次いで、50質量%のエタノール水溶液中に30分間浸漬させた後、水中に30分間浸漬し、次いで、20質量%水酸化ナトリウム水溶液中に70℃にて1時間浸漬し、さらに水洗を繰り返して微粉シリカを抽出除去した。
得られた多孔性2層中空糸膜を、(2)の方法で湿潤させ、遊離塩素濃度が0.5質量%である次亜塩素酸ナトリウムを含む4質量%水酸化ナトリウム水溶液に室温にて10日間浸漬し、浸漬前後での破断伸度を測定したところ、浸漬後の破断伸度は浸漬前の破断伸度の90%の値を保持しており、良好な耐薬品性を有していることがわかった。
The extruded hollow fiber-shaped extrudate was cooled and solidified by being introduced into a 40 ° C. water bath after running in the air of 60 cm, and wound up skein at a speed of 40 m / min. The obtained two-layer hollow fiber was immersed in methylene chloride to extract and remove di (2-ethylhexyl) phthalate and dibutyl phthalate, and then dried. Next, after being immersed in a 50% by weight ethanol aqueous solution for 30 minutes, then immersed in water for 30 minutes, then immersed in a 20% by weight sodium hydroxide aqueous solution at 70 ° C. for 1 hour, and further washed with water to repeat fine powder. Silica was extracted and removed.
The obtained porous two-layer hollow fiber membrane was wetted by the method (2), and added to a 4% by mass sodium hydroxide aqueous solution containing sodium hypochlorite having a free chlorine concentration of 0.5% by mass at room temperature. After immersing for 10 days and measuring the rupture elongation before and after immersing, the rupture elongation after immersing retains a value of 90% of the rupture elongation before immersing and has good chemical resistance. I found out.

なお、得られた多孔性2層中空糸膜の外表面の倍率5000倍の電子顕微鏡像を図7に、断面の外表面近傍の倍率5000倍の電子顕微鏡像を図8に、断面の外表面近傍の倍率1000倍の電子顕微鏡像を図9に、断面中央部の倍率5000倍の電子顕微鏡像を図10に、断面の内表面近傍の倍率5000倍の電子顕微鏡像を図11に、内表面の倍率5000倍の電子顕微鏡像を図12に、断面の倍率70倍の電子顕微鏡写真を図13に、断面の300倍の電子顕微鏡写真を図14に、それぞれ示す。これら図7〜14の電子顕微鏡像から、小孔径の外層と大孔径の内層が形成されていることがわかる。また、1層(B)の表面開孔率は30%であった。   In addition, the electron microscope image of 5000 times magnification of the outer surface of the obtained porous two-layer hollow fiber membrane is shown in FIG. 7, the electron microscope image of 5000 times magnification near the outer surface of the section is shown in FIG. FIG. 9 shows an electron microscope image at a magnification of 1000 times in the vicinity, FIG. 10 shows an electron microscope image at a magnification of 5000 times at the center of the cross section, FIG. FIG. 12 shows an electron microscope image at a magnification of 5000 times, FIG. 13 shows an electron micrograph at a magnification of 70 times, and FIG. 14 shows an electron micrograph at a magnification of 300 times in FIG. 7 to 14 show that an outer layer having a small pore diameter and an inner layer having a large pore diameter are formed. In addition, the surface porosity of one layer (B) was 30%.

得られた多孔性2層中空糸膜は、界面の乱れが無く、真円性が高かった。電子顕微鏡での断面観察によると、阻止層、支持層共にマクロボイドの無い等方的な3次元網目構造でであった。得られた膜の物性評価結果を表1に示す。純水透水率、ラテックス阻止率、各種の機械強度のいずれも優れた値を示した。また、得られた多孔性2層中空糸膜の断面を100等分し、断面孔径を測定した結果を図18に示す。図1(3)に極めて近い構造の膜であることがわかる。また、パラメーターQを測定した値を図19に示す。
得られた中空糸膜を(12)及び(13)にそれぞれ示した方法でモジュールとし、(14)、(15)および(16)に示した条件で濾過運転をおこなった。(14)〜(16)の各条件での透水量を表1に示す。
The obtained porous two-layer hollow fiber membrane had no interface disturbance and high roundness. According to cross-sectional observation with an electron microscope, both the blocking layer and the support layer had an isotropic three-dimensional network structure with no macrovoids. The physical property evaluation results of the obtained film are shown in Table 1. The pure water permeability, latex rejection, and various mechanical strengths all showed excellent values. Further, FIG. 18 shows the results of measuring the cross-sectional pore diameter by dividing the cross section of the obtained porous two-layer hollow fiber membrane into 100 equal parts. It can be seen that the film has a structure very close to that shown in FIG. Moreover, the value which measured the parameter Q is shown in FIG.
The obtained hollow fiber membrane was made into a module by the methods shown in (12) and (13), respectively, and the filtration operation was performed under the conditions shown in (14), (15) and (16). Table 1 shows the water permeability under the conditions (14) to (16).

[実施例2]
実施例1で得られた、有機液体および無機微粉抽出除去後の多孔性中空糸膜の両端を手で持ち、2倍に延伸した後、両端から手を放した。手を放すことにより糸長が縮み、最終的な延伸倍率は1.3倍となった。
得られた中空糸膜を(12)及び(13)にそれぞれ示した方法でモジュールとし、(14)、(15)および(16)に示した条件で濾過運転をおこなった。(14)〜(16)の各条件での透水量を表1に示す。
[Example 2]
The both ends of the porous hollow fiber membrane obtained by extraction and removal of the organic liquid and inorganic fine powder obtained in Example 1 were held by hand, stretched twice, and then released from both ends. The yarn length was shortened by releasing the hand, and the final draw ratio was 1.3 times.
The obtained hollow fiber membrane was made into a module by the methods shown in (12) and (13), respectively, and the filtration operation was performed under the conditions shown in (14), (15) and (16). Table 1 shows the water permeability under the conditions (14) to (16).

[比較例1]
外層の溶融混練物(a)の押し出しを行わず、内層の溶融混練物(b)として組成がフッ化ビニリデンホモポリマー:フタル酸ジ(2−エチルヘキシル):フタル酸ジブチル:微粉シリカ=40.0:30.8:6.2:23.0(質量比)の溶融混練物のみを内層側のスリットから押し出した以外は、膜全体の厚みも実施例1と同様にして多孔性中空糸膜を得た。得られた多孔性中空糸膜は電子顕微鏡での断面観察によるとマクロボイドの無い等方的な3次元網目構造であった。得られた膜の物性評価結果を表1に示す。ラテックス阻止率が高く、また、高い機械的強度を示したが、純水透過率が著しく低い結果となった。
[Comparative Example 1]
The outer layer melt-kneaded product (a) is not extruded, and the composition of the inner layer melt-kneaded product (b) is vinylidene fluoride homopolymer: di (2-ethylhexyl) phthalate: dibutyl phthalate: finely divided silica = 40.0 : The thickness of the entire membrane was the same as in Example 1 except that only the melt-kneaded product of 30.8: 6.2: 23.0 (mass ratio) was extruded from the slit on the inner layer side. Obtained. The obtained porous hollow fiber membrane had an isotropic three-dimensional network structure with no macrovoids, as observed by a cross section with an electron microscope. The physical property evaluation results of the obtained film are shown in Table 1. The latex rejection was high and high mechanical strength was exhibited, but the pure water permeability was extremely low.

得られた多孔性中空糸膜の外表面の倍率5000倍の電子顕微鏡像を図13に、断面の外表面近傍の倍率5000倍の電子顕微鏡像を図14に、断面中央部の倍率5000倍の電子顕微鏡像を図15に、断面の内表面近傍の倍率5000倍の電子顕微鏡像を図16に、内表面の倍率5000倍の電子顕微鏡像を図17に、それぞれ示す。
なお、得られた多孔性中空糸膜を、(2)の方法で湿潤させ、遊離塩素濃度が0.5質量%である次亜塩素酸ナトリウムを含む4質量%水酸化ナトリウム水溶液に室温にて10日間浸漬し、浸漬前後での破断伸度を測定したところ、浸漬後の破断伸度は浸漬前の破断伸度の90%の値を保持していた。
得られた中空糸膜を(12)及び(13)にそれぞれ示した方法でモジュールとし、(14)、(15)および(16)に示した条件で濾過運転をおこなった。(14)〜(16)の各条件での透水量を表1に示す。
FIG. 13 shows an electron microscope image of the outer surface of the obtained porous hollow fiber membrane at a magnification of 5000 times, FIG. 14 shows an electron microscope image at a magnification of 5000 times in the vicinity of the outer surface of the cross section, and FIG. FIG. 15 shows an electron microscope image, FIG. 16 shows an electron microscope image at a magnification of 5000 times near the inner surface of the cross section, and FIG. 17 shows an electron microscope image at a magnification of 5000 times on the inner surface.
The obtained porous hollow fiber membrane was wetted by the method (2) and was added to a 4% by mass sodium hydroxide aqueous solution containing sodium hypochlorite having a free chlorine concentration of 0.5% by mass at room temperature. When dipping for 10 days and measuring the breaking elongation before and after dipping, the breaking elongation after dipping retained 90% of the breaking elongation before dipping.
The obtained hollow fiber membrane was made into a module by the methods shown in (12) and (13), respectively, and the filtration operation was performed under the conditions shown in (14), (15) and (16). Table 1 shows the water permeability under the conditions (14) to (16).

[比較例2]
比較例1で得られた、有機液体および無機微粉抽出除去後の多孔性中空糸膜の両端を手で持ち、2倍に延伸した後、両端から手を放した。手を放すことにより糸長が縮み、最終的な延伸倍率は1.3倍となった。
得られた中空糸膜を(12)及び(13)にそれぞれ示した方法でモジュールとし、(14)、(15)および(16)に示した条件で濾過運転をおこなった。(14)〜(16)の各条件での透水量を表1に示す。
[Comparative Example 2]
The both ends of the porous hollow fiber membrane obtained by extraction and removal of the organic liquid and inorganic fine powder obtained in Comparative Example 1 were held by hand and stretched twice, and then released from both ends. The yarn length was shortened by releasing the hand, and the final draw ratio was 1.3 times.
The obtained hollow fiber membrane was made into a module by the methods shown in (12) and (13), respectively, and the filtration operation was performed under the conditions shown in (14), (15) and (16). Table 1 shows the water permeability under the conditions (14) to (16).

本発明により、懸濁水の濾過において低コストかつ安定長期運転が可能となる。   According to the present invention, low-cost and stable long-term operation is possible in filtration of suspended water.

多孔性2層中空糸膜の膜厚方向の孔径変化の例を示した模式図である。It is the schematic diagram which showed the example of the hole diameter change of the film thickness direction of a porous 2 layer hollow fiber membrane. 等方的三次元網目構造の模式図である。It is a schematic diagram of an isotropic three-dimensional network structure. 球晶構造の模式図である。It is a schematic diagram of a spherulite structure. 加圧型ケーシングタイプモジュールの模式図である。It is a schematic diagram of a pressurization type casing type module. 陰圧型シェルレスタイプモジュールの模式図である。It is a schematic diagram of a negative pressure type shellless type module. 2層中空糸成型ノズルの例を示す図であり、(a) 吐出方向に平行な面で切った断面図、(b) ノズル吐出口の正対図、(c) 2層中空糸状押出物を押出方向に垂直な面で切った断面図である。It is a figure which shows the example of a 2 layer hollow fiber shaping | molding nozzle, (a) Sectional drawing cut | disconnected in the surface parallel to a discharge direction, (b) The front view of a nozzle discharge port, (c) 2 layer hollow fiber shaped extrudate It is sectional drawing cut by the surface perpendicular | vertical to an extrusion direction. 実施例1で得られた多孔性2層中空糸膜の外表面の倍率5000倍の電子顕微鏡写真である。2 is an electron micrograph of the outer surface of the porous two-layer hollow fiber membrane obtained in Example 1 at a magnification of 5000 times. 実施例1で得られた多孔性2層中空糸膜の外表面近傍断面の倍率5000倍の電子顕微鏡写真である。2 is an electron micrograph of a magnification of 5000 times of a cross section near the outer surface of the porous bilayer hollow fiber membrane obtained in Example 1. FIG. 実施例1で得られた多孔性2層中空糸膜の外表面近傍断面の倍率1000倍の電子顕微鏡写真である。2 is an electron micrograph at a magnification of 1000 times of a cross section near the outer surface of the porous two-layer hollow fiber membrane obtained in Example 1. FIG. 実施例1で得られた多孔性2層中空糸膜の断面中央部の倍率5000倍の電子顕微鏡写真である。2 is an electron micrograph at a magnification of 5000 times of the central portion of the cross section of the porous two-layer hollow fiber membrane obtained in Example 1. FIG. 実施例1で得られた多孔性2層中空糸膜の内表面近傍断面の倍率5000倍の電子顕微鏡写真である。2 is an electron micrograph of a magnification of 5000 times of a cross section near the inner surface of the porous two-layer hollow fiber membrane obtained in Example 1. FIG. 実施例1で得られた多孔性2層中空糸膜の内表面の倍率5000倍の電子顕微鏡写真である。2 is an electron micrograph at a magnification of 5000 times of the inner surface of the porous two-layer hollow fiber membrane obtained in Example 1. FIG. 実施例1で得られた多孔性2層中空糸膜の円環断面全体の倍率60倍の電子顕微鏡写真である。2 is an electron micrograph at a magnification of 60 times of the entire annular cross section of the porous bilayer hollow fiber membrane obtained in Example 1. FIG. 実施例1で得られた多孔性2層中空糸膜の円環断面の倍率300倍の電子顕微鏡写真である。3 is an electron micrograph of a magnification of 300 times of an annular cross section of a porous two-layer hollow fiber membrane obtained in Example 1. FIG. 比較例1で得られた多孔性中空糸膜の外表面の倍率5000倍の電子顕微鏡写真である。4 is an electron micrograph of the outer surface of the porous hollow fiber membrane obtained in Comparative Example 1 at a magnification of 5000 times. 比較例1で得られた多孔性中空糸膜の外表面近傍断面の倍率5000倍の電子顕微鏡写真である。2 is an electron micrograph of a magnification of 5000 times of a cross section near the outer surface of the porous hollow fiber membrane obtained in Comparative Example 1. FIG. 比較例1で得られた多孔性中空糸膜の断面中央部の倍率5000倍の電子顕微鏡写真である。2 is an electron micrograph at a magnification of 5000 times of the central portion of the cross section of the porous hollow fiber membrane obtained in Comparative Example 1. FIG. 比較例1で得られた多孔性中空糸膜の内表面近傍断面の倍率5000倍の電子顕微鏡写真である。3 is an electron micrograph of a magnification of 5000 times of a cross section near the inner surface of the porous hollow fiber membrane obtained in Comparative Example 1. FIG. 比較例1で得られた多孔性中空糸膜の内表面の倍率5000倍の電子顕微鏡写真である。3 is an electron micrograph of the inner surface of the porous hollow fiber membrane obtained in Comparative Example 1 at a magnification of 5000 times. 実施例1で得られた多孔性2層中空糸膜の断面孔径変化のグラフである2 is a graph of change in cross-sectional pore diameter of the porous bilayer hollow fiber membrane obtained in Example 1. 実施例1で得られた多孔性2層中空糸膜の、パラメーターQの膜厚位置による変動を示す図である。横軸が全膜厚を1としたときの膜厚の位置、縦軸がQを示す。It is a figure which shows the fluctuation | variation by the film thickness position of the parameter Q of the porous 2 layer hollow fiber membrane obtained in Example 1. FIG. The horizontal axis indicates the position of the film thickness when the total film thickness is 1, and the vertical axis indicates Q.

Claims (10)

懸濁水を、内外少なくとも2層からなる多孔性多層中空糸膜であって、熱可塑性樹脂からなり、該2層のうちの少なくとも1層(A)は、等方的な三次元網目構造を有して、かつ表面孔径が断面中央孔径の0.6倍から1.4倍であり、該2層の他の1層(B)は、表面孔径が断面中央孔径の1/2未満であることを特徴とする多孔性多層中空糸膜を多数本集積して収納したモジュールを用いて1層(B)の表面から1層(A)の表面へ向けて濾過することを特徴とする濾過方法。 Suspended water is a porous multilayer hollow fiber membrane consisting of at least two layers, inner and outer, made of a thermoplastic resin, and at least one of the two layers (A) has an isotropic three-dimensional network structure. And the surface hole diameter is 0.6 to 1.4 times the central hole diameter of the cross section, and the other layer (B) of the two layers has a surface hole diameter of less than ½ of the central hole diameter of the cross section. A filtration method comprising filtering from the surface of one layer (B) to the surface of one layer (A) using a module in which a large number of porous multilayer hollow fiber membranes are collected and stored. 前記多孔性中空糸膜の該1層(B)が、等方的な三次元網目構造を有することを特徴とする請求項1記載の濾過方法。 The filtration method according to claim 1, wherein the one layer (B) of the porous hollow fiber membrane has an isotropic three-dimensional network structure. 前記多孔性中空糸膜の該1層(B)の表面孔径が、0.01μm以上5μm未満であることを特徴とする請求項1もしくは2記載の濾過方法。 The filtration method according to claim 1 or 2, wherein the surface pore diameter of the one layer (B) of the porous hollow fiber membrane is 0.01 µm or more and less than 5 µm. 前記多孔性中空糸膜の該断面中央孔径が、0.1μm以上10μm以下であることを特徴とする請求項1から3のいずれかに記載の濾過方法。 The filtration method according to any one of claims 1 to 3, wherein the pore diameter at the cross-section of the porous hollow fiber membrane is 0.1 µm or more and 10 µm or less. 前記多孔性中空糸膜の該1層(B)の表面開孔率が、20%以上80%以下であることを特徴とする請求項1から4のいずれかに記載の濾過方法。 The filtration method according to any one of claims 1 to 4, wherein the surface porosity of the one layer (B) of the porous hollow fiber membrane is 20% or more and 80% or less. 前記多孔性中空糸膜の該1層(B)の厚みが、膜厚の1/100以上40/100以下であることを特徴とする請求項1から5のいずれかに記載の濾過方法。 The filtration method according to any one of claims 1 to 5, wherein the thickness of the one layer (B) of the porous hollow fiber membrane is 1/100 or more and 40/100 or less of the film thickness. 前記多孔性中空糸膜の該1層(A)および該1層(B)の等方率が共に80%以上であることを特徴とする請求項1から6のいずれかに記載の濾過方法。 The filtration method according to any one of claims 1 to 6, wherein the isotropic ratio of the one layer (A) and the one layer (B) of the porous hollow fiber membrane is 80% or more. 前記多孔性中空糸膜の膜厚の外表面から内表面の位置による平均孔径の変化量を表す値であるパラメーターQが−0.2≦Q≦0.2となるQの個数が、全平均孔径測定値数に対し80%以上であることを特徴とする請求項1から7のいずれかに記載の濾過方法。 The number of Qs where the parameter Q, which is a value representing the change amount of the average pore diameter depending on the position of the inner surface from the outer surface of the porous hollow fiber membrane, is −0.2 ≦ Q ≦ 0.2 is the total average The filtration method according to any one of claims 1 to 7, wherein the filtration method is 80% or more based on the number of measured pore diameters. 前記多孔性中空糸膜の該熱可塑性樹脂が、ポリオレフィンおよびポリフッ化ビニリデンから選ばれたものであることを特徴とする請求項1から8のいずれかに記載の濾過方法。 The filtration method according to any one of claims 1 to 8, wherein the thermoplastic resin of the porous hollow fiber membrane is selected from polyolefins and polyvinylidene fluoride. 前記多孔性中空糸膜の内径が0.4mm以上5mm以下、膜厚が0.2mm以上1mm以下であることを特徴とする請求項1から9のいずれかに記載の濾過方法。 The filtration method according to any one of claims 1 to 9, wherein the porous hollow fiber membrane has an inner diameter of 0.4 mm to 5 mm and a film thickness of 0.2 mm to 1 mm.
JP2007099631A 2007-04-05 2007-04-05 Method for filtering suspension water Pending JP2008253922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007099631A JP2008253922A (en) 2007-04-05 2007-04-05 Method for filtering suspension water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007099631A JP2008253922A (en) 2007-04-05 2007-04-05 Method for filtering suspension water

Publications (1)

Publication Number Publication Date
JP2008253922A true JP2008253922A (en) 2008-10-23

Family

ID=39978065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007099631A Pending JP2008253922A (en) 2007-04-05 2007-04-05 Method for filtering suspension water

Country Status (1)

Country Link
JP (1) JP2008253922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056437A (en) * 2009-09-11 2011-03-24 Asahi Kasei Chemicals Corp Filtering method
WO2020100763A1 (en) * 2018-11-15 2020-05-22 旭化成株式会社 Filtration method in which porous membrane is used

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962380A (en) * 1972-10-18 1974-06-17
JPS60139815A (en) * 1983-12-28 1985-07-24 Mitsubishi Rayon Co Ltd Conjugate hollow yarn and production thereof
JPS61233026A (en) * 1985-04-09 1986-10-17 Asahi Chem Ind Co Ltd Production of porous film
JPS6279806A (en) * 1985-10-02 1987-04-13 Ube Ind Ltd Porous separation membrane and its production
JPS6375116A (en) * 1986-09-11 1988-04-05 Mitsubishi Rayon Co Ltd Production of conjugated hollow yarn membrane
JPH0445830A (en) * 1990-06-08 1992-02-14 Kuraray Co Ltd Production of conjugate hollow-fiber membrane
JPH10168218A (en) * 1996-12-10 1998-06-23 Asahi Chem Ind Co Ltd Porous vinylidene fluoride resin film
JP2002233739A (en) * 2001-02-09 2002-08-20 Asahi Kasei Corp Porous hollow yarn composite membrane
WO2002070115A1 (en) * 2001-03-06 2002-09-12 Asahi Kasei Kabushiki Kaisha Method for producing hollow yarn film
JP2006231274A (en) * 2005-02-28 2006-09-07 Toray Ind Inc Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962380A (en) * 1972-10-18 1974-06-17
JPS60139815A (en) * 1983-12-28 1985-07-24 Mitsubishi Rayon Co Ltd Conjugate hollow yarn and production thereof
JPS61233026A (en) * 1985-04-09 1986-10-17 Asahi Chem Ind Co Ltd Production of porous film
JPS6279806A (en) * 1985-10-02 1987-04-13 Ube Ind Ltd Porous separation membrane and its production
JPS6375116A (en) * 1986-09-11 1988-04-05 Mitsubishi Rayon Co Ltd Production of conjugated hollow yarn membrane
JPH0445830A (en) * 1990-06-08 1992-02-14 Kuraray Co Ltd Production of conjugate hollow-fiber membrane
JPH10168218A (en) * 1996-12-10 1998-06-23 Asahi Chem Ind Co Ltd Porous vinylidene fluoride resin film
JP2002233739A (en) * 2001-02-09 2002-08-20 Asahi Kasei Corp Porous hollow yarn composite membrane
WO2002070115A1 (en) * 2001-03-06 2002-09-12 Asahi Kasei Kabushiki Kaisha Method for producing hollow yarn film
JP2006231274A (en) * 2005-02-28 2006-09-07 Toray Ind Inc Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056437A (en) * 2009-09-11 2011-03-24 Asahi Kasei Chemicals Corp Filtering method
WO2020100763A1 (en) * 2018-11-15 2020-05-22 旭化成株式会社 Filtration method in which porous membrane is used

Similar Documents

Publication Publication Date Title
JP5717987B2 (en) Porous multilayer hollow fiber membrane
US9821501B2 (en) Production method of deformed porous hollow fiber membrane
KR101292485B1 (en) Fluororesin polymer separation membrane and process for producing the same
JP2010051956A (en) Hollow fiber membrane module and method for purifying turbid water by using the same
JP6824284B2 (en) Method for manufacturing porous hollow fiber membrane and porous hollow fiber membrane
JP4869272B2 (en) Porous multilayer hollow fiber membrane
US11338253B2 (en) Porous hollow fiber membrane, method for producing same, and water purification method
JP3781679B2 (en) Suspension water membrane purification method
JP2007313491A (en) Low stain resistance vinylidene fluoride family resin porosity water treatment membrane and its manufacturing method
JP2008253922A (en) Method for filtering suspension water
JP2011056437A (en) Filtering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011