JP2006088148A - Hollow fiber membrane having excellent water permeability - Google Patents

Hollow fiber membrane having excellent water permeability Download PDF

Info

Publication number
JP2006088148A
JP2006088148A JP2005211074A JP2005211074A JP2006088148A JP 2006088148 A JP2006088148 A JP 2006088148A JP 2005211074 A JP2005211074 A JP 2005211074A JP 2005211074 A JP2005211074 A JP 2005211074A JP 2006088148 A JP2006088148 A JP 2006088148A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane according
filtration layer
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005211074A
Other languages
Japanese (ja)
Inventor
Ho Sung Yoon
虎聲 尹
Shogen Kim
勝鉉 金
Sang Woo Park
相禹 朴
Su Young Han
秀泳 韓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Para Ltd
Original Assignee
Para Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Para Ltd filed Critical Para Ltd
Publication of JP2006088148A publication Critical patent/JP2006088148A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/06Specific viscosities of materials involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/026Sponge structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow fiber membrane of polysulfone type which has a membrane structure suited for application to external pressure filtration system because of excellent water permeability and pressure resistance, and to provide a manufacturing method of the hollow fiber membrane of polysulfone type. <P>SOLUTION: In the hollow fiber membrane comprising a separation filtration layer and a hollow part, cross-section of the separation filtration layer presents a sponge structure and pore sizes become larger gradually from the outer surface to the inner surface and satisfy the following conditions; (a) the average diameter of circular macro pores in the inner surface falls into the range of 10 to 200 μm and (b) the average diameter of fine pores in the outer surface falls into the range of 0.01 to 5.0 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、透水性に優れた中空糸膜に係り、より詳しくは、紡糸口金から外部に吐き出される紡糸原液の粘度と、内部凝固液の濃度及びこれらの相分離速度を調整することにより、中空糸膜における分離ろ過層の断面がスポンジ構造であり、且つ、外表面から内表面に進むにつれて孔径が次第に大きくなる中空糸膜の透水性を高めることのできる、透水性に優れたポリスルホン系の中空糸膜に関する。   The present invention relates to a hollow fiber membrane having excellent water permeability, and more specifically, by adjusting the viscosity of a spinning dope discharged from the spinneret to the outside, the concentration of the internal coagulating liquid, and the phase separation speed thereof. Polysulfone-based hollow with excellent water permeability, the cross-section of the separation filtration layer in the yarn membrane has a sponge structure, and the water permeability of the hollow fiber membrane whose pore diameter gradually increases from the outer surface to the inner surface can be increased. It relates to the yarn membrane.

通常、中空糸膜とは、約2mm以下の太さを有すると共に、中央部に中空を有する糸状の膜であって、壁を介して物質を選択的にろ過する特徴を有する。中空糸膜は、他の膜に比べて同一体積内に広い表面積を有するというメリットがあることから、その応用範囲が広く、これより、浄水、汚廃水の処理、血液の透析、各種の産業向けなどに多用されている。   In general, the hollow fiber membrane is a thread-like membrane having a thickness of about 2 mm or less and having a hollow in the center, and has a characteristic of selectively filtering a substance through a wall. Hollow fiber membranes have the advantage of having a large surface area within the same volume compared to other membranes, so they have a wide range of applications. From this, purified water, wastewater treatment, blood dialysis, and various industries It is often used for such purposes.

選択的な透過性を有する分離膜の材質に関する多くの研究がなされてきており、その結果、セルロース系、ポリアクリル系、ポリビニール系、ポリオレフィン系のものなどが開発されて実用レベルに至っている。しかしながら、これらの材質は耐化学性、耐熱性などに劣っている。かような欠点を補うために、ポリスルホン系樹脂が中空糸膜の材質として汎用されている。   Many researches have been made on the material of the separation membrane having selective permeability, and as a result, cellulose-based, polyacrylic-based, polyvinyl-based, polyolefin-based materials, etc. have been developed and reached a practical level. However, these materials are inferior in chemical resistance and heat resistance. In order to compensate for such drawbacks, polysulfone resins are widely used as materials for hollow fiber membranes.

中空糸膜の構造は、分離ろ過層の位置に応じて、分離ろ過層が外表面にあるものと、内表面にあるものとに大別できる。また、その断面の形状に応じて、スポンジ構造のものと、脂状構造のものとに大別できる。中空糸膜の片方に緻密な表面及び連続する多孔性網状構造を持たせ、且つ、中間には脂状構造を持たせる方法が提案されている(例えば、下記の特許文献1及び2参照)。この方法は、内部を多孔性の網状構造にし、外部を緻密なスキン層にすると共に、中間は脂状構造にしている。これによれば、外表面のスキン層により、外圧ろ過方式には向いている。しかしながら、この方法は、製造方法に当たり、内部凝固剤として高湿度の水蒸気を使用するが、水蒸気が凝固力に劣っているため、安定した膜構造が得られ難いという短所がある。また、外部のスキン構造を有するものも提案されている(例えば、下記の特許文献3及び4参照)。同公報によれば、内部凝固液としてベンゼン、ヘキサン、パラフィンが使われているが、中空糸膜の外部凝固液及び水洗いに使われる水と前記有機化合物が全く混ざらない。このため、これらの有機化合物を除去するためには、アルコール、アセトンなどの溶媒により後処理を行う必要があり、膜の製造コストが上がるといった短所がある。   The structure of the hollow fiber membrane can be roughly classified into those having the separation filtration layer on the outer surface and those on the inner surface, depending on the position of the separation filtration layer. Moreover, according to the shape of the cross section, it can be divided roughly into the thing of sponge structure and the thing of a greasy structure. A method has been proposed in which one side of a hollow fiber membrane has a dense surface and a continuous porous network structure, and a fat-like structure in the middle (see, for example, Patent Documents 1 and 2 below). In this method, the inside has a porous network structure, the outside has a dense skin layer, and the middle has a greasy structure. According to this, the outer surface skin layer is suitable for the external pressure filtration system. However, this method uses a high-humidity water vapor as an internal coagulant in the production method, but has a disadvantage that it is difficult to obtain a stable film structure because the water vapor is inferior in coagulation power. Moreover, what has an external skin structure is proposed (for example, refer patent document 3 and 4 below). According to the publication, benzene, hexane and paraffin are used as the internal coagulation liquid, but the external coagulation liquid of the hollow fiber membrane and water used for washing are not mixed at all with the organic compound. For this reason, in order to remove these organic compounds, it is necessary to carry out a post-treatment with a solvent such as alcohol or acetone, resulting in an increase in the manufacturing cost of the film.

特開昭59−228016号公報JP 59-228016 A 特開昭59−228017号公報JP 59-228017 A 特開昭59−112027号公報JP 59-1112027 A 特開昭58−132112号公報JP 58-132112 A

本発明は、上記事情に鑑みてなされたものであり、その目的は、透水性と耐圧性に優れていることから、外圧ろ過方式に適用して好適な膜の構造を有するポリスルホン系の中空糸膜及びその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and the object thereof is excellent in water permeability and pressure resistance, so that it is a polysulfone-based hollow fiber having a membrane structure suitable for application to an external pressure filtration system. An object of the present invention is to provide a film and a manufacturing method thereof.

上記目的を達成するために、本発明は、分離ろ過層と中空を含んでなる中空糸膜において、前記分離ろ過層の断面はスポンジ構造であり、且つ、外表面から内表面に進むにつれて孔径が次第に大きくなり、前記孔径は下記の条件を満足することを特徴とする中空糸膜を提供する。
(a)内表面における円形の巨大孔の平均直径が10〜200μm
(b)外表面における微孔の平均直径が0.01〜5.0μm
In order to achieve the above object, the present invention provides a hollow fiber membrane comprising a separation filtration layer and a hollow, wherein the separation filtration layer has a sponge structure, and the pore diameter increases from the outer surface to the inner surface. The hollow fiber membrane is characterized in that it gradually increases and the pore diameter satisfies the following conditions.
(A) The average diameter of circular giant holes on the inner surface is 10 to 200 μm
(B) The average diameter of the micropores on the outer surface is 0.01 to 5.0 μm

本発明に係る中空糸膜は、透水性に優れて初期流量が高く、使用中における汚染が抑えられて分離膜モジュールの交換周期が延びる。   The hollow fiber membrane according to the present invention has excellent water permeability and a high initial flow rate, suppresses contamination during use, and extends the replacement cycle of the separation membrane module.

これにより、本発明に係るポリスルホン系の中空糸膜は、限外ろ過用、精度ろ過用の水処理膜として有用である。   Accordingly, the polysulfone-based hollow fiber membrane according to the present invention is useful as a water treatment membrane for ultrafiltration and precision filtration.

以下、添付した図面に基づき、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

ここで使われる技術用語及び科学用語は、別に定義がなければ、この発明が属する技術分野における通常の知識を有する者が通常理解している意味を有する。   Unless otherwise defined, technical and scientific terms used herein have the meanings commonly understood by persons with ordinary knowledge in the technical field to which this invention belongs.

また、従来の技術と同じ技術的な構成及び作用については、その重複する説明を省略する。   In addition, the duplicate description of the same technical configuration and operation as the conventional technology is omitted.

本発明は、中空糸膜の製造に当たり、2重の管状ノズルを有する紡糸口金から外部に吐き出される紡糸原液の粘度と、内部凝固液の濃度及びこれらの相分離速度を調整し、これを外部凝固液により固液化させて中空糸膜の外表面と内表面における孔径を調節することにより、従来の中空糸膜よりも透水性が格段に高められたことを特徴とする。   In the production of the hollow fiber membrane, the present invention adjusts the viscosity of the spinning dope discharged to the outside from the spinneret having the double tubular nozzle, the concentration of the internal coagulating liquid, and the phase separation speed thereof, and this is used for the external coagulation. By adjusting the pore diameter on the outer surface and the inner surface of the hollow fiber membrane by solidifying with a liquid, the water permeability is remarkably increased as compared with the conventional hollow fiber membrane.

このとき、前記紡糸原液は、分離ろ過膜層を形成する高分子樹脂よりなる。本発明においては、中空糸膜に汎用される高分子樹脂を用いても構わないが、好ましくは、耐化学性及び耐熱性に優れたポリスルホン系樹脂を用いる。   At this time, the spinning dope is made of a polymer resin that forms a separation filtration membrane layer. In the present invention, a polymer resin generally used for the hollow fiber membrane may be used, but a polysulfone resin excellent in chemical resistance and heat resistance is preferably used.

そして、ポリスルホン系樹脂を用いた中空糸膜の場合、ポリスルホン系樹脂、水溶性高分子、添加剤及び有機溶媒よりなる高分子原液を紡糸原液として用いる。   In the case of a hollow fiber membrane using a polysulfone resin, a polymer stock solution comprising a polysulfone resin, a water-soluble polymer, an additive and an organic solvent is used as the spinning stock solution.

このとき、本発明における高分子溶液のうち前記ポリスルホン系樹脂としては、好ましくは、ポリスルホン(polysulfone)、スルホン化ポリスルホン(sulfonated polysulfone)、ポリエーテルスルホン(polyether sulfone)及びこれらの混合物よりなる群から選ばれるものを用いる。   At this time, the polysulfone resin in the polymer solution of the present invention is preferably selected from the group consisting of polysulfone, sulfonated polysulfone, polyether sulfone, and mixtures thereof. Use what you can.

また、好ましくは、前記添加剤としては、水、メチルアルコール、エチルアルコール、エチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、グリセリン、ポリビニールピロリドン(polyvinyl pyrrolidone;PVP)類及びこれらの混合物よりなる群から選ばれるものを用い、前記溶媒としては、N−メチル−2−ピロリドン(N-methyl-2-pyrrolidone;NMP)、ジメチルホルムアミド(dimethyl formamide;DMF)、ジメチルアセトアミド(dimethyl acetamide;DMAc)、クロロホルム(chloroform)、テトラヒドロフラン(tetrahydrofuran)及びこれらの混合物よりなる群から選ばれるものを用いる。   Preferably, the additive includes water, methyl alcohol, ethyl alcohol, ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, glycerin, polyvinyl pyrrolidone (PVP), and a mixture thereof. The solvent is selected from the group consisting of N-methyl-2-pyrrolidone (NMP), dimethyl formamide (DMF), dimethyl acetamide (DMAc), chloroform. (Chloroform), tetrahydrofuran (tetrahydrofuran) and a mixture thereof are used.

さらに、好ましくは、前記内部凝固液としては、水、N−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、クロロホルム、テトラヒドロフラン、PVP及びこれらの混合物よりなる群から選ばれるものを用いる。   More preferably, the internal coagulation liquid is selected from the group consisting of water, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, chloroform, tetrahydrofuran, PVP and a mixture thereof.

上述した如き方法に従い製造された中空糸膜は、外表面に微孔を有する分離ろ過層が形成され、前記分離ろ過層の内部には網状構造が形成され、且つ、中空部に進むにつれて孔径が大きくなる。特に、内表面には10〜200μmの円形の巨大孔が存在していることを特徴とする。   The hollow fiber membrane manufactured according to the method as described above is formed with a separation filtration layer having micropores on the outer surface, a network structure is formed inside the separation filtration layer, and the pore diameter increases toward the hollow portion. growing. In particular, the inner surface has a large circular hole of 10 to 200 μm.

そして、前記分離ろ過層の断面における円形の巨大孔の深さは、5〜100μmとなる。   And the depth of the circular giant hole in the cross section of the said separation filtration layer will be 5-100 micrometers.

本発明について下記のように具体的に説明する。 The present invention will be specifically described as follows.

まず、ポリスルホン、スルホン化ポリスルホン、ポリエーテルスルホン及びこれらの混合物などのポリマーをN−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、クロロホルム、テトラヒドロフランなどの溶媒に溶かし、紡糸原液となるドープ液を製造する。   First, a polymer such as polysulfone, sulfonated polysulfone, polyethersulfone and a mixture thereof is dissolved in a solvent such as N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, chloroform, tetrahydrofuran, etc. to produce a dope solution that becomes a spinning stock solution. To do.

さらに、中空糸膜の親水度及び孔径を調節するために、水、メチルアルコール、エチルアルコール、エチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、グリセリン、PVPなどの添加剤を加える。   Furthermore, additives such as water, methyl alcohol, ethyl alcohol, ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, glycerin, and PVP are added to adjust the hydrophilicity and pore diameter of the hollow fiber membrane.

このようにして得られた紡糸原液の粘度は、25℃において500〜50,000cps、好ましくは、800〜30,000cpsである。すなわち、処理分野に適用して好適な膜特性を有するように、紡糸原液の粘度をこの範囲内に調節して用いる。   The viscosity of the spinning dope thus obtained is 500 to 50,000 cps at 25 ° C., preferably 800 to 30,000 cps. That is, the viscosity of the spinning dope is adjusted within this range so that it has suitable membrane characteristics when applied to the processing field.

このとき、前記紡糸原液の粘度に合うポリスルホン系樹脂及び溶媒の混合比は、この技術分野における通常の知識を有する者にとって周知である。   At this time, the mixing ratio of the polysulfone resin and the solvent that matches the viscosity of the spinning dope is well known to those having ordinary knowledge in this technical field.

そして、内部凝固液は、中空糸膜に中空及び内気孔を形成するためのものであって、非溶媒となる水に溶媒となるN−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、クロロホルム、テトラヒドロフラン、またはこれらの混合溶媒などを混合することにより得られる。   The internal coagulation liquid is for forming hollow and internal pores in the hollow fiber membrane, and is N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, chloroform, It can be obtained by mixing tetrahydrofuran or a mixed solvent thereof.

特に、紡糸原液と内部凝固液間の相分離速度を遅らせて中空糸膜の内部の孔径を大きくするためには、非溶媒への溶媒の混合比をかなり高くする必要がある。本発明においては、好ましくは、非溶媒への溶媒の混合比を重量を基準として10:90〜1:99の割合にする。   In particular, in order to increase the pore size inside the hollow fiber membrane by delaying the phase separation rate between the spinning solution and the internal coagulating solution, it is necessary to increase the mixing ratio of the solvent to the non-solvent. In the present invention, the mixing ratio of the solvent to the non-solvent is preferably set to a ratio of 10:90 to 1:99 based on the weight.

もし、溶媒が90重量%未満であれば、内表面における網状構造が形成され難くなり、これに対し、溶媒が99重量%を超えると、溶媒の割合が高すぎてむしろ中空糸膜の形成が困難になる。   If the solvent is less than 90% by weight, it is difficult to form a network structure on the inner surface. On the other hand, if the solvent exceeds 99% by weight, the proportion of the solvent is too high and the formation of the hollow fiber membrane is rather difficult. It becomes difficult.

また、前記内部凝固液に、必要に応じてPVPなどの添加剤を加えることができる。ここで、得られる内部凝固液の粘度は、25℃において0.5〜100cpsとなる。   Moreover, additives, such as PVP, can be added to the internal coagulation liquid as necessary. Here, the viscosity of the obtained internal coagulation liquid is 0.5 to 100 cps at 25 ° C.

さらに、本発明においては、前記紡糸原液及び内部凝固液を2重の管状ノズルを有する紡糸口金を介して空気中に吐き出した後、水、N−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、クロロホルム、テトラヒドロフラン、ポリエチレングリコール、プロピレングリコール、エチレングリコール、グリセリンまたはこれらの混合物よりなる外部凝固液に浸漬することにより、中空糸膜を製造している。   Furthermore, in the present invention, the spinning stock solution and the internal coagulation solution are discharged into the air through a spinneret having a double tubular nozzle, and then water, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, A hollow fiber membrane is manufactured by immersing in an external coagulation liquid composed of chloroform, tetrahydrofuran, polyethylene glycol, propylene glycol, ethylene glycol, glycerin or a mixture thereof.

このとき、本発明において、紡糸原液と内部凝固液間の相分離速度を遅らせる方法としては、好ましくは、紡糸口金の吐出口と外部凝固液の凝固槽との距離を調整する方法が用いられる。   At this time, in the present invention, as a method of delaying the phase separation speed between the spinning solution and the internal coagulation liquid, a method of adjusting the distance between the spinneret discharge port and the external coagulation liquid coagulation tank is preferably used.

図2は、本発明に係る中空糸膜の製造方法を示す概略図である。   FIG. 2 is a schematic view showing a method for producing a hollow fiber membrane according to the present invention.

すなわち、図2は、本発明の好適な実施例に係る、2重の管状ノズルを有する紡糸口金15を用いた中空糸膜の製造方法を示すものである。これを参照すれば、紡糸原液の内部に内部凝固液が通過するように、紡糸原液ノズル吐出口14と内部凝固液ノズル吐出口13から紡糸原液及び内部凝固液を空気中に吐き出す。これにより、紡糸原液の分離ろ過層の中央部に中空が形成されて前記中空面から紡糸原液が凝固され始め、前記吐き出された紡糸原液及び内部凝固液が外部凝固液の凝固槽18に浸漬されれば、紡糸原液が急速に凝固され、その結果、分離ろ過層及び中空を有する中空糸膜が得られる。   That is, FIG. 2 shows a method for producing a hollow fiber membrane using a spinneret 15 having a double tubular nozzle according to a preferred embodiment of the present invention. Referring to this, the spinning solution and the internal coagulating solution are discharged into the air from the spinning solution nozzle discharge port 14 and the internal coagulating solution nozzle discharge port 13 so that the internal coagulating solution passes through the spinning solution. As a result, a hollow is formed in the center of the separation and filtration layer of the spinning dope, and the spinning dope begins to coagulate from the hollow surface, and the discharged spinning dope and the internal coagulating liquid are immersed in the coagulation tank 18 of the external coagulating liquid. Then, the spinning dope is rapidly solidified, and as a result, a hollow fiber membrane having a separation filtration layer and a hollow is obtained.

このようにして得られた本発明の中空糸膜は、外表面に微孔を有する分離ろ過層が形成され、この分離ろ過層の内部には網状構造が形成され、且つ、中空部に進むにつれて孔径が大きくなる。特に、内表面には10〜200μmの円形の巨大孔が存在している。これにより、外圧方式に用いられて好適な優れた透水性及び耐圧性が得られるが、好ましくは、内表面における円形の巨大孔の平均直径を30〜100μmにすることにより、限外ろ過用、精度ろ過用の水処理膜への使用に最適化させる。   In the hollow fiber membrane of the present invention thus obtained, a separation filtration layer having micropores is formed on the outer surface, a network structure is formed inside this separation filtration layer, and as it proceeds to the hollow portion The hole diameter increases. In particular, 10-200 μm circular giant pores exist on the inner surface. Thereby, it is possible to obtain excellent water permeability and pressure resistance suitable for use in the external pressure method, but preferably for ultrafiltration by setting the average diameter of the circular macropores on the inner surface to 30 to 100 μm, Optimize for use in water treatment membranes for precision filtration.

これらの特性により、本発明に係る中空糸膜は、5.0μm以下の不純物が除去可能な分離効果を有する。   Due to these characteristics, the hollow fiber membrane according to the present invention has a separation effect capable of removing impurities of 5.0 μm or less.

図3は、本発明に従い製造された中空糸膜の断面を走査電子顕微鏡(SEM)により測定した写真である。図3によれば、外表面から内表面に進むにつれて気孔が次第に大きくなり、特に、内表面との境界部には数〜数十μmに至る円形の巨大孔が存在している。これより、この円形の巨大孔は、外表面に入ってきた水が、分離膜の構造的な抵抗を経ることなく内部の中空部まで透過されるようにし、透水性を高めているということが分かる。   FIG. 3 is a photograph of a cross section of a hollow fiber membrane produced according to the present invention, measured by a scanning electron microscope (SEM). According to FIG. 3, the pores gradually increase from the outer surface to the inner surface, and in particular, there are circular giant holes ranging from several to several tens of μm at the boundary with the inner surface. As a result, this circular giant pore allows water that has entered the outer surface to permeate to the inner hollow portion without passing through the structural resistance of the separation membrane, thereby improving water permeability. I understand.

図4は、本発明に従い製造された中空糸膜の外表面をSEMにより測定した写真である。図4によれば、外表面には多数の円形孔が一様に分布されており、これらが透水性を高めているということが分かる。   FIG. 4 is a photograph of the outer surface of the hollow fiber membrane produced according to the present invention, measured by SEM. According to FIG. 4, it can be seen that a large number of circular holes are uniformly distributed on the outer surface, and these increase the water permeability.

図5は、本発明に従い製造された中空糸膜の内表面をSEMにより測定した写真である。図5によれば、内表面は円形の巨大孔を有する網状構造となっている。このため、内部に入ってきた水が抵抗無しに中空部まで流れることができ、透水性が高くなっているということが分かる。   FIG. 5 is a photograph of the inner surface of a hollow fiber membrane produced according to the present invention, measured by SEM. According to FIG. 5, the inner surface has a network structure with circular giant holes. For this reason, it turns out that the water which entered the inside can flow to a hollow part without resistance, and water permeability is high.

以下、本発明への理解を容易にするために、好適な実施例を提示する。しかしながら、後述する実施例は本発明をより容易に理解させるために提供されるものに過ぎず、本発明が後述する実施例に限定されることはない。   Hereinafter, in order to facilitate understanding of the present invention, preferred examples will be presented. However, the examples described below are provided only for easier understanding of the present invention, and the present invention is not limited to the examples described below.

よって、本発明の権利範囲がこれらの実施例になんら限定されないものであるということは言うまでもない。   Therefore, it goes without saying that the scope of rights of the present invention is not limited to these examples.

[比較例1]
NMP溶媒にポリマーとしてのポリアクリロニトリル及び添加剤としてのPVPを溶かして紡糸原液を得た。このとき、得られた紡糸原液の粘度は25℃において2,000cpsであった。内部凝固液としては、水とポリエチレングリコールとの混合溶媒を用いた。得られた紡糸原液及び内部凝固液を紡糸口金を介して水とNMPとの混合物である外部凝固液に吐き出すことにより中空糸膜を得た。このときに使われた紡糸口金の各ノズルの直径は、吐出口を基準としてφ400μm、φ1,200μmであり、紡糸口金と外部凝固液との間の距離は5cmであり、そして、凝固槽の温度は30℃であった。
[Comparative Example 1]
Polyacrylonitrile as a polymer and PVP as an additive were dissolved in an NMP solvent to obtain a spinning dope. At this time, the viscosity of the obtained spinning dope was 2,000 cps at 25 ° C. As the internal coagulation liquid, a mixed solvent of water and polyethylene glycol was used. A hollow fiber membrane was obtained by discharging the obtained spinning solution and the internal coagulation liquid to an external coagulation liquid that is a mixture of water and NMP through a spinneret. The diameter of each nozzle of the spinneret used at this time is φ400 μm and φ1,200 μm with reference to the discharge port, the distance between the spinneret and the external coagulation liquid is 5 cm, and the temperature of the coagulation tank Was 30 ° C.

次いで、得られた中空糸膜を浴比20倍の10重量%のグリセリン水溶液中に24時間浸漬して乾燥した。   Next, the obtained hollow fiber membrane was dipped in a 10% by weight glycerin aqueous solution having a bath ratio of 20 times for 24 hours and dried.

NMP溶媒にポリマーとしてのポリスルホンと、添加剤としてのPVP及びプロピレングリコールを溶かして紡糸原液を得た。このとき、得られた紡糸原液の粘度は25℃において2,000cpsであった。内部凝固液としては、水とNMPとの混合溶媒を用いた。このとき、水とNMPとの混合比は、重量を基準として10:90にした。   Polysulfone as a polymer and PVP and propylene glycol as additives were dissolved in an NMP solvent to obtain a spinning dope. At this time, the viscosity of the obtained spinning dope was 2,000 cps at 25 ° C. As the internal coagulation liquid, a mixed solvent of water and NMP was used. At this time, the mixing ratio of water and NMP was 10:90 based on the weight.

そして、得られた紡糸原液及び内部凝固液を紡糸口金を介して水とNMPとの混合物である外部凝固液に吐き出すことにより、中空糸膜を得た。   And the hollow fiber membrane was obtained by discharging the obtained spinning solution and internal coagulation liquid to the external coagulation liquid which is a mixture of water and NMP through a spinneret.

このとき、使われた紡糸口金の各ノズルの直径は、吐出口を基準としてφ400μm、φ1,200μmであり、紡糸口金と外部凝固液との間の距離は15cmであり、そして、凝固槽の温度は35℃であった。   At this time, the diameter of each nozzle of the used spinneret is φ400 μm and φ1,200 μm on the basis of the discharge port, the distance between the spinneret and the external coagulation liquid is 15 cm, and the temperature of the coagulation tank Was 35 ° C.

DMF溶媒にポリマーとしてのポリエーテルスルホンと、添加剤としてのPVP及びポリエチレングリコール200を溶かして紡糸原液を得た。得られた紡糸原液の粘度は25℃において4,500cpsであった。内部凝固液としては、水とDMFとの混合溶媒を用いた。このとき、水とDMFとの混合比は、重量を基準として5:95にした。   Polyethersulfone as a polymer and PVP and polyethylene glycol 200 as additives were dissolved in a DMF solvent to obtain a spinning dope. The viscosity of the obtained spinning dope was 4,500 cps at 25 ° C. As the internal coagulation liquid, a mixed solvent of water and DMF was used. At this time, the mixing ratio of water and DMF was 5:95 based on the weight.

そして、得られた紡糸原液及び内部凝固液を紡糸口金を介して水とPEGとの混合物である外部凝固液に吐き出すことにより、中空糸膜を得た。   And the hollow fiber membrane was obtained by discharging the obtained spinning dope and internal coagulation liquid to the external coagulation liquid which is a mixture of water and PEG through a spinneret.

このとき、使われた紡糸口金の各ノズルの直径は、吐出口を基準としてφ400μm、φ1,200μmであり、紡糸口金と外部凝固液との間の距離は10cmであり、そして、凝固槽の温度は25℃であった。   At this time, the diameter of each nozzle of the used spinneret is φ400 μm and φ1,200 μm on the basis of the discharge port, the distance between the spinneret and the external coagulation liquid is 10 cm, and the temperature of the coagulation tank Was 25 ° C.

DMAc溶媒にポリマーとしてのポリエーテルスルホンと、添加剤としてのPVP及びグリセリンの混合物を溶かして紡糸原液を得た。得られた紡糸原液の粘度は25℃において3,000cpsであった。内部凝固液としては、水とDMAcとの混合溶媒を用いた。このとき、水とDMAcとの混合比は、重量を基準として7:93にした。   A mixture of polyethersulfone as a polymer and PVP and glycerin as additives was dissolved in a DMAc solvent to obtain a spinning dope. The viscosity of the obtained spinning dope was 3,000 cps at 25 ° C. As the internal coagulation liquid, a mixed solvent of water and DMAc was used. At this time, the mixing ratio of water and DMAc was 7:93 based on weight.

そして、得られた紡糸原液及び内部凝固液を紡糸口金を介して水とDMAcとの混合物である外部凝固液に吐き出すことにより、中空糸膜を得た。このとき、使われた紡糸口金の各ノズルの直径は、吐出口を基準としてφ400μm、φ1,200μmであり、紡糸口金と外部凝固液との間の距離は3cmであり、そして、凝固槽の温度は40℃であった。   And the hollow fiber membrane was obtained by discharging the obtained spinning raw solution and internal coagulation liquid to the external coagulation liquid which is a mixture of water and DMAc through a spinneret. At this time, the diameter of each nozzle of the used spinneret is φ400 μm and φ1,200 μm on the basis of the discharge port, the distance between the spinneret and the external coagulation liquid is 3 cm, and the temperature of the coagulation tank Was 40 ° C.

[実験例]
本発明に従い製造された中空糸膜及びモジュールの純粋透過度、バブルポイント(bubble point;BP)及び所定の累積透過流量への到達後の透過流量を測定した。
[Experimental example]
The hollow fiber membranes and modules produced according to the present invention were measured for pure permeability, bubble point (BP) and permeate flow after reaching a predetermined cumulative permeate flow.

このとき、純粋透過度及びバブルポイント(BP)、所定の累積透過流量への到達後の透過流量の測定は、下記のように行われた。   At this time, the measurement of the pure permeability, the bubble point (BP), and the permeation flow rate after reaching the predetermined cumulative permeation flow rate was performed as follows.

(1)純粋透過度
長さ10cmの中空糸5筋を用いて小型のアクリル管モジュールを製作し、このモジュールを純水に膜間圧力1kg/cmにて通させて透過量を測定した後、下記式1に基づき純粋透過度を得た。
(1) Pure permeability After manufacturing a small acrylic tube module using five hollow fibers having a length of 10 cm and passing this module through pure water at an intermembrane pressure of 1 kg / cm 2, the amount of permeation was measured. Based on the following formula 1, pure transmittance was obtained.

(2)バブルポイント(BP)
長さ10cmの中空糸5筋をU字状にして小型管に取り付けることによりモジュールを製作し、このモジュールを2−プロパノールに沈浸した後、その内部に水を気圧または窒素圧を昇圧しながら供給した。そして、中空糸膜から気泡がはっきり発せられる時点における気圧または窒素圧を測定した。
(2) Bubble point (BP)
A module is manufactured by attaching five 10 cm long hollow fibers in a U-shape to a small tube. After submerging the module in 2-propanol, water is supplied while increasing the pressure or nitrogen pressure. did. Then, the atmospheric pressure or nitrogen pressure at the time when bubbles were clearly emitted from the hollow fiber membrane was measured.

(3)所定の累積透過流量への到達後の透過流量
長さ15cm、外径4cmのモジュールに中空糸膜1,200筋を取り付けてモジュールを製作し、このモジュールに水道水2.4tをよどみ点圧力0.7kg/cmにて通させた後、1分当たり透過流量を測定した。
(3) Permeate flow after reaching the specified cumulative permeate flow The module is manufactured by attaching 1,200 hollow fiber membranes to a module with a length of 15 cm and an outer diameter of 4 cm, and 2.4 t of tap water is stagnated in this module. After passing at a point pressure of 0.7 kg / cm 2 , the permeate flow rate was measured per minute.

その結果を下記表1に示す。   The results are shown in Table 1 below.

これより、本発明に係る中空糸膜は、比較例に比べ、3通りの測定項目で顕著に優れているということが分かる。   From this, it can be seen that the hollow fiber membrane according to the present invention is remarkably superior in the three measurement items as compared with the comparative example.

また、このような測定結果から、本発明に係るポリスルホン系の中空糸膜は、限外ろ過用、精度ろ過用の水処理膜などに十分に適用可能であることが分かる。   Moreover, it can be seen from such measurement results that the polysulfone-based hollow fiber membrane according to the present invention is sufficiently applicable to a water treatment membrane for ultrafiltration and precision filtration.

従来の技術に係る中空糸膜の分離ろ過層および中空の概略断面図である。It is a separation filtration layer and hollow schematic sectional drawing of the hollow fiber membrane which concerns on a prior art. 本発明の好適な一実施例に係る中空糸膜の製造方法の概略図である。It is the schematic of the manufacturing method of the hollow fiber membrane which concerns on one suitable Example of this invention. 本発明に係る中空糸膜の外表面のSEM測定写真である。It is a SEM measurement photograph of the outer surface of the hollow fiber membrane which concerns on this invention. 本発明に係る中空糸膜の内表面のSEM測定写真である。It is a SEM measurement photograph of the inner surface of the hollow fiber membrane which concerns on this invention. 本発明に係る中空糸膜の断面のSEM測定写真である。It is a SEM measurement photograph of the section of the hollow fiber membrane concerning the present invention.

符号の説明Explanation of symbols

1 中空糸膜
2 分離ろ過層
3 中空
4 気孔
10 内部凝固液のノズル流入口
11 補強用支持体のノズル流入口
12 紡糸原液のノズル流入口
13 内部凝固液のノズル吐出口
14 紡糸原液のノズル 吐出口
15 紡糸口金
16 上下部口金の結合部
18 外部凝固液の凝固槽
21 分離ろ過層の外表面
22 分離ろ過層の内表面
DESCRIPTION OF SYMBOLS 1 Hollow fiber membrane 2 Separation filtration layer 3 Hollow 4 Porous 10 Nozzle inlet of internal coagulating liquid 11 Nozzle inlet of support for reinforcement 12 Nozzle inlet of spinning raw liquid 13 Nozzle outlet of internal coagulating liquid 14 Nozzle discharge of spinning raw liquid Outlet 15 Spinneret 16 Joint part of upper and lower caps 18 Coagulation tank for external coagulation liquid 21 Outer surface of separation filtration layer 22 Inner surface of separation filtration layer

Claims (10)

分離ろ過層(2)と中空(3)を含んでなる中空糸膜において、
前記分離ろ過層(2)の断面はスポンジ構造であり、且つ、外表面(21)から内表面(22)に進むにつれて孔径が次第に大きくなり、前記孔径は、下記の条件を満足することを特徴とする中空糸膜。
(a)内表面における円形の巨大孔の平均直径が10〜200μm
(b)外表面における微孔の平均直径が0.01〜5.0μm
In the hollow fiber membrane comprising the separation filtration layer (2) and the hollow (3),
The cross section of the separation filtration layer (2) has a sponge structure, and the pore diameter gradually increases from the outer surface (21) to the inner surface (22), and the pore diameter satisfies the following conditions. Hollow fiber membrane.
(A) The average diameter of circular giant holes on the inner surface is 10 to 200 μm
(B) The average diameter of the micropores on the outer surface is 0.01 to 5.0 μm
前記外表面及び内表面における孔径は、紡糸口金から外部に吐き出されるポリスルホン系の紡糸原液の粘度と、内部凝固液の濃度及びこれらの相分離速度を調整することにより得られることを特徴とする
請求項1記載の中空糸膜。
The pore diameters on the outer surface and the inner surface are obtained by adjusting the viscosity of the polysulfone-based spinning solution discharged from the spinneret to the outside, the concentration of the internal coagulating liquid, and the phase separation speed thereof. Item 1. The hollow fiber membrane according to Item 1.
前記紡糸原液の粘度は、25℃において500〜50,000cpsであることを特徴とする
請求項2記載の中空糸膜。
The hollow fiber membrane according to claim 2, wherein the spinning dope has a viscosity of 500 to 50,000 cps at 25 ° C.
前記内部凝固液の濃度は、水(非溶媒)と溶媒との混合比が10:90〜1:99であることを特徴とする
請求項2記載の中空糸膜。
The hollow fiber membrane according to claim 2, wherein the concentration of the internal coagulation liquid is such that the mixing ratio of water (non-solvent) and solvent is 10:90 to 1:99.
前記内表面における円形の巨大孔の平均直径が30〜100μmであることを特徴とする
請求項1記載の中空糸膜。
The hollow fiber membrane according to claim 1, wherein an average diameter of the circular macropores on the inner surface is 30 to 100 µm.
前記内表面における円形の巨大孔の壁面が網状構造を有することを特徴とする
請求項1記載の中空糸膜。
The hollow fiber membrane according to claim 1, wherein the wall surface of the circular giant hole on the inner surface has a network structure.
前記分離ろ過層の断面における円形の巨大孔の深さが5〜100μmであることを特徴とする
請求項1記載の中空糸膜。
The hollow fiber membrane according to claim 1, wherein the depth of the circular giant pore in the cross section of the separation filtration layer is 5 to 100 µm.
バブルポイント値(BP)は、2.5〜3.5kg/cmであることを特徴とする
請求項1記載の中空糸膜。
Bubble point value (BP) is a hollow fiber membrane of claim 1, wherein it is 2.5~3.5kg / cm 2.
純粋透過度(Lp)の値が5〜10[ml/分・cm・(kg/cm)]であることを特徴とする
請求項1記載の中空糸膜。
The hollow fiber membrane according to claim 1, wherein the value of pure permeability (Lp) is 5 to 10 [ml / min · cm 2 · (kg / cm 2 )].
所定の累積透過流量に達してからの透過流量が0.5〜1.0(l/分)であることを特徴とする
請求項1記載の中空糸膜。
The hollow fiber membrane according to claim 1, wherein the permeation flow rate after reaching a predetermined cumulative permeation flow rate is 0.5 to 1.0 (l / min).
JP2005211074A 2004-09-20 2005-07-21 Hollow fiber membrane having excellent water permeability Pending JP2006088148A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040075003A KR100650330B1 (en) 2004-09-20 2004-09-20 A hollow fiber membrane with good permeability of water

Publications (1)

Publication Number Publication Date
JP2006088148A true JP2006088148A (en) 2006-04-06

Family

ID=36229619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211074A Pending JP2006088148A (en) 2004-09-20 2005-07-21 Hollow fiber membrane having excellent water permeability

Country Status (2)

Country Link
JP (1) JP2006088148A (en)
KR (1) KR100650330B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035402A1 (en) 2010-09-14 2012-03-22 Council Of Scientific & Industrial Research High flux hollow fiber ultrafiltration membranes and process for the preparation thereof
WO2014175282A1 (en) * 2013-04-23 2014-10-30 Nok株式会社 Process for producing porous hollow-fiber membrane reinforced with spun yarn
EP2998014A1 (en) 2014-09-22 2016-03-23 Fresenius Medical Care Deutschland GmbH Point-of-use water purifier with polysulfone hollow fibres
KR20160039788A (en) * 2014-10-02 2016-04-12 주식회사 휴비스워터 Polysulfone-based Hollow Fiber Membrane Having Excellent Chemical Resistance and Preparation Method Thereof
WO2016182015A1 (en) * 2015-05-13 2016-11-17 東洋紡株式会社 Porous hollow fiber membrane and manufacturing method therefor
JP2019077964A (en) * 2017-10-25 2019-05-23 日本バイリーン株式会社 Fiber sheet and method for producing fiber sheet
CN110327787A (en) * 2019-04-29 2019-10-15 南京膜材料产业技术研究院有限公司 A kind of enhancement type hollow fiber film, preparation method and device
JP2020002505A (en) * 2018-06-29 2020-01-09 日本バイリーン株式会社 Structure
US11446419B2 (en) 2014-03-29 2022-09-20 Novaflux Inc. Blood processing cartridges and systems, and methods for extracorporeal blood therapies
US11648341B2 (en) 2015-06-26 2023-05-16 Novaflux Inc. Cartridges and systems for outside-in flow in membrane-based therapies
US11701622B2 (en) 2015-09-24 2023-07-18 Novaflux Inc. Cartridges and systems for membrane-based therapies

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101086217B1 (en) * 2009-08-28 2011-11-23 주식회사 원일티엔아이 Manufacturing method of hollow fiber membrane with sponge-like structure for gas separation membrane
KR101675101B1 (en) * 2014-09-30 2016-11-11 주식회사 디어포스멤브레인스 method for manufacturing PVDF hollow fiber membrane having high fouling resistance
KR101758906B1 (en) 2015-01-22 2017-07-17 경상대학교산학협력단 Dual-layer ultrafiltration hollow fiber membrane and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507328A (en) * 1991-04-12 1993-10-21 ミンテック・コーポレーション Spinning method and its products
WO1995033549A1 (en) * 1994-06-07 1995-12-14 Mitsubishi Rayon Co., Ltd. Porous polysulfone membrane and process for producing the same
WO1997022405A1 (en) * 1995-12-18 1997-06-26 Asahi Kasei Kogyo Kabushiki Kaisha Hollow fiber type filtration membrane
JPH10235170A (en) * 1997-02-28 1998-09-08 Asahi Chem Ind Co Ltd Hollow fiber filtration membrane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950007322B1 (en) * 1992-05-26 1995-07-10 재단법인한국화학연구소 Polysulfone hollow fiber membraen for outer pressure
KR950016851A (en) * 1993-12-30 1995-07-20 하기주 Polysulfone Hollow Fiber Membrane and Manufacturing Method Thereof
KR0177273B1 (en) * 1995-07-25 1999-03-20 백영배 Sponge-like polysulfone hollow fiber membrane with active layer and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507328A (en) * 1991-04-12 1993-10-21 ミンテック・コーポレーション Spinning method and its products
WO1995033549A1 (en) * 1994-06-07 1995-12-14 Mitsubishi Rayon Co., Ltd. Porous polysulfone membrane and process for producing the same
WO1997022405A1 (en) * 1995-12-18 1997-06-26 Asahi Kasei Kogyo Kabushiki Kaisha Hollow fiber type filtration membrane
JPH10235170A (en) * 1997-02-28 1998-09-08 Asahi Chem Ind Co Ltd Hollow fiber filtration membrane

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035402A1 (en) 2010-09-14 2012-03-22 Council Of Scientific & Industrial Research High flux hollow fiber ultrafiltration membranes and process for the preparation thereof
WO2014175282A1 (en) * 2013-04-23 2014-10-30 Nok株式会社 Process for producing porous hollow-fiber membrane reinforced with spun yarn
JP2014213236A (en) * 2013-04-23 2014-11-17 Nok株式会社 Method for manufacturing spun yarn-reinforced porous hollow fiber membrane
US11446419B2 (en) 2014-03-29 2022-09-20 Novaflux Inc. Blood processing cartridges and systems, and methods for extracorporeal blood therapies
EP2998014A1 (en) 2014-09-22 2016-03-23 Fresenius Medical Care Deutschland GmbH Point-of-use water purifier with polysulfone hollow fibres
WO2016046082A1 (en) 2014-09-22 2016-03-31 Fresenius Medical Care Deutschland Gmbh Point-of-use water purifier with polysulfone hollow fibres
KR20160039788A (en) * 2014-10-02 2016-04-12 주식회사 휴비스워터 Polysulfone-based Hollow Fiber Membrane Having Excellent Chemical Resistance and Preparation Method Thereof
KR101665189B1 (en) * 2014-10-02 2016-10-24 주식회사 휴비스워터 Polysulfone-based Hollow Fiber Membrane Having Excellent Chemical Resistance and Preparation Method Thereof
WO2016182015A1 (en) * 2015-05-13 2016-11-17 東洋紡株式会社 Porous hollow fiber membrane and manufacturing method therefor
US11648341B2 (en) 2015-06-26 2023-05-16 Novaflux Inc. Cartridges and systems for outside-in flow in membrane-based therapies
US11701622B2 (en) 2015-09-24 2023-07-18 Novaflux Inc. Cartridges and systems for membrane-based therapies
JP2019077964A (en) * 2017-10-25 2019-05-23 日本バイリーン株式会社 Fiber sheet and method for producing fiber sheet
JP7058493B2 (en) 2017-10-25 2022-04-22 日本バイリーン株式会社 Fiber sheet and manufacturing method of fiber sheet
JP7107770B2 (en) 2018-06-29 2022-07-27 日本バイリーン株式会社 Structure
JP2020002505A (en) * 2018-06-29 2020-01-09 日本バイリーン株式会社 Structure
CN110327787A (en) * 2019-04-29 2019-10-15 南京膜材料产业技术研究院有限公司 A kind of enhancement type hollow fiber film, preparation method and device

Also Published As

Publication number Publication date
KR100650330B1 (en) 2006-11-27
KR20060026173A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP2006088148A (en) Hollow fiber membrane having excellent water permeability
JP5433921B2 (en) Polymer porous hollow fiber membrane
JP5798680B2 (en) Pressurized hollow fiber membrane module
KR20110033729A (en) Fluorinated hollow fiber membrane and method for preparing the same
JP5293959B2 (en) Hollow fiber membrane and method for producing the same
JP5878288B2 (en) Highly permeable polyamide hollow fiber membrane and method for producing the same
KR101758906B1 (en) Dual-layer ultrafiltration hollow fiber membrane and manufacturing method thereof
US9610545B2 (en) Hollow-fibre membrane having novel structure, and production method therefor
KR20090072321A (en) Hollow fiber membrane using polysulfones with enhanced water permeability and a method of producing thereof
JPH0569571B2 (en)
KR100581206B1 (en) Polyvinylidene fluoride Porous Hollow Fiber Membrane and the Manufacturing Process thereof
KR102139208B1 (en) A preparation method of fouling-resistant hollow fiber membrane and a fouling-resistant hollow fiber membrane prepared by the same
KR20100079630A (en) Ultrafiltration membranes with improved water permeability and mechanical strength and manufacturing method thereof
WO1998058728A1 (en) Polyacrylonitrile-base hollow-fiber filtration membrane
KR20120077011A (en) Water treatment membrane of poly(ethylenechlorotrifluoroethylene) and manufacturing method thereof
KR20130047226A (en) Pvdf membrane for water treatment improving membrane properties and manufacturing method thereof
KR20100078481A (en) Macrovoid free hollow fiber membrane and manufacturing method threrof
KR100415342B1 (en) Method of preparing polyacrylonitrile hollow tube
KR20160079354A (en) Composition of PVDF porous hollow fiber membrane improved with hydrophilicity and PVDF porous hollow fiber membrane having asymmetry sandwich structure using the same
JP5894687B2 (en) Highly permeable polyamide hollow fiber membrane and method for producing the same
KR101397842B1 (en) Polyvinylidene fluoride asymmetry-porous hollow fiber membrane and manufacturing method thereof
JPH06343842A (en) Cellulose acetate hollow fiber separation membrane
KR20130040622A (en) The preparation method of hollow fiber membrane with high permeation using hydrophilized polyvinylidenefluoride for water treatment
KR101364862B1 (en) Porous PVDF hollow fiber membrane
JP5423326B2 (en) Method for producing hollow fiber membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090312

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090410

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090415

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090522

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105