JP2948856B2 - Porous hollow fiber membrane - Google Patents

Porous hollow fiber membrane

Info

Publication number
JP2948856B2
JP2948856B2 JP7063190A JP7063190A JP2948856B2 JP 2948856 B2 JP2948856 B2 JP 2948856B2 JP 7063190 A JP7063190 A JP 7063190A JP 7063190 A JP7063190 A JP 7063190A JP 2948856 B2 JP2948856 B2 JP 2948856B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane
water
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7063190A
Other languages
Japanese (ja)
Other versions
JPH03270721A (en
Inventor
賢作 小松
健彦 岡本
修 楠戸
昇二 角名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURARE KK
Original Assignee
KURARE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13437178&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2948856(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KURARE KK filed Critical KURARE KK
Priority to JP7063190A priority Critical patent/JP2948856B2/en
Publication of JPH03270721A publication Critical patent/JPH03270721A/en
Application granted granted Critical
Publication of JP2948856B2 publication Critical patent/JP2948856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多孔質中空糸膜、特に内表面に断続した突出
体が設けられた緻密な表面層を有し、膜内部および外表
面が微細多孔質構造を有する多孔質中空糸膜に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention has a porous hollow fiber membrane, particularly a dense surface layer provided with intermittent protrusions on the inner surface, and the inside and the outer surface of the membrane are fine. The present invention relates to a porous hollow fiber membrane having a porous structure.

(従来の技術) 近年分離操作において選択透過性を有する膜を用いる
技術が種々の分野で実用化されている。特に膜の形状が
中空糸状であると占有体積あたりの膜面積が平膜形状に
比べ圧倒的に多くとれるため中空糸膜が主として使用さ
れている。また素材としては、従来セルロース系樹脂が
使用されてきたが、被処理液の温度、pHなどの使用条件
が苛酷になるにつれ、セルロース系樹脂以外の各種の合
成樹脂、例えばポリイミド系、ポリアクリルニトリル
系、ポリビニルアルコール系、ポリスルホン系等の樹脂
が使用されるようになつた。
(Prior Art) In recent years, techniques using a membrane having selective permeability in a separation operation have been put to practical use in various fields. In particular, when the shape of the membrane is a hollow fiber, the membrane area per occupied volume can be overwhelmingly larger than that of a flat membrane, so that a hollow fiber membrane is mainly used. Further, as the material, conventionally, a cellulose-based resin has been used, but as the use conditions such as the temperature of the liquid to be treated and the pH become severe, various synthetic resins other than the cellulose-based resin, for example, polyimide, polyacrylonitrile, and the like. Resins, such as resins based on polyvinyl alcohol, polyvinyl alcohol, and polysulfone, have come to be used.

中でもポリスルホン系樹脂は耐熱、耐酸、耐アルカ
リ、耐酸化、耐微生物性に優れているため、最近ポリス
ルホン系樹脂を用いた中空糸膜の検討が行なわれてい
る。本発明では以下ポリスルホン系樹脂を用いた中空糸
膜について説明するが、本発明はポリスルホン系樹脂以
外の他の樹脂からなる中空糸膜についても適用できるこ
とはいうまでもない。ポリスルホン系樹脂からなる中空
糸膜としては、たとえば特開昭54−145379号に中空糸膜
の内表面及び外表面に10〜100Åの微細孔(実質的には
緻密層)を有し、膜内部が傾斜型構造となつているポリ
スルホン中空糸膜、特開昭56−115602号に膜の両表面に
緻密層を有し、膜内部が管束状構造となつているポリス
ルホン中空糸膜などが開示されている。
Above all, polysulfone resins are excellent in heat resistance, acid resistance, alkali resistance, oxidation resistance, and microbial resistance. Therefore, recently, hollow fiber membranes using polysulfone resins have been studied. In the present invention, a hollow fiber membrane using a polysulfone-based resin will be described below, but it goes without saying that the present invention can be applied to a hollow fiber membrane made of a resin other than the polysulfone-based resin. As a hollow fiber membrane made of a polysulfone resin, for example, Japanese Patent Application Laid-Open No. 54-145379 discloses a hollow fiber membrane having 10-100 mm fine holes (substantially dense layer) on the inner surface and outer surface thereof. Discloses a polysulfone hollow fiber membrane having an inclined structure, and JP-A-56-115602 discloses a polysulfone hollow fiber membrane having a dense layer on both surfaces of the membrane and having a tube bundle structure inside the membrane. ing.

(発明が解決しようとする課題) しかしながらこれらの中空糸膜はいずれも膜の内表面
および/または外表面に緻密層を有するため、分画分子
量が50万以下、しかも透水率が1,000/m2・hr・Kg/cm2
以下と低いものである。また過に伴ない目詰りが生じ
た時の膜性能の回復手段として、従来の中空糸膜では透
過液逆洗や薬液洗滌のみが適用可能で、他の手段を適用
することができなかつた。さらに不溶性の各種懸濁物質
や微生物を除去したい場合には、溶解しているポリマー
の大部分を透過させ、懸濁物質や微生物を阻止する透過
膜が必要であるが、従来の中空糸膜ではかかる用途への
適用は不可能であつた。
(Problems to be Solved by the Invention) However, since all of these hollow fiber membranes have a dense layer on the inner surface and / or outer surface of the membrane, the molecular weight cut off is 500,000 or less and the water permeability is 1,000 / m 2.・ Hr ・ Kg / cm 2
The following are low. As means for restoring membrane performance when clogging occurs due to excessive clogging, only conventional permeated liquid backwashing and chemical liquid washing can be applied to conventional hollow fiber membranes, and other means cannot be applied. In order to remove various insoluble suspended substances and microorganisms, a permeable membrane that allows most of the dissolved polymer to pass through and blocks suspended substances and microorganisms is required. Application to such uses was not possible.

したがつて本発明の目的は分画性に優れ、透水率が高
く、しかも中空糸膜の再生が容易な多孔質中空糸膜を提
供することにある。
Accordingly, an object of the present invention is to provide a porous hollow fiber membrane having excellent fractionation properties, high water permeability, and easy regeneration of the hollow fiber membrane.

(課題を解決するための手段) 本発明者等は上記目的を達成すべく鋭意検討を行つた
結果、中空糸状に紡糸する際に、凝固溶液として粘度が
20センチポイズ以上の凝固溶液を用いることにより、上
記いづれの構造にも属しない特異な表面構造を有し、か
つ分画性に優れ、透水率が高く、しかも膜の再生が容易
な多孔質中空糸膜を発明するに到つたものである。すな
わち本発明は内表面に緻密層を有し、外表面および膜内
部が微細多孔質構造である多孔質中空糸膜であつて、該
中空糸膜の内表面に長さ方向に沿つて高さ0.01〜0.3μ
の断続した畝状の突出体が設けられ、かつ透水率が、10
00/m2・hr・Kg/cm2以上で、しかも分子量200万のデキ
ストランの阻止率が80%以上を示す多孔質中空糸膜であ
る。
(Means for Solving the Problems) The present inventors have conducted intensive studies to achieve the above object, and as a result, when spinning into a hollow fiber, the viscosity as a coagulating solution was reduced.
By using a coagulation solution of 20 centipoise or more, a porous hollow fiber that has a unique surface structure that does not belong to any of the above structures, has excellent fractionation properties, high water permeability, and is easy to regenerate the membrane Invented the film. That is, the present invention is a porous hollow fiber membrane having a dense layer on the inner surface, the outer surface and the inside of the membrane having a microporous structure, and having a height along the length direction on the inner surface of the hollow fiber membrane. 0.01-0.3μ
Intermittent ridge-shaped protrusions are provided, and water permeability is 10
It is a porous hollow fiber membrane having a rejection of 80% or more of dextran having a molecular weight of 2,000,000 or more, which is not less than 00 / m 2 · hr · Kg / cm 2 .

本発明の多孔質中空糸膜は膜形成用樹脂を含有する溶
液を環状ノズルから押し出すとともに、該環状ノズルの
芯部分に該膜形成用樹脂の非溶媒または該非溶媒と水と
の混合溶液で、かつ粘度が20センチポイズ以上の凝固溶
液を導入することにより得られる。環状ノズルから押し
出された糸状は凝固溶液の凝固作用によりまず内表面に
極めて薄い緻密層を形成し、つづいて脱溶媒とともにミ
クロな相分離が生じて、樹脂の凝固が起り、透水性に抵
抗をもたないほどに微細多孔構造が形成される。
The porous hollow fiber membrane of the present invention extrudes a solution containing a film-forming resin from an annular nozzle, and a non-solvent of the film-forming resin or a mixed solution of the non-solvent and water on a core portion of the annular nozzle, It is obtained by introducing a coagulating solution having a viscosity of 20 centipoise or more. The thread extruded from the annular nozzle forms an extremely thin dense layer on the inner surface by the coagulation action of the coagulation solution, followed by micro phase separation along with desolvation, and the coagulation of the resin occurs, which reduces resistance to water permeability. A microporous structure is formed so as not to have.

紡糸原液には、例えば、ポリスルホン、ポリエーテル
スルホン、ポリイミド、ポリフツ化ビニリデン等の湿式
または乾湿方法により製造できる樹脂と孔形成用の添加
剤を溶媒に溶かした溶液が使用される。添加剤としては
例えば、エチレングリコール、プロピレングリコール、
ポリエチレングリコールなどのグリコール類、メタノー
ル、エタノール、プロパノール等のアルコール類、グリ
セリン、水、LiCl、ZnCl2などの無機塩類などがあげら
れる。溶媒としては、例えば、N,N−ジメチルホルムア
ミド、ジメチルアセトアミド、N−メチルピロリドン、
ジメチルスルホキシドなどの単独または上記2種類以上
の混合液があげられる。かかる原液形成用の樹脂、添加
剤、溶媒の組合せは任意である。上記紡糸原液を2重環
状ノズルより内部凝固液と共に押しだし、凝固液に浸し
て中空糸膜を作製する。
As the spinning solution, for example, a solution in which a resin such as polysulfone, polyethersulfone, polyimide, or polyvinylidene fluoride which can be produced by a wet or dry method and an additive for forming pores are dissolved in a solvent is used. As additives, for example, ethylene glycol, propylene glycol,
Glycols such as polyethylene glycol, alcohols such as methanol, ethanol, propanol, glycerin, water, LiCl, and inorganic salts such as ZnCl 2 and the like. As the solvent, for example, N, N-dimethylformamide, dimethylacetamide, N-methylpyrrolidone,
Examples thereof include a single liquid such as dimethyl sulfoxide or a mixture of two or more of the above. The combination of the resin for forming the stock solution, the additive, and the solvent is arbitrary. The spinning solution is extruded together with the internal coagulation liquid from a double annular nozzle, and immersed in the coagulation liquid to produce a hollow fiber membrane.

本発明では内部凝固液として膜形成用樹脂の非溶媒ま
たは該非溶媒と水との混合溶液で、かつ粘度が20センチ
ポイズ以上の溶液を使用する。かかる膜形成用樹脂の非
溶媒としては、例えばエチレングリコール、プロピレン
グリコール、ポリエチレングリコール、グリセリン等の
単独もしくは混合溶液が使用される。
In the present invention, a non-solvent of the film-forming resin or a mixed solution of the non-solvent and water and having a viscosity of 20 centipoise or more is used as the internal coagulation liquid. As the non-solvent for the film-forming resin, for example, a single or mixed solution of ethylene glycol, propylene glycol, polyethylene glycol, glycerin and the like is used.

本発明において、上記20センチポイズ以上の粘度を有
する内部凝固液を使用することで、意外なことに中空糸
膜の内表面に断続した突出体が形成されるが、そのため
に内表面の凝固速度を遅くする必要がある。そのため通
常内部凝固液中の非溶媒の濃度は40〜100重量%、特に7
0〜90重量%に調整するのが好適である。この内部凝固
液の組成は粘度や凝固性を考慮に入れて選択することが
できる。また紡糸時のノズルドラフトの比率は大きくす
ると突出体間に形成された凹部や突出体の長さを長くす
ることができるとともに、隣接する突出体間の幅を狭く
することができるが、紡糸の安定性が悪くなる。そのた
めノズルドラフト比率は10〜300%の範囲に抑えること
が好ましい。
In the present invention, the use of the internal coagulating liquid having a viscosity of 20 centipoise or more results in unexpected formation of intermittent projections on the inner surface of the hollow fiber membrane. Need to be slow. Therefore, the concentration of the non-solvent in the internal coagulation liquid is usually 40 to 100% by weight,
It is preferable to adjust the amount to 0 to 90% by weight. The composition of the internal coagulation liquid can be selected in consideration of viscosity and coagulation. In addition, when the ratio of the nozzle draft at the time of spinning is increased, the length of the concave portion and the projecting body formed between the projecting bodies can be increased, and the width between the adjacent projecting bodies can be reduced. Poor stability. Therefore, it is preferable that the nozzle draft ratio be kept within the range of 10 to 300%.

ここで断続する突出体とは、膜内表面に凹凸が存在
し、かつこの凹部や凸部が中空糸の長さ方向に沿つて断
続して長く延びている構造をいう。この突出体の形状は
通常突出体の幅に対して長さが3倍以上で、中空糸の長
さ方向に対する隣接する突出体の間隔は0.2μm以下で
ある。また突出体の高さは通常0.01〜0.3μである。
Here, the intermittent projecting body refers to a structure in which irregularities are present on the inner surface of the membrane, and the recesses and projections extend intermittently along the length direction of the hollow fiber. The shape of the protrusion is usually three times or more the width of the protrusion, and the distance between adjacent protrusions in the longitudinal direction of the hollow fiber is 0.2 μm or less. The height of the protrusion is usually 0.01 to 0.3 μm.

本発明の多孔質中空糸膜は内表面に長さ方向に断続し
た突出体が設けられた極めて薄い(3μm以下、通常0.
5μm以下)緻密層を有し、この緻密層に接して通常約
1〜500μ、好ましくは約5〜100μの厚さで平均細孔径
が0.025〜3μの微孔が均一に存在する微細多孔質構造
を有しており、外表面には該微細多孔質構造の一部が開
孔してできた最大孔径0.5〜5μの孔を有している。
The porous hollow fiber membrane of the present invention is extremely thin (3 μm or less, usually 0.1 μm) provided with intermittent projections in the length direction on the inner surface.
A microporous structure having a dense layer, in which fine pores having a thickness of about 1 to 500μ, preferably about 5 to 100μ and an average pore diameter of 0.025 to 3μ are uniformly present in contact with the dense layer. The outer surface has pores having a maximum pore diameter of 0.5 to 5 µ formed by partially opening the microporous structure.

本発明の中空糸膜は、内表面が平滑な中空糸膜と比較
して断続する突出体の存在によつて、特に内圧過にお
いて透過に有効な膜面積が多くなるため1000/m2・hr
・Kg/cm2以上の高い透水率を得ることができる。更に、
内部凝固液として膜形成樹脂の非溶媒または非溶媒と水
の混合液を用いているため、優れた分画性をも付与する
ことができる。これは上記内部凝固液を使用すると、水
の場合と同様に内表面に緻密層が形成されるが、粘度が
高いために溶媒の置換速度が遅く、ミクロ相分離が促進
され緻密層は表面近傍のみで内部はポーラスになるた
め、優れた分画性とともに高い透水性を有する中空糸膜
が得られるのである。本発明の中空糸膜は有効膜面積の
向上と緻密層の薄膜化により、従来の中空糸膜と比較し
て、分画性が同レベルにもかかわらず1.5〜2倍以上の
高い透水率を有している。そのため特に内圧過用の中
空糸膜として優れ、かつ内表面に断続した突出体を有す
るために透過性能の低下が少なく、しかも逆洗等による
中空糸膜の再生が容易である。このため、従来の中空糸
膜より寿命が長く経済的で、また従来の中空糸膜での分
離操作が困難であつた分野への適用が可能である。
The hollow fiber membrane of the present invention, the inner surface of a smooth hollow fiber membrane Yotsute the presence of projecting member intermittently in comparison with, in particular internal pressure effective membrane area in the transmission in an over for increases 1000 / m 2 · hr
・ High water permeability of Kg / cm 2 or more can be obtained. Furthermore,
Since a non-solvent of the film-forming resin or a mixed solution of the non-solvent and water is used as the internal coagulating liquid, excellent fractionation properties can also be provided. This is because when the above internal coagulation liquid is used, a dense layer is formed on the inner surface in the same manner as in the case of water, but due to the high viscosity, the replacement speed of the solvent is slow, microphase separation is promoted, and the dense layer is near the surface. Since only the inside becomes porous, a hollow fiber membrane having high water permeability as well as excellent fractionability can be obtained. The hollow fiber membrane of the present invention has a high water permeability of 1.5 to 2 times or more in spite of the same level of fractionation properties as the conventional hollow fiber membrane due to the improvement in the effective membrane area and the reduction in the thickness of the dense layer. Have. For this reason, the hollow fiber membrane is particularly excellent as a hollow fiber membrane for internal pressure passage, and since it has intermittent projections on the inner surface, the permeability is not easily reduced, and the hollow fiber membrane can be easily regenerated by backwashing or the like. For this reason, it can be applied to fields where the service life is longer than conventional hollow fiber membranes and economical, and where the separation operation with conventional hollow fiber membranes is difficult.

(実施例) 以下、実施例により本発明を更に具体的に説明する。
なお、透水率及び分画性の測定は以下の方法で行つた。
(Examples) Hereinafter, the present invention will be described more specifically with reference to examples.
In addition, the measurement of water permeability and fractionation was performed by the following methods.

(i) 透水率 25本の中空糸で有効長15cmの両端開放型のラポモジュ
ールを作製し、25℃の純水を過圧1Kg/cm2で膜内部よ
り透過させ、一定時間中に外部に透過する純水の量を測
定した。
(I) Permeability A 25 mm hollow fiber open-ended LapoModule with an effective length of 15 cm is manufactured, and pure water at 25 ° C is allowed to permeate from the inside of the membrane at an overpressure of 1 kg / cm 2 , and is allowed to reach the outside during a certain time. The amount of permeated pure water was measured.

(ii) 分画性 測定液としてデキストラン(分子量=200万)の1%
水溶液を調製し、過圧1Kg/cm2、循環線速0.3m/secで
内圧過を行つた。採取した透過液と測定液の全有機炭
素を測定し除去率を算出した。
(Ii) Fractionability 1% of dextran (molecular weight = 2,000,000) as a measurement solution
An aqueous solution was prepared, and the internal pressure was increased at an overpressure of 1 kg / cm 2 and a circulating linear velocity of 0.3 m / sec. The total organic carbon in the collected permeate and the measurement solution was measured, and the removal rate was calculated.

実施例1 ポリスルホン樹脂(アモコ社製Udel P−1700)20重量
%、ポリエチレングリコール(三洋化成社製PEG#600)
36重量%、ジメチルホルムアミド44重量%を溶解し紡糸
原液とした。28℃に保つたこの紡糸原液と同じ温度に保
つたグリセリン75重量%及び水25重量%からなる粘度10
0cpの内部凝固液を2重環状ノズルより同時に吐出し、
ドラフト率80%で50℃、85%の加湿エアー中を10cm通し
た後、50℃の水中で凝固させた。次いで90℃の熱水処理
とグリセリン含浸を行つた後、40℃、10時間乾燥し、外
径1300μm、内径800μmの中空糸膜を得た。この中空
糸膜の透水性は2200/m2hr・Kg/cm2、デキストランの
阻止率は90%であつた。SEM写真より測定した内表面の
断続した突出体の平均幅は0.1μm、平均長さは1.5μ
m、突出体の平均高さは0.2μm、長さ方向の突出体の
間隔は0.1μm、緻密層の厚さは約0.2μmであつた。こ
の中空糸膜の走査型電子顕微鏡による写真を第1図〜第
5図に示す。なお第1図は中空糸膜の外表面、第2図は
内表面、第3図は外表面側の断面、第4図はほぼ中央部
の断面及び第5図は内表面側の断面を示している。
Example 1 20% by weight of polysulfone resin (Udel P-1700 manufactured by Amoco), polyethylene glycol (PEG # 600 manufactured by Sanyo Chemical)
36% by weight and 44% by weight of dimethylformamide were dissolved to prepare a spinning stock solution. A viscosity consisting of 75% by weight of glycerin and 25% by weight of water maintained at the same temperature as the spinning dope kept at 28 ° C.
0cp internal coagulation liquid is simultaneously discharged from the double annular nozzle,
After passing 10 cm through humidified air at 50 ° C. and 85% at a draft rate of 80%, it was coagulated in water at 50 ° C. Next, after performing a hot water treatment at 90 ° C. and glycerin impregnation, the resultant was dried at 40 ° C. for 10 hours to obtain a hollow fiber membrane having an outer diameter of 1300 μm and an inner diameter of 800 μm. The hollow fiber membrane had a water permeability of 2200 / m 2 hr · Kg / cm 2 and a dextran rejection of 90%. The average width of the intermittent protrusion on the inner surface measured from the SEM photograph is 0.1 μm and the average length is 1.5 μm
m, the average height of the protrusions was 0.2 μm, the interval between the protrusions in the length direction was 0.1 μm, and the thickness of the dense layer was about 0.2 μm. FIGS. 1 to 5 show photographs of the hollow fiber membrane taken by a scanning electron microscope. 1 shows the outer surface of the hollow fiber membrane, FIG. 2 shows the inner surface, FIG. 3 shows the cross section on the outer surface side, FIG. ing.

実施例2 内部凝固液にエチレングリコール85重量%及び水25%
からなる粘度200cpの溶液を用いた以外は実施例1と同
様にして外径1300μm、内径800μmの中空糸膜を作製
した。この中空糸膜の透水性は2300/m2・hr・Kg/c
m2、デキストランの阻止率は91%であつた。SEM写真よ
り測定した内表面の突出体の平均幅は0.1μm、平均長
さは1.0μm、平均高さは0.1μmであつた。また長さ方
向の突出体の平均間隔は0.15μmであつた。
Example 2 85% by weight of ethylene glycol and 25% of water in the internal coagulating liquid
A hollow fiber membrane having an outer diameter of 1300 μm and an inner diameter of 800 μm was prepared in the same manner as in Example 1 except that a solution having a viscosity of 200 cp was used. Permeability of the hollow fiber membrane is 2300 / m 2 · hr · Kg / c
m 2 , dextran rejection was 91%. The average width of the protrusions on the inner surface measured from the SEM photograph was 0.1 μm, the average length was 1.0 μm, and the average height was 0.1 μm. The average interval between the protrusions in the length direction was 0.15 μm.

比較例1 内部凝固液として水を用いた以外は実施例1と同様に
して外径1300μm、内径800μmの中空糸膜を作製し
た。この中空糸膜の透水性は1100/m2・hr・Kg/cm2
デキストランの阻止率は90%であつた。SEM写真より内
表面は平滑であつた。
Comparative Example 1 A hollow fiber membrane having an outer diameter of 1300 µm and an inner diameter of 800 µm was produced in the same manner as in Example 1 except that water was used as the internal coagulating liquid. Permeability of the hollow fiber membrane is 1100 / m 2 · hr · Kg / cm 2,
Dextran inhibition was 90%. The inner surface was smooth from the SEM photograph.

比較例2 内部凝固液としてジメチルホルムアミド80重量%及び
水20重量%からなる溶液を用いた以外は実施例1と同様
にして外径1300μm、内径800μmの中空糸膜を作製し
た。この中空糸膜の透水性は3000/m2・hr・Kg/cm2
デキストランの阻止率は10%以下であつた。SEM写真よ
り内表面は平滑であつた。
Comparative Example 2 A hollow fiber membrane having an outer diameter of 1300 μm and an inner diameter of 800 μm was produced in the same manner as in Example 1 except that a solution composed of 80% by weight of dimethylformamide and 20% by weight of water was used as an internal coagulating liquid. Permeability of the hollow fiber membrane is 3000 / m 2 · hr · Kg / cm 2,
Dextran inhibition was less than 10%. The inner surface was smooth from the SEM photograph.

実施例3 ポリイミド(アツプジヨン社製2080D)18重量部、エ
チレングリコール18重量部、ジメチルホルムアミド64重
量部を溶解し紡糸原液とし、実施例1と同様にして外径
1300μm、内径800μmの中空糸膜を作製した。この中
空糸膜の透水性は1300/m2・hr・Kg/cm2、デキストラ
ンの阻止率は96%であつた。SEM写真より測定した内表
面の突出体平均幅は0.1μm、平均長さは1.2μm、平均
高さは0.2μm、突出体の長さ方向の平均間隔は0.15μ
mであつた。
Example 3 18 parts by weight of a polyimide (2080D, manufactured by APPJION CORPORATION), 18 parts by weight of ethylene glycol, and 64 parts by weight of dimethylformamide were dissolved to prepare a stock solution for spinning.
A hollow fiber membrane having an inner diameter of 1300 μm and an inner diameter of 800 μm was produced. The hollow fiber membrane had a water permeability of 1300 / m 2 · hr · Kg / cm 2 and a dextran rejection of 96%. The average width of the protrusions on the inner surface measured from the SEM photograph is 0.1 μm, the average length is 1.2 μm, the average height is 0.2 μm, and the average interval in the length direction of the protrusions is 0.15 μm
m.

実施例4 実施例1、実施例2及び比較例1の中空糸膜を用いて
それぞれ有効膜面積1m2、有効長0.9mの内圧過型モジ
ユールを作製した。これら3種類のモジユールを使つて
水道水を過圧1Kg/cm2で内圧全過を行い、透過速度
が半減したときの過量を測定したところ、比較例1の
中空糸膜を収容したモジユールが20m3であつたのに対し
て、実施例1の中空糸膜を収容したモジユールは55m3
実施例2の中空糸膜を収容したモジユールは45m3であつ
た。次に、これらのモジユールを水圧1Kg/cm2で30秒
間、5回透過液逆洗し、透水性を測定したところ、比較
例1の中空糸膜を収容したモジユールでは50%の透水性
しか回復しなかつたのに対して実施例1の中空糸膜を収
容したモジユールは80%、実施例2の中空糸膜を収容し
たモジユールは85%透水性が回復した。
Example 4 Using the hollow fiber membranes of Example 1, Example 2 and Comparative Example 1, internal pressure type modules each having an effective membrane area of 1 m 2 and an effective length of 0.9 m were produced. Using these three types of modules, tap water was subjected to an internal pressure overpressure of 1 kg / cm 2 and the excess amount when the permeation rate was reduced by half was measured. The module containing the hollow fiber membrane of Comparative Example 1 was 20 m In contrast to 3 , the module containing the hollow fiber membrane of Example 1 was 55 m 3 ,
The module containing the hollow fiber membrane of Example 2 was 45 m 3 . Next, these modules were backwashed with a permeate 5 times at a water pressure of 1 kg / cm 2 for 30 seconds, and the water permeability was measured. The module containing the hollow fiber membrane of Comparative Example 1 recovered only 50% of the water permeability. In contrast, the module containing the hollow fiber membrane of Example 1 recovered the water permeability by 80%, and the module containing the hollow fiber membrane of Example 2 recovered the water permeability by 85%.

実施例5 実施例2及び比較例1の中空糸膜を用いて有効膜面積
1m2、有効長0.9mの内圧過用のモジユールを作製し、
この2つのモジユールを用いて、処理液側入口圧力2.5K
g/cm2、循環線速2m/secでクロスフロー方式内圧過で
電着塗料排液の過を行つた結果を第6図に示す。第6
図に示すように比較例1の中空糸膜を収容したモジユー
ルは経時的に過速度が低下しているのに対して、実施
例2の中空糸膜を収容したモジユールではほとんど過
速度の低下がなく一定の過速度を保つた。
Example 5 Effective membrane area using the hollow fiber membranes of Example 2 and Comparative example 1
1 m 2 , 0.9 m effective length module for internal pressure
Using these two modules, processing solution side inlet pressure 2.5K
FIG. 6 shows the results obtained when the electrodeposition paint was drained by g / cm 2 at a circulating linear velocity of 2 m / sec by cross-flow system internal pressure. Sixth
As shown in the figure, the module containing the hollow fiber membrane of Comparative Example 1 showed a decrease in overspeed with time, whereas the module containing the hollow fiber membrane of Example 2 showed a decrease in overspeed. Without constant overspeed.

(発明の効果) 本発明の中空糸膜は、特に内圧過用として高い透過
性能と優れた分画性能を有し、かつ透過性能の低下が少
なく、また逆洗等により膜の再生が容易なため、従来の
膜より寿命が長く経済的である。また上記特異な膜構造
により現在膜分離操作が適用されている分野のみならず
膜分離操作が困難であつた分野での適用が可能である。
(Effects of the Invention) The hollow fiber membrane of the present invention has high permeation performance and excellent fractionation performance especially for use in internal pressure, and has a small decrease in permeation performance. Therefore, the service life is longer than that of the conventional film, and it is economical. The unique membrane structure enables application not only in fields where membrane separation operations are currently applied, but also in fields where membrane separation operations are difficult.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例1で得られたポリスルホン中空糸膜の外
表面の構造、第2図は内表面の構造、第3図は外表面側
の断面構造、第4図はほぼ中央部の断面構造および第5
図は内表面側の断面構造を示す、それぞれ5,000倍の走
査型電子顕微鏡写真であり、第6図は電着塗装排液の処
理における経時的な過速度の変化を示すグラフであ
る。
FIG. 1 shows the structure of the outer surface of the polysulfone hollow fiber membrane obtained in Example 1, FIG. 2 shows the structure of the inner surface, FIG. 3 shows the cross-sectional structure on the outer surface side, and FIG. Structure and Fifth
The figure is a scanning electron micrograph (× 5,000) showing the cross-sectional structure on the inner surface side, and FIG. 6 is a graph showing the change of the overspeed with time in the treatment of the effluent from the electrodeposition coating.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−200806(JP,A) 特開 昭61−200805(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 69/08 B01D 71/68 D01D 5/24 D01F 6/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-200806 (JP, A) JP-A-61-200805 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B01D 69/08 B01D 71/68 D01D 5/24 D01F 6/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内表面に緻密層を有し、外表面および膜内
部が微細多孔質構造である多孔質中空糸膜であって、該
中空糸膜の内表面に長さ方向に沿って高さ0.01〜0.3μ
の断続した突出体が設けられ、かつ透水率が1000/m2
・hr・kg/cm2以上で、しかも分子量200万のデキストラ
ンの阻止率が80%以上を示す多孔質中空糸膜。
1. A porous hollow fiber membrane having a dense layer on the inner surface and a fine porous structure on the outer surface and the inside of the membrane, wherein the inner surface of the hollow fiber membrane has a high height along the length direction. 0.01 ~ 0.3μ
Intermittent protrusions are provided, and the water permeability is 1000 / m 2
-A porous hollow fiber membrane that has a rejection of 80% or more for dextran having a molecular weight of 2,000,000 and an hr.kg/cm 2 or more.
JP7063190A 1990-03-19 1990-03-19 Porous hollow fiber membrane Expired - Fee Related JP2948856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7063190A JP2948856B2 (en) 1990-03-19 1990-03-19 Porous hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7063190A JP2948856B2 (en) 1990-03-19 1990-03-19 Porous hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPH03270721A JPH03270721A (en) 1991-12-02
JP2948856B2 true JP2948856B2 (en) 1999-09-13

Family

ID=13437178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7063190A Expired - Fee Related JP2948856B2 (en) 1990-03-19 1990-03-19 Porous hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2948856B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36914E (en) * 1992-10-07 2000-10-17 Minntech Corp Dialysate filter including an asymmetric microporous, hollow fiber membrane incorporating a polyimide
CN1236842C (en) * 2001-02-16 2006-01-18 东丽株式会社 Separating film, separating film element, separating film module sewage and waste water treatment device, and separating film manufacturing method
JP5212837B2 (en) * 2009-10-08 2013-06-19 東洋紡株式会社 Permselective hollow fiber membrane
WO2013108788A1 (en) * 2012-01-16 2013-07-25 東レ株式会社 Composite semipermeable membrane and method for manufacturing same

Also Published As

Publication number Publication date
JPH03270721A (en) 1991-12-02

Similar Documents

Publication Publication Date Title
US4612119A (en) Hollow fiber filter medium and process for preparing the same
JP3232117B2 (en) Polysulfone porous hollow fiber
JP5433921B2 (en) Polymer porous hollow fiber membrane
US4772391A (en) Composite membrane for reverse osmosis
EP0882494A1 (en) Hollow fiber type filtration membrane
JPH05212255A (en) Hollow fiber membrane
JPS6356802B2 (en)
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JP2948856B2 (en) Porous hollow fiber membrane
US20050242021A1 (en) Hollow fibres
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
JPH0569571B2 (en)
JP3255385B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JPH0478729B2 (en)
KR100581206B1 (en) Polyvinylidene fluoride Porous Hollow Fiber Membrane and the Manufacturing Process thereof
JPH08108053A (en) Cellulose acetate hollow-fiber separation membrane and its production
KR20100079630A (en) Ultrafiltration membranes with improved water permeability and mechanical strength and manufacturing method thereof
JPS63296939A (en) Polyvinylidene fluoride resin porous film and its manufacture
JPH0929078A (en) Production of hollow yarn membrane
JPH0832295B2 (en) Method for producing composite hollow fiber membrane
JP2528893B2 (en) Method for producing polysulfone hollow fiber membrane
KR101308996B1 (en) The Preparation method of hollow fiber membrane with high permeation using hydrophilic polyvinylidenefluoride composites for water treatment
JP4672128B2 (en) Hollow fiber membrane and method for producing the same
KR100426183B1 (en) A composition for producing microporous polyethersulfone membrane and a method for preparing microporous membrane using the same
KR100200041B1 (en) Sponge-like polysulphone hollow fibre membrane having active layer and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees