JP2954327B2 - Porous hollow fiber membrane - Google Patents

Porous hollow fiber membrane

Info

Publication number
JP2954327B2
JP2954327B2 JP30779090A JP30779090A JP2954327B2 JP 2954327 B2 JP2954327 B2 JP 2954327B2 JP 30779090 A JP30779090 A JP 30779090A JP 30779090 A JP30779090 A JP 30779090A JP 2954327 B2 JP2954327 B2 JP 2954327B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane
porous hollow
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30779090A
Other languages
Japanese (ja)
Other versions
JPH04180824A (en
Inventor
佳秀 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAISERU KAGAKU KOGYO KK
Original Assignee
DAISERU KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAISERU KAGAKU KOGYO KK filed Critical DAISERU KAGAKU KOGYO KK
Priority to JP30779090A priority Critical patent/JP2954327B2/en
Publication of JPH04180824A publication Critical patent/JPH04180824A/en
Application granted granted Critical
Publication of JP2954327B2 publication Critical patent/JP2954327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多孔性中空糸膜に関するものであり、特に外
圧全量濾過方式による精密濾過に使用した場合、その特
徴的な構造ゆえに、シャープでかつ信頼性の高い濾過精
度と優れた濾過寿命、および実用的に申し分ない機械的
強度を合わせ持った多孔性中空糸膜に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a porous hollow fiber membrane, and particularly when used for microfiltration by an external pressure total filtration method, is sharp and has a characteristic structure. The present invention relates to a porous hollow fiber membrane having high filtration accuracy, excellent filtration life, and practically satisfactory mechanical strength.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

膜分離技術は、その省エネルギー性、コンパクト性と
いった面で注目され、めざましく進展してきた。中でも
精密濾過膜は古くから実用化されており、微生物を除去
する目的で医薬品の製造や医療分野に使用されて以来、
食品工業、バイオ工業、電子工業、原子力工業など多く
の分野で優れた分離精製技術として活用されている。ま
た、分離膜としての他にも、電池の隔膜、透気性防水膜
などに応用される例もあり、あらゆる産業に何らかの形
で精密濾過膜は使用されていると入っても過言ではな
い。
Membrane separation technology has attracted attention in terms of energy saving and compactness, and has made remarkable progress. Above all, microfiltration membranes have been in practical use for a long time, and since they have been used in the manufacture of pharmaceuticals and the medical field for the purpose of removing microorganisms,
It is used as an excellent separation and purification technology in many fields such as the food industry, biotechnology industry, electronic industry, and nuclear industry. In addition to the separation membrane, there is also an example of application to a battery diaphragm, a gas-permeable waterproof membrane, and the like. It is not an exaggeration to say that a microfiltration membrane is used in any industry in any form.

精密濾過膜では膜素材として非常に多種類の材料、例
えばセルロース類、ポリオレフィン類、フッ素樹脂、ポ
リアミド、ポリ塩化ビニル、ポリビニルアルコール、ポ
リカーボネート、ポリスルホン、セラミック等が用途に
応じて使用されている。中でもポリスルホン系樹脂は機
械的強度が大きく、耐熱性、耐薬品性が優れているもの
として注目されている。
In the microfiltration membrane, a very wide variety of materials such as celluloses, polyolefins, fluororesins, polyamides, polyvinyl chloride, polyvinyl alcohol, polycarbonate, polysulfone, and ceramics are used as the membrane material depending on the application. Among them, polysulfone-based resins have attracted attention as having high mechanical strength and excellent heat resistance and chemical resistance.

精密濾過膜の形態としては平膜、チューブ膜、中空糸
膜等が知られているが、このうち中空糸膜はモジュール
の単位容積当たりの膜充填密度を大きくできること、モ
ジュールの構造が単純であるためモジュール化および無
菌系にすることが容易であること、逆洗及びクロスフロ
ー濾過が可能であり透水速度の低下を防ぐことができる
こと等から近年注目を集めている。
As a form of the microfiltration membrane, a flat membrane, a tube membrane, a hollow fiber membrane, and the like are known. Among them, the hollow fiber membrane is capable of increasing the membrane packing density per unit volume of the module, and has a simple module structure. For this reason, it has attracted attention in recent years because it is easy to make it modular and aseptic, and it is possible to perform backwashing and cross-flow filtration and prevent a decrease in water permeation rate.

このような中空糸型精密濾過膜は、延伸法から相分離
法のいずれかで製造されるのが一般的である。延伸法と
は、ポリプロピレンやポリエチレンのような結晶性高分
子を溶融紡糸後、冷延伸により結晶ラメラ間に開裂を生
ぜしめ、更に熱延伸により孔を拡大して開孔させる方法
である。この方法は相分離頬に比べ、強度的に強い中空
糸膜が得られる利点がある反面、その開孔の原理上、開
孔できる孔径が比較的小さいものに限定されること、膜
の厚み方向に孔径の分布がない均一膜しか製造できない
ことが問題として挙げられる。また、膜全体の空孔率が
小さいため、透水性能が低いものしか得られない。
Such a hollow fiber type microfiltration membrane is generally manufactured by any one of a drawing method and a phase separation method. The drawing method is a method in which after a crystalline polymer such as polypropylene or polyethylene is melt-spun, cleavage is caused between crystal lamellas by cold drawing, and the holes are expanded and opened by hot drawing. This method has the advantage of obtaining a hollow fiber membrane that is stronger in strength than the phase-separated cheeks, but on the principle of its opening, the hole diameter that can be opened is limited to a relatively small one. The problem is that only a uniform film having no pore size distribution can be manufactured. In addition, since the porosity of the entire membrane is small, only those having low water permeability can be obtained.

一方、相分離法とは、高分子素材を溶媒に溶解して調
製した製膜原液を中空糸の形状に押し出し、主に非溶媒
からなる凝固浴に浸漬してゾル−ゲル変換せしめ、多孔
質膜とする方法である。この方法による中空糸膜は膜全
体が網状組織で構成され、延伸法に比べると孔径を大き
く、空孔率を高くすることが容易である。また、膜の厚
み方向に孔径の分布がある不均一膜を製造することも比
較的容易である。例えば、孔径が内表面側から外表面側
に向かって連続的に大きくなっている構造のものが知ら
れているが、このような中空糸膜を外圧で全量濾過に使
用した場合、プルフィルターを使用するのと同様の効果
で、目詰まりによる濾過速度の低下が軽減でき、濾過寿
命に優れているとされている。しかしながら、膜厚方向
の変化率を大きくすれば、膜の機械的強度の低下はまぬ
がれず、支持体を使用しない中空糸膜が実用に耐える強
度を維持するのが困難な点で問題がある。
On the other hand, the phase separation method is a method in which a stock solution prepared by dissolving a polymer material in a solvent is extruded into the shape of a hollow fiber, immersed in a coagulation bath mainly composed of a non-solvent, and subjected to sol-gel conversion. This is a method of forming a film. The whole hollow fiber membrane formed by this method has a network structure, and has a larger pore size and a higher porosity than the drawing method. It is also relatively easy to produce a non-uniform membrane having a pore size distribution in the thickness direction of the membrane. For example, a structure in which the pore size is continuously increased from the inner surface side to the outer surface side is known.When such a hollow fiber membrane is used for total filtration at an external pressure, a pull filter is used. It is said that with the same effect as when used, a decrease in filtration speed due to clogging can be reduced and the filtration life is excellent. However, if the rate of change in the film thickness direction is increased, the mechanical strength of the membrane cannot be reduced, and there is a problem in that it is difficult to maintain the strength of a hollow fiber membrane that does not use a support that can withstand practical use.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者は、上記に述べた公知の中空糸膜の欠点を克
服すべく鋭意研究を重ねた結果、特に外圧全量濾過方式
による精密濾過に使用した場合、その特徴的な構造ゆえ
に、シャープでかつ信頼性の高い濾過精度と優れた濾過
寿命、および実用的に申し分ない機械的強度を合わせ持
った多孔製中空糸膜を見出し、本発明に到達した。
The present inventor has conducted intensive studies to overcome the above-mentioned drawbacks of the known hollow fiber membrane, and as a result, especially when used for microfiltration by an external pressure total filtration method, is sharp and owing to its characteristic structure. The present inventors have found a porous hollow fiber membrane having a combination of highly reliable filtration accuracy, excellent filtration life, and practically satisfactory mechanical strength, and have reached the present invention.

即ち、本発明は、有機ポリマーからなる多孔性中空糸
膜において、該中空糸膜の膜壁が実質的に内層と外層の
2層構造をなし、該内層が有機ポリマーの網状組織で構
成され、該外層が中空糸の長さ方向に高度に配向した有
機ポリマーの組織状組織で構成されていることを特徴と
する多孔性中空糸膜を提供するものである。
That is, the present invention provides a porous hollow fiber membrane comprising an organic polymer, wherein the membrane wall of the hollow fiber membrane substantially forms a two-layer structure of an inner layer and an outer layer, and the inner layer is constituted by a network structure of the organic polymer, An object of the present invention is to provide a porous hollow fiber membrane characterized in that the outer layer is composed of an organic polymer texture highly oriented in the length direction of the hollow fiber.

本発明の多孔性中空糸膜はその膜壁の構造に特徴を有
するものであり、該膜壁は網状組織で構成された内層と
中空糸の長さ方向に高度に配向した繊維状組織で構成さ
れた外層とからなる実質的に2層構造をとっている。こ
のように特徴的な構造はこれまで全く知られていなかっ
たものであり、膜全体が実質的に網状組織で構成されて
いる従来の多孔性中空糸膜とは全く異なったものであ
る。
The porous hollow fiber membrane of the present invention is characterized by the structure of the membrane wall, and the membrane wall is composed of an inner layer composed of a network structure and a fibrous structure highly oriented in the length direction of the hollow fiber. And a substantially two-layer structure including an outer layer. Such a characteristic structure has never been known before, and is completely different from a conventional porous hollow fiber membrane in which the whole membrane is substantially composed of a network structure.

以下、本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明の多孔性中空糸膜に関する内表面、外表面、お
よび断面の走査型電子顕微鏡写真(SEM写真)の典型的
な例を第1〜3図に示す。即ち第1図は本発明の多孔性
中空糸膜の一例を示す内表面のSEM写真であり、第2図
は該多孔性中空糸膜の外表面のSEM写真であり、第3図
は該多孔性中空糸膜を中空糸の長さ方向とほぼ垂直な方
向に切断した断面のSEM写真である。
Typical examples of scanning electron microscope photographs (SEM photographs) of the inner surface, outer surface, and cross section of the porous hollow fiber membrane of the present invention are shown in FIGS. That is, FIG. 1 is an SEM photograph of the inner surface showing an example of the porous hollow fiber membrane of the present invention, FIG. 2 is a SEM photograph of the outer surface of the porous hollow fiber membrane, and FIG. 4 is an SEM photograph of a cross section of the conductive hollow fiber membrane cut in a direction substantially perpendicular to the length direction of the hollow fiber.

第1〜3図に示すように、本発明の多孔性中空糸膜は
その膜壁が実質的に内層と外層の2層構造をなしてい
る。内層は従来の精密濾過膜に見られるのと同様の網状
組織で実質的に構成されており、外層は繊維状の形状を
した組織で実質的に構成されている。この外層の繊維状
組織は中空糸の長さ方向に高度に配向しており、繊維状
組織の長さ方向の中心軸と中空糸の長さ方向の中心軸と
がおりなす角度が10度以内である繊維状組織は、外層を
構成する組織の90%以上を占めている。外層に見られる
このような構造は、従来の多孔性中空糸膜では全く知ら
れていない新規なものである。
As shown in FIGS. 1 to 3, the porous hollow fiber membrane of the present invention has a substantially two-layer structure of an inner layer and an outer layer. The inner layer is substantially composed of a network similar to that found in conventional microfiltration membranes, and the outer layer is substantially composed of a fibrous tissue. The fibrous structure of this outer layer is highly oriented in the length direction of the hollow fiber, and the angle between the central axis in the longitudinal direction of the fibrous structure and the central axis in the longitudinal direction of the hollow fiber is within 10 degrees. Some fibrous tissues make up over 90% of the tissues that make up the outer layer. Such a structure found in the outer layer is a novel structure which is not known at all in the conventional porous hollow fiber membrane.

本発明の多孔性中空糸膜は、その内層の平均孔径が0.
01〜5μmであることが好ましく、更に好ましくは0.1
〜1μmであることが精密濾過に使用するためには望ま
しい。尚、ここで言う平均孔径とは、第3図に示したよ
うな断面のSEM写真により細孔の平均孔径として算出し
た値である。
The porous hollow fiber membrane of the present invention has an inner layer having an average pore size of 0.
It is preferably from 0.1 to 5 μm, more preferably from 0.1 to 5 μm.
11 μm is desirable for use in microfiltration. Here, the average pore diameter is a value calculated as an average pore diameter of pores by a SEM photograph of a cross section as shown in FIG.

さらに本発明の多孔性中空糸膜は、その純水透過性能
が好ましくは1,000〜20,000/m2・hr・atm、更に好ま
しくは3,000〜10,000/m2・hr・atmという非常に高い
値を有するものである。尚、ここで言う純水透過性能と
は、多孔性中空糸膜の外表面側から25℃の純水を加圧し
て透過させ、その透水量を単位膜面積(外表面積)、単
位時間、および単位圧力当たりに換算したものである。
Further porous hollow fiber membrane of the present invention has a pure water permeability of preferably 1,000~20,000 / m 2 · hr · atm , more preferably has a very high value of 3,000~10,000 / m 2 · hr · atm Things. The pure water permeability refers to pure water at 25 ° C. from the outer surface side of the porous hollow fiber membrane which is pressurized and permeated, and the amount of permeated water is measured as a unit membrane area (outer surface area), a unit time, and It is converted per unit pressure.

本発明の多孔性中空糸膜は、特に外圧全量濾過による
精密濾過に使用した場合に、その特徴的な構造の効果が
著しく発揮される。即ち、本発明の多孔性中空糸膜は外
圧全量濾過による精密濾過に使用した場合、膜壁全体が
網状組織で構成され、平均孔径が厚み方向で実質的に変
わらない均一膜に比べて、透水速度の低下が小さく、濾
過寿命が長いという特性を有する。これは精密濾過膜を
使用する上で非常に大きなメリットである。透水速度の
低下が小さい理由は詳細には分からないが、おそらく本
発明の多孔性中空糸膜の特徴である2層構造のうちの外
層が、外圧濾過の場合にはプレフィルターの役割を果た
しているためと思われる。このような効果を発揮するた
めの外層の適当な厚みは全膜厚の1〜20%である。外層
の厚みが全膜厚の1%未満であるとプレフィルターの効
果が不十分であり、全膜厚の20%を超えると網状組織で
構成された内層の割合が少なくなるため、濾過精度が落
ちる恐れがある。
When the porous hollow fiber membrane of the present invention is used for microfiltration by external pressure total filtration, the effect of its characteristic structure is remarkably exhibited. That is, when the porous hollow fiber membrane of the present invention is used for microfiltration by external pressure total filtration, the entire membrane wall is constituted by a network structure, and water permeability is higher than that of a uniform membrane in which the average pore diameter does not substantially change in the thickness direction. It has the characteristics that the decrease in speed is small and the filtration life is long. This is a very great advantage in using a microfiltration membrane. The reason why the decrease in the water permeation rate is small is not known in detail, but the outer layer of the two-layer structure, which is probably the feature of the porous hollow fiber membrane of the present invention, plays the role of a prefilter in the case of external pressure filtration. It seems to be because. An appropriate thickness of the outer layer for exhibiting such an effect is 1 to 20% of the total film thickness. If the thickness of the outer layer is less than 1% of the total film thickness, the effect of the pre-filter is insufficient, and if it exceeds 20% of the total film thickness, the ratio of the inner layer composed of a network structure is reduced, so that the filtration accuracy is reduced. There is a risk of falling.

本発明の多孔性中空糸膜は、膜全体の平均孔径が不必
要に大きくならないため、機械的強度にも優れている。
加えて、外層の繊維状組織は中空糸の長さ方向に高度に
配向しているため、中空糸の引っ張りに対する強度を高
める効果も機械的強度の向上に寄与しているものと思わ
れる。
The porous hollow fiber membrane of the present invention has excellent mechanical strength because the average pore diameter of the entire membrane does not unnecessarily increase.
In addition, since the fibrous structure of the outer layer is highly oriented in the length direction of the hollow fiber, the effect of increasing the tensile strength of the hollow fiber is also considered to contribute to the improvement of the mechanical strength.

本発明の多孔性中空糸膜は、いかなる方法で製造され
たものであってもかまわないが、例えば膜素材となる有
機ポリマーを含有する製膜原液を2重管型ノズルから内
部凝固液とともに押し出し、ノズルから一定距離の空中
部を通過した後、全体を外部凝固液に浸漬する中空糸型
分離膜の製膜方法、いわゆる乾湿式法において、空中部
に存在する水分量を高く、同時にドラフト非を高く設定
した場合に製造される。尚、ここで言うドラフト比と
は、下式で定義されるものである。
The porous hollow fiber membrane of the present invention may be produced by any method. For example, a stock solution containing an organic polymer as a membrane material is extruded together with an internal coagulation solution from a double-tube nozzle. In a method of forming a hollow fiber type separation membrane, in which the whole is immersed in an external coagulating liquid after passing through the air part of a certain distance from the nozzle, the so-called dry-wet method, the amount of water present in the air part is high, and It is manufactured when is set high. Here, the draft ratio referred to herein is defined by the following equation.

ドラフト比=(巻取り速度)/(吐出線速度) =v(D2−d2)π/Q (式中、vは巻取り速度、Dは製膜原液吐出スリットの
外径、dは製膜原液吐出スリットの内径、Qは製膜原液
の吐出量を示す。) 空中部の水分量が多いと、製膜原液は空中部を通過す
る際に外表面から多くの水分を吸収するため、外表面及
びその近傍では部分的にゲル化している。また、製膜原
液はこの空中部で重力および巻取りの張力を受けて空中
糸の長さ方向に引っ張られる。よって、ドラフト比を高
く設定した場合には、製膜原液の外表面およびその近傍
は部分的なゲル化と同時に、中空糸の長さ方向に強い張
力を受けることになり、結果として中空糸の長さ方向に
高度に配向した繊維状のポリマーから実質的に構成され
た構造の外層が形成されるものと考えられる。本発明の
多孔性中空糸膜を製造するのに必要な空中部の水分量お
よびドラフト比は、膜素材のポリマー、製膜原液の組成
と温度、空中部の通過時間などの条件により異なるため
一概には言えないが、空中部の水分量が100g/m3以上、
ドラフト比が2以上、好ましくは、空中部の水分量が50
0g/m3以上、ドラフト比が4以上である。
Draft ratio = (winding speed) / (discharge linear speed) = v (D 2 −d 2 ) π / Q (where v is the winding speed, D is the outer diameter of the film forming stock solution discharge slit, and d is the manufacturing speed). The inner diameter of the membrane undiluted liquid discharge slit and Q indicate the discharge amount of the film undiluted solution.) If the water content in the air portion is large, the film undiluted solution absorbs a large amount of water from the outer surface when passing through the air portion. The outer surface and its vicinity are partially gelled. Also, the membrane-forming stock solution is pulled in the length direction of the aerial thread under the gravity in the aerial portion and the tension of winding. Therefore, when the draft ratio is set high, the outer surface of the membrane-forming stock solution and the vicinity thereof are partially gelled and, at the same time, receive a strong tension in the length direction of the hollow fiber. It is believed that an outer layer having a structure substantially composed of fibrous polymer highly oriented in the length direction is formed. The water content and the draft ratio in the aerial part necessary for producing the porous hollow fiber membrane of the present invention vary depending on conditions such as the polymer of the membrane material, the composition and temperature of the membrane-forming stock solution, and the transit time in the aerial part. Although it can not be said, the water content in the aerial part is 100 g / m 3 or more,
Draft ratio is 2 or more, preferably, the water content in the aerial part is 50
0 g / m 3 or more, and draft ratio is 4 or more.

本発明の多孔性中空膜の膜素材である有機ポリマー
は、セルロース系、ポリアミド系、ポリアクリロニトリ
ル系、ポリスルホン系など、あるいはこれらのコポリマ
ーなど、要は相転換法で製膜ができればどのようなポリ
マーであってもかまわない。また、互いに相溶性のある
2種類以上のポリマーをブレンドしたものであってもか
まわない。その中でも、耐熱性や耐薬品性が優れている
点で、ポリスルホン系ポリマーが望ましい。ポリスルホ
ン系ポリマーとしては、例えば、次の一般式(I)また
は(II)で表されるような繰り返し単位を有するものが
挙げられる。
The organic polymer used as the membrane material of the porous hollow membrane of the present invention includes cellulose, polyamide, polyacrylonitrile, polysulfone, and the like, and copolymers of these polymers. It may be. Further, a blend of two or more types of mutually compatible polymers may be used. Among them, a polysulfone-based polymer is preferable because of its excellent heat resistance and chemical resistance. Examples of the polysulfone-based polymer include those having a repeating unit represented by the following general formula (I) or (II).

但し、式(I)および(II)において、X1〜X6はメチ
ル基、エチル基等のアルキル基、塩素、臭素等のハロゲ
ンに例示される非解離性の置換基、または−COOH,−SO3
H等の解離性の置換基を示し、,m,n,o,pおよびqは0
〜4の整数を示す。一般的には、,m,n,o,pおよびqの
すべてが0であるポリスルホンが入手しやすく、本発明
においても好ましく用いられる。しかし、本発明で用い
るポリスルホン系ポリマーは上記に限定されるものでは
ない。
In the formulas (I) and (II), X 1 to X 6 represent a non-dissociative substituent exemplified by an alkyl group such as a methyl group and an ethyl group, a halogen such as chlorine and bromine, or —COOH, − SO 3
Represents a dissociable substituent such as H, and m, n, o, p and q are 0
Shows an integer of ~ 4. Generally, polysulfone in which all of m, n, o, p and q are 0 is easily available, and is preferably used in the present invention. However, the polysulfone-based polymer used in the present invention is not limited to the above.

〔実施例〕〔Example〕

以下、本発明を実施例により詳細に説明するが、本発
明はこれらに何ら限定されない。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

実施例1 ポリエーテルスルホン(ICI社製5200Pパウダー)16重
量%、ポリビニルピロリドン(Aldrich社製、平均分子
量360,000)9重量%、N−メチル−2−ピロリドン75
重量%を60℃で溶解して製膜原液を調製した。該製膜原
液をテトラエチレングリコールからなる芯液とともに2
重管型の紡糸ノズルから押し出し、10cmの空中部を通過
させた後、水からなる凝固浴に導いて凝固させて中空糸
膜を紡糸した。製膜原液、芯液、および凝固浴の温度は
50℃に設定した。製膜原液が通過する空中部は、製膜原
液のまわりを筒状物でおおい、外部から水蒸気を供給し
て筒状物内の空中水分量を500〜600g/m3に調整した。紡
糸ノズルの製膜原液吐出スリットは外径0.66mm、内径0.
36mmであった。
Example 1 16% by weight of polyether sulfone (5200P powder, manufactured by ICI), 9% by weight of polyvinylpyrrolidone (average molecular weight: 360,000, manufactured by Aldrich), N-methyl-2-pyrrolidone 75
The weight percent was dissolved at 60 ° C. to prepare a membrane-forming stock solution. The membrane-forming stock solution was mixed with a core solution composed of tetraethylene glycol.
After being extruded from a double tube type spinning nozzle and passed through an aerial part of 10 cm, it was led to a coagulation bath made of water and solidified to spin a hollow fiber membrane. The temperature of the stock solution, core solution, and coagulation bath
The temperature was set at 50 ° C. The aerial part through which the film forming stock solution passed was covered with a cylindrical material around the film forming stock solution, and steam was supplied from the outside to adjust the water content in the cylindrical material to 500 to 600 g / m 3 . Outer diameter 0.66mm, inner diameter 0.
36 mm.

以上の製膜条件で、内径0.17mm、外径0.30mmの中空糸
膜を25m/minの速度で紡糸した。製膜した中空糸は80℃
の温水で24時間洗浄した後、その膜性能を評価した。そ
の欠格、純水の透過性能は4,200/m2・hr・atm、粒径
0.22μmのラテックスを100%阻止した。この多孔性中
空糸膜の内表面、外表面、および断面の走査型電子顕微
鏡写真は、それぞれ、第1図、第2図及び第3図に示す
ものであり、2層構造を有するものであった。
Under the above film forming conditions, a hollow fiber membrane having an inner diameter of 0.17 mm and an outer diameter of 0.30 mm was spun at a speed of 25 m / min. 80 ° C for the formed hollow fiber
After washing with warm water for 24 hours, the membrane performance was evaluated. As a disqualification, permeability of pure water 4,200 / m 2 · hr · atm , the particle size
100% rejection of 0.22 μm latex. Scanning electron micrographs of the inner surface, outer surface, and cross section of this porous hollow fiber membrane are shown in FIGS. 1, 2, and 3, respectively, and have a two-layer structure. Was.

実施例2 製膜原液の組成をポリエーテルスルホン15重量%、ポ
リビニルピロリドン(Aldrich社製、平均分子量40,00
0)15重量%、ジメチルホルムアミド70重量%とした以
外は実施例1と同様にして内径0.20mm、外径0.32mmの中
空糸膜を28m/minの速度で紡糸した。この中空糸膜の膜
性能は純水の透過性能が5,900/m2・hr・atm、粒径0.2
2μmのラテックスを100%阻止した。また、この中空糸
の構造は実施例1と同様の2層構造であった。
Example 2 The composition of a film forming stock solution was prepared by mixing 15% by weight of polyether sulfone and polyvinylpyrrolidone (manufactured by Aldrich, average molecular weight of 40,00).
0) A hollow fiber membrane having an inner diameter of 0.20 mm and an outer diameter of 0.32 mm was spun at a speed of 28 m / min in the same manner as in Example 1 except that 15% by weight and 70% by weight of dimethylformamide were used. The membrane performance of this hollow fiber membrane is such that the permeation performance of pure water is 5,900 / m 2
100% of 2 μm latex was blocked. The structure of the hollow fiber was a two-layer structure similar to that of Example 1.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例1で得られた多孔性中空糸膜の内表面の
繊維形状を示す走査型電子顕微鏡写真、第2図は実施例
1で得られた多孔性中空糸膜の外表面の繊維形状を示す
走査型電子顕微鏡写真、第3図は実施例1で得られた多
孔性中空糸膜の断面の繊維形状を示す走査型電子顕微鏡
写真である。
FIG. 1 is a scanning electron micrograph showing the fiber shape of the inner surface of the porous hollow fiber membrane obtained in Example 1, and FIG. 2 is the outer surface of the porous hollow fiber membrane obtained in Example 1. FIG. 3 is a scanning electron micrograph showing the fiber shape of a cross section of the porous hollow fiber membrane obtained in Example 1. FIG.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機ポリマーからなる多孔性中空糸膜にお
いて、該中空糸膜の膜壁が内層と外層の2層構造をな
し、該内層が有機ポリマーの網状組織で構成され、該外
層が中空糸の長さ方向に配向した有機ポリマーの繊維状
組織で構成されていることを特徴とする多孔性中空糸
膜。
1. A porous hollow fiber membrane comprising an organic polymer, wherein the membrane wall of the hollow fiber membrane has a two-layer structure of an inner layer and an outer layer, wherein the inner layer is composed of an organic polymer network, and the outer layer is hollow. A porous hollow fiber membrane comprising a fibrous structure of an organic polymer oriented in the length direction of the yarn.
【請求項2】該外層の厚さが、膜壁全体の厚さの1〜20
%であることを特徴とする請求項1記載の多孔性中空糸
膜。
2. The thickness of the outer layer is 1 to 20 times the thickness of the entire membrane wall.
% Of the porous hollow fiber membrane according to claim 1.
【請求項3】該内層の平均孔径が0.01〜5μmであるこ
とを特徴とする請求項1又は2記載の多孔性中空糸膜。
3. The porous hollow fiber membrane according to claim 1, wherein the average pore size of the inner layer is 0.01 to 5 μm.
【請求項4】純水透過性能が、1,000〜20,000/m2・hr
・atmであることを特徴とする請求項1〜3のいずれか
一項に記載の多孔性中空糸膜。
4. The pure water permeability is 1,000 to 20,000 / m 2 · hr.
The porous hollow fiber membrane according to any one of claims 1 to 3, wherein the porous hollow fiber membrane is atm.
【請求項5】ポリスルホン系ポリマーからなることを特
徴とする請求項1〜4のいずれか一項に記載の多孔性中
空糸膜。
5. The porous hollow fiber membrane according to claim 1, comprising a polysulfone-based polymer.
JP30779090A 1990-11-13 1990-11-13 Porous hollow fiber membrane Expired - Lifetime JP2954327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30779090A JP2954327B2 (en) 1990-11-13 1990-11-13 Porous hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30779090A JP2954327B2 (en) 1990-11-13 1990-11-13 Porous hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPH04180824A JPH04180824A (en) 1992-06-29
JP2954327B2 true JP2954327B2 (en) 1999-09-27

Family

ID=17973281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30779090A Expired - Lifetime JP2954327B2 (en) 1990-11-13 1990-11-13 Porous hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2954327B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029908A1 (en) * 2008-09-10 2010-03-18 東レ株式会社 Hollow-fiber membrane and process for production of hollow-fiber membrane
CN104968422B (en) * 2013-03-21 2018-07-13 旭化成株式会社 The manufacturing method of porous hollow fibres film and porous hollow fibres film
JP2015011292A (en) * 2013-07-02 2015-01-19 住友ベークライト株式会社 Method for producing liquid photosensitive resin composition

Also Published As

Publication number Publication date
JPH04180824A (en) 1992-06-29

Similar Documents

Publication Publication Date Title
JP3232117B2 (en) Polysulfone porous hollow fiber
US7267872B2 (en) Braid-reinforced hollow fiber membrane
JPH0122003B2 (en)
WO1997022405A1 (en) Hollow fiber type filtration membrane
JP2006088148A (en) Hollow fiber membrane having excellent water permeability
CN108079795A (en) A kind of classifying porous polyvinylidene fluoride hollow fiber composite membrane and its manufacturing method
JPWO2017155034A1 (en) Porous membrane, porous membrane module, method for producing porous membrane, method for producing clarified liquid, and method for producing beer
JP2000093768A (en) Composite porous hollow fiber membrane
JPH0569571B2 (en)
JP2954327B2 (en) Porous hollow fiber membrane
JPH078549B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
JPH0478729B2 (en)
KR100581206B1 (en) Polyvinylidene fluoride Porous Hollow Fiber Membrane and the Manufacturing Process thereof
JPH078548B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
JPS60222112A (en) Hollow yarn-shaped filter and its manufacture
JP3594946B2 (en) High performance microfiltration membrane
JP2948856B2 (en) Porous hollow fiber membrane
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
JPH119977A (en) Polyethylene composite microporous hollow fiber membrane
JP2905208B2 (en) Polysulfone hollow fiber separation membrane
JP2622629B2 (en) Manufacturing method of hollow fiber membrane
JPH11179174A (en) Hollow fiber membrane for separation and manufacture thereof
JPH11262639A (en) Hollow fiber membrane module
JP2002361055A (en) Filtration membrane and water purifier and membrane module using the same
JPH04316607A (en) Production of porous solid yarn

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110716