JP2528893B2 - Method for producing polysulfone hollow fiber membrane - Google Patents

Method for producing polysulfone hollow fiber membrane

Info

Publication number
JP2528893B2
JP2528893B2 JP21095787A JP21095787A JP2528893B2 JP 2528893 B2 JP2528893 B2 JP 2528893B2 JP 21095787 A JP21095787 A JP 21095787A JP 21095787 A JP21095787 A JP 21095787A JP 2528893 B2 JP2528893 B2 JP 2528893B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
polysulfone
dry
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21095787A
Other languages
Japanese (ja)
Other versions
JPS6452814A (en
Inventor
健彦 岡本
弘志 白神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP21095787A priority Critical patent/JP2528893B2/en
Publication of JPS6452814A publication Critical patent/JPS6452814A/en
Application granted granted Critical
Publication of JP2528893B2 publication Critical patent/JP2528893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はポリスルホン中空繊維膜の製造方法に関す
る。本発明によって製造されるポリスルホン中空繊維膜
は外圧全濾過方式に好適であり、例えば水の精製に有効
に利用できる。
TECHNICAL FIELD The present invention relates to a method for producing a polysulfone hollow fiber membrane. The polysulfone hollow fiber membrane produced by the present invention is suitable for an external pressure total filtration system, and can be effectively used for water purification, for example.

[従来の技術] 近年分離操作において選択透過性を有する膜を用いる
技術がめざましく進展しつつあり、かなりの分野で実用
化されつつある。特に膜の形状が中空繊維状であると占
有体積あたりの膜面積が平膜形状に比べ圧倒的に多くと
れるため有利であり、大いに研究、開発、さらには一部
市販もされている。また膜素材としては従来セルロース
系ポリマーが主体的に使用されてきたが、処理液の温
度、PHなどの使用条件が苛酷になるにつれ、セルロース
系ポリマーでは劣化するため、各種の合成ポリマーも検
討されている。その中でもポリスルホン系ポリマーは耐
熱、耐酸、耐アルカリ、耐酸化、耐微生物性の全てに優
れた素材として有望視され各種の検討が行なわれてい
る。たとえば特開昭54-145379号公報には中空繊維膜の
内表面及び外表面に10〜100Åの微細孔(実質的にはス
キン層)を有し、膜内部が傾斜型積造となつているポリ
スルホン中空繊維膜が開示されている。また特開昭56-1
15602号公報には両表面にスキン層を有し、膜内部が管
束状構造となつているポリスルホン中空繊維膜が開示さ
れている。またアミコン社よりHPシリーズの名称で、内
表面にはスキン層を有し、外表面には1μ以上の微孔を
有するポリスルホン中空繊維膜も市販されている。さら
に特開昭56-86941号公報には米国ユニオンカーバイト社
製芳香族ポリスルホンと英国ICI社製ポリエーテルスル
ホンとの混合ポリマーによる特定構造を有するポリスル
ホン系平膜及び中空繊維膜が開示されている。
[Prior Art] In recent years, a technique using a membrane having selective permeability in a separation operation has been remarkably progressing and is being put to practical use in a considerable field. In particular, when the shape of the membrane is a hollow fiber shape, the membrane area per occupied volume is much larger than that of a flat membrane shape, which is advantageous, and is greatly researched, developed, and partially commercially available. Cellulose-based polymers have been mainly used as the membrane material, but as the conditions of use such as the temperature of the treatment liquid and PH become severe, the cellulose-based polymer deteriorates, so various synthetic polymers are also considered. ing. Among them, polysulfone-based polymers are promising as a material excellent in heat resistance, acid resistance, alkali resistance, oxidation resistance, and microbial resistance, and various studies have been conducted. For example, in Japanese Patent Laid-Open No. 54-145379, hollow fiber membranes have fine pores (substantially skin layers) of 10 to 100Å on the inner and outer surfaces, and the inside of the membrane is a slanted type structure. Polysulfone hollow fiber membranes are disclosed. In addition, JP-A-56-1
Japanese Patent No. 15602 discloses a polysulfone hollow fiber membrane having skin layers on both surfaces and having a tube bundle structure inside the membrane. Also, a polysulfone hollow fiber membrane having a skin layer on the inner surface and micropores of 1 μm or more on the outer surface is commercially available from Amicon under the name of HP series. Further, Japanese Patent Laid-Open No. 56-86941 discloses a polysulfone-based flat membrane and a hollow fiber membrane having a specific structure made of a mixed polymer of aromatic polysulfone manufactured by Union Carbide Corp. of USA and polyether sulfone manufactured by ICI of England. .

また、特開昭58-91822号公報には、内表面は前述の先
行発明と類似のスキン層であるが、膜抵抗を減少させ、
かつ目詰りを低減するため外表面の開孔率を大きくした
中空繊維膜も開示されている。
Further, in JP-A-58-91822, the inner surface is a skin layer similar to the above-mentioned prior invention, but reduces the film resistance,
Moreover, a hollow fiber membrane in which the open area ratio of the outer surface is increased in order to reduce clogging is also disclosed.

[発明が解決しようとする問題点] しかしながら、上述のポリスルホン膜はいずれも内表
面および外表面か、内表面にスキン層を有する構造であ
り、従つて使用方法も中空繊維膜内側から外側に向けて
液を透過させる内圧循環濾過方式が主体であつた。かか
る内圧循環濾過方式はエネルギー的な見地からは必らず
しも得策ではなく、より簡単なシステムで使用できる外
圧全濾過方式での使用に適した中空繊維膜が要望されて
いる。
[Problems to be Solved by the Invention] However, all of the above polysulfone membranes have a structure having an inner surface and an outer surface or a skin layer on the inner surface. Therefore, the method of use is also directed from the inside to the outside of the hollow fiber membrane. The main method was an internal pressure circulation filtration system that allows liquid to pass through. Such an internal pressure circulation filtration method is not necessarily a good measure from an energy point of view, and there is a demand for a hollow fiber membrane suitable for use in an external pressure total filtration method that can be used in a simpler system.

上述の従来開示されている中空繊維膜を外圧濾過方式
として使用しようとすると、内表面および外表面にスキ
ン層を有する中空繊維膜では濾過抵抗が大きく、又内表
面にのみスキン層を有する中空繊維膜では外表面が多孔
質になつているためSS成分の多い汚れた水の濾過に使用
するとSS成分が膜壁内部にまで詰つてしまい、洗浄が困
難になる問題があつた。
When the above-mentioned conventionally disclosed hollow fiber membrane is used as an external pressure filtration method, a hollow fiber membrane having a skin layer on the inner surface and the outer surface has large filtration resistance, and a hollow fiber having a skin layer only on the inner surface is used. Since the outer surface of the membrane is porous, when it is used for filtering dirty water containing a lot of SS component, the SS component is clogged even inside the membrane wall, which makes cleaning difficult.

[問題点を解決するための手段] 本発明者らは、鋭意検討を重ね、外表面がスキン層で
内側が多孔質である構造をもつ中空繊維膜が外圧全濾過
方式で使用するのに適した膜であることを見出し、さら
に検討した結果本発明に至つた。すなわち本発明は、ポ
リスルホン、微孔形成剤およびこれらの共通溶媒を用い
て溶解した紡糸原液を環状ノズルから押出して乾湿式紡
糸法により中空繊維膜を製造するに際し、[1]ドライ
ゾーンの雰囲気が露点−10℃以下の乾燥空気又は窒素の
状態にあること、[2]外部凝固浴として50℃以下の水
を使用すること、および[3]芯部に注入する内部凝固
液として、該共通溶媒が50重量%以上90重量%以下の水
溶液を使用すること、を特徴とするポリスルホン中空繊
維膜の製造方法である。
[Means for Solving Problems] The inventors of the present invention have conducted extensive studies, and a hollow fiber membrane having a structure in which the outer surface is a skin layer and the inner side is porous is suitable for use in an external pressure total filtration method. It was found that the film was a different film, and as a result of further investigation, the present invention was achieved. That is, according to the present invention, in producing a hollow fiber membrane by a dry-wet spinning method by extruding a spinning dope prepared by dissolving a polysulfone, a micropore-forming agent and a common solvent thereof through a ring nozzle, the atmosphere of [1] dry zone is It is in a state of dry air or nitrogen having a dew point of -10 ° C or lower, [2] water of 50 ° C or lower is used as an external coagulating bath, and [3] the common solvent is used as an internal coagulating liquid to be injected into the core. Is used in an aqueous solution of 50% by weight or more and 90% by weight or less, and a method for producing a polysulfone hollow fiber membrane.

本発明で用いられるポリスルホンはとくに限定されな
いが、例えばアモコ社製のUdelの商標で市販されている
もの、ICI社製VICTREX-PESの商標で市販されているもの
が好適に使用出来る。
The polysulfone used in the present invention is not particularly limited, and for example, those commercially available under the Udel trademark manufactured by Amoco and those sold under the VICTREX-PES trademark manufactured by ICI can be preferably used.

微孔形成剤としては、例えばポリエチレングリコー
ル、ポリプロピレングリコールに代表されるポリアルキ
レングリコール、ポリビニルピロリドン等の水溶性ポリ
マー、エチルアルコール、プロピルアルコール、エチレ
ングリコール、グリセリン等の非溶媒をあげることがで
きる。
Examples of the micropore-forming agent include water-soluble polymers such as polyalkylene glycol represented by polyethylene glycol and polypropylene glycol, polyvinylpyrrolidone, and nonsolvents such as ethyl alcohol, propyl alcohol, ethylene glycol, and glycerin.

また、ポリスルホンと微孔形成剤の共通溶媒としてジ
メチルホルムアミド(DMF)、ジメチルアセトアミド(D
MA)、N−メチル−2−ピロリドン(NMP)の様な水に
混和する極性溶媒が好ましく用いられる。これらは単独
で使用してもよく、又混合して使用してもよい。これら
のポリスルホン、微孔形成剤およびこれらの共通溶媒を
用いて調製された紡糸原液を環状ノズルを用いて芯部に
内部凝固液を導入しつつ乾湿式紡糸を行ない、外部凝固
浴で凝固させ、溶媒および微孔形成剤を抽出して本発明
のポリスルホン中空繊維膜を得ることが出来る。紡糸方
法により中空糸膜外表面の構造が左右される。例えば湿
式紡糸法によれば外表面が緻密な中空糸膜が得られる
が、ノズル面から吐出された直後に凝固され、かつ凝固
途中でドラフトがかかるため繊維軸方向にたてすじ状の
構造が形成される傾向にあり、均一なスキン層が得られ
ない。一方、本発明で実施する乾湿式紡糸では、紡糸原
液はノズルから空気中に吐出され、ドラフトが緩和され
た状態で凝固浴に入るため、このようなたてすじ状の構
造は認められない。又、ドライゾーンを通過する際に一
部相変化を開始しているため、外表面に微孔が形成され
やすい。
In addition, dimethylformamide (DMF), dimethylacetamide (D
A water-miscible polar solvent such as MA) or N-methyl-2-pyrrolidone (NMP) is preferably used. These may be used alone or in combination. These polysulfones, micropore-forming agents and spinning dope prepared by using these common solvents are subjected to dry-wet spinning while introducing an internal coagulation liquid into the core using an annular nozzle, and coagulated in an external coagulation bath, The polysulfone hollow fiber membrane of the present invention can be obtained by extracting the solvent and the micropore-forming agent. The structure of the outer surface of the hollow fiber membrane depends on the spinning method. For example, a wet spinning method can provide a hollow fiber membrane having a dense outer surface, but since it is solidified immediately after being discharged from the nozzle surface and a draft is applied during solidification, a vertical streaky structure is formed in the fiber axis direction. It tends to be formed, and a uniform skin layer cannot be obtained. On the other hand, in the dry-wet spinning carried out in the present invention, the spinning dope is discharged from the nozzle into the air and enters the coagulating bath in a state where the draft is relaxed, and therefore such a vertical streak structure is not recognized. Further, since a part of the phase change is started when passing through the dry zone, micropores are easily formed on the outer surface.

本願発明においては、乾湿式紡糸法によりポリスルホ
ン中空繊維膜を製造する際にドライゾーンの雰囲気を露
点が−10℃以下、好ましくは−30℃以下の乾燥空気又は
窒素で置換した状態に保つことが重要である。ドライゾ
ーンの雰囲気の露点が−10℃以下であれば、環状ノズル
から吐出された原液が水からなる凝固液に入り凝固する
までの間に該雰囲気からの吸湿による相変化が実質的に
おこらないため外表面には均一、緻密な構造が形成され
る。−30℃以下の露点に置換されていればさらに良好な
結果が得られる。通常は実用的な面から−10℃〜−50℃
の露点の乾燥空気又は窒素が使用される。
In the present invention, when the polysulfone hollow fiber membrane is produced by the dry-wet spinning method, the atmosphere of the dry zone has a dew point of -10 ° C or lower, preferably kept in a state of being replaced with dry air or nitrogen having a temperature of -30 ° C or lower. is important. If the dew point of the atmosphere in the dry zone is -10 ° C or lower, phase change due to moisture absorption from the atmosphere does not substantially occur until the stock solution discharged from the annular nozzle enters the coagulating liquid consisting of water and solidifies. Therefore, a uniform and dense structure is formed on the outer surface. Even better results are obtained if the dew point is below -30 ° C. Normally -10 ℃ to -50 ℃
Dew point dry air or nitrogen is used.

凝固浴温度が50℃を越えるとドライゾーンの雰囲気を
上記条件に調整しても凝固浴の蒸気圧の影響を完全に除
去することは困難となるため、凝固浴温度は50℃以下、
好ましくは、30℃で紡糸するのが望ましい。実用的には
10℃〜30℃で実施するのが好ましい。又、ドライゾーン
の長さは通常10mm〜200mmで実施される。
If the coagulation bath temperature exceeds 50 ° C, it will be difficult to completely remove the influence of the vapor pressure of the coagulation bath even if the atmosphere in the dry zone is adjusted to the above conditions.
It is desirable to spin at 30 ° C. Practically
It is preferably carried out at 10 ° C to 30 ° C. The length of the dry zone is usually 10 mm to 200 mm.

芯部に注入する内部凝固液は直接内表面の構造に影響
を及ぼす。中空繊維の外側を多孔質にするためには凝固
を遅らせる方がよく、原液で使用する溶媒の水溶液を使
用することが望ましい。内部凝固液中の溶媒濃度が50重
量%以下では緻密な構造になり、90重量%以上になると
凝固が遅くなりすぎ中空糸の形状が変形しやすくなるた
め、本発明においては50重量%以上、90重量%以下の溶
媒水溶液を使用する必要がある。本発明によって製造さ
れるポリスルホン中空繊維膜は、外表面に100Å以上の
微孔が実質的に存在しないスキン層を有している。スキ
ン層の厚さはあまり薄いと濾過性能が低下し、又あまり
厚いと透水性が低下し、しかも濾過抵抗が高くなるの
で、通常は1〜10μの範囲に設定される。
The internal coagulating liquid injected into the core directly affects the structure of the inner surface. In order to make the outside of the hollow fiber porous, it is better to delay coagulation, and it is desirable to use an aqueous solution of the solvent used in the stock solution. When the solvent concentration in the internal coagulation liquid is 50% by weight or less, a dense structure is formed, and when it is 90% by weight or more, coagulation becomes too slow and the shape of the hollow fiber is easily deformed. Therefore, in the present invention, 50% by weight or more, It is necessary to use an aqueous solvent solution of 90% by weight or less. The polysulfone hollow fiber membrane produced by the present invention has a skin layer on the outer surface of which substantially no pores of 100 liters or more substantially exist. If the thickness of the skin layer is too thin, the filtration performance will be lowered, and if it is too thick, the water permeability will be lowered and the filtration resistance will be high, so it is usually set in the range of 1 to 10 μm.

また、本発明によって製造されるポリスルホン中空繊
維膜の内表面には平均孔径200Å〜3000Åの微孔が開孔
率5〜50%の割合で存在している。微孔径は走査型電子
顕微鏡で観察することによって測定することができる。
平均孔径は上述の従来公知の方法により測定することが
できる。また、開孔率とは内表面に開孔している微孔の
全孔面積の内表面積に対する割合を百分率で示したもの
である。平均孔径が200Åよりも小さいと濾過抵抗が大
きくなり、又3000Åよりも大きいと濾過性能が低下す
る。又開孔率が5%よりも小さいと濾過性能が低下し、
又50%よりも大きいと機械的強度が弱くなる。
Further, the polysulfone hollow fiber membrane produced according to the present invention has micropores having an average pore diameter of 200Å to 3000Å at an opening ratio of 5 to 50%. The micropore size can be measured by observing with a scanning electron microscope.
The average pore size can be measured by the above-mentioned conventionally known method. The porosity is the percentage of the total surface area of the micropores formed on the inner surface with respect to the inner surface area. If the average pore size is smaller than 200Å, the filtration resistance will increase, and if it is larger than 3000Å, the filtration performance will decrease. If the porosity is less than 5%, the filtration performance will decrease,
If it is more than 50%, the mechanical strength becomes weak.

さらに、本発明によって製造されるポリスルホン中空
繊維膜の膜内部は微細多孔構造となっている。ここでい
う微細多孔構造とは網目状構造、ハニカム構造、微細間
隙構造などのスポンジ構造である。また、膜内外表面お
よび膜内部にはフィンガーライク状構造あるいはマクロ
ボイド構造があってもよいが、10μ以上の巨大空洞は実
質的に存在しない方が好ましい。このような10μ以上の
巨大空洞のない均一スポンジ構造のものは耐圧性、とく
に長期間使用時における耐圧密化性が優れ、さらに強度
も優れている。
Further, the inside of the polysulfone hollow fiber membrane produced by the present invention has a fine porous structure. The fine porous structure referred to here is a sponge structure such as a mesh structure, a honeycomb structure, and a fine gap structure. In addition, although a finger-like structure or a macrovoid structure may be present on the inner and outer surfaces of the film and inside the film, it is preferable that there is substantially no giant cavity having a size of 10 μm or more. Such a uniform sponge structure without a huge cavity of 10 μ or more has excellent pressure resistance, particularly pressure densification after long-term use, and also has excellent strength.

[実施例] 以下、本発明を具体的に実施例によつて説明するが、
本発明はこれらによつて何ら制限されることはない。
[Examples] Hereinafter, the present invention will be specifically described with reference to Examples.
The present invention is not limited thereby.

実施例1 アモコ社ポリスルホンUdel P1700 20重量部、三洋化
成社製ポリエチレングリコール(PEG、#600)36重量部
及びジメチルホルムアミド(DMF)44重量部を加熱攪拌
して溶解後25℃に冷却して均一な紡糸原液を得た。該原
液は36℃で相分離を起し不均一となるが、それ以下の温
度では均一状態に保つていた。25℃で脱泡後、外部オリ
フイス内径1.0mm、内部オリフイス外径0.5mmの環状ノズ
ルを用い、外部オリフイスから原液を3cc/分、内部オリ
フイスからDMF80%水溶液を1.5cc/分の速度で吐出し、
雰囲気を露点−58℃のN2を5l/分の流量で置換したドラ
イゾーン10cmを通した後、30℃の水中に導いて凝固し、
7m/分の速度で捲取つた。この際のドライゾーン雰囲気
の露点は紡糸の期間中−42℃から−48℃の範囲に保たれ
た。
Example 1 20 parts by weight of polysulfone Udel P1700 manufactured by Amoco, 36 parts by weight of polyethylene glycol (PEG, # 600) manufactured by Sanyo Kasei Co., Ltd. and 44 parts by weight of dimethylformamide (DMF) were heated and stirred to dissolve and then cooled to 25 ° C. to be uniform. An undiluted spinning solution was obtained. The stock solution became non-uniform due to phase separation at 36 ° C., but remained uniform at temperatures below that. After degassing at 25 ° C, using an annular nozzle with an outer orifice diameter of 1.0 mm and an inner orifice diameter of 0.5 mm, the stock solution was discharged from the outer orifice at 3 cc / min, and the DMF 80% aqueous solution was discharged from the inner orifice at 1.5 cc / min. ,
After passing the atmosphere through a dry zone 10 cm in which N 2 with a dew point of −58 ° C. was replaced at a flow rate of 5 l / min, was introduced into water at 30 ° C. and solidified,
It was wound up at a speed of 7 m / min. At this time, the dew point of the dry zone atmosphere was kept in the range of -42 ° C to -48 ° C during the spinning.

捲取つた中空糸を水中に浸漬して凝固を完結し、95℃
の熱水にて再度洗浄してDMF及びPEGを完全に除去し外径
780μ、内径450μの真円度良好な中空糸膜を得た。該中
空糸の外表面及び内表面を走査型電顕(SEM)で調べた
ところ、外表面は均質緻密なスキン層であり、100Å以
上の孔は認められなかつた。一方、内表面は、平均孔径
1000Åの孔を開孔率15%で有していた。
The wound hollow fiber is immersed in water to complete the coagulation, and the temperature is 95 ° C.
Wash again with hot water to completely remove DMF and PEG
A hollow fiber membrane having a good roundness of 780μ and an inner diameter of 450μ was obtained. When the outer surface and the inner surface of the hollow fiber were examined by a scanning electron microscope (SEM), the outer surface was a homogeneous and dense skin layer, and no pores of 100 Å or more were observed. On the other hand, the inner surface is the average pore size.
It had 1000 Å holes with a porosity of 15%.

得られた中空繊維膜の構造を示す模式図を第1図及び
第2図に示す。
A schematic diagram showing the structure of the obtained hollow fiber membrane is shown in FIGS. 1 and 2.

実施例2 ドライゾーンに露点−29℃になるように除湿した空気
10l/分を流して雰囲気を置換した他は実施例1と同一条
件で紡糸した。ドライゾーン雰囲気は露点−18℃〜−21
℃に保たれていた。
Example 2 Air dehumidified to a dew point of -29 ° C in a dry zone
Spinning was carried out under the same conditions as in Example 1 except that the atmosphere was replaced by flowing 10 l / min. Dry zone atmosphere has a dew point of -18 ° C to -21
It was kept at ℃.

実施例1と同様の処理を行ない、外径790μ、内径450
μの真円度良好な中空糸膜を得た。該中空糸膜の外表面
は均一、緻密なスキン層であり、100Å以上の孔は認め
られなかつた。また内表面の構造及び開孔率も実施例1
と同様であつた。
The same treatment as in Example 1 was performed, and the outer diameter was 790μ and the inner diameter was 450.
A hollow fiber membrane having a good roundness of μ was obtained. The outer surface of the hollow fiber membrane was a uniform and dense skin layer, and no pores of 100 Å or more were observed. In addition, the structure of the inner surface and the porosity were also determined in Example 1.
It was similar to.

比較例1 ドライゾーンに露点0℃の空気10l/分を流して雰囲気
を置換した他は実施例1と同条件で紡糸した。ドライゾ
ーンの雰囲気は露点4℃〜8℃であつた。
Comparative Example 1 Spinning was carried out under the same conditions as in Example 1 except that 10 l / min of air having a dew point of 0 ° C. was passed through the dry zone to replace the atmosphere. The atmosphere in the dry zone had a dew point of 4 ° C to 8 ° C.

実施例1と同様な処理を行ない、外径780μ、内径440
μの真円度良好な中空糸膜を得た。該中空糸の外表面に
は平均孔径1300Åの微孔が認められ、実施例とは明らか
に異なつていた。得られた中空繊維膜の構造を示す模式
図を第3図に示す。
The same treatment as in Example 1 is performed, and the outer diameter is 780 μ and the inner diameter is 440.
A hollow fiber membrane having a good roundness of μ was obtained. Micropores having an average pore diameter of 1300Å were observed on the outer surface of the hollow fiber, which was clearly different from the examples. A schematic diagram showing the structure of the obtained hollow fiber membrane is shown in FIG.

実施例3 溶媒をN−メチル−2−ピロリドン(NMP)に、内部
注入液をNMP50%水溶液にかえた他は実施例2と同条件
で中空糸膜を得た。該中空糸の外表面は均一、緻密なス
キン層であり、100Å以上の孔は認められなかつた。ま
た内表面には平均孔径400Åの孔が多数認められた。
又、開孔率は10%であつた。得られた中空繊維膜の構造
は実施例1とほぼ同様であつた。
Example 3 A hollow fiber membrane was obtained under the same conditions as in Example 2 except that N-methyl-2-pyrrolidone (NMP) was used as the solvent and the NMP 50% aqueous solution was used as the internal injection solution. The outer surface of the hollow fiber was a uniform and dense skin layer, and no pores of 100 Å or more were observed. A large number of pores with an average pore diameter of 400Å were found on the inner surface.
The open area ratio was 10%. The structure of the obtained hollow fiber membrane was almost the same as in Example 1.

比較例2 ドライゾーンを比較例1と同一にした他は実施例3と
同一条件で紡糸し、中空糸を得た。該中空糸の外表面に
は平均孔径600Åの孔が多数開口し実施例で得られた中
空糸とは明らかに異なつていた。
Comparative Example 2 A hollow fiber was obtained by spinning under the same conditions as in Example 3 except that the dry zone was the same as in Comparative Example 1. A large number of pores having an average pore diameter of 600Å were opened on the outer surface of the hollow fiber, which was clearly different from the hollow fibers obtained in the examples.

実施例4 実施例1〜3、比較例1、2で得た中空糸を用い、純
水の透水性能及び水道水濾過後の性能回復性を調べた結
果を第1表に示す。明らかに実施例は比較例に比べ洗浄
回復性に優れていることがわかる。
Example 4 Using the hollow fibers obtained in Examples 1 to 3 and Comparative Examples 1 and 2, the results of examining the water permeation performance of pure water and the performance recovery after filtration of tap water are shown in Table 1. Clearly, the examples are superior to the comparative examples in cleaning recovery.

[発明の効果] 本発明により外圧全濾過方式に適した中空繊維膜を得
ることができる。該中空繊維膜は外圧全濾過方式におい
て優れており、例えば水道水等の水の精製等の用途に広
く利用できるものであり、本発明の産業上の有用性は大
きい。
[Effects of the Invention] According to the present invention, a hollow fiber membrane suitable for an external pressure total filtration system can be obtained. The hollow fiber membrane is excellent in the external pressure total filtration system, and can be widely used for purification of water such as tap water, and the industrial utility of the present invention is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例1で得られた中空繊維膜の断面の模式図
であり、第2図はその内表面部分を拡大した模式図であ
る。 第3図は比較例1で得られた中空繊維膜の外表面部分を
拡大した模式図である。 1……中空糸の外表面部、2……中空糸の中央部 3……中空糸の内表面部、4……微孔
FIG. 1 is a schematic diagram of a cross section of the hollow fiber membrane obtained in Example 1, and FIG. 2 is an enlarged schematic diagram of the inner surface portion thereof. FIG. 3 is an enlarged schematic view of the outer surface portion of the hollow fiber membrane obtained in Comparative Example 1. 1 ... Hollow fiber outer surface portion, 2 ... Hollow fiber central portion 3 ... Hollow fiber inner surface portion, 4 ... Micropores

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリスルホン、微孔形成剤およびこれらの
共通溶媒を用いて溶解した紡糸原液を環状ノズルから押
出して乾湿式紡糸法により中空繊維膜を製造するに際
し、 [1]ドライゾーンの雰囲気が露点−10℃以下の乾燥空
気又は窒素の状態にあること、 [2]外部凝固浴として50℃以下の水を使用すること、 および [3]芯部に注入する内部凝固液として、該共通溶媒が
50重量%以上90重量%以下の水溶液を使用すること を特徴とするポリスルホン中空繊維膜の製造方法。
1. When a hollow fiber membrane is produced by a dry-wet spinning method by extruding a spinning dope prepared by dissolving a polysulfone, a micropore-forming agent and a common solvent thereof through an annular nozzle, [1] the atmosphere of the dry zone is It is in the state of dry air or nitrogen having a dew point of -10 ° C or lower, [2] water of 50 ° C or lower is used as an external coagulation bath, and [3] the common solvent is used as an internal coagulation liquid to be injected into the core. But
A method for producing a polysulfone hollow fiber membrane, which comprises using an aqueous solution of 50% by weight or more and 90% by weight or less.
JP21095787A 1987-08-24 1987-08-24 Method for producing polysulfone hollow fiber membrane Expired - Fee Related JP2528893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21095787A JP2528893B2 (en) 1987-08-24 1987-08-24 Method for producing polysulfone hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21095787A JP2528893B2 (en) 1987-08-24 1987-08-24 Method for producing polysulfone hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPS6452814A JPS6452814A (en) 1989-02-28
JP2528893B2 true JP2528893B2 (en) 1996-08-28

Family

ID=16597912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21095787A Expired - Fee Related JP2528893B2 (en) 1987-08-24 1987-08-24 Method for producing polysulfone hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2528893B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714854B2 (en) * 1989-06-09 1998-02-16 株式会社小松製作所 Method for producing hollow fiber for aeration
US8669200B2 (en) 2005-07-08 2014-03-11 The University Of Bath Hollow fibres
ATE459410T1 (en) * 2006-07-07 2010-03-15 Gambro Lundia Ab MEMBRANE FOR PLASMA SEPARATION
CN103463994A (en) * 2013-07-23 2013-12-25 天津工业大学 Hollow polysulfone fiber film for water purifying cup and preparation method thereof
CN117509541B (en) * 2024-01-08 2024-03-15 潍坊石大昌盛能源科技有限公司 Method for preparing high-purity hydrogen by cracking crude hydrogen with methanol

Also Published As

Publication number Publication date
JPS6452814A (en) 1989-02-28

Similar Documents

Publication Publication Date Title
US4612119A (en) Hollow fiber filter medium and process for preparing the same
JP3232117B2 (en) Polysulfone porous hollow fiber
JPH06165926A (en) Polysulfone hollow fabric membrane and production therefor
US5443728A (en) Method of preparing membranes from blends of polyetherimide and polyimide polymers
JP2528893B2 (en) Method for producing polysulfone hollow fiber membrane
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
JP2899352B2 (en) Porous hollow fiber membrane
KR100581206B1 (en) Polyvinylidene fluoride Porous Hollow Fiber Membrane and the Manufacturing Process thereof
JPS61200806A (en) Polyether sulfone porous hollow yarn membrane and its production
JPH03258330A (en) Porous hollow fiber membrane
JPS6336805B2 (en)
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JP2948856B2 (en) Porous hollow fiber membrane
JP2868558B2 (en) Manufacturing method of high-strength, high-flux polysulfone hollow fiber membrane
JP2512909B2 (en) Method for producing hollow fiber porous membrane
JP3317876B2 (en) Method for producing hollow fiber type blood purification membrane
KR950004918B1 (en) Manufacturing method for polysulfone membrane
JPH09253463A (en) Manufacture of polysulfone type ultrafiltration film
JP2803142B2 (en) Method for producing polysulfone hollow fiber membrane
JPH0760083A (en) Production of cellulose ester hollow fiber membrane
JP2899348B2 (en) Porous hollow fiber
JPS6391124A (en) Porous hollow yarn membrane and its production
KR950004919B1 (en) Manufacturing method for polysulfone membrane
JP3316145B2 (en) Permselective hollow fiber membrane and method for producing the same
JPS59209611A (en) Hollow yarn like membrane and preparation thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees