JPH05311516A - Conjugate hollow yarn and its production - Google Patents

Conjugate hollow yarn and its production

Info

Publication number
JPH05311516A
JPH05311516A JP11096292A JP11096292A JPH05311516A JP H05311516 A JPH05311516 A JP H05311516A JP 11096292 A JP11096292 A JP 11096292A JP 11096292 A JP11096292 A JP 11096292A JP H05311516 A JPH05311516 A JP H05311516A
Authority
JP
Japan
Prior art keywords
polyolefin
hollow fiber
layer
composite hollow
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11096292A
Other languages
Japanese (ja)
Inventor
Yasushi Ohori
康司 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP11096292A priority Critical patent/JPH05311516A/en
Publication of JPH05311516A publication Critical patent/JPH05311516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To provide a conjugate hollow polyolefin yarn capable of separating a specific substance, having excellent permeability and producible in high stability. CONSTITUTION:The objective conjugate hollow yarn is composed of an outer layer, an inner layer and an intermediate layer. The outer and inner layers are made of a polyolefin A and the intermediate layer is made of a blended polyolefin produced by (I) blending the polyolefin A with 3-40wt.% of a polyolefin B of the type same as the polyolefin A and having a melting point lower than that of the polyolefin A or (2) blending the polyolefin A with 3-40wt.% of the polyolefin B and 3-40wt.% of a polyolefin C having low MI value. The intermediate layer has micropores having diameters different from those of the outer and inner layers and the micropores of the layers are interconnected with each other. The thickness of the intermediate layer is <=1/4 of the thickness of the outer layer or the inner layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリオレフィンよりな
る複合中空糸とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite hollow fiber made of polyolefin and a method for producing the same.

【0002】[0002]

【従来の技術】代表的な熱可塑性樹脂であるポリオレフ
ィンを溶融紡糸した後、延伸して多孔質中空糸が得られ
ることは既に公知である。
2. Description of the Related Art It is already known that a polyolefin, which is a typical thermoplastic resin, is melt-spun and then stretched to obtain a porous hollow fiber.

【0003】例えばUSP4,055,696号明細書
には、ポリプロピレンにより200〜2000Åの範囲
に分布した微細孔を有する多孔質中空糸が開示されてい
る。これによれば膜厚17.5〜22.5μでガス透過
率は1.4〜6.7×10-6(cc・cm/cm2 ・s
ec・cmHg)であることが記載されている。
For example, US Pat. No. 4,055,696 discloses a porous hollow fiber having fine pores distributed in a range of 200 to 2000 Å by polypropylene. According to this, the gas permeability is 1.4 to 6.7 × 10 −6 (cc · cm / cm 2 · s at a film thickness of 17.5 to 22.5 μm).
ec · cmHg).

【0004】またUSP4,401,567号明細書に
は、ポリエチレン製の多孔質中空糸が開示されている。
これによれば膜壁の厚さ50〜60μでN2 ガス透過率
は4.9〜7.2×105 (l/m2 ・hr・760m
mHg)、水の透過率は1900〜3200(ml/m
2 ・hr・mmHg)、アルブミンの透過率が100%
であることが記載されている。
US Pat. No. 4,401,567 discloses a porous hollow fiber made of polyethylene.
According to this, when the thickness of the membrane wall is 50 to 60 μm, the N 2 gas permeability is 4.9 to 7.2 × 10 5 (l / m 2 · hr · 760 m
mHg), water permeability is 1900 to 3200 (ml / m
2・ hr ・ mmHg), albumin transmittance is 100%
Is described.

【0005】更にUSP3,423,491号明細書で
は75%以上の塩排除率を示す浸透性微細孔をもったポ
リエチレン中空糸膜が、またUSP4,020,230
号明細書ではおよそ30Åの自由回転半径をもつアルブ
ミンの透過を約95%以上阻止できる有効最大微孔半径
が約50Å以下の多孔質ポリエチレンがそれぞれ製造さ
れることが示されている。
Further, in US Pat. No. 3,423,491, a polyethylene hollow fiber membrane having permeable fine pores showing a salt rejection of 75% or more is also disclosed in US Pat. No. 4,020,230.
In the specification, it is shown that porous polyethylene having an effective maximum micropore radius of about 50 Å or less, which can prevent permeation of albumin having a free rotation radius of about 30 Å by about 95% or more, is produced.

【0006】更にまた特定の物質を分離でき且つ透過性
のよい中空糸が特公昭62−44046号公報に開示さ
れている。
Further, a hollow fiber capable of separating a specific substance and having good permeability is disclosed in Japanese Patent Publication No. 62-44046.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記U
SPの各明細書に開示された発明は微小孔径の分布が一
様なものばかりである。これら先行技術により開示され
ている中空糸は物質分離を機能とするものであり、機構
的には微小空孔の大きさと分離したい物質の幾何学的な
形態の差異によって特定の物質を透過させたり、阻止し
たりするものである。工業的見地に立てば透過性物質の
透過速度をできるだけ上げることも重要である。ところ
が、これら先行技術により開示されている中空糸では、
ある特定の物質を分離しようとすれば微小空孔の大きさ
を制限する必要があり、それだけ物質が移動する流路の
面積が減少し、透過性物質の透過速度を低下させること
になる。
However, the above-mentioned U
The inventions disclosed in the respective specifications of SP are only those in which the distribution of micropore diameters is uniform. The hollow fibers disclosed in these prior arts have a function of separating substances, and mechanically, a specific substance can be permeated depending on the size of micropores and the geometrical shape of the substance to be separated. , It is something to stop. From an industrial standpoint, it is also important to increase the permeation rate of the permeable substance as much as possible. However, in the hollow fibers disclosed by these prior arts,
In order to separate a specific substance, it is necessary to limit the size of the micropores, which reduces the area of the flow path through which the substance moves, and reduces the permeation rate of the permeable substance.

【0008】一方上記特公昭62−44046号公報に
開示されている方法では、溶融粘度の異なる高分子を接
合させて同時に溶融紡糸しているため、細化点がばらつ
きやすく、内径、膜厚斑の大きい中空糸となりやすい。
また内層と外層で結晶配向性、最大延伸倍率が異なるた
め、延伸多孔化の過程で糸切れが多発し、安定に製造す
ることが困難である。本発明は以上のような状況に鑑み
なされたものであり、その目的は特定の物質を分離する
ことができ且つ透過性に優れ、安定した製造ができる複
合中空糸及びその製造方法を提供することにある。
On the other hand, in the method disclosed in Japanese Patent Publication No. 62-44046, since polymers having different melt viscosities are bonded and melt-spun at the same time, the thinning points are likely to vary and the inner diameter and the film thickness unevenness are easily varied. Tends to become a large hollow fiber.
Further, since the crystal orientation and the maximum draw ratio are different between the inner layer and the outer layer, yarn breakage frequently occurs in the process of stretched and porous, and it is difficult to stably manufacture. The present invention has been made in view of the above circumstances, and an object thereof is to provide a composite hollow fiber capable of separating a specific substance, excellent in permeability, and capable of stable production, and a method for producing the same. It is in.

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
め、本発明者は上述の課題について鋭意検討を重ねた結
果、本発明に到達したものである。本発明は、外層、内
層、中間層の3つの層から成る複合中空糸であって、外
層、内層がポリオレフィンAからなり、中間層が (1)ポリオレフィンAと同種で且つポリオレフィンA
より低融点であるポリオレフィンBをポリオレフィンA
に対して3〜40重量%ブレンドしたブレンドポリマー
又は(2)ポリオレフィンAと同種で且つポリオレフィ
ンAより低MI値であるポリオレフィンC及びポリオレ
フィンBをそれぞれポリオレフィンAに対して3〜40
重量%ブレンドした3種ブレンドポリマーからなる3つ
の層が接合された複合中空糸であって、中間層は外、内
層と異なる大きさの微小空孔を有し且つ各々の層内及び
層間の微小空孔が互いに連通して、一方の表面から他方
の表面までつながった微小空孔を形成しており、中間層
の厚さが外層もしくは内層の厚みの1/4以下であるこ
とを特徴とする複合中空糸である。
In order to achieve the above object, the inventor of the present invention has arrived at the present invention as a result of extensive studies on the above problems. The present invention is a composite hollow fiber comprising three layers, an outer layer, an inner layer and an intermediate layer, wherein the outer layer and the inner layer are made of polyolefin A, and the intermediate layer is (1) the same kind as the polyolefin A and the polyolefin A.
Polyolefin B, which has a lower melting point, is
3 to 40% by weight of the blended polymer or (2) polyolefin C and polyolefin B having the same MI value as polyolefin A and a lower MI value than polyolefin A, and 3 to 40% of polyolefin A, respectively.
A composite hollow fiber in which three layers composed of three kinds of blended polymers blended by weight% are joined, wherein an intermediate layer has micropores of different sizes from the outer and inner layers, and micropores in and between each layer. The pores communicate with each other to form minute pores connected from one surface to the other surface, and the thickness of the intermediate layer is 1/4 or less of the thickness of the outer layer or the inner layer. It is a composite hollow fiber.

【0010】該複合中空糸は、同心円状に配置された3
つの円管状の吐出口を有する中空糸製造用ノズルを用い
て、2つの吐出口にポリオレフィンAを他の吐出口に
(1)ポリオレフィンAと同種で且つポリオレフィンA
より低融点であるポリオレフィンBをポリオレフィンA
に対して3〜40重量%ブレンドしたブレンドポリマー
又は(2)ポリオレフィンAと同種で且つポリオレフィ
ンAより低MI値であるポリオレフィンC及びポリオレ
フィンBをそれぞれポリオレフィンAに対して3〜40
重量%ブレンドした3種ブレンドポリマーを別々に供給
して溶融紡糸し、層の異なる3つの層を有する複合中空
糸を得、該複合中空糸をアニール処理した後、延伸、熱
セットすることにより製造される。
The composite hollow fibers are arranged in concentric circles.
Using a hollow fiber manufacturing nozzle having one circular tubular discharge port, polyolefin A is used for the two discharge ports (1) The same kind as the polyolefin A and the polyolefin A
Polyolefin B, which has a lower melting point, is
3 to 40% by weight of the blended polymer or (2) polyolefin C and polyolefin B having the same MI value as polyolefin A and a lower MI value than polyolefin A, and 3 to 40% of polyolefin A, respectively.
Produced by separately supplying three kinds of blended polymers blended by weight% and performing melt spinning to obtain a composite hollow fiber having three layers having different layers, annealing the composite hollow fiber, and then stretching and heat setting. To be done.

【0011】本発明の複合中空糸の一層を構成するポリ
オレフィンAとしては、例えばポリエチレン、ポリプロ
ピレン、ポリ3−メチル−ブテン−1、ポリ4−メチル
ペンテン−1或いはこれらの共重合体を挙げることがで
きる。
Examples of the polyolefin A constituting one layer of the composite hollow fiber of the present invention include polyethylene, polypropylene, poly-3-methyl-butene-1, poly-4-methylpentene-1 and copolymers thereof. it can.

【0012】中間層を構成するポリオレフィンとして
は、ポリオレフィンAと同種で且つ低融点であるポリオ
レフィンBをポリオレフィンAに対して3〜40重量
%、より好ましくは10〜30重量%ブレンドしたポリ
オレフィンからなる。ポリオレフィンBが、ポリオレフ
ィンAに対して3重量%未満の場合には二つの層の微小
空孔の大きさに差が生じない。またポリオレフィンB
が、ポリオレフィンAに対して40重量%を超えると微
小空孔が生じない。
The polyolefin constituting the intermediate layer is a polyolefin obtained by blending 3 to 40% by weight, more preferably 10 to 30% by weight, of polyolefin A, which is the same kind as polyolefin A and has a low melting point. When the content of polyolefin B is less than 3% by weight with respect to polyolefin A, there is no difference in the size of the micropores in the two layers. Also polyolefin B
However, if it exceeds 40% by weight with respect to the polyolefin A, micropores do not occur.

【0013】本発明で使用するポリオレフィンA及びポ
リオレフィンCのMI値は0.1〜50の範囲にあるも
のが好ましく、0.5〜10であることがより好まし
い。ポリオレフィンA及びポリオレフィンCのMI値が
0.1以下では溶融粘度が高過ぎ、安定した紡糸を行い
難く、また50以上では溶融粘度が低過ぎてやはり安定
した紡糸が行い難くなる。
The MI values of the polyolefin A and the polyolefin C used in the present invention are preferably in the range of 0.1 to 50, and more preferably 0.5 to 10. If the MI values of the polyolefin A and the polyolefin C are 0.1 or less, the melt viscosity is too high, and stable spinning is difficult to perform. If the MI value is 50 or more, the melt viscosity is too low, and stable spinning is also difficult.

【0014】ポリオレフィンBのポリオレフィンA又は
ポリオレフィンCとのブレンド比率は3〜40重量%が
好ましい。ポリオレフィンBのブレンド比率が3%未満
では、より大きな微小空孔とより小さな微小空孔の孔径
差が小さく、目標とする性能が得られない。ポリオレフ
ィンBのブレンド比率が40%を超えると空孔の形成が
不可能となる。
The blend ratio of polyolefin B with polyolefin A or polyolefin C is preferably 3 to 40% by weight. If the blend ratio of the polyolefin B is less than 3%, the difference in pore size between the larger micropores and the smaller micropores is small, and the target performance cannot be obtained. When the blending ratio of polyolefin B exceeds 40%, it becomes impossible to form pores.

【0015】本発明においては、かかるポリオレフィン
を中空糸製造用ノズルを用いて溶融紡糸し、異なる大き
さの微小空孔を有し、各々の層内及び層間の微小空孔が
互いに連通して、一方の表面から他方の表面までつなが
った微小空孔を形成しており、中間層の厚さが、外層も
しくは内層の厚みの1/4以下の複合中空糸を製造す
る。ノズルは同心円上に配置された3つの円管状の吐出
口を有するものが望ましい。
In the present invention, such a polyolefin is melt-spun using a nozzle for producing a hollow fiber and has micropores of different sizes, and the micropores in each layer and between layers communicate with each other, A composite hollow fiber is manufactured in which minute pores are formed from one surface to the other surface and the thickness of the intermediate layer is 1/4 or less of the thickness of the outer layer or the inner layer. It is preferable that the nozzle has three circular tubular discharge ports arranged concentrically.

【0016】該未延伸糸を融点以下でアニール処理した
後に延伸を行う。延伸は冷延伸に引き続き熱延伸を行う
二段又は熱延伸を更に多段に分割して行う多段延伸が好
ましい。冷延伸は比較的低い温度下で構造破壊を起こさ
せてミクロなクラッキングを発生させる工程であり、0
℃〜ポリマー融点より50℃低い温度(例えば、ポリエ
チレンでは0〜80℃)の比較的低温下で行うことが好
ましい。熱延伸は冷延伸で発生させたミクロクラッキン
グを拡大させ微小空孔を形成する工程であり、比較的高
温下で行うことが好ましいが、ポリオレフィンの融点を
超えない温度で行う方がよい。
The undrawn yarn is annealed at a temperature below its melting point and then drawn. The stretching is preferably a two-stage stretching in which cold stretching is followed by hot stretching or a multi-stage stretching in which hot stretching is further divided into multiple stages. Cold stretching is a process of causing structural destruction at a relatively low temperature to generate microcracking.
It is preferable to carry out at a relatively low temperature of 50 ° C. to 50 ° C. lower than the melting point of the polymer (for example, 0 to 80 ° C. for polyethylene). The hot stretching is a step of expanding microcracking generated by cold stretching to form fine pores, and it is preferable to perform the stretching at a relatively high temperature, but it is better to perform the stretching at a temperature not exceeding the melting point of the polyolefin.

【0017】更に製品の物理的な寸法安定性を保持する
ために定長もしくは弛緩させた状態で熱セットを行う。
熱セットを効果的に行うためには、熱セット温度は延伸
温度以上であることが好ましい。
Furthermore, in order to maintain the physical dimensional stability of the product, heat setting is performed in a fixed length or in a relaxed state.
In order to effectively perform heat setting, the heat setting temperature is preferably equal to or higher than the stretching temperature.

【0018】複合中空糸の層のうち中間層に形成される
孔の大きさは、ポリオレフィンBのポリオレフィンAに
対するブレンド比率及びポリオレフィンAとポリオレフ
ィンCのMI値の差の組合せを適宜選択することによっ
て決められる。
The size of the pores formed in the intermediate layer of the composite hollow fiber layer is determined by appropriately selecting the combination of the blend ratio of polyolefin B to polyolefin A and the difference in MI value between polyolefin A and polyolefin C. Be done.

【0019】[0019]

【実施例】以下本発明を実施例に基づいて具体的に説明
する。「MI値」はASTM D−1238によって測
定した。ラテックス標準粒子による捕捉粒子径の測定
は、次の方法によった。「膜面積が約50cm2 の中空
糸膜が充填された容器をエタノールに浸漬した後、エタ
ノールを水に置換することにより親水化し、更に0.1
wt%の界面活性剤(ポリエチレングリコール−p−イ
ソオクチルフェニルエーテル)水溶液で置換した後、圧
力0.7kg/cm2 で0.1%の単一分散粒子径のポ
リスチレンラテックス粒子を濾過し、濾液のラテックス
粒子の濃度を日立分光光度計(U−3400)により3
20nmの波長の吸光度を測定し捕捉率を求めた。」
EXAMPLES The present invention will be specifically described below based on examples. "MI value" was measured by ASTM D-1238. The following method was used to measure the trapped particle size using latex standard particles. “After a container filled with a hollow fiber membrane having a membrane area of about 50 cm 2 is immersed in ethanol, the ethanol is replaced with water to make it hydrophilic, and
After substituting with a wt% aqueous solution of a surfactant (polyethylene glycol-p-isooctylphenyl ether), 0.1% of polystyrene latex particles having a single dispersed particle diameter was filtered at a pressure of 0.7 kg / cm 2 , and the filtrate was obtained. The latex particle concentration of 3 was determined by Hitachi spectrophotometer (U-3400).
The absorbance at a wavelength of 20 nm was measured to obtain the capture rate. "

【0020】実施例1 同心円上に配置された3つの円管状の吐出口を有する中
空糸製造用ノズルを用いて、中間層側の吐出口から密度
0.968g/cm3 、MI値5.5、融点134℃の
高密度ポリエチレン(Hizex 2200J、三井石
油化学(株)製)に密度0.920g/cm3 、MI値
18、融点120℃の低密度ポリエチレン(Ultze
x 20200J、三井石油化学(株)製)を15重量
%ブレンドしたポリエチレンを、吐出量0.375g/
min、吐出温度155℃、外、内層側の吐出口から前
記高密度ポリエチレンを吐出量7.5g/min、吐出
温度155℃でそれぞれ吐出し、100m/minの巻
取り速度で巻き取った。
Example 1 Using a hollow fiber manufacturing nozzle having three circular tubular discharge ports arranged concentrically, the density was 0.968 g / cm 3 and the MI value was 5.5 from the discharge port on the intermediate layer side. , A high density polyethylene (Hizex 2200J, manufactured by Mitsui Petrochemical Co., Ltd.) with a melting point of 134 ° C., a density of 0.920 g / cm 3 , an MI value of 18, and a low density polyethylene (Ultze of 120 ° C.).
x 20200J, Mitsui Petrochemical Co., Ltd.) blended with 15% by weight of polyethylene, and the discharge rate is 0.375 g /
The high-density polyethylene was discharged at a discharge rate of 7.5 g / min and a discharge temperature of 155 ° C. from the discharge ports on the outer and inner layers, respectively, and was wound at a winding speed of 100 m / min.

【0021】得られた未延伸糸をボビンに巻いたまま空
気中で110℃で12時間アニール処理を行った。更に
このアニール処理糸を30℃以下に保たれたローラー間
で80%冷延伸し、引き続いて117℃に加熱された加
熱函中で総延伸量が400%になるようにローラー間熱
延伸を行い、更に120℃に加熱した加熱函中で総延伸
量の25%緩和させた状態で熱セットを行い複合中空糸
を得た。
The undrawn yarn thus obtained was annealed in air at 110 ° C. for 12 hours while being wound on a bobbin. Further, this annealed yarn is cold-drawn by 80% between rollers kept at 30 ° C. or lower, and then hot-drawn between rollers in a heating box heated at 117 ° C. so that the total drawn amount becomes 400%. Further, heat setting was performed in a heating box heated to 120 ° C. in a state where the total stretched amount was relaxed by 25% to obtain a composite hollow fiber.

【0022】得られた複合中空糸の内径は、271μ、
外、中間、内層を合わせた膜厚は54μであり、走査型
電子顕微鏡による観察では中間層の膜厚は、2μであっ
た。ラテックス標準粒子を99.5%阻止できる捕捉粒
子径が0.088μであった。この複合中空糸の水フラ
ックスは6.5ml/m2 ・hr・mmHg(at25
℃)であった。
The inside diameter of the obtained composite hollow fiber was 271 μm,
The total film thickness of the outer, intermediate, and inner layers was 54 μm, and the film thickness of the intermediate layer was 2 μm by observation with a scanning electron microscope. The trapped particle size capable of blocking 99.5% of the latex standard particles was 0.088μ. The water flux of this composite hollow fiber is 6.5 ml / m 2 · hr · mmHg (at 25
℃).

【0023】実施例2 中間層に用いるポリマーを密度0.968g/cm3
MI値5.5、融点134℃の高密度ポリエチレン(H
izex 2200J、三井石油化学(株)製)と密度
0.920g/cm3 、MI値18、融点120℃の低
密度ポリエチレン(Ultzex 20200J、三井
石油化学(株)製)と密度0.968g/cm3 にMI
値0.4、融点134℃の高密度ポリエチレンを68/
15/17重量%ブレンドしたポリマーに変更して、実
施例1と同様にして複合中空糸を得た。
Example 2 The polymer used for the intermediate layer had a density of 0.968 g / cm 3 ,
High-density polyethylene with a MI value of 5.5 and a melting point of 134 ° C (H
izex 2200J, manufactured by Mitsui Petrochemical Co., Ltd.) and density 0.920 g / cm 3 , low density polyethylene with an MI value of 18, melting point 120 ° C. (Ultzex 20200J, manufactured by Mitsui Petrochemical Co., Ltd.) and density 0.968 g / cm 3. MI to 3
68 / of high-density polyethylene with a value of 0.4 and a melting point of 134 ° C
A composite hollow fiber was obtained in the same manner as in Example 1 except that the polymer blended was 15/17% by weight.

【0024】得られた複合中空糸の内径は、275μ、
外、中間、内層を合わせた膜厚は53μであり、走査型
電子顕微鏡による観察では中間層の膜厚は2μであっ
た。ラテックス標準粒子を99.5%阻止できる捕捉粒
子径が0.038μであった。この複合中空糸の水フラ
ックスは4.5ml/m2 ・hr・mmHg(at 2
5℃)であった。
The inner diameter of the obtained composite hollow fiber was 275 μm,
The total thickness of the outer layer, the intermediate layer, and the inner layer was 53 μm, and the thickness of the intermediate layer was 2 μm when observed with a scanning electron microscope. The trapped particle size capable of blocking 99.5% of the latex standard particles was 0.038μ. The water flux of this composite hollow fiber is 4.5 ml / m 2 · hr · mmHg (at 2
5 ° C.).

【0025】比較例1 一つの円管状の吐出口を有する中空糸製造用ノズルを用
いて、密度0.968g/cm3 、MI値5.5、融点
134℃の高密度ポリエチレン(Hizex2200
J、三井石油化学(株)製)を吐出量8.25g/mi
n、吐出温度155℃で吐出し、100m/minの巻
取り速度で巻き取った。
Comparative Example 1 A high-density polyethylene (Hizex 2200) having a density of 0.968 g / cm 3 , an MI value of 5.5 and a melting point of 134 ° C. was prepared by using a hollow fiber producing nozzle having one circular tubular outlet.
J, manufactured by Mitsui Petrochemical Co., Ltd.) discharge rate of 8.25 g / mi
It was discharged at a discharge temperature of 155 ° C. and was wound at a winding speed of 100 m / min.

【0026】得られた未延伸糸をボビンに巻いたまま空
気中で95℃の12時間アニール処理を行った。更にこ
のアニール処理糸を30℃以下に保たれたローラー間で
80%冷延伸し、引き続いて109℃に加熱された加熱
函中で総延伸量が400%になるようにローラー間熱延
伸を行い、更に120℃に加熱した加熱函中で総延伸量
の25%緩和させた状態で熱セットを行って複合中空糸
を得た。
The obtained undrawn yarn was annealed in air at 95 ° C. for 12 hours while being wound on a bobbin. Further, this annealed yarn is 80% cold-drawn between rollers kept at 30 ° C. or lower, and then hot-rolled between rollers in a heating box heated to 109 ° C. so that the total amount of drawing is 400%. Further, heat setting was performed in a heating box heated to 120 ° C. in a state where the total stretched amount was relaxed by 25% to obtain a composite hollow fiber.

【0027】得られた中空糸の内径は284μ、内層と
外層を合わせた膜厚は59μであった。この中空糸の走
査型電子顕微鏡で観察した微小空孔の孔径は内層と外層
でほぼ同一で、実施例1で得られた複合中空糸の外層の
微小空孔の孔径とほぼ同一であり、ラテックス標準粒子
径を99.5%以上阻止できる捕捉粒子径が0.15μ
であった。この中空糸の水フラックスは3.8ml/m
2 ・min・mmHg(at 25℃)であった。
The hollow fiber thus obtained had an inner diameter of 284 μm and the total thickness of the inner layer and the outer layer was 59 μm. The micropores of this hollow fiber observed with a scanning electron microscope had almost the same pore diameter in the inner layer and the outer layer, and the pore diameter of the micropores in the outer layer of the composite hollow fiber obtained in Example 1 were almost the same. Captured particle size of 0.15μ that can prevent standard particle size of 99.5% or more
Met. The water flux of this hollow fiber is 3.8 ml / m.
It was 2 · min · mmHg (at 25 ° C.).

【0028】比較例2 2つの円管状の吐出口を有する中空糸製造用ノズルを用
いて、外層側の吐出口から密度0.968g/cm3
MI値5.5、融点134℃の高密度ポリエチレン(H
izex 2200J、三井石油化学(株)製)と密度
0.920g/cm3 、MI値18、融点120℃の低
密度ポリエチレン(Ultzex 20200J、三井
石油化学(株)製)を上記高密度ポリエチレンに対して
15重量%ブレンドしたポリエチレンを、吐出量0.3
75g/min、吐出温度155℃、内層側の吐出口か
ら前記高密度ポリエチレンを吐出量7.5g/min、
吐出温度155℃でそれぞれ吐出し、100m/min
の巻取り速度で巻き取った。実施例1と同様のアニール
処理、延伸を行ったが、熱延伸工程で糸切れが、多発
し、複合中空糸を得ることは、できなかった。
Comparative Example 2 Using a hollow fiber manufacturing nozzle having two circular tubular discharge ports, the density was 0.968 g / cm 3 from the discharge port on the outer layer side.
High-density polyethylene with a MI value of 5.5 and a melting point of 134 ° C (H
izex 2200J, manufactured by Mitsui Petrochemical Co., Ltd., and low density polyethylene (Ultzex 20200J, manufactured by Mitsui Petrochemical Co., Ltd.) having a density of 0.920 g / cm 3 , MI value of 18, and a melting point of 120 ° C. with respect to the above high-density polyethylene. Polyethylene blended 15% by weight with a discharge rate of 0.3
75 g / min, discharge temperature 155 ° C., discharge amount of the high-density polyethylene from the discharge port on the inner layer side is 7.5 g / min,
Discharge at a discharge temperature of 155 ° C, 100 m / min
It was wound up at a winding speed of. The same annealing treatment and drawing as in Example 1 were carried out, but yarn breakage frequently occurred in the hot drawing process, and a composite hollow fiber could not be obtained.

【0029】[0029]

【発明の効果】以上の説明から明らかなごとく本発明
は、分離層が中間層にあり、きわめて薄膜化が可能であ
るため、特定の物質を分離することができ且つ透過性に
優れしかも安定して製造ができる複合中空糸とその製造
方法が実現される。
As is apparent from the above description, the present invention has the separation layer in the intermediate layer and can be made extremely thin, so that it can separate a specific substance, has excellent permeability and is stable. A composite hollow fiber that can be manufactured by the method and a method for manufacturing the same are realized.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 外層、内層、中間層の3つの層から成る
複合中空糸であって、外層、内層がポリオレフィンAか
らなり、中間層がポリオレフィンAと同種で且つポリオ
レフィンAより低融点であるポリオレフィンBをポリオ
レフィンAに対して3〜40重量%ブレンドしたブレン
ドポリマーからなり、中間層は外内層と異なる大きさの
微小空孔を有し且つ各々の層内及び層間の微小空孔が互
いに連通して、一方の表面から他方の表面までつながっ
た微小空孔を形成しており、中間層の厚さが外層もしく
は内層の厚みの1/4以下であることを特徴とする複合
中空糸。
1. A composite hollow fiber comprising three layers, an outer layer, an inner layer and an intermediate layer, wherein the outer layer and the inner layer are made of polyolefin A, the intermediate layer is the same kind as polyolefin A and has a lower melting point than polyolefin A. B is composed of a blended polymer of 3 to 40% by weight with respect to polyolefin A, the intermediate layer has micropores of different sizes from the outer and inner layers, and the micropores in and between each layer communicate with each other. The composite hollow fiber is characterized in that minute pores are formed from one surface to the other surface and the thickness of the intermediate layer is 1/4 or less of the thickness of the outer layer or the inner layer.
【請求項2】 中間層がポリオレフィンAと同種で且つ
ポリオレフィンAより低MI値であるポリオレフィンC
及びポリオレフィンBをそれぞれポリオレフィンAに対
して3〜40重量%ブレンドした3種ブレンドポリマー
からなる請求項1記載の複合中空糸。
2. A polyolefin C whose intermediate layer is of the same kind as polyolefin A and has a lower MI value than polyolefin A.
The composite hollow fiber according to claim 1, which comprises a blended polymer of 3 to 40% by weight of polyolefin B and 3 to 40% by weight of polyolefin B.
【請求項3】 ポリオレフィンA、ポリオレフィンCが
密度0.960g/cm3 以上の高密度ポリエチレンで
ある請求項2記載の複合中空糸。
3. The composite hollow fiber according to claim 2, wherein the polyolefin A and the polyolefin C are high-density polyethylene having a density of 0.960 g / cm 3 or more.
【請求項4】 複合中空糸が内径50〜1000μ、各
々の層の厚さ10〜300μ、ラテックス標準粒子を9
9.5%以上阻止できる捕捉粒子径が0.0001〜
0.5μである請求項1記載の複合中空糸。
4. A composite hollow fiber having an inner diameter of 50 to 1000 μ, a thickness of each layer of 10 to 300 μ, and latex standard particles of 9
Captured particle size that can prevent 9.5% or more is 0.0001 to
The composite hollow fiber according to claim 1, which has a size of 0.5 μm.
【請求項5】 同心円状に配置された3つの円管状の吐
出口を有する中空糸製造用ノズルを用いて、各々の吐出
口にポリオレフィンA,ポリオレフィンBを別々に供給
して溶融紡糸し3つの層を有する複合中空糸を得、該複
合中空糸をアニール処理した後、延伸して外内層により
大きな微小空孔を、中間層により小さな微小空孔を形成
するように各々の層の内部に多数の微小空孔を生じせし
め、しかる後熱セットすることを特徴とする請求項1記
載の複合中空糸の製造方法。
5. A hollow fiber manufacturing nozzle having three concentrically arranged circular tubular discharge ports is used, and polyolefin A and polyolefin B are separately supplied to each discharge port and melt-spun to form three fibers. A composite hollow fiber having a layer is obtained, and after the composite hollow fiber is annealed, it is stretched to form a large number of micropores in the outer and inner layers and small micropores in the intermediate layer. 2. The method for producing a composite hollow fiber according to claim 1, wherein the micropores are produced, and then heat setting is performed.
【請求項6】 ポリオレフィンBの代りにポリオレフィ
ンA,ポリオレフィンB,ポリオレフィンCのブレンド
ポリマーを供給する請求項5記載の製造方法。
6. The production method according to claim 5, wherein a blend polymer of polyolefin A, polyolefin B and polyolefin C is supplied instead of polyolefin B.
JP11096292A 1992-04-30 1992-04-30 Conjugate hollow yarn and its production Pending JPH05311516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11096292A JPH05311516A (en) 1992-04-30 1992-04-30 Conjugate hollow yarn and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11096292A JPH05311516A (en) 1992-04-30 1992-04-30 Conjugate hollow yarn and its production

Publications (1)

Publication Number Publication Date
JPH05311516A true JPH05311516A (en) 1993-11-22

Family

ID=14548932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11096292A Pending JPH05311516A (en) 1992-04-30 1992-04-30 Conjugate hollow yarn and its production

Country Status (1)

Country Link
JP (1) JPH05311516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876840A (en) * 1997-09-30 1999-03-02 Kimberly-Clark Worldwide, Inc. Crimp enhancement additive for multicomponent filaments
US6410138B2 (en) 1997-09-30 2002-06-25 Kimberly-Clark Worldwide, Inc. Crimped multicomponent filaments and spunbond webs made therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876840A (en) * 1997-09-30 1999-03-02 Kimberly-Clark Worldwide, Inc. Crimp enhancement additive for multicomponent filaments
US6410138B2 (en) 1997-09-30 2002-06-25 Kimberly-Clark Worldwide, Inc. Crimped multicomponent filaments and spunbond webs made therefrom

Similar Documents

Publication Publication Date Title
US4741829A (en) Composite hollow fibers and method of making same
US4401567A (en) Microporous polyethylene hollow fibers
JPH0122003B2 (en)
JPS60139815A (en) Conjugate hollow yarn and production thereof
US4530809A (en) Process for making microporous polyethylene hollow fibers
JPH02144132A (en) Porous polyolefin film
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPH04176328A (en) Production of microporous membrane and fusion cutting resistant microporous membrane produced by this method
WO1999046034A1 (en) Composite hollow fiber membrane and its manufacture
JPH09108551A (en) Water purifier
JPH0569571B2 (en)
JPH05311516A (en) Conjugate hollow yarn and its production
JPH11262764A (en) Water purifier
JPS6342006B2 (en)
JPH0515747A (en) Conjugate hollow fiber and production thereof
JPS62269706A (en) Composite membrane of porous hollow polyolefin yarn and its production
JPH119977A (en) Polyethylene composite microporous hollow fiber membrane
JP2954327B2 (en) Porous hollow fiber membrane
JPH02133608A (en) Porous polyolefin hollow fiber
JP2942867B2 (en) Multilayer composite membrane
JPS6375116A (en) Production of conjugated hollow yarn membrane
JP2955779B2 (en) Polyolefin composite microporous membrane and method for producing the same
JP2622629B2 (en) Manufacturing method of hollow fiber membrane
JPH03293022A (en) Porous hollow fiber membrane of poly-4-methylpentene-1
JPS62117811A (en) Production of conjugated hollow fiber membrane