JPS6375116A - Production of conjugated hollow yarn membrane - Google Patents

Production of conjugated hollow yarn membrane

Info

Publication number
JPS6375116A
JPS6375116A JP61214498A JP21449886A JPS6375116A JP S6375116 A JPS6375116 A JP S6375116A JP 61214498 A JP61214498 A JP 61214498A JP 21449886 A JP21449886 A JP 21449886A JP S6375116 A JPS6375116 A JP S6375116A
Authority
JP
Japan
Prior art keywords
polyethylene
hollow fiber
cooling
fiber membrane
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61214498A
Other languages
Japanese (ja)
Inventor
Hajime Ito
元 伊藤
Haruhiko Yoshida
晴彦 吉田
Eiichi Hamada
浜田 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP61214498A priority Critical patent/JPS6375116A/en
Publication of JPS6375116A publication Critical patent/JPS6375116A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To produce fiber for fine filtration, having improved back wash effects and long life, spinning two polyethylenes having different melt indexes under specific conditions in such a way that the polyethylenes are set at the inside and outside of hollow fiber membrane. CONSTITUTION:Two polyethylenes having >=0.95g/cm<3> density, 0.8-15 melt indexes (MI) and different melt indexes are heated at >=200 deg.C and higher than the melting point of the polymers, melted, the polyethylene having lower MI is extruded from the outside of a concentrically set ring-shaped nozzle and the polyethylene having higher MI from the inside. The extrusion ratio of both the polyethylenes is limited to a range of 20/1-1/20. The hollow fiber membrane is cooled by a gas flow and the completing point of thinning is at a position 20-150cm from the nozzle face.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は精密濾過用複合中空糸膜の製法に関し、詳しく
は、逆洗効果に優れ、よって寿命の長い精密濾過用複合
中空糸膜の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a composite hollow fiber membrane for precision filtration, and more specifically, a method for manufacturing a composite hollow fiber membrane for precision filtration that has excellent backwashing effects and has a long life. Regarding the law.

[従来の技術] 近年、電子産業における半導体集積回路製造工程、ボイ
ラー用水、医薬・医療用水等種々の分野で高純度の水が
多量に要求されるようになってきた。このような要求に
答えるものの1つとして膜を用いた精密濾過が広く利用
されてきつつある。
[Background Art] In recent years, large amounts of highly purified water have been required in various fields such as semiconductor integrated circuit manufacturing processes in the electronic industry, water for boilers, and water for pharmaceutical and medical purposes. Precision filtration using membranes is becoming widely used as one way to meet these demands.

ここで用いられる膜としては中空糸膜が単位面積当り大
きな濾過面積を得ることができることから好ましく用い
られており、膜素材としては種々のものが用いられてい
るが、中でもポリエチレンは化学的に安定なことから好
ましい素材である。
A hollow fiber membrane is preferably used as the membrane used here because it can obtain a large filtration area per unit area, and various membrane materials are used, among which polyethylene is chemically stable. Therefore, it is a preferable material.

膜を用いた精密濾過では使用中に被濾過水中に含まれる
微粒子等により膜の目詰まりが生じる。
In precision filtration using a membrane, the membrane becomes clogged with fine particles contained in the water to be filtered during use.

目詰まりの生じた膜をそのまま捨てるのでは経済的に損
失が大きいため、通常は濾過−逆洗サイクルの繰り返し
により膜の寿命をのばすことが行なわれている。
Since there is a large economic loss if a clogged membrane is thrown away as is, the life of the membrane is usually extended by repeating the filtration-backwashing cycle.

〔発明が解決しようとする問題点] 水出願人はポリエチレン中空系を冷延伸して結晶ラメラ
間にクレーズを発生させ、これを更に延伸して多孔質中
空糸膜としたものを上市しており、高阻止率、高透過率
という特徴から好評を得ているが、用途によフては微粒
子が膜の細孔内深くまで侵入し、逆洗による透過性能の
回復が困難であるという場合もあり、高透過率を維持し
たままで逆洗性を向上させた膜に対する要望が強くなっ
てきた。
[Problems to be Solved by the Invention] The applicant has commercially produced a porous hollow fiber membrane by cold-stretching a polyethylene hollow system to generate crazes between crystal lamellae and further stretching the craze. Although it has been well received due to its high rejection rate and high permeability, depending on the application, fine particles may penetrate deep into the pores of the membrane, making it difficult to restore permeation performance by backwashing. There is a growing demand for membranes that improve backwashing performance while maintaining high permeability.

本発明はこのような要望に答えて、透過性能に優れ、か
つ逆洗による透過性能の回復が良好な精密濾過用ポリエ
チレン中空糸膜を安定かつ効率的に製造する方法を提供
することにある。
In response to such demands, the present invention provides a method for stably and efficiently producing a polyethylene hollow fiber membrane for precision filtration, which has excellent permeation performance and good recovery of permeation performance by backwashing.

[問題点を解決するための手段] このような性能を任する鞘密濾適用膜としては、被濾過
水の流入側(例えば中空糸外側)に微粒子を表面で阻止
し得る程度に充分に小さな細孔を有する薄膜層と、濾過
水の流出側(例えば中空糸内側)により大きな細孔を有
するより厚い支持層とからなる2層構造にしたものを挙
げることかできる。本発明はこのような中空糸膜を製造
する方法を提供することにある。
[Means for solving the problem] The sheath-tight filtration membrane that is responsible for this kind of performance must have a membrane on the inlet side of the water to be filtered (for example, on the outside of the hollow fiber) that is small enough to block fine particles on the surface. A two-layer structure consisting of a thin film layer having pores and a thicker support layer having larger pores on the outflow side of the filtrate (for example, inside the hollow fibers) can be mentioned. The object of the present invention is to provide a method for manufacturing such a hollow fiber membrane.

即ち、本発明の要旨は密度が0.95H/cm”以上で
、かつ、メルトインデックス値(以下MIという)が0
.8乃至15である互いにMIの異なる2種のポリエチ
レンを200℃以下であって、ポリエチレンの融点より
10℃高い温度以上の温度に加熱溶融し、同心円状に配
置された円環状の吐出口を有する中空糸製造用ノズルを
用いて該ノズルの外側からはMIの低いポリエチレンを
、内側からはMIの高いポリエチレンを、両者の吐出比
を20/1乃至1/20となるように吐出し、これを冷
却しながら引き取ることを特徴とする複合中空糸膜の膜
の製造法にある。
That is, the gist of the present invention is that the density is 0.95H/cm" or more and the melt index value (hereinafter referred to as MI) is 0.
.. Two types of polyethylene having different MIs from 8 to 15 are heated and melted to a temperature of 200°C or less and 10°C higher than the melting point of polyethylene, and has annular discharge ports arranged concentrically. Using a hollow fiber manufacturing nozzle, polyethylene with a low MI is discharged from the outside of the nozzle, and polyethylene with a high MI is discharged from the inside at a discharge ratio of 20/1 to 1/20. The present invention relates to a method for producing a composite hollow fiber membrane, which is characterized in that the composite hollow fiber membrane is removed while being cooled.

兄なる種類のポリマーを用いて複合紡糸すると相溶性の
不足のため層間での剥離を起し易いが、本発明において
はMIの異なる2種のポリエチレンを用いるので層間の
接着性が良好で剥離することがない。
When composite spinning is performed using the older type of polymer, delamination between layers tends to occur due to lack of compatibility, but in the present invention, two types of polyethylene with different MI are used, so the adhesion between the layers is good and peeling occurs. Never.

又、本発明においては上記の方法で得られるポリエチレ
ン中空糸を延伸して結晶ラメラ間を剥離させ、これを更
に延伸して精密濾過用多孔質中空糸膜とするが、この場
合、結晶化度が高い程良好な多孔質構造が得られるので
用いられるポリエチレンの密度は0.95g/cm”以
上である必要がある。
In addition, in the present invention, the polyethylene hollow fiber obtained by the above method is stretched to separate the crystal lamellae, and this is further stretched to obtain a porous hollow fiber membrane for precision filtration. The density of the polyethylene used needs to be 0.95 g/cm" or higher because the higher the porous structure, the better the porous structure can be obtained.

MIは融液の流動性を示す指標のひとつで、A37M1
238に記載された方法に従って測定される値である。
MI is one of the indicators showing the fluidity of melt, and A37M1
This is a value measured according to the method described in No. 238.

MIが高い程ポリマー融液の流動性が高く、低いと流動
性も低い。本発明で用いるポリエチレンのMIは0.8
乃至15であることが必要であり、これより低いと流動
性が低過ぎて溶融紡糸が不可能となり、15より大きい
と紡糸された中空糸を延伸しても多孔質構造か得られな
くなる。
The higher the MI, the higher the fluidity of the polymer melt, and the lower the MI, the lower the fluidity. The MI of polyethylene used in the present invention is 0.8
It is necessary that the number is between 15 and 15. If it is lower than this, the fluidity is too low and melt spinning is impossible, and if it is larger than 15, a porous structure cannot be obtained even if the spun hollow fiber is drawn.

これは、本発明の方法が紡糸された糸として積層ラメラ
構造を有しているものを得、これを延伸することにより
結晶間を剥離させ、次いでさらに延伸することにより、
ラメラ構造の折りたたまわた分子鎖を引き伸ばすことに
より多数のフィブリルを形成させ、このフィブリル間の
空間が中空糸膜の一方の表面から他方の表面にっながフ
ている多孔質構造をとらせる方法であるためである。
This is because the method of the present invention obtains a yarn having a laminated lamellar structure as a spun yarn, which is stretched to separate the crystals, and then further stretched.
A method in which a large number of fibrils are formed by stretching folded molecular chains with a lamellar structure, and a porous structure is formed in which the spaces between the fibrils extend from one surface of the hollow fiber membrane to the other surface. This is because there is.

糸に積層ラメラ構造をとらせるためには結晶化する時に
充分な剪断応力が糸に働いていることか重要であり、さ
もないと球晶か生成する傾向にある。溶融紡糸における
結晶化時の剪断応力を決める因子として第1にノズルか
ら融液の粘度、融液が吐出する時のすり速度及び巻取り
速度を挙げることができる。ずり速度か同し場合剪断応
力の大きさは融液の粘度に依存し、粘度が小さすきる、
つまりMI値が高すぎると剪断応力が小さくなりh1層
ラメラ構造ができ難くなる。一方、多孔質構造が形成さ
れた後の孔の大きさは積層ラメラ構造の大きさ、つまり
、そこでの折りたたみ分子inの折りたたみ長さに依存
する。更にこの折りたたみ長さは結晶化時の剪断応力か
大きいほど短くなる。
In order for the yarn to have a laminated lamellar structure, it is important that sufficient shear stress be applied to the yarn during crystallization, otherwise spherulites will tend to form. Factors that determine the shear stress during crystallization in melt spinning include the viscosity of the melt from the nozzle, the sliding speed at which the melt is discharged, and the winding speed. When the shear rate is the same, the magnitude of shear stress depends on the viscosity of the melt;
In other words, if the MI value is too high, the shear stress becomes small, making it difficult to form an h1 layer lamellar structure. On the other hand, the size of the pores after the porous structure is formed depends on the size of the laminated lamellar structure, that is, the folding length of the folded molecule in there. Furthermore, the folded length becomes shorter as the shear stress during crystallization increases.

本発明の目的は内外層表面における孔の大きさが異なる
複合中空糸を効率的に、かつ、安定に得ることにあるが
、内外層共に同一のポリマーを用いたのでは紡糸時の結
晶化時の環境は内外層共同−となるので上記目的を達成
するのは困難である。
The purpose of the present invention is to efficiently and stably obtain composite hollow fibers with different pore sizes on the surfaces of the inner and outer layers. However, if the same polymer is used for both the inner and outer layers, crystallization during spinning It is difficult to achieve the above objective because the environment is a shared environment between the inside and outside layers.

そこで、本発明においては剪断応力が内外層で異なるよ
うにするためにMI値の異なるポリエチレンを組み合わ
せて用いるものである。
Therefore, in the present invention, polyethylenes having different MI values are used in combination so that the shear stress differs between the inner and outer layers.

本発明は外層表面における孔の大きさが内層表面におけ
る孔の大きさよりも小さいものを得ることを目的として
おり、従って、同心円状に配置された円環状の吐出口を
有する中空糸製造用ノズルを用いて該ノズルの外側から
はMIの低いポリエチレンを、内側からはMIの高いポ
リエチレンを200℃以下であって、ポリエチレンの融
点より10℃高い温度以上の温度に加熱溶融し、同時に
押し出せばよい。
The purpose of the present invention is to obtain a hollow fiber manufacturing nozzle having annular discharge ports arranged concentrically. Using the nozzle, polyethylene with low MI is heated and melted from the outside of the nozzle, and polyethylene with high MI is heated and melted from the inside at a temperature of 200°C or less and 10°C higher than the melting point of polyethylene, and extruded at the same time. .

溶融温度がポリエチレンの融点より10℃高い温度未満
では流動性不良で紡糸が困難となり、200℃を越える
とポリマーの劣化が生じ好ましくない。
If the melting temperature is less than 10° C. higher than the melting point of polyethylene, the fluidity will be poor and spinning will be difficult, and if it exceeds 200° C., the polymer will deteriorate, which is undesirable.

さらに、MIの低いポリエチレンとMIの高いポリエチ
レンの吐出比を20/1乃至1/20となるように吐出
する必要がある。これは内外層を安定に積層させるため
であって、この積層が安定に行なわれないと各層の厚さ
か繊維長さ方向で変動したり、両層の界面が繊維断面円
周方向あるいは繊維長さ方向で乱れることになる。この
ことは紡糸時においてその張力が斑や乱れに基づく歪み
部分に集中するため糸切れを引き起こすだけでなく結晶
化時の剪断応力が不均一になることにより結晶化が不均
一となり、よって、結晶あるいは分子鎖の折りたたみ長
さが不均一となり、孔径にばらつきが生じるようになる
。さらにこの斑や乱れは延伸工程でも影響を与え、糸切
れ、中空糸膜性能のばらつきの原因ともなる。この積層
の安定化は内外層が積層される点において両層を形成す
るポリマーの融液の速度が一致することが理想的である
。しかし、実際には中空糸厚み方向において吐出線速度
は分布をもつため、界面における両層の吐出線速度が上
記支障を生じない程度に一致していればよく、必ずしも
両層を形成するポリマー融液の平均吐出速度が一致して
いる必要はない。
Furthermore, it is necessary to discharge polyethylene with a low MI and polyethylene with a high MI so that the discharge ratio is 20/1 to 1/20. This is to ensure that the inner and outer layers are laminated stably. If this lamination is not performed stably, the thickness of each layer or the fiber length direction may fluctuate, or the interface between both layers may change in the fiber cross-section circumferential direction or fiber length direction. It will be confused by the direction. This not only causes yarn breakage because the tension during spinning concentrates on distorted areas due to unevenness and disorder, but also causes non-uniform crystallization due to non-uniform shear stress during crystallization. Alternatively, the folded length of the molecular chains becomes non-uniform, resulting in variations in pore diameter. Furthermore, these irregularities and disturbances also affect the stretching process, causing fiber breakage and variations in hollow fiber membrane performance. In order to stabilize this lamination, it is ideal that at the point where the inner and outer layers are laminated, the melting speeds of the polymers forming both layers are the same. However, in reality, the ejection linear velocity has a distribution in the hollow fiber thickness direction, so it is sufficient that the ejection linear velocities of both layers at the interface match to such an extent that the above-mentioned problems do not occur; It is not necessary that the average discharge speed of the liquid be the same.

本発明者等の研究によれば両層を形成するポリマー融液
の平均吐出速度の比が1/20乃至20/1であれば上
記支障が生じないことがわかった。
According to research conducted by the present inventors, it has been found that the above problem does not occur if the ratio of the average discharge speeds of the polymer melts forming both layers is 1/20 to 20/1.

上記に述へた条件で吐出したポリマーMfLを冷却しな
がら引き取ることによりポリマーを固化すると同時に結
晶化させて中空糸が得られる。
By taking the polymer MfL discharged under the above-mentioned conditions while cooling it, the polymer is solidified and simultaneously crystallized to obtain hollow fibers.

この冷却方法としては種々の方法を採用できるが、冷却
用気体例えば10〜30℃の空気流を糸の引き取り方向
とは逆の方向に流す方法が好ましく用いられる。
Although various methods can be used for this cooling, a method in which a cooling gas, for example, air at a temperature of 10 to 30° C. is caused to flow in a direction opposite to the direction in which the yarn is taken off, is preferably used.

なお、この結晶化時点での剪断応力が適当であれば以後
後述の工程を経ることによって良好な多孔質中空糸が得
られる。一般に、ノズルから出た融液は固化するまでは
径が縮小(細化)しながら落下し、細化が終了して固化
すると以後は剪断応力がかかるようになる。この細化終
了点がノズル面から近いすぎるところにあると糸にかか
る剪断応力は大きくなり、特にMI値の低いポリエチレ
ンは過剰な剪断応力のために分子配向が高くなり後の延
伸工程で糸切れが発生し易くなる。逆にノズル面から達
すざると剪断応力不足のため積層ラメラ構造が充分に発
達せず、延伸時にネッキングが起こり多孔質化し難くな
る。従って」ニ記細化終了点はノズル面から20〜15
0cmの位置にあることか好ましい。この細化終了点の
設定は冷却条件により設定することが可能であり、具体
的には冷却風の温度風速の調節により適切な位置に設定
することができる。
Note that if the shear stress at the time of crystallization is appropriate, a good porous hollow fiber can be obtained by going through the steps described below. Generally, the melt coming out of the nozzle falls while decreasing in diameter (fine) until it solidifies, and once the thinning is completed and solidifies, shear stress is applied thereafter. If the thinning end point is too close to the nozzle surface, the shear stress applied to the yarn will increase, and in particular, polyethylene with a low MI value will have high molecular orientation due to excessive shear stress, resulting in yarn breakage during the subsequent drawing process. is more likely to occur. On the other hand, if it does not reach from the nozzle surface, the laminated lamellar structure will not develop sufficiently due to insufficient shear stress, and necking will occur during stretching, making it difficult to become porous. Therefore, the point at which the thinning ends is 20 to 15 mm from the nozzle surface.
It is preferable that it be at a position of 0 cm. The end point of the thinning can be set depending on the cooling conditions, and specifically, it can be set at an appropriate position by adjusting the temperature and speed of the cooling air.

なお、冷却として冷却風を用いる場合は、冷却風の風速
が過大にすぎると空気流に乱れが生じ易くなり、これに
より糸径に斑を生じ易くなり、斑があると紡糸又は延伸
時の張力が集中して糸切れの原因にもなる。又、風速が
あまりにも小さ過ぎると冷却不足となり、糸径の変動が
やはり大きくなる。この観点からすれば冷却風の風速は
0.5〜2.0m/secであることが好ましい。
Note that when using cooling air for cooling, if the wind speed of the cooling air is too high, turbulence tends to occur in the air flow, which tends to cause unevenness in the yarn diameter. Concentrates and can cause thread breakage. Furthermore, if the wind speed is too low, cooling will be insufficient and fluctuations in yarn diameter will become large. From this point of view, the speed of the cooling air is preferably 0.5 to 2.0 m/sec.

かくして得られた中空糸をまず5〜20℃で1.5〜2
.5倍程度延伸することにより結晶相聞を剥離する。温
度が5℃未満であるとポリマー鎖が剛直となり延伸時に
切断し易くなり、逆に20℃より高い温度では結晶類が
伸びることにより結晶相聞の剥離が生じ難くなる。延伸
倍率が1.5倍未満では剥離が不充分となり、2.5倍
を越える延伸倍率では切断が生じ易く好ましくない。次
いて上記延伸温度より高い温度でさらに延伸し、ラメラ
からポリマー頻を引き伸ばし多数のフィブリルを生成さ
せることにより中空糸を多孔質化する。この時の延伸温
度は50〜140℃であることが好ましく、延伸倍率は
2〜7.5倍であることが好ましい。
The hollow fiber thus obtained was first heated at 5 to 20°C to 1.5 to 2
.. By stretching the film approximately 5 times, the crystal layers are peeled off. If the temperature is less than 5°C, the polymer chains will become rigid and easily break during stretching, whereas if the temperature is higher than 20°C, the crystals will stretch, making it difficult for crystals to separate from each other. If the stretching ratio is less than 1.5 times, peeling will be insufficient, and if the stretching ratio is more than 2.5 times, breakage will easily occur, which is not preferable. Next, the hollow fiber is made porous by further stretching at a temperature higher than the above-mentioned stretching temperature to stretch the polymer fibers from the lamellae and generate a large number of fibrils. The stretching temperature at this time is preferably 50 to 140°C, and the stretching ratio is preferably 2 to 7.5 times.

こうして得られた多孔質中空糸を120℃乃至140℃
で定長又は緩和熱処理することが形態安定化のために好
ましい。
The porous hollow fibers thus obtained were heated at a temperature of 120°C to 140°C.
It is preferable to perform constant length or relaxation heat treatment for shape stabilization.

[実施例] 以下に実施例を用いて本発明をさらに詳しく説明する。[Example] The present invention will be explained in more detail below using Examples.

なお、実施例において、孔径は走査型電子顕微鏡により
観察した100ケの細孔の孔面積を測定し、同面積に相
当する円の直径に換哀した値を示した。
In the examples, the pore diameter was determined by measuring the pore area of 100 pores observed with a scanning electron microscope, and was converted to the diameter of a circle corresponding to the same area.

実施例1 密度0.965g/cc、MI 5.5のポリエチレン
と密度0.965g/cc、MI 1.0のポリエチレ
ンを180℃に加熱溶融し、同心円状に配置された二重
円環状紡糸ノズルの各々内側及び外側の円環から吐出線
速度3.5cm/min、2.4cm/mi nで押し
出し、15℃の冷却風をポリマーの押し出し方向に対し
て向流に風速0.8m/secで流して冷却することに
より、細化終了点がノズル面から35cmになるように
して、180 m / m i nの速度で巻き取り、
中空糸を得た。(これを未延伸糸と称する。)このよう
にして30分間紡糸し、200m毎に25箇所で該未延
伸糸の外径を?1111足したところ、その平均値は5
22μmであり、変動係数は3.0%であった。この未
延伸糸を2m/minで給糸し115℃で3分間熱処理
した後、22℃で1.8倍に、次いて105℃で元の長
さの5.5倍になるように延伸し、更に、115℃で緩
和し元の長さの5倍になるようにして熱セットした。こ
れにより、2時間で1200mの延伸糸を得た。この量
系は全く切断せず、延伸糸の空孔率は67%で内表面の
モ均孔径は1.2μm、外表面の平均孔径は0.3μm
てあり、非対称構造の複合膜が安定に製造された。
Example 1 Polyethylene with a density of 0.965 g/cc and MI 5.5 and polyethylene with a density of 0.965 g/cc and MI 1.0 were heated and melted at 180°C, and double annular spinning nozzles were arranged concentrically. The polymer was extruded from the inner and outer rings at a discharge linear velocity of 3.5 cm/min and 2.4 cm/min, respectively, and 15°C cooling air was applied countercurrently to the extrusion direction of the polymer at a wind speed of 0.8 m/sec. By flowing and cooling, the atomization end point is 35 cm from the nozzle surface, and it is wound up at a speed of 180 m/min.
A hollow fiber was obtained. (This is called an undrawn yarn.) After spinning for 30 minutes in this manner, the outer diameter of the undrawn yarn was measured at 25 points every 200 m. When I added 1111, the average value was 5
It was 22 μm, and the coefficient of variation was 3.0%. This undrawn yarn was fed at 2 m/min and heat treated at 115°C for 3 minutes, then stretched to 1.8 times its original length at 22°C and then 5.5 times its original length at 105°C. Then, it was relaxed at 115° C. and heat set to five times its original length. As a result, 1200 m of drawn yarn was obtained in 2 hours. This quantity system was not cut at all, the porosity of the drawn fiber was 67%, the average pore diameter on the inner surface was 1.2 μm, and the average pore diameter on the outer surface was 0.3 μm.
A composite membrane with an asymmetric structure was stably produced.

実施例2 18℃の冷却風をポリマーの押し出し方向に対して向流
に風速1.0m/secで流して冷却することにより、
細化終了点がノズル面から27cmになるようにした以
外は実施例1と同様にして未延伸糸を得た。このように
して30分間紡糸し、200m毎に25箇所で未延伸糸
の外径を測定したところ、その平均値は535μmてあ
り、変動係数は3.5%であった。
Example 2 By flowing cooling air at 18°C countercurrently to the extrusion direction of the polymer at a wind speed of 1.0 m/sec,
An undrawn yarn was obtained in the same manner as in Example 1, except that the thinning end point was set at 27 cm from the nozzle surface. After spinning for 30 minutes in this manner, the outer diameter of the undrawn yarn was measured at 25 locations every 200 m, and the average value was 535 μm, with a coefficient of variation of 3.5%.

実施例1と同様にしてこの未延伸糸から2時間で120
0mの延伸糸を得た。この量系は全く切断せず、延伸糸
の空孔率は65%で内表面の平均孔径は1.2μm、外
表面の平均孔径は0.3μmであり、非対称構造の複合
膜か安定に製造された。
120 in 2 hours from this undrawn yarn in the same manner as in Example 1.
A drawn yarn of 0 m was obtained. This quantity system does not cut at all, the porosity of the drawn fibers is 65%, the average pore size on the inner surface is 1.2 μm, and the average pore size on the outer surface is 0.3 μm, making it possible to stably manufacture composite membranes with an asymmetric structure. It was done.

実施例3 20℃の冷却風をポリマーの押し出し方向に対して向流
に風速1.6m/secで流して冷却することにより、
細化終了点がノズル面から22cmになるようにした以
外は実施例1と同様にして未延伸糸を得た。このように
して30分間紡糸し、200m毎に25箇所で未延伸糸
の外径を測定したところ、その平均値は542μmてあ
り、変動係数は5.0%てあフた。
Example 3 By cooling by flowing cooling air at 20°C countercurrently to the extrusion direction of the polymer at a wind speed of 1.6 m/sec,
An undrawn yarn was obtained in the same manner as in Example 1 except that the thinning end point was set at 22 cm from the nozzle surface. After spinning for 30 minutes in this manner, the outer diameter of the undrawn yarn was measured at 25 locations every 200 m, and the average value was 542 μm, with a coefficient of variation of 5.0%.

実施例1と同様にしてこの未延伸糸から2時間で120
0mの延伸糸を得た。この量系は全く切断せず、延伸糸
の空孔率は65%て内表面の嘔均孔径は1.2μm、外
表面の゛P−均孔径は0.3μmであり、非対称構造の
複合膜か安定に製造された。
120 in 2 hours from this undrawn yarn in the same manner as in Example 1.
A drawn yarn of 0 m was obtained. This amount system was not cut at all, the porosity of the drawn fiber was 65%, the average pore diameter on the inner surface was 1.2 μm, the average pore diameter on the outer surface was 0.3 μm, and the composite membrane had an asymmetric structure. or stably manufactured.

実施例4 14℃の冷却風をポリマーの押し出し方向に対して向流
に風速0.6m/secで流して冷却することにより、
細化終了点がノズル面から125cmになるようにした
以外は実施例1と同様にして未延伸糸を得た。このよう
にして30分間紡糸し、200m毎に25箇所で未延伸
糸の外径を測定したところ、その平均値は515μmで
あり、変動係数は3.8%であった。
Example 4 By cooling by flowing cooling air at 14°C countercurrently to the extrusion direction of the polymer at a wind speed of 0.6 m/sec,
An undrawn yarn was obtained in the same manner as in Example 1 except that the thinning end point was set at 125 cm from the nozzle surface. After spinning for 30 minutes in this manner, the outer diameter of the undrawn yarn was measured at 25 locations every 200 m, and the average value was 515 μm and the coefficient of variation was 3.8%.

実施例1と同様にしてこの未延伸糸から2時間で120
0mの延伸糸を得た。この量系は全く切断せず、延伸糸
の空孔率は64%で内表面の平均孔径は1.2μm、外
表面の平均孔径は0.3μmであり、非対称構造の複合
膜が安定に製造された。
120 in 2 hours from this undrawn yarn in the same manner as in Example 1.
A drawn yarn of 0 m was obtained. This quantity system does not cut at all, the porosity of the drawn fibers is 64%, the average pore size on the inner surface is 1.2 μm, and the average pore size on the outer surface is 0.3 μm, and a composite membrane with an asymmetric structure can be stably produced. It was done.

実施例5 密度0.961g/cc、MI 18.0のポリエチレ
ンと密度0.965g/cc、MIo、8のポリエチレ
ンを190℃に加熱溶融し、同心円状に配置された二重
円環状紡糸ノズルの各々内側及び外側の円環から吐出線
速度5.0cm/min、0.4cm/mi nで押し
出し、15℃の冷却風をポリマーの押し出し方向に対し
て自流に風速1.1m/secで流して冷却することに
より、細化終了点がノズル面から95cmになるように
して、180m/minの速度で巻き取り、中空糸を得
た。このようにして30分間紡糸し、200m毎に25
筒所で該未延伸糸の外径を測定したところ、その平均値
は514μmであり、変動係数は4.0%であった。こ
の未延伸糸を用いて実施例1と同様にしてこの未延伸糸
から2時間で1200mの延伸糸を得た。この量系は全
く切断せず、延伸糸の空孔率は63%で内表面の嘔均孔
径は1.8μm、外表面の平均孔径は0.1μmであり
、非対称構造の複合膜が安定に製造された。
Example 5 Polyethylene with a density of 0.961 g/cc and MI 18.0 and polyethylene with a density of 0.965 g/cc and MIo of 8 were heated and melted at 190°C, and a double annular spinning nozzle arranged concentrically was used. The polymer was extruded from the inner and outer rings at a discharge linear velocity of 5.0 cm/min and 0.4 cm/min, respectively, and cooling air at 15°C was flowed at a flow rate of 1.1 m/sec in the direction of extrusion of the polymer. By cooling, the thinning end point was set at 95 cm from the nozzle surface, and the fiber was wound at a speed of 180 m/min to obtain a hollow fiber. Spun in this way for 30 minutes, with 25
When the outer diameter of the undrawn yarn was measured at the tube station, the average value was 514 μm and the coefficient of variation was 4.0%. Using this undrawn yarn, a drawn yarn of 1200 m was obtained in 2 hours in the same manner as in Example 1. This quantity system did not break at all, the porosity of the drawn fiber was 63%, the average pore diameter on the inner surface was 1.8 μm, and the average pore diameter on the outer surface was 0.1 μm, making the composite membrane with an asymmetric structure stable. manufactured.

実施例6 密度0−9658/cc、MI 13のポリエチレンと
密度0.965g/cc、MI 3.5のポリエチレン
を155℃に加熱溶融し、同心円状に配置された二重円
環状紡糸ノズルの各々内側及び外側の円環から吐出線速
度4.4cm/min、1.1cm/minで押し出し
、22℃の冷却風をポリマーの押し出し方向に対して向
流に風速0.8m/seeで流して冷却することにより
、細化終γ点がノズル面から40cmになるようにして
、180m/minの速度で巻き取り、中空糸を得た。
Example 6 Polyethylene with a density of 0-9658/cc and MI 13 and polyethylene with a density of 0.965 g/cc and MI 3.5 were heated and melted at 155°C, and each of the double annular spinning nozzles was arranged concentrically. The polymer is extruded from the inner and outer rings at linear discharge speeds of 4.4 cm/min and 1.1 cm/min, and cooled by flowing cooling air at 22°C countercurrently to the polymer extrusion direction at a wind speed of 0.8 m/see. By doing so, the thinning end γ point was set at 40 cm from the nozzle surface, and the fiber was wound at a speed of 180 m/min to obtain a hollow fiber.

このようにして30分間紡糸し、200m毎に25箇所
で該未延伸糸の外径を測定したところ、その平均値は5
35μmであり、変動係数は3.3%であった。この未
延伸糸を用いて実施例1と同様にしてこの未延伸糸から
2時間で1200mの延伸糸を得た。この量系は全く切
断せず、延伸糸の空孔率は59%で内表面の平均孔径は
2.1A1m、外表面の平均孔径は0.5μmであり、
非対称構造の複合膜が安定に製造された。
After spinning for 30 minutes in this way, the outer diameter of the undrawn yarn was measured at 25 points every 200 m, and the average value was 5.
It was 35 μm, and the coefficient of variation was 3.3%. Using this undrawn yarn, a drawn yarn of 1200 m was obtained in 2 hours in the same manner as in Example 1. This quantity system was not cut at all, the porosity of the drawn yarn was 59%, the average pore diameter on the inner surface was 2.1 A1 m, and the average pore diameter on the outer surface was 0.5 μm.
A composite membrane with an asymmetric structure was stably produced.

比較例1 22℃の冷却風をポリマーの押し出し方向に対して自流
に風速2.3m/secで流して冷却することにより、
細化終了点がノズル面から15cmになるようにした以
外は実施例1と同様にして未延伸糸を得た。このように
して30分間紡糸し、200mwkに25r:5所で未
延伸糸の外径を測定したところ、その平均値は550μ
mであり、変動係数は12%であった。
Comparative Example 1 By cooling by flowing cooling air at 22°C at a wind speed of 2.3 m/sec in the extrusion direction of the polymer,
An undrawn yarn was obtained in the same manner as in Example 1 except that the thinning end point was set at 15 cm from the nozzle surface. After spinning for 30 minutes in this way, the outer diameter of the undrawn yarn was measured at 5 locations at 200mwk and 25r, and the average value was 550μ.
m, and the coefficient of variation was 12%.

実施例1と同様にして延伸をしようとしたところ、延伸
糸200mで15箇所切断し、実tτ的に延伸不可能で
あった。
When an attempt was made to stretch the film in the same manner as in Example 1, the stretched yarn was cut at 15 places with a length of 200 m, making it impossible to stretch in terms of tτ.

比較例2 15℃の冷却風をポリマーの押し出し方向に対して自流
に風速0.4m/secで流して冷却することにより、
細化終了点かノズル面から170cmになるようにした
以外は実hi!1例1と同様にして未延伸糸を得た。こ
のようにして30分間紡糸し、200mjiに25筒所
で未延伸糸の外径を測定したところ、その平均値は49
0μmてあり、変動係数は15%であった。
Comparative Example 2 By cooling by flowing cooling air at 15°C at a wind speed of 0.4 m/sec in the extrusion direction of the polymer,
Except that I made it 170cm from the thinning end point or the nozzle surface! Example 1 An undrawn yarn was obtained in the same manner as in Example 1. After spinning for 30 minutes in this way, the outer diameter of the undrawn yarn was measured at 25 points at 200 mji, and the average value was 49.
0 μm, and the coefficient of variation was 15%.

実施例1と同様にして延伸をしようとしたところ、延伸
糸200mで22箇所切断し、実質的に延伸不可能であ
った。
When an attempt was made to stretch the film in the same manner as in Example 1, the stretched yarn was cut at 22 locations with a length of 200 m, making it virtually impossible to stretch.

Claims (1)

【特許請求の範囲】 1)密度が0.95g/cm^3以上で、かつ、メルト
インデックス値(以下MIという)が0.8乃至15で
ある互いにMIの異なる2種のポリエチレンを200℃
以下であって、ポリエチレンの融点より10℃高い温度
以上の温度に加熱溶融し、同心円状に配置された円環状
の吐出口を有する中空糸製造用ノズルを用いて該ノズル
の外側からはMIの低いポリエチレンを、内側からはM
Iの高いポリエチレンを、両者の吐出比を20/1乃至
1/20となるように吐出し、これを冷却しながら引き
取ることを特徴とする複合中空糸膜の膜の製造法。 2)冷却が気体流によるものであり、細化終了点がノズ
ル面から20〜150cm離れた位置にあることを特徴
とする特許請求の範囲第1項記載の複合中空糸膜の製造
法。 3)冷却が気体流によるものであり、冷却用気体の流速
が0.5乃至2.0m/secであることを特徴とする
特許請求の範囲第1項記載の複合中空糸膜の製造法。
[Claims] 1) Two types of polyethylene with different MIs having a density of 0.95 g/cm^3 or more and a melt index value (hereinafter referred to as MI) of 0.8 to 15 are heated at 200°C.
MI is melted by heating to a temperature of 10° C. higher than the melting point of polyethylene, and the MI is Low polyethylene from the inside
A method for producing a composite hollow fiber membrane, which comprises discharging polyethylene with a high I content at a discharge ratio of 20/1 to 1/20, and withdrawing the polyethylene while cooling it. 2) The method for producing a composite hollow fiber membrane according to claim 1, characterized in that the cooling is performed by a gas flow, and the atomization end point is located at a distance of 20 to 150 cm from the nozzle surface. 3) The method for producing a composite hollow fiber membrane according to claim 1, wherein the cooling is performed by a gas flow, and the flow rate of the cooling gas is 0.5 to 2.0 m/sec.
JP61214498A 1986-09-11 1986-09-11 Production of conjugated hollow yarn membrane Pending JPS6375116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61214498A JPS6375116A (en) 1986-09-11 1986-09-11 Production of conjugated hollow yarn membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61214498A JPS6375116A (en) 1986-09-11 1986-09-11 Production of conjugated hollow yarn membrane

Publications (1)

Publication Number Publication Date
JPS6375116A true JPS6375116A (en) 1988-04-05

Family

ID=16656704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61214498A Pending JPS6375116A (en) 1986-09-11 1986-09-11 Production of conjugated hollow yarn membrane

Country Status (1)

Country Link
JP (1) JPS6375116A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054830A (en) * 2005-07-28 2007-03-08 Kitz Corp Hollow fiber membrane module and its production method
JP2008253922A (en) * 2007-04-05 2008-10-23 Asahi Kasei Chemicals Corp Method for filtering suspension water
JP2011056437A (en) * 2009-09-11 2011-03-24 Asahi Kasei Chemicals Corp Filtering method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054830A (en) * 2005-07-28 2007-03-08 Kitz Corp Hollow fiber membrane module and its production method
JP2008253922A (en) * 2007-04-05 2008-10-23 Asahi Kasei Chemicals Corp Method for filtering suspension water
JP2011056437A (en) * 2009-09-11 2011-03-24 Asahi Kasei Chemicals Corp Filtering method

Similar Documents

Publication Publication Date Title
EP0227832B1 (en) Composite hollow yarn and a process for producing the same
US4802942A (en) Method of making multilayer composite hollow fibers
US4401567A (en) Microporous polyethylene hollow fibers
JPS59199808A (en) Microporous hollow fiber and production thereof
US4530809A (en) Process for making microporous polyethylene hollow fibers
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPS6375116A (en) Production of conjugated hollow yarn membrane
JPH1136169A (en) Production of melt-blown nonwoven fabric and cylindrical filter comprising melt-blown nonwoven fabric
CN1022804C (en) Preparation process of polypropylene hollow fiber microporous membrane
JPH0359105A (en) Spinning cap and production of hollow fiber
JPS62269706A (en) Composite membrane of porous hollow polyolefin yarn and its production
JPS6342006B2 (en)
KR102019466B1 (en) Continuous Process of Preparing Hollow Fiber Membrane Wherein Uniform Bead Structures Are Evenly Formed Throughout the Membrane Using Extruder
CN112789103B (en) Hollow fiber membrane spinning nozzle and method for producing hollow fiber membrane
JPS6297980A (en) Composite hollow fiber membrane
JP4050606B2 (en) Method for producing three-layer composite hollow fiber membrane
JPH05311516A (en) Conjugate hollow yarn and its production
JP3383926B2 (en) Manufacturing method of hollow fiber type heterogeneous membrane
JPS6115162B2 (en)
JPH04267934A (en) Method for producing hollow capillary membrane, membrane for supporting gas separating membrane and unsymmetrical perfect gas separating membrane
CN114733363A (en) Preparation process of polyolefin gas exchange membrane
KR100444127B1 (en) Manufacturing method of separation film of polyolefine type hollow yarn having excellent tensile strength and elasticity
JPH01297435A (en) Production of double layered porous film
JPS6392712A (en) Production of hollow yarn porous membrane
JPH0515747A (en) Conjugate hollow fiber and production thereof