JP2714854B2 - Method for producing hollow fiber for aeration - Google Patents

Method for producing hollow fiber for aeration

Info

Publication number
JP2714854B2
JP2714854B2 JP1145423A JP14542389A JP2714854B2 JP 2714854 B2 JP2714854 B2 JP 2714854B2 JP 1145423 A JP1145423 A JP 1145423A JP 14542389 A JP14542389 A JP 14542389A JP 2714854 B2 JP2714854 B2 JP 2714854B2
Authority
JP
Japan
Prior art keywords
hollow fiber
air
aeration
spinning
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1145423A
Other languages
Japanese (ja)
Other versions
JPH0314611A (en
Inventor
博 緒明
正実 塩坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP1145423A priority Critical patent/JP2714854B2/en
Publication of JPH0314611A publication Critical patent/JPH0314611A/en
Application granted granted Critical
Publication of JP2714854B2 publication Critical patent/JP2714854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水中に中空糸の微細孔から粒径の小さい気
泡を出し、効率的に水中に酸素を供給する曝気用中空糸
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a hollow fiber for aeration, in which bubbles having a small particle diameter are generated from micropores of the hollow fiber in water and oxygen is efficiently supplied to water. It is about.

〔従来の技術〕[Conventional technology]

従来から汚水浄化に中空糸を用いて曝気しようという
考えがあり、それは、特開昭53−128142号公報に示され
た廃水処理方法及びその装置でも開示され、また中空糸
モジュールの改良構造として実公昭58−32800号公報に
示された円筒形中空色モジュールで開示されている。そ
してこの中空糸モジュールに用いる中空糸の製法に関し
ては特開昭52−15627号公報に示されている。
Conventionally, there has been an idea of using a hollow fiber for purification of sewage, which is also disclosed in a wastewater treatment method and apparatus disclosed in JP-A-53-128142. A cylindrical hollow color module disclosed in JP-B-58-32800 is disclosed. A method for producing a hollow fiber used in this hollow fiber module is disclosed in Japanese Patent Application Laid-Open No. 52-15627.

上記従来の中空糸は溶融紡糸法により作成されてい
た。また、曝気に使用する中空糸の孔径については上記
特開昭52−15627号公報に開示されたように、0.05μm
(500Å)程度は必要とされる。これは紡糸方法が溶融
紡糸法であることによる制限であって、これより小さい
孔径からは気泡が発生しにくいことを意味する。
The above-mentioned conventional hollow fiber has been produced by a melt spinning method. The pore size of the hollow fiber used for aeration is 0.05 μm, as disclosed in JP-A-52-15627.
(500Å) is required. This is a limitation due to the fact that the spinning method is a melt spinning method, and means that bubbles are less likely to be generated from pores smaller than this.

膜の孔径の測定方法として、「気泡圧力法」がある。
水にぬれた膜に圧力をかけ空気を透過させるとき、透過
を始める圧力Pと、孔の直径Dと表面張力rとの間には
次式の関係がある。
As a method for measuring the pore size of the membrane, there is a “bubble pressure method”.
When pressure is applied to the membrane wet with water to allow air to permeate, the following equation is established between the pressure P at which permeation starts and the diameter D of the hole and the surface tension r.

いま、表面張力を73ダイン/cmとすると、Pが1kg/cm2
GでDが3μmとなり、またPが10kg/cm2GでDが0.3μ
m、Pが100kg/cm2GでDが0.03μm(300Å)となる。
このため、孔径が小さい場合、大きな圧力を供給しない
と中空糸の孔から気泡が発生しないことになる。
Now, if the surface tension is 73 dynes / cm, P is 1 kg / cm 2
D becomes 3 μm in G, and P becomes 0.3 μm in 10 kg / cm 2 G.
When m and P are 100 kg / cm 2 G, D is 0.03 μm (300 °).
For this reason, when the hole diameter is small, bubbles will not be generated from the holes of the hollow fiber unless a large pressure is supplied.

ただし、上記(1)式は膜表面が平滑で滑らかである
場合にのみ成立し、上記特開昭58−32800号、特開昭52
−15627号公報に示された孔径0.05μmでも実際には圧
力Pは10kg/cm2G以下で孔から気泡が発生しているもの
と推定される。
However, the above equation (1) is satisfied only when the film surface is smooth and smooth.
It is presumed that bubbles are actually generated from the holes at a pressure P of 10 kg / cm 2 G or less even with a hole diameter of 0.05 μm disclosed in JP-15627A.

これに対して、中空糸の材料となる高分子材を、その
溶媒に溶かし、増孔剤を添加したドープを用い、乾・湿
式紡糸法にて中空糸を作成し、さらにこの中空糸が凝固
した後、延伸操作を施すようにした中空糸の製造方法が
知られている。この製造方法では、紡糸された中空糸
を、これの凝固後に延伸することにより、中空糸の膜表
面の構造が変化すると共に、スポンジ層に亀裂が発生し
て単位面積当りの透過空気量が増加する。
On the other hand, a polymer material as a material of the hollow fiber is dissolved in the solvent, and a hollow fiber is prepared by a dry / wet spinning method using a dope to which a pore-forming agent is added, and the hollow fiber is further coagulated. After that, a method for producing a hollow fiber in which a drawing operation is performed is known. In this production method, the spun hollow fiber is stretched after coagulation, whereby the structure of the membrane surface of the hollow fiber is changed, and cracks are generated in the sponge layer to increase the amount of permeated air per unit area. I do.

以下にこの従来の中空糸の製造例を、通常の湿式紡糸
法による場合について説明する。
Hereinafter, a production example of this conventional hollow fiber will be described in the case of a normal wet spinning method.

中空糸材とその溶剤(以下これをドープという)に
は、ポリスルホンP−1700(ユニオンカーバイト社製)
をN−メチル−2−ピロリドン中に25wt%溶かし、増孔
剤としてエチレングリコール(以下EGと記す)を1〜10
wt%、望ましくは3〜5wt%を添加した。
Polysulfone P-1700 (manufactured by Union Carbide) is used for the hollow fiber material and its solvent (hereinafter referred to as dope)
Was dissolved in N-methyl-2-pyrrolidone at 25 wt%, and ethylene glycol (hereinafter referred to as EG) was used as a pore-forming agent in an amount of 1 to 10%.
wt%, desirably 3-5 wt%.

次にEGを添加されたドープを真空状態に保ち、脱泡を
行なった。
Next, the dope to which EG was added was kept in a vacuum state and defoamed.

内部凝固液及び外部凝固液は水を用いた。 Water was used for the internal coagulation liquid and the external coagulation liquid.

凝固浴槽水面と紡糸ノズルとの乾式部の長さは0〜10
cm程度、望ましくは5cm程度が操作上好ましいが、あえ
てこの長さにこだわるものではない。
The length of the dry part between the water surface of the coagulation bath and the spinning nozzle is 0-10
Although about cm, desirably about 5 cm is preferable for operation, it is not necessary to stick to this length.

上記紡糸は室温で行なわれ、凝固浴槽の温度は15〜35
℃の間で行なわれた。またEGを添加されたドープと内部
凝固液は、室温と同じ温度にさらされているため、室温
であり、あえて制御していない。
The above spinning is performed at room temperature, the temperature of the coagulation bath is 15-35
C. was performed. Further, the dope and the internal coagulation liquid to which EG is added are exposed to the same temperature as room temperature, and therefore are at room temperature and are not intentionally controlled.

次の操作として、上述した紡糸が完了して、時間が経
ると、N−メチル−2−ピロリドンが中空糸より水に溶
け出し、中空糸が凝固する。
As the next operation, after a lapse of time after the above-described spinning is completed, N-methyl-2-pyrrolidone is dissolved in water from the hollow fiber, and the hollow fiber is solidified.

凝固したその中空糸を延伸率1.1倍、1.2倍、1.3倍と
延伸した。
The solidified hollow fiber was drawn at a draw ratio of 1.1 times, 1.2 times, 1.3 times.

このようにして製造された中空糸は、その外表面及び
内表面が緻密な膜でできており、その中間はスポンジ状
の支持体からなっている。そして上記外表面及び内表面
に緻密な膜には多数の細孔ができている。
The hollow fiber produced in this manner has an outer surface and an inner surface formed of a dense membrane, and the middle thereof is formed of a sponge-like support. The dense film on the outer surface and the inner surface has many pores.

膜に細孔があいている場合の気体の膜透過の原理を以
下に記す。
The principle of gas permeation when the membrane has pores is described below.

孔径が100A以下になると、(2)式に示すように、気
体の細孔内の移動は分子量の平方根に逆比例するように
なる。これをクヌーセン流れを示す膜という。透過速度
qは ここで、Mは気体の分子量、Rは気体定数、rは孔
径、lは孔の管長(膜厚)、P1,P2は膜の両側の圧力、
εは膜の多孔度、Tは温度である。
When the pore diameter is 100 A or less, the movement of gas in the pores is inversely proportional to the square root of the molecular weight, as shown in equation (2). This is called a film showing Knudsen flow. The transmission speed q is Here, M is the molecular weight of the gas, R is the gas constant, r is the pore diameter, l is the tube length (film thickness) of the pore, P 1 and P 2 are the pressures on both sides of the membrane,
ε is the porosity of the membrane and T is the temperature.

この(2)式を上記緻密な膜にあいた孔径の推定に使
うこととする。
This equation (2) is used for estimating the pore size of the dense membrane.

この方法で作成した中空糸を第2図に示す測定装置で
測定した。
The hollow fiber produced by this method was measured with a measuring device shown in FIG.

この測定装置は、外径が約1mm、内径が約0.7mmの中空
糸を多数本束ねた中空糸束1を、その両端部をモールド
材2,2にて支持して筒体3内に収納し、筒体3の一端部
に入口室4を、また両モールド材2,2の間に出口室5を
構成し、入口室4に入口管6を、また出口室5に出口管
7をそれぞれ接続してある。そして上記入口管6にはブ
ロア8が、また出口管7には真空ポンプ9がそれぞれ接
続されている。真空ポンプ9の出口にフローメータ10が
接続されている。
This measuring device accommodates a hollow fiber bundle 1 in which a large number of hollow fibers having an outer diameter of about 1 mm and an inner diameter of about 0.7 mm are bundled in a cylindrical body 3 with both ends supported by molding materials 2 and 2. An inlet chamber 4 is formed at one end of the cylindrical body 3, and an outlet chamber 5 is formed between the two molding materials 2, 2. An inlet pipe 6 is provided in the inlet chamber 4, and an outlet pipe 7 is provided in the outlet chamber 5. Connected. A blower 8 is connected to the inlet pipe 6, and a vacuum pump 9 is connected to the outlet pipe 7. A flow meter 10 is connected to an outlet of the vacuum pump 9.

上記測定装置において、ブロア8と真空ポンプ9を作
動すると、ブロア8にて入口室4へ流入した空気は中空
糸束1の各中空糸を透過し出口室5より真空ポンプ9に
て吸引されフローメータ10に排出され、このフローメー
タ10でその流量を測定する。さらに、この透過空気を図
示しないガスクロマトグラフィー装置で、これの酸素及
び窒素の濃度を測定した。
In the above measuring apparatus, when the blower 8 and the vacuum pump 9 are operated, the air flowing into the inlet chamber 4 through the blower 8 passes through each hollow fiber of the hollow fiber bundle 1 and is sucked by the vacuum pump 9 from the outlet chamber 5 to flow. It is discharged to the meter 10 and its flow rate is measured by the flow meter 10. Further, the concentration of oxygen and nitrogen in the permeated air was measured by a gas chromatography device (not shown).

上記真空ポンプ9の到達真空度が40Torrの大型のもの
を使い、測定装置内の中空糸透過空気量がある程度多く
なっても常に40Torrを維持する程度のものを使用した。
A large vacuum pump having a vacuum degree of 40 Torr was used, and the vacuum pump 9 always maintained a pressure of 40 Torr even when the amount of air passing through the hollow fiber in the measuring device was increased to some extent.

測定結果は第1表の通りであった。 The measurement results are as shown in Table 1.

上記測定において、中空糸膜を透過した空気の酸素濃
度から、この中空糸膜はクヌーセン流現象を起こしてい
ることがわかる。言いかえるなら、この中空糸膜に生成
した孔径は100Å程度であるといえる。なお通常の大気
の酸素濃度は20.95V%である。
In the above measurement, it can be seen from the oxygen concentration of the air that has passed through the hollow fiber membrane that the hollow fiber membrane has caused a Knudsen flow phenomenon. In other words, it can be said that the pore diameter generated in this hollow fiber membrane is about 100 mm. The normal atmospheric oxygen concentration is 20.95 V%.

すなわち、空気中の窒素(N2:分子量28gr)の分子量
が空気中の酸素(O2:分子量32gr)より小さいため、速
くこの細孔を透過し、酸素濃度が通常の大気の酸素濃で
ある20.95V%より低い値である20.13〜20.16V%を示す
ものである。
That is, since the molecular weight of nitrogen in the air (N 2 : molecular weight 28 gr) is smaller than the oxygen in the air (O 2 : molecular weight 32 gr), it penetrates these pores quickly and the oxygen concentration is the oxygen concentration of the normal atmosphere. It shows 20.13 to 20.16 V%, which is a value lower than 20.95 V%.

また第1表よりわかるように、延伸率に対し透過空気
中の酸素濃度が一定している。これは延伸によって孔の
径が大きくなっていないことを示している。しかし、中
空糸を透過する空気量は延伸する程増えている。これは
上記した中空糸のスポンジ状支持体(スポンジ層)にス
トレスが加わったことにより、スポンジ状態に変化がお
きて亀裂などが発生し、空気透過抵抗が減ったためであ
る。
Further, as can be seen from Table 1, the oxygen concentration in the permeated air is constant with respect to the stretching ratio. This indicates that the diameter of the hole was not increased by stretching. However, the amount of air passing through the hollow fiber increases as the fiber is stretched. This is because a stress was applied to the sponge-like support (sponge layer) of the hollow fiber, the sponge state was changed, cracks were generated, and the air permeation resistance was reduced.

次に水中での気泡の発生状態を調べるために、第3図
に示すように、中空糸束1の両端をモールド材2′,2′
にて支持し、それぞれを空気流入管11に接続した中空糸
モジュール12をビーカ13内の水中に入れ、上記空気流入
管11に圧力計14を有する調圧器15及びフローメータ16を
介して圧縮空気を供給した。
Next, as shown in FIG. 3, both ends of the hollow fiber bundle 1 are connected to the molding materials 2 ', 2'
The hollow fiber modules 12 each connected to an air inflow pipe 11 are put in water in a beaker 13, and compressed air is supplied to the air inflow pipe 11 through a pressure regulator 15 having a pressure gauge 14 and a flow meter 16. Was supplied.

その結果、延伸をしない中空糸からは圧力を3kg/cm2G
にしても全く気泡は出なかった。
As a result, a pressure of 3 kg / cm 2 G
Even so, no bubbles appeared.

しかし、延伸率を1.1倍にしたものは3kg/cm2Gの圧力
で細かい気泡23が発生した。
However, when the stretching ratio was 1.1 times, fine bubbles 23 were generated at a pressure of 3 kg / cm 2 G.

第2表に延伸率を1.2倍としたときの中空糸にかかる
圧力と気泡の粒径及び単位面積当りの透過空気量につい
てまとめて結果を示す。
Table 2 summarizes the results of the pressure applied to the hollow fiber, the particle size of the air bubbles, and the amount of permeated air per unit area when the draw ratio is 1.2 times.

以上の従来例でわかるように、凝固した中空糸を延伸
することにより、2〜3kg/cm2Gの圧力で中空糸の微細孔
より気泡が水中に発生した。
As can be seen from the above-described conventional example, when the solidified hollow fiber was stretched, bubbles were generated in water from the micropores of the hollow fiber at a pressure of 2 to 3 kg / cm 2 G.

この理由の1つとして上述のように、延伸した中空糸
のスポンジ層に亀裂などが発生し、空気の透過抵抗が少
なくなったことがあげられる。他の1つとしては延伸し
たことによる中空糸外表面の構造変化が考えられる。
One of the reasons for this is that, as described above, cracks or the like are generated in the sponge layer of the drawn hollow fiber, and the permeation resistance of air is reduced. As another one, the structural change of the outer surface of the hollow fiber due to stretching may be considered.

すなわち、上述した「気泡圧力法」で述べたように、
表面が滑らかであれば、空気が2〜3kg/cm2G程度では気
泡は発生しない。このことから、この延伸という操作が
気泡発生の大きな原因になっている。
That is, as described above in the “bubble pressure method”,
If the surface is smooth, air bubbles will not be generated if the air is about 2 to 3 kg / cm 2 G. For this reason, this stretching operation is a major cause of bubble generation.

しかしながら、このように延伸して成形する従来の中
空糸では、曝気用として用いた場合、これの単位面積当
り透過空気量はいまだ十分でなかった。
However, when the conventional hollow fiber formed by drawing in this manner is used for aeration, the amount of permeated air per unit area is still insufficient.

本発明は上記のことにかんがみなされたもので、曝気
用の中空糸として単位面積当り透過空気量を十分大きく
できるようにした曝気用中空糸の製造方法を提供するこ
とを目的とするものである。
The present invention has been made in consideration of the above, and has as its object to provide a method for producing a hollow fiber for aeration that can sufficiently increase the amount of permeated air per unit area as a hollow fiber for aeration. .

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明に係る曝気用中空
糸の製造方法は、中空糸の材料となる高分子材を、その
溶媒に溶かし、増孔剤を添加したドープを用い、乾・湿
式紡糸法にて中空糸を作成し、さらにこの中空糸が凝固
した後、延伸操作を施すようにした曝気用中空糸の製造
方法において、上記乾・湿式紡糸法にて中空糸を作成す
る際に、紡糸時の中空部成形部位で中空糸の内面と外面
との間に電圧を印加して作成し、この作成された中空糸
が凝固した後に上記延伸操作を施す。
In order to achieve the above object, a method for producing a hollow fiber for aeration according to the present invention comprises dissolving a polymer material as a material of the hollow fiber in a solvent thereof, using a dope to which a pore-forming agent is added, and using a dry / wet process. A hollow fiber is produced by a spinning method, and further, after the hollow fiber is solidified, in a method for producing a hollow fiber for aeration in which a drawing operation is performed, when the hollow fiber is produced by the dry / wet spinning method, A voltage is applied between the inner surface and the outer surface of the hollow fiber at the hollow molding portion at the time of spinning, and the drawing operation is performed after the formed hollow fiber solidifies.

〔作 用〕(Operation)

紡糸された中空糸を、これの凝固後に延伸することに
より、中空糸の膜表面の構造が変化すると共に、スポン
ジ層に亀裂が発生して単位面積当りの透過空気量が増加
するが、この延伸操作の前で、中空糸の紡糸時にこれの
内面と外面に500mV程度の電圧を印加することにより、
上記延伸操作時における中空糸の膜に生成する上記亀裂
により孔数が増大して単位面積当りの透過空気量が増加
する。
When the spun hollow fiber is stretched after coagulation, the structure of the membrane surface of the hollow fiber changes, and cracks occur in the sponge layer to increase the amount of permeated air per unit area. Before the operation, by applying a voltage of about 500 mV to the inner and outer surfaces of the hollow fiber during spinning,
Due to the cracks generated in the hollow fiber membrane during the stretching operation, the number of holes increases, and the amount of permeated air per unit area increases.

〔実施例〕〔Example〕

上記従来の中空糸の乾・湿式紡糸方法において、紡糸
ノズルを通常のものに替えて、第1図に示す電圧印加型
の紡糸ノズル17を用いて紡糸した。
In the above-mentioned conventional dry / wet spinning method of hollow fiber, the spinning nozzle was changed to a normal one and spinning was performed using a voltage application type spinning nozzle 17 shown in FIG.

この紡糸ノズル17はステンレスにて構成したオリフィ
ス部18と、絶縁材にて構成され、かつドープ入口19を有
する本体部20と、ステンレスにて構成され、かつ本体部
20内に装着した内部凝固液注入チューブ21とからなって
おり、上記オリフィス部18と内部凝固液注入チューブ21
との間に、内部凝固液注入チューブ21側がプラス側とな
るようにして可変直流電圧源22が接続されている。
The spinning nozzle 17 has an orifice portion 18 made of stainless steel, a main body portion 20 made of an insulating material and having a dope inlet 19, and a main body portion made of stainless steel.
The orifice section 18 and the internal coagulating liquid injection tube 21
The variable DC voltage source 22 is connected so that the internal coagulation liquid injection tube 21 side is on the plus side.

上記構成において、ドープ入口19からドープを、また
内部凝固液注入チューブ21をそれぞれ供給すると、オリ
フィス部18より中空糸23が紡糸される。このとき、可変
直流電圧源22より、オリフィス部18と内部凝固液注入チ
ューブ21に直流電圧を印加する。この印加電圧は0V、+
20mV、+100mV、+500mV、+1.5V、+3.0V、+9.0Vであ
る。
In the above configuration, when the dope is supplied from the dope inlet 19 and the internal coagulating liquid injection tube 21 is supplied, the hollow fiber 23 is spun from the orifice portion 18. At this time, a DC voltage is applied from the variable DC voltage source 22 to the orifice section 18 and the internal coagulating liquid injection tube 21. This applied voltage is 0V, +
20mV, + 100mV, + 500mV, + 1.5V, + 3.0V, + 9.0V.

次の操作は上記従来の湿式紡糸法による製造方法と同
じである。
The next operation is the same as the above-mentioned conventional production method by the wet spinning method.

この実施例にて得られた中空糸の透過空気の酸素濃度
と単位面積当りの透過空気量は第3表に示す通りであ
る。なおこのときの各中空糸は非延伸時のものである。
The oxygen concentration of permeated air and the amount of permeated air per unit area of the hollow fibers obtained in this example are as shown in Table 3. In addition, each hollow fiber at this time is the one at the time of non-drawing.

この第3表からわかるように、非延伸時の単位面積当
り透過空気量は+100〜+500mV付近に極大値を持つこ
と、また印加電圧にかかわらず透過空気中の酸素濃度が
20.3V%と変わらないことから、中空糸にあいた孔は印
加電圧が+100〜500mV付近のときが最も多く発生してい
るものと推考される。
As can be seen from Table 3, the amount of permeated air per unit area during non-stretching has a maximum value in the vicinity of +100 to +500 mV, and the oxygen concentration in the permeated air does not depend on the applied voltage.
Since it is the same as 20.3 V%, it is presumed that holes most frequently occurred when the applied voltage was around +100 to 500 mV.

次に電圧を印加しながら紡糸後、1.2倍に延伸したと
きの透過空気の酸素濃度と単位面積当りの透過空気量を
第4表に示す。
Next, Table 4 shows the oxygen concentration in the permeated air and the amount of permeated air per unit area when the fiber was stretched 1.2 times after spinning while applying a voltage.

上記第4表によれば、+100mV印加したものが最も空
気の透過量が多いが、+20mV、+500mVも、+100mVのそ
れに近い数値であり、+20〜+500mV程度の幅で延伸し
た場合、透過流量の増大がみられ、0Vの値と比較する
と、約2倍程度に増加していることがわかる。これは電
圧を印加したことによる孔数の増大が原因であるものと
推考される。
According to the above Table 4, the air permeation amount is the largest when +100 mV is applied, but the values of +20 mV and +500 mV are also close to +100 mV, and the permeation flow rate increases when the film is stretched in the width of about +20 to +500 mV. It can be seen that, compared with the value of 0V, it is increased about twice. This is presumed to be due to an increase in the number of holes due to the application of the voltage.

なお、上記中空糸の延伸率は1.2倍に限定するもので
はなく、あくまでもデータ比較のための一例であって、
延伸するという操作そのものが、この実施例で重要な構
成要件の1つである。
The stretching ratio of the hollow fiber is not limited to 1.2 times, but is merely an example for data comparison,
The operation of stretching itself is one of the important components in this embodiment.

次に水中での気泡の発生状態を上記実施例1と同一の
装置で調べた。
Next, the state of generation of bubbles in water was examined using the same apparatus as in Example 1 above.

第5表に印加電圧が0V、+100mVで紡糸したあと、1.2
倍に延伸した中空糸にかかる圧力と気泡の粒径及び単位
面積当り透過空気量についてまとめた結果を示す。
Table 5 shows that after spinning at an applied voltage of 0 V and +100 mV,
The results obtained are summarized for the pressure applied to the double-stretched hollow fiber, the particle size of the bubbles, and the amount of permeated air per unit area.

以上の実施例でわかるように、凝固した中空糸を延伸
したことにより、2〜3kg/cm2Gの圧力で中空糸の微細孔
より気泡が水中に発生し、延伸の操作に加え、紡糸時に
直流電圧を印加したことにより、電圧を印加しない(0
V)ものより約2倍の水中への空気送気が可能になっ
た。
As can be seen from the above examples, by stretching the solidified hollow fiber, bubbles are generated in the water from the micropores of the hollow fiber at a pressure of 2 to 3 kg / cm 2 G, and in addition to the stretching operation, during the spinning, By applying DC voltage, no voltage is applied (0
V) It is possible to blow air into the water about twice as much as the air.

延伸により、中空糸の膜表面に荒れを作ったり、スポ
ンジ層に亀裂が発生して空気透過抵抗を減らす作用を起
こすものと推考され、また紡糸時に500mV以下の電圧を
印加することにより、膜に生成する孔数が増大する作用
がなされるものと推考される。このことにより、上記第
5表に示すように、水中への空気透過量を約2倍増大さ
せることが可能になった。
It is presumed that drawing causes roughening on the surface of the hollow fiber membrane and cracks are generated in the sponge layer to reduce air permeation resistance, and by applying a voltage of 500 mV or less during spinning, It is presumed that an action of increasing the number of generated holes is performed. As a result, as shown in Table 5, the amount of air permeated into water can be increased about twice.

なお上記実施例の中空糸は湿式紡糸法で紡糸したもの
の例を示したが、これは乾式紡糸法で紡糸した中空糸の
場合でも本発明方法は何らさしつかえなく適用すること
ができる。
Although the hollow fiber of the above embodiment is an example of a fiber spun by a wet spinning method, the method of the present invention can be applied to any hollow fiber spun by a dry spinning method.

また本発明方法にて作成される中空糸は廃水処理だけ
でなく、バクテリヤやカビが混入しない気泡を水中に供
給できることにより、水耕栽培用の水耕液の曝気用、発
酵装置の曝気用等に用いることができる。
In addition, the hollow fiber produced by the method of the present invention can not only treat wastewater, but also supply air bubbles free of bacteria and mold into water, for aeration of a hydroponic solution for hydroponics, aeration of a fermentation apparatus, and the like. Can be used.

〔発明の効果〕〔The invention's effect〕

本発明によれば、乾・湿式紡糸法にて中空糸を作成す
る際に、紡糸時の中空部成形部位で中空糸内面と外面と
の間に電圧を印加して作成し、この作成された中空糸が
凝固した後、、延伸操作を施して中空系の製造したこと
により、紡糸した中空糸をこれの凝固後延伸だけを施し
た製造した中空糸に比べて、中空糸の単位面積当りの透
過空気量を増加することができ、曝気用の中空糸系とし
て十分な透過空気量を得ることができた。
According to the present invention, when a hollow fiber is prepared by a dry / wet spinning method, a voltage is applied between the inner surface and the outer surface of the hollow fiber at a hollow portion forming portion during spinning, and the hollow fiber is formed. After the hollow fiber was coagulated, the drawing operation was performed to produce a hollow system. The amount of permeated air could be increased, and a sufficient amount of permeated air as a hollow fiber system for aeration could be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は電圧印加型の紡糸ノズルを示す断面図、第2図
は空気の透過度を調らべるための透過量測定装置を示す
概略的な構成説明図、第3図は気泡発生装置を示す概略
的な構成説明図である。 17は紡糸ノズル、18はオリフィス部、19はドープ入口、
20は本体部、21は内部凝固液注入チューブ、22は可変直
流電圧源。
FIG. 1 is a sectional view showing a voltage application type spinning nozzle, FIG. 2 is a schematic configuration explanatory view showing a transmission amount measuring device for measuring air permeability, and FIG. 3 is a bubble generating device. FIG. 2 is a schematic configuration explanatory diagram showing 17 is a spinning nozzle, 18 is an orifice section, 19 is a dope inlet,
20 is a main body, 21 is an internal coagulation liquid injection tube, and 22 is a variable DC voltage source.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】中空糸の材料となる高分子材を、その溶媒
に溶かし、増孔剤を添加したドープを用い、乾・湿式紡
糸法にて中空糸を作成し、さらにこの中空糸が凝固した
後、延伸操作を施すようにした曝気用中空糸の製造方法
において、上記乾・湿式紡糸法にて中空糸を作成する際
に、紡糸時の中空部成形部位で中空糸の内面と外面との
間に電圧を印加して作成し、この作成された中空糸が凝
固した後に上記延伸操作を施すことを特徴とする曝気用
中空糸の製造方法。
1. A hollow fiber is prepared by dissolving a polymer material as a material of a hollow fiber in a solvent thereof, using a dope to which a pore-forming agent is added, by a dry / wet spinning method, and further coagulating the hollow fiber. After that, in the method for producing a hollow fiber for aeration in which a drawing operation is performed, when the hollow fiber is produced by the above-mentioned dry / wet spinning method, the inner surface and the outer surface of the hollow fiber are formed at the hollow portion forming portion during spinning. A method for producing a hollow fiber for aeration, comprising applying a voltage during the above process and subjecting the created hollow fiber to coagulation and then performing the above-mentioned drawing operation.
JP1145423A 1989-06-09 1989-06-09 Method for producing hollow fiber for aeration Expired - Lifetime JP2714854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1145423A JP2714854B2 (en) 1989-06-09 1989-06-09 Method for producing hollow fiber for aeration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1145423A JP2714854B2 (en) 1989-06-09 1989-06-09 Method for producing hollow fiber for aeration

Publications (2)

Publication Number Publication Date
JPH0314611A JPH0314611A (en) 1991-01-23
JP2714854B2 true JP2714854B2 (en) 1998-02-16

Family

ID=15384907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1145423A Expired - Lifetime JP2714854B2 (en) 1989-06-09 1989-06-09 Method for producing hollow fiber for aeration

Country Status (1)

Country Link
JP (1) JP2714854B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027104A1 (en) * 2017-07-31 2019-02-07 서울대학교산학협력단 Electrical parameter-assisted wet-spinning method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100273913B1 (en) * 1998-03-20 2000-12-15 민경훈 Apparatus and method of biological wastewater treatment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693979B2 (en) * 1985-08-21 1994-11-24 三菱レイヨン株式会社 Polypropylene porous hollow fiber membrane
JPH0822934B2 (en) * 1986-12-09 1996-03-06 旭化成工業株式会社 Method for producing polyacrylonitrile-based porous body
JP2528893B2 (en) * 1987-08-24 1996-08-28 株式会社クラレ Method for producing polysulfone hollow fiber membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027104A1 (en) * 2017-07-31 2019-02-07 서울대학교산학협력단 Electrical parameter-assisted wet-spinning method

Also Published As

Publication number Publication date
JPH0314611A (en) 1991-01-23

Similar Documents

Publication Publication Date Title
US8967391B2 (en) Method for preparing composite multilayer porous hollow membrane and device and product thereof
JP5504560B2 (en) Hollow fiber membrane for liquid processing
CN106731897B (en) High-pollution-resistance polyvinylidene fluoride hollow fiber ultrafiltration membrane, and preparation method and device thereof
CN101227968A (en) Nano composite hollow fiber membrane and method of manufacturing the same
JP2006088148A (en) Hollow fiber membrane having excellent water permeability
CN206500037U (en) A kind of preparation facilities of high pollution-resistant polyvinylidene fluoride hollow fiber ultrafiltration membrane
CN113144909A (en) Poly 4-methyl-1-pentene hollow fiber membrane applied to ECMO and preparation method thereof
JP2714854B2 (en) Method for producing hollow fiber for aeration
CN215539887U (en) Preparation device of poly 4-methyl-1-pentene hollow fiber membrane for ECMO
CN113856475A (en) Rinsing method and device for hollow fiber membrane
Saghafi Effect of hybrid post treatments on the structural property and water flux of polysulfone hollow fiber membrane
US6517758B1 (en) Process for the production of cellulosic moulded bodies
JP2008194647A (en) Hollow fiber membrane
JP4013396B2 (en) Method for producing porous polyamideimide hollow fiber membrane
JP5423326B2 (en) Method for producing hollow fiber membrane
JPS6452814A (en) Polysulfone hollow fiber membrane and production thereof
CN215539886U (en) A hollow fiber membrane leakage detection device for ECMO
Ahmadpour et al. Hydrophobic Modification of Polyetherimide Hollow Fiber Membrane Contactor by 2-(Perfluoroalkyl) Ethanol Coating for Carbon Dioxide Absorption
JP2714849B2 (en) Manufacturing method of hollow fiber
JP2739509B2 (en) Method for producing hollow fiber membrane and tubular material used therefor
JP2533787B2 (en) Aromatic polysulfone hollow fiber membrane
JP2004097918A (en) Polyetherimide conjugate hollow fiber membrane and its manufacturing method
JPH0596272A (en) Method for degassing dissolved oxygen in water
RU2676991C1 (en) Hollow fiber membrane
JP3473202B2 (en) Manufacturing method of hollow fiber membrane