JPH0832295B2 - Method for producing composite hollow fiber membrane - Google Patents

Method for producing composite hollow fiber membrane

Info

Publication number
JPH0832295B2
JPH0832295B2 JP15116390A JP15116390A JPH0832295B2 JP H0832295 B2 JPH0832295 B2 JP H0832295B2 JP 15116390 A JP15116390 A JP 15116390A JP 15116390 A JP15116390 A JP 15116390A JP H0832295 B2 JPH0832295 B2 JP H0832295B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
barrier layer
nozzle
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15116390A
Other languages
Japanese (ja)
Other versions
JPH0445830A (en
Inventor
賢作 小松
健彦 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP15116390A priority Critical patent/JPH0832295B2/en
Publication of JPH0445830A publication Critical patent/JPH0445830A/en
Publication of JPH0832295B2 publication Critical patent/JPH0832295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複合中空糸膜の製造方法、特に工業用途や医
療用途などに好適に使用される多孔性の複合中空糸膜の
製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a composite hollow fiber membrane, and more particularly to a method for producing a porous composite hollow fiber membrane which is preferably used for industrial and medical applications. Is.

(従来の技術) 膜による分離技術が発達するに従い、そこで使用され
る膜は高性能化、高機能化が必要となつてきており、近
年支持層にバリアー層が被覆された複合膜が注目されて
いる。複合膜は支持層と物質を分画する薄いバリアー層
を明確に分け、かつバリアー層の膜厚が調節できるため
優れた透過性能を有する膜となる。従来よりかかる複合
膜の製造方法としては支持層上に選択性をもたせるバリ
アー層としての薄膜を塗布するコーテイング法が知られ
ているが、コーテイング法は支持層とバリアー層との界
面の剥離や、バリアー層の厚みのムラやピンホールの発
生が生じやすいことなどの問題点が指摘されている。ま
た製造工程が複雑となるため、効率よく大量に製造する
ことが困難である。
(Prior Art) With the development of membrane separation technology, the membranes used therefor are required to have higher performance and higher functionality. In recent years, composite membranes in which a barrier layer is coated on a support layer have attracted attention. ing. The composite membrane is a membrane having excellent permeability because the support layer and the thin barrier layer that separates the substance are clearly separated and the thickness of the barrier layer can be adjusted. Conventionally, as a method for producing such a composite film, a coating method of applying a thin film as a barrier layer to give selectivity to a support layer is known, but the coating method is peeling at the interface between the support layer and the barrier layer, It has been pointed out that problems such as uneven thickness of the barrier layer and pinholes are likely to occur. Moreover, since the manufacturing process is complicated, it is difficult to efficiently manufacture a large amount.

また、上記コーテイング法の欠点を解消する方法とし
て、2種類の紡糸原液を三重管構造のノズルより同時に
吐出し、凝固液に浸漬する方法(特開昭62−19205号な
ど)や、濃度の異なる2種類のポリスルホン系樹脂から
なる紡糸原液を三重管構造ノズルから吐出する方法(特
開昭63−218213号など)が提案されている。
Further, as a method for solving the drawbacks of the above coating method, a method of simultaneously discharging two kinds of spinning dope from a nozzle having a triple tube structure and immersing in a coagulating solution (Japanese Patent Laid-Open No. 62-19205, etc.), or a method of different concentrations A method has been proposed in which a spinning dope containing two kinds of polysulfone-based resins is discharged from a nozzle having a triple tube structure (Japanese Patent Laid-Open No. 63-218213, etc.).

(発明が解決しようとする課題) しかし、前者の方法は、2種類の紡糸原液と内部凝固
液を同時に吐出し、しかも内部凝固液に溶媒置換速度の
速い水を使用しているため、凝固や凝固時の膜の収縮が
速く、2種類の高分子重合体の界面付近での相互拡散が
行われにくいためにバリアー層の剥離を起こしやすい欠
点を有する。また、後者の方法は、紡糸原液に添加剤が
添加されていないため高い透水性を有する多孔性の膜を
製造することが困難である。
(Problems to be Solved by the Invention) However, the former method discharges two kinds of spinning stock solutions and an internal coagulation solution at the same time, and further uses water having a high solvent replacement rate for the internal coagulation solution. Since the film shrinks rapidly during solidification, inter-diffusion in the vicinity of the interface between the two types of high molecular weight polymers is unlikely to occur, so that the barrier layer is easily peeled off. In the latter method, it is difficult to produce a porous membrane having high water permeability because no additive is added to the spinning dope.

したがつて本発明の目的は、高い透過性能を有し、か
つバリアー層のピンホールや複合界面での剥離のない多
孔性の複合中空糸膜を効率よく製造することのできる方
法を提供することにある。
Therefore, an object of the present invention is to provide a method capable of efficiently producing a porous composite hollow fiber membrane having high permeability and free of pinholes in the barrier layer and peeling at the composite interface. It is in.

(課題を解決するための手段) 本発明者等は上記目的を達成すべく鋭意検討を行つた
結果、複合中空糸膜を製造する際に膜形成用樹脂中の溶
媒の置換速度を遅くすることにより支持層とバリアー層
との界面の接着性が向上することを見出し、さらに検討
した結果本発明に到達したものである。
(Means for Solving the Problems) As a result of the inventors of the present invention having conducted extensive studies to achieve the above-mentioned object, slowing down the rate of solvent substitution in the resin for forming a membrane when producing a composite hollow fiber membrane. It was found that this improves the adhesiveness at the interface between the support layer and the barrier layer, and as a result of further investigation, the present invention has been reached.

すなわち本発明は、膜形成用樹脂を含有する2種類の
原液を三重管構造のノズルの中間および外側の各ノズル
部から同心円状に押し出した後、該同心円状に押し出さ
れた溶液を三重管構造のノズルの内側のノズル部から吐
出される、該膜形成用樹脂の非溶媒または貧溶媒で、か
つ粘度が3センチポイズ以上の凝固液と接触させること
を特徴とする複合中空糸膜の製造方法である。
That is, according to the present invention, two types of stock solutions containing a film-forming resin are extruded concentrically from each of the middle and outer nozzles of a nozzle having a triple-tube structure, and the solution extruded in the concentric circles is then extruded into a triple-tube structure. In the method for producing a composite hollow fiber membrane, the non-solvent or poor solvent of the film-forming resin, which is discharged from the nozzle portion inside the nozzle, is brought into contact with a coagulating liquid having a viscosity of 3 centipoise or more. is there.

2種類の紡糸原液は、例えば第1図に示す三重管構造
のノズル1の中間ノズル部2と外側ノズル部3から吐出
されるが、吐出された紡糸原液は、内側ノズル部4から
吐出される内部凝固液と接触させる前に、2種類の紡糸
原液を層流状態のまま貼り合せゾーン5を通過させる必
要がある。これは、2種類の紡糸原液の界面付近を相互
拡散させて界面の剥離を防止するためである。この貼り
合せゾーンの長さは紡糸原液の種類によつて異なるが、
通常1mm以上あればよい。2種類の紡糸原液の相溶性の
悪いもの、または不安定なものほど貼り合せゾーンを長
くする必要がある。
The two types of spinning dope are discharged from, for example, the intermediate nozzle part 2 and the outer nozzle part 3 of the nozzle 1 having the triple-tube structure shown in FIG. 1, and the discharged spinning dope is discharged from the inner nozzle part 4. Before contacting with the internal coagulation liquid, it is necessary to pass the two types of spinning stock solutions in the laminar flow state through the bonding zone 5. This is to prevent interfacial peeling by causing mutual diffusion near the interface between the two types of spinning dope. Although the length of this bonding zone varies depending on the type of spinning dope,
Usually, it should be 1 mm or more. It is necessary to lengthen the bonding zone as the two stock solutions have poor compatibility or are unstable.

本発明では、物質を分画するバリアー層とそれを支え
る支持層を形成する2種類の紡糸原液が使用される。こ
こで用いる膜形成用樹脂は特に制限はなく、例えば、ポ
リスルホン、ポリエーテルスルホン、ポリアクリロニト
リル、ポリイミド、ポリフツ化ビニリデン、ポリビニル
アルコール、エチレン・ビニルアルコール共重合体等を
用いることができる。また、2種類の紡糸原液として同
じ樹脂を用いても、異なる樹脂を用いてもよい。ただ
し、異なる樹脂の場合は用いる樹脂同士の溶媒中での相
溶性の良いものが望ましい。
In the present invention, two kinds of spinning dope are used, which form a barrier layer for fractionating a substance and a supporting layer supporting the barrier layer. The film-forming resin used here is not particularly limited, and for example, polysulfone, polyether sulfone, polyacrylonitrile, polyimide, polyvinylidene fluoride, polyvinyl alcohol, ethylene / vinyl alcohol copolymer and the like can be used. Also, the same resin or different resins may be used as the two kinds of spinning dope. However, in the case of different resins, it is desirable that the resins used have good compatibility in the solvent.

本発明の製造方法は、紡糸原液の種類にかかわらず基
本的に同じであるため、以下膜形成用樹脂としてポリス
ルホン系樹脂を使用した例について説明するが、本発明
はポリスルホン系樹脂以外の他の樹脂についても適用で
きることはいうまでもない。
Since the production method of the present invention is basically the same regardless of the type of spinning dope, an example using a polysulfone-based resin as the film-forming resin will be described below, but the present invention is not limited to the polysulfone-based resin. It goes without saying that it can also be applied to resins.

2種類の紡糸原液としては、通常ポリスルホン系樹脂
を極性溶媒に溶解したものに添加剤を添加した系をそれ
ぞれ使用するが、それぞれの紡糸原液を構成する極性溶
媒や添加剤は必ずしも同じである必要はない。
As the two kinds of spinning dope, usually, a system in which a polysulfone resin is dissolved in a polar solvent and an additive is used is used, but the polar solvent and the additive constituting each spinning dope do not necessarily have to be the same. There is no.

ポリスルホン系樹脂は、例えば、 の繰り返し単位を持つポリスルホンが代表例として挙げ
られる。この他に官能基を含んでいたりアルキル系であ
つてもよい。
Polysulfone-based resin, for example, A typical example is polysulfone having a repeating unit of. In addition to this, it may contain a functional group or may be an alkyl type.

添加剤としては、例えばポリエチレングリコールやポ
リビニルピロリドン等の親水性高分子、メタノールやエ
タノール等のアルコール類、エチレングリコールやプロ
ピレングリコール等のグリコール類、水等のポリスルホ
ン系に対して非溶媒または貧溶媒、LiCl、MgCl2、NaNO3
等の無機塩類の単独または2種類以上の混合物があげら
れる。
Examples of the additive include hydrophilic polymers such as polyethylene glycol and polyvinylpyrrolidone, alcohols such as methanol and ethanol, glycols such as ethylene glycol and propylene glycol, nonsolvents or poor solvents for polysulfone such as water, LiCl, MgCl 2 , NaNO 3
Inorganic salts such as the above may be used alone or in a mixture of two or more kinds.

極性溶媒としては、ポリスルホン系樹脂及び添加剤を
溶解するものであれば特に制限はなく、例えばジメチル
ホルムアミド、ジメチルアセトアミド、N−メチルピロ
リドン、ジメチルスルホキシド等の単独あるいは2種類
以上の混合物があげられる。
The polar solvent is not particularly limited as long as it can dissolve the polysulfone resin and the additive, and examples thereof include dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, and the like, or a mixture of two or more kinds.

上記3種類をかくはん溶解し紡糸原液を調製するが、
特にポリスルホン系樹脂のような疎水性高分子の場合
は、原液中に親水性高分子を添加することによりポア形
成の核になると同時に膜中に残存し親水性効果をもたす
ことができる。親水性高分子としては上記のポリエチレ
ングリコールやポリビニルピロリドンの他にポリビニル
アルコール、エチレン・ビニルアルコール共重合体、ス
ルホン化ポリスルホン等やそれらの変性ポリマーがあげ
られる。親水性高分子の添加量は高分子量のものほど少
なくて済むが、膜中の含有量が多くなると親水性高分子
が水によつて膨潤し透水性の低下を起こしたりポリスル
ホン系樹脂のもつ優れた特性が阻害される恐れがあるた
め、膜中の残存量が10%以下になるように添加する。ま
た、使用時に処理液側に接する層を形成させる紡糸原液
のみに添加するといつた片側の層のみを親水性にするこ
ともできる。
A stock solution for spinning is prepared by stirring and dissolving the above three types.
In particular, in the case of a hydrophobic polymer such as a polysulfone resin, by adding a hydrophilic polymer to the stock solution, it becomes a nucleus for pore formation and, at the same time, it remains in the film to have a hydrophilic effect. Examples of the hydrophilic polymer include polyvinyl alcohol, ethylene / vinyl alcohol copolymer, sulfonated polysulfone, and modified polymers thereof, in addition to the above-mentioned polyethylene glycol and polyvinylpyrrolidone. The amount of hydrophilic polymer added is smaller for higher molecular weight compounds, but when the content in the membrane increases, the hydrophilic polymer swells with water, causing a decrease in water permeability, and the excellent properties of polysulfone resins. Since the characteristics described above may be impaired, it is added so that the remaining amount in the film is 10% or less. In addition, it is possible to make only one layer hydrophilic by adding it only to the spinning dope that forms a layer in contact with the treatment liquid side during use.

本発明の方法は、公知の乾湿式または湿式紡糸法を使
用する。透水性の高い膜を作製するにはバリアー層の膜
厚を小さくすることが効果的である。そのためバリアー
層と支持層を形成させるそれぞれの紡糸原液は、支持層
の膜厚に対するバリアー層の膜厚が50%以下になるよう
に吐出することが好ましい。
The method of the present invention uses known dry-wet or wet spinning methods. It is effective to reduce the film thickness of the barrier layer in order to produce a film having high water permeability. Therefore, it is preferable that the respective spinning stock solutions for forming the barrier layer and the support layer are discharged so that the film thickness of the barrier layer is 50% or less of the film thickness of the support layer.

また、本発明では内側のノズル部より吐出される内部
凝固液に3センチポイズ以上の粘度を有する溶液を使用
する。これは、粘度の高い内部凝固液を使用することで
紡糸原液中の溶媒の置換速度(凝固速度)が遅くなるた
め、貼合わせ界面の接着性を向上できるとともにミクロ
相分離が促進され開孔率の高い中空糸膜を製造すること
ができるためである。内部凝固液としてはポリスルホン
系樹脂の非溶媒または貧溶媒で3センチポイズ以上の粘
度を有するものであれば特に制限はなく、例えばエチレ
ングリコール、プロピレングリコール、平均分子量1,00
0以下のポリエチレングリコール、グリセリン等の単独
や水または/及び極性溶媒の混合液があげられる。内部
凝固液はポリスルホン系樹脂に対する凝固性を考慮すれ
ばよく、何種類かの組合せによつてUFからMFまでの広い
範囲の中空糸膜を作製することが可能である。
Further, in the present invention, a solution having a viscosity of 3 centipoise or more is used as the internal coagulation liquid discharged from the inner nozzle portion. This is because the use of a highly viscous internal coagulation liquid slows down the solvent substitution rate (coagulation rate) in the spinning dope, which can improve the adhesiveness at the bonding interface and promote microphase separation, thus increasing the porosity. This is because it is possible to manufacture a high hollow fiber membrane. The internal coagulation liquid is not particularly limited as long as it is a non-solvent or a poor solvent of polysulfone resin and has a viscosity of 3 centipoise or more, for example, ethylene glycol, propylene glycol, and an average molecular weight of 1,00.
Examples thereof include polyethylene glycol, glycerin, etc. of 0 or less alone, or a mixed solution of water and / or a polar solvent. The internal coagulation liquid may be prepared by considering the coagulation property with respect to the polysulfone-based resin, and it is possible to prepare a wide range of hollow fiber membranes from UF to MF by combining several kinds.

このように本発明の製造方法で得られた多孔性中空糸
膜は、バリアー層と支持層が明確に分かれているため単
一の紡糸原液で作製した膜と比較して高い透水性を有す
る。また、貼合わせ界面の接着性が優れているため、エ
アーまたは液逆洗を繰り返し行つてもバリアー層が剥離
することがない。さらにバリアー層のみを親水化や荷電
化することも容易にできるため高機能性の中空糸膜も作
製できる。
As described above, the porous hollow fiber membrane obtained by the production method of the present invention has a higher water permeability than that of a membrane prepared from a single spinning dope because the barrier layer and the support layer are clearly separated. Further, since the adhesive property at the bonding interface is excellent, the barrier layer is not peeled off even after repeated backwashing with air or liquid. Furthermore, since it is possible to easily make only the barrier layer hydrophilic or charged, a highly functional hollow fiber membrane can be prepared.

(実施例) 以下実施例により本発明を更に具体的に説明する。な
お、透水性と阻止率の測定は以下の方法で行つた。
(Example) The present invention will be described in more detail with reference to the following examples. The water permeability and the blocking rate were measured by the following methods.

(1)透水性 25本の中空糸で有効長15cmの両端開放型のラボモジユ
ールを作製し、25℃の純水を過圧1kg/cm2で膜内部よ
り透過させ、一定時間中に透過する純水の量を測定し
た。
(1) Water permeability A hollow-type lab module with an effective length of 15 cm was prepared from 25 hollow fibers, and pure water at 25 ° C was permeated from the inside of the membrane at an overpressure of 1 kg / cm 2 , and was permeated within a certain period of time. The amount of water was measured.

(2)分画性 測定液としてデキストラン(分子量=200万)の1%
水溶液を調製し、入口圧1kg/cm2、循環線速0.3m/secで
内圧過を行つた。採取した透過液と測定液の全有機炭
素を測定し除去率を算出した。
(2) Fractionality 1% of dextran (molecular weight = 2 million) as a measuring solution
An aqueous solution was prepared, and the internal pressure was increased at an inlet pressure of 1 kg / cm 2 and a circulating linear velocity of 0.3 m / sec. The removal rate was calculated by measuring the total organic carbon in the collected permeated liquid and the measurement liquid.

実施例1 バリアー層形成用の紡糸原液としてポリスルホン樹脂
(Ude1 P−1700 アモコ社製)21重量部、ポリエチレン
グリコール(平均分子量600 三洋化成社製)35.7重量
部をジメチルホルムアミドに溶解した紡糸原液(I)、
支持層形成用の紡糸原液としてポリスルホン樹脂17重量
部、ポリエチレングリコール34重量部をジメチルホルム
アミドに溶解した紡糸原液(II)をそれぞれ使用した。
内部凝固液にはジメチルホルムアミド:エチレングリコ
ール:水=50:40:10からなる粘度7cpの溶液を用いた。
これら2種類の紡糸原液と内部凝固液を30℃に保つたま
ま、原液(I)は第1図に示す三重管構造のノズル1の
中間ノズル部2から、また原液(II)は外側ノズル部3
から同時に吐出させて長さ2mmの貼り合せゾーン5で該
吐出された2種類の原液を接触させた後、内側ノズル部
4から吐出された内部凝固液と接触させた。次いで、10
cmの加湿空気中を通した後40℃の水中に浸漬凝固させ、
しかる後に90℃の熱水で1時間洗浄して、外径/内径=
1000/600μmの中空糸膜を得た。得られた中空糸膜の透
水性は4,100/m2・hr・kg/cm2、デキストランの阻止率
は64%であつた。走査型電子顕微鏡(SEM)で観察した
バリアー層の膜厚は30μmであつた。
Example 1 As a spinning stock solution for forming a barrier layer, 21 parts by weight of a polysulfone resin (Ude1 P-1700, manufactured by Amoco) and 35.7 parts by weight of polyethylene glycol (average molecular weight: 600, manufactured by Sanyo Kasei) were dissolved in dimethylformamide (I). ),
As the spinning dope for forming the support layer, a spinning dope (II) prepared by dissolving 17 parts by weight of a polysulfone resin and 34 parts by weight of polyethylene glycol in dimethylformamide was used.
As the internal coagulation liquid, a solution of dimethylformamide: ethylene glycol: water = 50: 40: 10 having a viscosity of 7 cp was used.
While keeping these two kinds of spinning dope and the internal coagulation liquid at 30 ° C., the dope (I) is from the intermediate nozzle part 2 of the triple tube structure nozzle 1 shown in FIG. 1, and the dope (II) is the outside nozzle part. Three
The two types of stock solutions thus discharged were brought into contact with each other in the bonding zone 5 having a length of 2 mm and then brought into contact with the internal coagulation solution discharged from the inner nozzle portion 4. Then 10
After passing through cm of humidified air, dip and solidify in water of 40 ° C,
After that, wash with hot water at 90 ° C for 1 hour, and outer diameter / inner diameter =
A hollow fiber membrane of 1000/600 μm was obtained. The resulting hollow fiber membrane had a water permeability of 4,100 / m 2 · hr · kg / cm 2 and a dextran inhibition rate of 64%. The film thickness of the barrier layer observed by a scanning electron microscope (SEM) was 30 μm.

実施例2〜4 実施例1と同一のバリアー層形成用の紡糸原液(I)
および支持層形成用の紡糸原液(II)を使用し、内部凝
固液の組成を変えて3種類の中空糸膜を作製した。表−
1に示すようにUFレベル〜MFレベルの広い範囲の中空糸
膜が得られた。
Examples 2 to 4 The same spinning stock solution (I) for forming a barrier layer as in Example 1
Using the spinning dope (II) for forming the support layer and changing the composition of the internal coagulating liquid, three types of hollow fiber membranes were produced. Table-
As shown in 1, hollow fiber membranes in a wide range of UF level to MF level were obtained.

実施例5 バリアー層形成用の紡糸原液としてポリスルホン樹脂
19重量部、ポリビニルピロリドン(K−90GAF製)1.9重
量部、ポリエチレングリコール26.6重量部をジメチルホ
ルムアミドに溶解したものを使用した以外は実施例1と
同様にして中空糸膜を作製した。得られた中空糸膜の透
水性は3500/m2・hr・kg/cm2、デキストラン阻止率は5
4%であつた。SEMで観察したバリアー層の膜厚は25μm
であり、また元素分析より得られたPVPの残存量は0.3%
であつた。
Example 5 Polysulfone resin as a spinning dope for forming a barrier layer
A hollow fiber membrane was produced in the same manner as in Example 1 except that 19 parts by weight, 1.9 parts by weight of polyvinylpyrrolidone (K-90GAF), and 26.6 parts by weight of polyethylene glycol were dissolved in dimethylformamide. The resulting hollow fiber membrane has a water permeability of 3500 / m 2 · hr · kg / cm 2 , and a dextran inhibition rate of 5
It was 4%. The thickness of the barrier layer observed by SEM is 25 μm
The residual amount of PVP obtained by elemental analysis is 0.3%.
It was.

比較例1 実施例1と同一のバリアー層形成用の紡糸原液(I)
および実施例1と同一の内部凝固液を使用し、2重管構
造の紡糸ノズルを用いて紡糸したこと以外は実施例1と
同条件で中空糸膜を得た。得られた膜の透水性は2100
/m2・hr・kg/cm2、デキストラン阻止率は68%であつ
た。
Comparative Example 1 Same spinning stock solution (I) for forming a barrier layer as in Example 1
A hollow fiber membrane was obtained under the same conditions as in Example 1 except that the same internal coagulation liquid as in Example 1 was used and spinning was performed using a spinning nozzle having a double tube structure. The water permeability of the obtained membrane is 2100.
/ m 2 · hr · kg / cm 2 , and the dextran inhibition rate was 68%.

比較例2 内部凝固液として水を使用した以外は実施例1と同様
にして中空糸膜を作製した。得られた中空糸膜の断面を
SEM観察したところ貼合わせ界面が剥離していた。
Comparative Example 2 A hollow fiber membrane was produced in the same manner as in Example 1 except that water was used as the internal coagulation liquid. The cross section of the obtained hollow fiber membrane
As a result of SEM observation, the bonding interface was peeled off.

実施例6 実施例1で得られた中空糸膜を用いて外圧方式で一次
圧0←→3kg/cm2(4秒1サイクル)の繰り返し耐圧試
験を行つた。5万サイクル経過したのちに中空糸膜を切
断しSEMにて断面を観察したが、バリアー層と支持層の
剥離は全くみられなかつた。
Example 6 Using the hollow fiber membrane obtained in Example 1, a repeated pressure resistance test was performed by an external pressure method at a primary pressure of 0 ← → 3 kg / cm 2 (1 cycle for 4 seconds). After 50,000 cycles had elapsed, the hollow fiber membrane was cut and the cross section was observed by SEM, but no separation between the barrier layer and the support layer was observed.

実施例7 バリアー層形成用の紡糸原液としてポリイミド(2080
D アツプジヨン製)17重量部、エチレングリコール5重
量部をジメチルホルムアミドに溶解した紡糸原液を、内
部凝固液として粘度25センチポイズのグリセリン:水=
75:25を使用した以外は実施例1と同様にして中空糸膜
を作製した。得られた中空糸膜の透水性は2100/m2・h
r・kg/cm2、デキストラン阻止率は92%であつた。
Example 7 Polyimide (2080) was used as a spinning stock solution for forming a barrier layer.
17 parts by weight of D Dupzion) and 5 parts by weight of ethylene glycol dissolved in dimethylformamide were used as the internal coagulating liquid, and glycerin having a viscosity of 25 centipoise: water =
A hollow fiber membrane was produced in the same manner as in Example 1 except that 75:25 was used. The water permeability of the obtained hollow fiber membrane is 2100 / m 2 · h
The r · kg / cm 2 and dextran inhibition rate were 92%.

(発明の効果) 本発明によつて工業用途や医療用途等において有用な
透水性が高く、かつ高機能性を有す。多孔性中空糸膜を
効率よく製造することができる。
(Effect of the Invention) According to the present invention, it has high water permeability and high functionality, which is useful in industrial applications, medical applications, and the like. A porous hollow fiber membrane can be efficiently manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の製造方法に用いられる三重管構造のノ
ズルの断面図である。 1……三重管構造のノズル、 2……中間ノズル部、3……外側ノズル部 4……内側ノズル部、5……貼り合せゾーン
FIG. 1 is a cross-sectional view of a triple tube structure nozzle used in the manufacturing method of the present invention. 1 ... Triple tube structure nozzle, 2 ... Intermediate nozzle part, 3 ... Outer nozzle part 4 ... Inner nozzle part, 5 ... Bonding zone

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】膜形成用樹脂を含有する2種類の原液を三
重管構造のノズルの中間および外側の各ノズル部から同
心円状に押し出した後、該同心円状に押し出された溶液
を三重管構造のノズルの内側のノズル部から吐出される
該膜形成用樹脂の非溶媒または貧溶媒で、かつ粘度が3
センチポイズ以上の凝固液と接触させることを特徴とす
る複合中空糸膜の製造方法。
1. Two types of stock solutions containing a film-forming resin are extruded concentrically from the middle and outer nozzles of a triple tube structure nozzle, and the concentrically extruded solution is then triple tube structure. The non-solvent or poor solvent of the film-forming resin discharged from the nozzle portion inside the nozzle of, and having a viscosity of 3
A method for producing a composite hollow fiber membrane, which comprises contacting with a coagulating liquid having a centipoise or more.
JP15116390A 1990-06-08 1990-06-08 Method for producing composite hollow fiber membrane Expired - Fee Related JPH0832295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15116390A JPH0832295B2 (en) 1990-06-08 1990-06-08 Method for producing composite hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15116390A JPH0832295B2 (en) 1990-06-08 1990-06-08 Method for producing composite hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPH0445830A JPH0445830A (en) 1992-02-14
JPH0832295B2 true JPH0832295B2 (en) 1996-03-29

Family

ID=15512709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15116390A Expired - Fee Related JPH0832295B2 (en) 1990-06-08 1990-06-08 Method for producing composite hollow fiber membrane

Country Status (1)

Country Link
JP (1) JPH0832295B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101027550B1 (en) * 2002-04-04 2011-04-06 더 유니버시티 오브 아크론 Non-woven fiber assemblies
CN103908898A (en) * 2013-01-07 2014-07-09 吕晓龙 Composite hollow fiber film and making method thereof
KR101494053B1 (en) * 2012-10-09 2015-02-17 주식회사 효성 Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563457B2 (en) * 2005-10-13 2010-10-13 旭化成ケミカルズ株式会社 Porous multilayer hollow fiber membrane and method for producing the same
JP2008253922A (en) * 2007-04-05 2008-10-23 Asahi Kasei Chemicals Corp Method for filtering suspension water
JP4875635B2 (en) * 2008-01-29 2012-02-15 株式会社タクマ Composite-type amphoteric charged membrane and method for producing the same
JP5175969B2 (en) * 2011-11-02 2013-04-03 株式会社タクマ Composite-type amphoteric charged membrane and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101027550B1 (en) * 2002-04-04 2011-04-06 더 유니버시티 오브 아크론 Non-woven fiber assemblies
KR101494053B1 (en) * 2012-10-09 2015-02-17 주식회사 효성 Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same
CN103908898A (en) * 2013-01-07 2014-07-09 吕晓龙 Composite hollow fiber film and making method thereof

Also Published As

Publication number Publication date
JPH0445830A (en) 1992-02-14

Similar Documents

Publication Publication Date Title
US4612119A (en) Hollow fiber filter medium and process for preparing the same
JPH05212255A (en) Hollow fiber membrane
CN110079887B (en) Performance enhancing additives for fiber formation and polysulfone fibers
KR101752981B1 (en) Process for production of porous membrane
JP3026493B2 (en) Method for producing polysulfone hollow fiber membrane and polysulfone hollow fiber membrane
JPH0832295B2 (en) Method for producing composite hollow fiber membrane
JP3386904B2 (en) Cellulose acetate hollow fiber separation membrane and method for producing the same
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
JPH0569571B2 (en)
JPS6138208B2 (en)
EP0824960A1 (en) Hollow-fiber membrane of polysulfone polymer and process for the production thereof
JP5473215B2 (en) Method for producing porous membrane for water treatment
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
JP2948856B2 (en) Porous hollow fiber membrane
JPH0364176B2 (en)
JP2882658B2 (en) Method for producing polysulfone-based semipermeable membrane
JP2868558B2 (en) Manufacturing method of high-strength, high-flux polysulfone hollow fiber membrane
JP2675197B2 (en) Manufacturing method of high strength and porous polysulfone hollow fiber membrane
JPH03174233A (en) Production of aromatic polysulfone hollow-fiber membrane
KR20130040625A (en) Polyvinylidenefluoride hollow fiber membrane with secondary barrier for water treatment and preparation thereof
KR101982909B1 (en) Hollow fiber membrane and method for preparing the same
JP2512909B2 (en) Method for producing hollow fiber porous membrane
JPH0712421B2 (en) Method for producing hollow fiber membrane made of polysulfone
KR101559635B1 (en) High flow-rate hollow fiber type ultrafiltration membrane and method for manufacturing thereof
KR20210128498A (en) Composite hollow fibers and related methods and products

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees