JP5423326B2 - Method for producing hollow fiber membrane - Google Patents

Method for producing hollow fiber membrane Download PDF

Info

Publication number
JP5423326B2
JP5423326B2 JP2009258778A JP2009258778A JP5423326B2 JP 5423326 B2 JP5423326 B2 JP 5423326B2 JP 2009258778 A JP2009258778 A JP 2009258778A JP 2009258778 A JP2009258778 A JP 2009258778A JP 5423326 B2 JP5423326 B2 JP 5423326B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
coagulation bath
weight
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009258778A
Other languages
Japanese (ja)
Other versions
JP2011025222A (en
Inventor
浩文 小川
典昭 加藤
純輔 森田
英之 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009258778A priority Critical patent/JP5423326B2/en
Publication of JP2011025222A publication Critical patent/JP2011025222A/en
Application granted granted Critical
Publication of JP5423326B2 publication Critical patent/JP5423326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、食品分野、医薬分野、半導体分野、エネルギー分野および水処理分野における液体の処理に使用される高分子多孔性中空糸膜に関する。詳しくはワイン酵母液の濾過性能が高く、耐圧性の高い中空糸膜の製造方法に関する。   The present invention relates to a polymer porous hollow fiber membrane used for liquid treatment in the food field, pharmaceutical field, semiconductor field, energy field and water treatment field. Specifically, the present invention relates to a method for producing a hollow fiber membrane having high filtration performance of wine yeast liquor and high pressure resistance.

食品分野、医薬分野、半導体分野、エネルギー分野および水処理分野における液体の処理に使用される中空糸膜は、精密濾過、限外濾過などの工業用途や、血液透析、血液濾過、血液透析濾過などの医療用途に広く利用されている。   Hollow fiber membranes used for liquid processing in the food, pharmaceutical, semiconductor, energy and water treatment fields are used for industrial applications such as microfiltration and ultrafiltration, as well as hemodialysis, blood filtration, hemodiafiltration, etc. Widely used in medical applications.

特に、食品分野における発酵液の処理においては、従来、発酵後のワイン、ビール中の酵母、固形物、コロイド等を除去するために珪藻土が利用されていたが、珪藻土自体の安全性や使用済みの珪藻土は焼却処分できず、また、大量に使用するため廃棄にかかるコスト高の問題があった。そこで、近年、装置の小型化に優れている中空糸形状の限外濾過膜や精密濾過膜による発酵液の処理が注目され始めている。   In particular, diatomaceous earth has been used to remove fermented wine, yeast in beer, solids, colloids, etc., in the treatment of fermentation broth in the food field. No diatomaceous earth can be incinerated, and since it is used in large quantities, there is a problem of high cost for disposal. Therefore, in recent years, attention has been paid to the treatment of fermentation broth with a hollow fiber-shaped ultrafiltration membrane or a microfiltration membrane that is excellent in miniaturization of the apparatus.

ワインおよびビール等の発酵液を中空糸膜モジュールで処理する際には、一般的に中空糸膜の中空部に発酵液を高流量で流しながら1〜1.5bar程度の高い圧力をかけて行うクロスフロー濾過により中空糸膜の内表面側から外表面側へ濾過することで発酵液を清浄化する。この際、中空糸膜の単位膜面積当たり濾過性能が高く、中空糸端面の目詰まりが少なく、耐圧性の高い中空糸膜が必要である。   When processing fermented liquor such as wine and beer with a hollow fiber membrane module, it is generally performed by applying a high pressure of about 1 to 1.5 bar while flowing the fermented liquid through the hollow part of the hollow fiber membrane at a high flow rate. The fermentation liquor is purified by filtering from the inner surface side to the outer surface side of the hollow fiber membrane by cross flow filtration. In this case, a hollow fiber membrane having a high pressure resistance per unit membrane area of the hollow fiber membrane, a low clogging of the end surface of the hollow fiber, and a high pressure resistance is required.

濾過性能を高くするためには紡糸原液のポリマー濃度を低くし、芯液の溶媒濃度を高くする必要がある。一方、中空糸端面の目詰まりを少なくするためには内径を十分大きくする必要があるが、これにともない膜厚も十分大きくしないと耐圧性が弱くなり使用中に膜が破損して使用することができなくなる。   In order to increase the filtration performance, it is necessary to lower the polymer concentration of the spinning dope and increase the solvent concentration of the core solution. On the other hand, in order to reduce the clogging of the hollow fiber end face, it is necessary to increase the inner diameter sufficiently, but if the film thickness is not increased sufficiently, the pressure resistance will be weak and the film will be damaged during use. Can not be.

しかし、ポリマー濃度を低くし芯液の溶媒濃度を高くした条件で、中空糸膜端面の目詰まりが発生しないように内径を十分大きくし、さらに使用中に膜が破損しないように膜厚を十分大きくすると二重管口金から空中走行部を経て凝固浴に浸漬して凝固した中空糸膜が凝固浴内で弛んでしまい紡糸ができなくなり、内径および膜厚を十分大きくすることができないという問題があった。   However, under the conditions where the polymer concentration is lowered and the solvent concentration of the core solution is increased, the inner diameter is sufficiently large so as not to cause clogging of the end surface of the hollow fiber membrane, and the film thickness is sufficiently large so that the membrane is not damaged during use. If it is increased, the hollow fiber membrane that has been immersed in the coagulation bath from the double tube cap through the air running part will loosen in the coagulation bath and cannot be spun, and the inner diameter and film thickness cannot be increased sufficiently. there were.

凝固浴中の弛み防止ガイドで中空糸膜の進行方法を変える方法として、液中ローラーと凝固浴の引取りローラーとの距離を最短距離の長さの1.01〜1.5倍にして中空糸膜の真円度を向上させる方法がある(特許文献1参照)。しかし、この方法では紡糸原液の吐出量を増やしていくと、凝固浴槽内で中空糸膜が弛んでしまい紡糸ができなくなってしまう。   As a method of changing the progress of the hollow fiber membrane with a slack prevention guide in the coagulation bath, the distance between the submerged roller and the take-up roller of the coagulation bath is set to 1.01 to 1.5 times the length of the shortest distance. There is a method for improving the roundness of the yarn membrane (see Patent Document 1). However, in this method, when the discharge amount of the spinning solution is increased, the hollow fiber membrane is loosened in the coagulation bath and spinning cannot be performed.

また、中空形成材として気体を用いた乾湿式紡糸において凝固浴内の弛み防止ガイドによって中空糸膜の進行方向を変更させる際に、複数の弛み防止ガイドによって中空糸膜の進行方向を変更させて中空糸膜の真円度を向上させる方法がある(特許文献2参照)。しかし、この方法でも紡糸原液の吐出量を増やしていくと凝固浴槽内で中空糸膜が弛んで紡糸ができなくなってしまう。   Also, when changing the traveling direction of the hollow fiber membrane by the slack prevention guide in the coagulation bath in dry and wet spinning using gas as the hollow forming material, the traveling direction of the hollow fiber membrane is changed by the plurality of slack prevention guides. There is a method for improving the roundness of a hollow fiber membrane (see Patent Document 2). However, even in this method, if the discharge amount of the spinning solution is increased, the hollow fiber membrane is loosened in the coagulation bath and spinning becomes impossible.

複数本の中空糸膜を同時に製造する際に、液中方向変換ガイドを設置し、凝固浴液面と弛み防止ガイドとの間で、複数本の中空糸膜を糸条毎に分繊させることで糸の融着を防ぎ、融着による糸切れ等を無くす方法がある(特許文献3)。しかし、この方法でも紡糸原液の吐出量を増やしていくと凝固浴槽内で中空糸膜が弛んでしまい紡糸ができなくなってしまう。   When manufacturing multiple hollow fiber membranes at the same time, install an in-liquid direction change guide and separate the multiple hollow fiber membranes for each yarn between the coagulation bath liquid level and the slack prevention guide. There is a method of preventing yarn fusing and eliminating yarn breakage due to fusing (Patent Document 3). However, even in this method, if the discharge amount of the spinning solution is increased, the hollow fiber membrane is loosened in the coagulation bath and spinning cannot be performed.

特許文献4、5には、疎水性高分子と親水性高分子からなる中空糸膜の製造方法において、紡糸原液をノズルから下向きに吐出し、エアギャップ部分を経て凝固浴に導き、凝固浴内で進行方向を上向きに変更して凝固浴から引き上げる際に、膜構造の欠陥や破壊を防ぐために中空糸膜の方向転換を緩やかに行なう技術が開示されている。しかし、該技術は、凝固浴内を走行する中空糸膜が複数の方向転換用ガイドで構成される外接軌道上を走行するものであり、本願技術とは異なる。   In Patent Documents 4 and 5, in a method for producing a hollow fiber membrane composed of a hydrophobic polymer and a hydrophilic polymer, a spinning stock solution is discharged downward from a nozzle and led to a coagulation bath through an air gap portion. In order to prevent defects and destruction of the membrane structure when the traveling direction is changed upward and pulled up from the coagulation bath, a technique for gradually changing the direction of the hollow fiber membrane is disclosed. However, this technique is different from the present technique in that the hollow fiber membrane traveling in the coagulation bath travels on a circumscribed track constituted by a plurality of direction changing guides.

特開2006−239643号公報JP 2006-239643 A 特開平7−39731号公報Japanese Patent Laid-Open No. 7-39731 特開2006−239576号公報JP 2006-239576 A 特開2008−284471号公報JP 2008-284471 A 特開2009−6230号公報JP 2009-6230 A

本発明は、このような従来技術の問題点を解決することを目的とするものであって、詳しくは内径および膜厚が比較的大きな中空糸膜を安定して製造するための方法を提供することにある。   The present invention aims to solve such problems of the prior art, and specifically provides a method for stably producing a hollow fiber membrane having a relatively large inner diameter and film thickness. There is.

本発明者らは、上記課題を解決すべく鋭意検討した結果、次のような液体処理用の中空糸膜の製造方法を見出した。
(1)ポリマー、溶媒からなる紡糸原液をチューブインオリフィスノズルの外側環状部より吐出し、空中走行部を通過した後、凝固浴に浸漬して中空糸膜を形成する乾湿式紡糸法において、凝固浴中を走行する中空糸膜の走行軌道が複数の弛み防止ガイドからなるガイド群により構成される内接軌道に沿って走行させることを特徴とする中空糸膜の製造方法である。
(2)弛み防止ガイドの数を2〜7とすることを特徴とする中空糸膜の製造方法である。
(3)凝固浴中を走行する中空糸膜が最初に接触する弛み防止ガイドの接点がチューブインオリフィスノズルの鉛直線を基準にして1〜10cm凝固浴から中空糸膜を引き出す方向と反対側に位置することを特徴とする中空糸膜の製造方法である。
(4)凝固浴中を走行する中空糸膜が最初に接触する弛み防止ガイドの接点が凝固浴の液面より深さ10〜50cmの位置に設置されることを特徴とする中空糸膜の製造方法である。
(5)凝固浴の最下部に位置する弛み防止ガイドと中空糸膜との接点と凝固浴液面との最短距離である最大浸漬長が0.2〜1mであることを特徴とする中空糸膜の製造方法である。
As a result of intensive studies to solve the above problems, the present inventors have found the following method for producing a hollow fiber membrane for liquid treatment.
(1) In a dry-wet spinning method in which a spinning stock solution composed of a polymer and a solvent is discharged from the outer annular part of a tube-in orifice nozzle, passes through an aerial traveling part, and is immersed in a coagulation bath to form a hollow fiber membrane. A hollow fiber membrane manufacturing method is characterized in that a hollow fiber membrane traveling in a bath travels along an inscribed track constituted by a guide group including a plurality of slack prevention guides.
(2) A method for producing a hollow fiber membrane, wherein the number of loosening prevention guides is 2 to 7.
(3) The contact of the slack prevention guide with which the hollow fiber membrane traveling in the coagulation bath first contacts is opposite to the direction in which the hollow fiber membrane is drawn from the 1-10 cm coagulation bath with respect to the vertical line of the tube-in orifice nozzle. It is the manufacturing method of the hollow fiber membrane characterized by being located.
(4) Production of a hollow fiber membrane characterized in that the contact point of the slack prevention guide with which the hollow fiber membrane traveling in the coagulation bath first comes into contact is located at a depth of 10 to 50 cm from the liquid surface of the coagulation bath. Is the method.
(5) A hollow fiber characterized in that the maximum immersion length, which is the shortest distance between the contact between the slack prevention guide located at the bottom of the coagulation bath and the hollow fiber membrane, and the coagulation bath liquid surface is 0.2 to 1 m. It is a manufacturing method of a film | membrane.

本発明の中空糸膜の製造方法を適用することにより、可紡領域が大幅に向上するため容易に中空糸膜の内径と膜厚を十分大きくすることができる。すなわち、中空糸膜の太径化が可能となり、精密濾過、限外濾過などの工業用途や、血液透析、血液濾過、血液透析濾過などの医療用途に利用可能であり、特にワイン酵母液などの懸濁物質を大量に含む被処理液を処理した際にも、中空糸膜入口での目詰まりが少なく、耐圧性が高く、濾過性能を長時間維持することが可能な中空糸膜を安定して製造することができる。   By applying the method for producing a hollow fiber membrane of the present invention, the spinning region is greatly improved, so that the inner diameter and film thickness of the hollow fiber membrane can be easily made sufficiently large. That is, the hollow fiber membrane can be increased in diameter, and can be used for industrial applications such as microfiltration and ultrafiltration, and medical applications such as hemodialysis, hemofiltration, and hemodiafiltration. Even when a liquid to be treated containing a large amount of suspended solids is processed, the hollow fiber membrane that has little clogging at the inlet of the hollow fiber membrane, has high pressure resistance, and can maintain filtration performance for a long time is stabilized. Can be manufactured.

実施例1(弛み防止ガイドを4本用いた場合)の製造方法の一例の工程模式図である。It is a process schematic diagram of an example of the manufacturing method of Example 1 (when four slack prevention guides are used). 実施例2(弛み防止ガイドを2本用いた場合)の製造方法の一例の工程模式図である。It is process schematic diagram of an example of the manufacturing method of Example 2 (when two slack prevention guides are used). 比較例1および2の製造方法の一例の工程模式図である。It is process schematic diagram of an example of the manufacturing method of Comparative Examples 1 and 2. 実施例1で得られた中空糸膜の内表面のSEM写真(×10000)である。2 is a SEM photograph (× 10000) of the inner surface of the hollow fiber membrane obtained in Example 1. FIG. 実施例2で得られた中空糸膜の内表面のSEM写真(×10000)である。3 is a SEM photograph (× 10000) of the inner surface of the hollow fiber membrane obtained in Example 2. FIG. 比較例1で得られた中空糸膜の内表面のSEM写真(×10000)である。3 is a SEM photograph (× 10000) of the inner surface of the hollow fiber membrane obtained in Comparative Example 1. 比較例2で得られた中空糸膜の内表面のSEM写真(×10000)である。3 is a SEM photograph (× 10000) of the inner surface of the hollow fiber membrane obtained in Comparative Example 2.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、紡糸原液をノズルの外側環状部からほぼ鉛直下方に吐出すると同時にノズルの中心孔から芯液を吐出し、次いで中空状の紡糸原液を空中走行部を経て、凝固浴に導いて凝固、相分離させる乾湿式紡糸法において、凝固浴中に複数の弛み防止ガイドおよび/または弛み防止ローラーを設置し、中空糸膜の進行方向を変更させる際に、複数の弛み防止ガイドおよび/または液中ローラーで構成される内接軌道に沿って中空糸膜を走行させることを特徴とする。   In the present invention, the spinning solution is discharged substantially vertically downward from the outer annular portion of the nozzle, and at the same time, the core solution is discharged from the center hole of the nozzle, and then the hollow spinning solution is guided to the coagulation bath through the aerial running portion and coagulated. In the dry-wet spinning method for phase separation, when a plurality of slack prevention guides and / or slack prevention rollers are installed in the coagulation bath to change the traveling direction of the hollow fiber membrane, a plurality of slack prevention guides and / or liquids are used. The hollow fiber membrane is caused to travel along an inscribed track constituted by a middle roller.

本発明において、凝固浴中に設置する弛み防止ガイド、ローラーの素材は特に限定されないが、テフロン(登録商標)、ベークライト(登録商標)、ステンレス、またステンレスの表面をテフロン(登録商標)、シリコン、ハードクロム等でコートしたもの等が挙げられ、耐久性の点、摩擦抵抗低減の点からステンレスの丸棒ガイドの表面をハードクロムコートし梨地加工したものが好ましい。また、固定タイプ、フリータイプ何れのタイプでも良く、駆動タイプのローラー形状でも良い。
また、前記弛み防止ガイド方式とは異なり、凝固浴中に樋状のものを設置し、素麺流しのように走行させる方法も採用できる。本発明においては、紡糸原液のノズル吐出線速度や引取り速度、重力加速度、凝固浴中での走行抵抗などがバランスされているだけでなく、紡糸原液の比重が高いため、中空糸膜が浮き上がることなく、樋上を安定して走行させることが可能である。
In the present invention, the material for the slack prevention guide and roller installed in the coagulation bath is not particularly limited, but Teflon (registered trademark), Bakelite (registered trademark), stainless steel, and the surface of the stainless steel is Teflon (registered trademark), silicon, Examples include those coated with hard chrome and the like. From the viewpoint of durability and reducing frictional resistance, the surface of the stainless steel round bar guide is preferably hard chrome coated and textured. Moreover, any of a fixed type and a free type may be sufficient, and a drive-type roller shape may be sufficient.
In addition, unlike the slack prevention guide method, a method of installing a bowl-shaped thing in the coagulation bath and running like a noodle sink can also be adopted. In the present invention, not only is the balance of the nozzle discharge linear speed and take-up speed of the spinning dope, gravitational acceleration, running resistance in the coagulation bath, and the specific gravity of the spinning dope high, so the hollow fiber membrane floats. It is possible to make it run stably on the roof without any trouble.

中空糸膜を(乾)湿式紡糸する際には、凝固浴中に設置された1つまたは複数の弛み防止ガイド(液中ガイド)の外側(より深い側)を回り込むように走行させるのが通常である(図3参照)。しかし、内径や膜厚を大きくするために、紡糸原液の吐出量を増やしていくと、凝固浴中を走行する中空糸膜に弛みが発生し、次第に弛みが大きくなっていく現象が生ずる。この弛みを取り除くために凝固浴中で延伸(ドラフト)をかけていくと、内径、膜厚が小さくなる問題が生ずるが、延伸(ドラフト)を大きくしていっても弛みを解消できない不可解な現象が生ずる。この現象の原因についてはよくわからないが、紡糸原液の吐出量、吐出線速度、重力(加速度)、凝固液による走行抵抗などが関係しているものと思われる。   When hollow fiber membranes are (dry) wet-spun, it is usually run around the outside (deeper side) of one or more slack prevention guides (submerged guides) installed in the coagulation bath. (See FIG. 3). However, if the amount of spinning solution discharged is increased in order to increase the inner diameter and the film thickness, the hollow fiber membrane running in the coagulation bath is slackened, and the phenomenon that the slackness gradually increases occurs. If stretching (draft) is applied in the coagulation bath to remove this slackness, there will be a problem that the inner diameter and the film thickness become smaller. However, even if the stretching (draft) is increased, the slackness cannot be solved. Will occur. The cause of this phenomenon is not well understood, but it seems to be related to the discharge amount of the spinning solution, the discharge linear velocity, gravity (acceleration), running resistance due to the coagulation liquid, and the like.

本発明者は、前記弛みを抑制するために鋭意検討した結果、凝固浴中での弛みの発生状況を観察した結果、ノズルから吐出された紡糸原液が空中走行部を経て凝固浴に侵入した後、ノズルドラフトをかけているにもかかわらず、一旦凝固浴出口方向とは反対方向(図1、2における左方向)に膨らむ特徴があることがわかった。その後重力に従い、凝固浴の底部に向かって沈んでいく。このような現象を観察した結果、凝固浴中を走行する中空糸膜にかかる凝固浴出口方向とは反対方向に膨らむ力と重力を抑えることによって、太径中空糸膜であっても安定して紡糸できるのではないかと考え、ついに本発明に到達した。   As a result of intensive studies to suppress the slackness, the present inventor has observed the occurrence of slackness in the coagulation bath, and as a result, after the spinning stock solution discharged from the nozzle has entered the coagulation bath through the aerial running part In spite of applying the nozzle draft, it has been found that there is a characteristic that it swells in the direction opposite to the coagulation bath outlet direction (the left direction in FIGS. 1 and 2). Then it follows gravity and sinks towards the bottom of the coagulation bath. As a result of observing such a phenomenon, it is possible to stabilize even a large-diameter hollow fiber membrane by suppressing the force and gravity that swells in the direction opposite to the coagulation bath outlet direction applied to the hollow fiber membrane running in the coagulation bath. We thought that we could spin and finally reached the present invention.

ワインおよびビール等の発酵液を中空糸膜モジュールで処理する際には、一般的に中空糸膜の中空部に発酵液を高流量で流しながら1〜1.5bar程度の高い圧力をかけて行うクロスフロー濾過により中空糸膜の内側から外側へ濾過することで発酵液を清浄化する。この際、前記発酵液には比較的大きなサイズの懸濁物質が多く含まれており、このような被処理液を中空糸膜で処理する際には、後述するような比較的大口径の中空糸膜であって、単位膜面積当たり濾過性能が高く、中空糸膜入口部の目詰まりが少なく、耐圧性の高い中空糸膜が必要である。   When processing fermented liquor such as wine and beer with a hollow fiber membrane module, it is generally performed by applying a high pressure of about 1 to 1.5 bar while flowing the fermented liquid through the hollow part of the hollow fiber membrane at a high flow rate. The fermentation liquor is purified by filtering from the inside to the outside of the hollow fiber membrane by crossflow filtration. At this time, the fermentation broth contains a large amount of suspended substances having a relatively large size. When such a liquid to be treated is treated with a hollow fiber membrane, a hollow having a relatively large diameter as described later is used. There is a need for a hollow fiber membrane that is a yarn membrane, has high filtration performance per unit membrane area, is less clogged at the inlet portion of the hollow fiber membrane, and has high pressure resistance.

濾過性能を高くするためには、一般的に紡糸原液のポリマー濃度を低くし、芯液の溶媒濃度を高くする方法が採られる。一方、中空糸膜入口部の目詰まりを少なくするためには内径を十分大きくする必要があるが、そうすると中空率が低下してしまうので、膜厚も十分大きくしないと強度が弱くなってしまい使用中に膜が破損して使用することができなくなってしまう。   In order to increase the filtration performance, a method is generally employed in which the polymer concentration of the spinning dope is lowered and the solvent concentration of the core solution is increased. On the other hand, in order to reduce clogging at the entrance of the hollow fiber membrane, it is necessary to increase the inner diameter sufficiently. However, since the hollow ratio is lowered, the strength is weakened unless the film thickness is sufficiently increased. The membrane is damaged and cannot be used.

しかし、所期の性能や品質を確保するために紡糸原液中のポリマー濃度を比較的低くし、芯液の溶媒濃度を比較的高くした条件で中空糸膜を紡糸しようとすると、凝固過程で紡糸原液が自重で伸びるためか、中空糸膜が凝固浴内で弛んでしまい紡糸ができなくなり、内径および膜厚を十分大きくすることができなかった。   However, if the hollow fiber membrane is to be spun in a condition where the polymer concentration in the spinning dope is relatively low and the solvent concentration of the core solution is relatively high in order to ensure the expected performance and quality, spinning is performed during the coagulation process. The hollow fiber membrane was loosened in the coagulation bath because the stock solution was stretched by its own weight, making spinning impossible, and the inner diameter and film thickness could not be increased sufficiently.

ノズルより吐出された紡糸原液が凝固浴内で弛みを生ずる原因としては、先述したように紡糸原液が凝固浴内で凝固した中空糸膜の自重によって下方に沈む。そして、下方への力が空中走行部で凝固が完了していない状態の紡糸原液に伝わるため、結果として空中走行部の紡糸原液が引き伸ばされてしまい、ドラフトをかけても凝固浴内での中空糸膜の弛みを抑えきれないためである。   The cause of the slack in the spinning solution discharged from the nozzle in the coagulation bath sinks downward due to the weight of the hollow fiber membrane solidified in the coagulation bath as described above. And since the downward force is transmitted to the spinning stock solution in a state where coagulation has not been completed in the aerial traveling part, the spinning stock solution in the aerial traveling part is stretched as a result. This is because the slack of the yarn membrane cannot be suppressed.

本発明者は、前記課題を解決するため鋭意検討した結果、紡糸原液の自重による伸びや凝固液の抵抗による伸びを抑える工夫を施すことにより紡糸安定性を確保しながら、性能や品質を安定化させることができることを見出し本発明に至った。すなわち、本発明においては、ノズル〜凝固浴にかかる前記紡糸原液(中空糸膜)の伸びを抑えるために、凝固浴中の要所に複数のガイドまたはローラーを設置するとか、樋状の治具を設置することにより、過度の延伸(ドラフト)をかけることなく、自重や抵抗による紡糸原液(中空糸膜)の伸びを防ぎながら中空糸膜を形成することができる。   As a result of diligent study to solve the above problems, the present inventors have stabilized the performance and quality while ensuring spinning stability by devising the elongation due to the weight of the spinning dope and the resistance due to the resistance of the coagulation liquid. The present invention was found out that it can be made. That is, in the present invention, in order to suppress the elongation of the spinning solution (hollow fiber membrane) applied to the nozzle to the coagulation bath, a plurality of guides or rollers are installed at important points in the coagulation bath, or a bowl-shaped jig is used. By installing the, a hollow fiber membrane can be formed while preventing elongation of the spinning dope (hollow fiber membrane) due to its own weight or resistance without applying excessive drawing (draft).

本発明において、紡糸原液(中空糸膜)が凝固浴中で最初に接触する弛み防止ガイドまたは液中ローラーの接点の位置は、ノズルの鉛直下方線よりも1〜10cm凝固浴から中空糸膜を引き出す方向と反対側に位置することが好ましく、2〜7cmがより好ましい。先述したように、凝固浴に進入した紡糸原液は凝固液の流れに逆らって一旦凝固浴から中空糸膜を引き出す方向とは反対方向に向かって弛み始めるが、紡糸原液の少なくとも表面が固まる前にガイド等に接触すると、中空糸膜表面に傷がつくとか、外表面形状の曲面の滑らかさが損なわれる(外表面が変形する)問題がある。すなわち、紡糸原液が凝固浴中をある程度走行し、表面が固まった後にガイド等に接触させる必要が生じるが、そうすると紡糸原液は凝固浴から中空糸膜を引き出す方向とは反対方向に若干弛みが生じているので、弛み防止ガイドの深さにもよるが、前記範囲に設置するのが好ましい。1cmより小さいと引取りローラーで引っ張られた中空糸膜が反対方向に行く力を支えることができず、10cmより大きいと凝固浴中の中空糸膜の自重によって下方に沈む力が空中走行部の凝固が完了していない状態の紡糸原液に伝わるため、空中走行部の紡糸原液が引き伸ばされて空中走行部での紡糸原液の揺れが大きくなり、可紡性や性能に影響を与えることがある。
紡糸原液が凝固浴中で最初に接触する弛み防止ガイドの凝固浴液面からの深さは、10〜30cmであることが好ましい。15〜25cmがより好ましい。
In the present invention, the position of the slack prevention guide or the contact of the submerged roller first contacted with the spinning solution (hollow fiber membrane) in the coagulation bath is 1-10 cm from the vertical downward line of the nozzle. It is preferably located on the side opposite to the drawing direction, more preferably 2 to 7 cm. As described above, the spinning dope that has entered the coagulation bath begins to slack in the direction opposite to the direction in which the hollow fiber membrane is pulled out of the coagulation bath against the flow of the coagulation solution, but before at least the surface of the spinning dope is solidified. When contacted with a guide or the like, there is a problem that the surface of the hollow fiber membrane is damaged or the smoothness of the curved surface of the outer surface shape is impaired (the outer surface is deformed). In other words, the spinning solution travels to some extent in the coagulation bath and needs to be brought into contact with a guide or the like after the surface is hardened. However, the spinning solution is slightly slackened in the direction opposite to the direction in which the hollow fiber membrane is drawn from the coagulation bath. Therefore, although it depends on the depth of the slack prevention guide, it is preferable to install in the above range. If it is smaller than 1 cm, the hollow fiber membrane pulled by the take-up roller cannot support the force going in the opposite direction. If it is larger than 10 cm, the force that sinks downward due to the weight of the hollow fiber membrane in the coagulation bath is Since the spinning solution is transferred to the spinning solution in a state where coagulation is not completed, the spinning solution in the aerial traveling section is stretched and the spinning solution in the aerial traveling section is greatly shaken, which may affect the spinnability and performance.
It is preferable that the depth from the coagulation bath liquid surface of the slack prevention guide with which the spinning dope comes into contact first in the coagulation bath is 10 to 30 cm. 15-25 cm is more preferable.

本発明において、凝固浴最深部に位置する弛み防止ガイドと中空糸膜との接点とその接点から凝固浴液面までの最短距離である最大浸漬長は0.2〜1mであることが好ましく、0.3〜0.8mがより好ましく、0.4〜0.6mがさらに好ましい。0.2mより短いと紡糸原液の凝固が不完全であるため、未凝固の紡糸原液(中空糸膜)と弛み防止ガイドが接触した際に潰れが発生したり、外表面形状の変形、極端な場合には膜の断面で2層に剥離してしまうという現象が生ずることがある。1mより大きいと作業性が悪くなる問題がある。
また、凝固浴の最深部に位置するガイドと中空糸膜との接点は、ノズルの鉛直下方線よりも凝固浴の出口側(凝固浴から中空糸膜を引き出す方向)に位置するのが好ましく、鉛直下方線よりもおよそ30cm以内の位置にあるのがより好ましく、20cm以内にあるのがさらに好ましい。紡糸原液(中空糸膜)の走行速度にもよるが、30cmを超えると自重による弛みを解消しきれず、安定走行を維持できないことがある。
本発明においては、前記した2つのガイド設置が特に重要であり、他のガイドは走行状態を観察しながら安定走行できるように適宜、必要な位置に必要本数設置すればよい。
In the present invention, the maximum immersion length, which is the shortest distance from the contact between the slack prevention guide located at the deepest part of the coagulation bath and the hollow fiber membrane and the contact point to the coagulation bath liquid surface, is preferably 0.2 to 1 m. 0.3 to 0.8 m is more preferable, and 0.4 to 0.6 m is more preferable. If the length is shorter than 0.2 m, coagulation of the spinning dope is incomplete, and when the uncoagulated spinning dope (hollow fiber membrane) comes into contact with the slack prevention guide, crushing occurs, deformation of the outer surface shape, In some cases, a phenomenon may occur in which the film is separated into two layers at the cross section of the film. If it is larger than 1 m, there is a problem that workability deteriorates.
In addition, the contact between the guide and the hollow fiber membrane located in the deepest part of the coagulation bath is preferably located on the outlet side of the coagulation bath (the direction in which the hollow fiber membrane is drawn from the coagulation bath) from the vertical lower line of the nozzle, It is more preferable that the position is within about 30 cm from the vertical downward line, and more preferably within 20 cm. Although it depends on the running speed of the spinning dope (hollow fiber membrane), if it exceeds 30 cm, the slack due to its own weight cannot be eliminated and stable running may not be maintained.
In the present invention, the installation of the two guides described above is particularly important, and the other guides may be installed as many as necessary at necessary positions so that stable traveling can be performed while observing the traveling state.

本発明において、凝固浴中の複数の弛み防止ガイドは、全体が必ずしも凝固液に浸漬されている必要はなく、中空糸膜とガイドとの接触部が少なくとも凝固液に浸漬されていればよい。また、凝固浴内でのガイドの位置は特に限定されるものではなく、紡糸原液の凝固速度により、所望の各ガイド前後の中空糸膜の角度が得られるよう設置すればよい。   In the present invention, the plurality of slack prevention guides in the coagulation bath do not necessarily have to be entirely immersed in the coagulating liquid, and it is sufficient that the contact portion between the hollow fiber membrane and the guide is at least immersed in the coagulating liquid. Further, the position of the guide in the coagulation bath is not particularly limited, and it may be installed so that the desired angle of the hollow fiber membrane before and after each guide is obtained by the coagulation speed of the spinning dope.

本発明において、吐出線速度/凝固浴第一ローラー速度比(ドラフト比)は0.9〜1.8が好ましい範囲である。前記比が0.9未満では、引取り速度が遅すぎて本願発明を適用しても走行する中空糸膜の弛みを解消することができない。また、ドラフト比が1.8を超える場合には中空糸膜の細孔形状の変形をもたらすことがある。より好ましくは0.95〜1.7、さらに好ましくは1.0〜1.6、特に好ましくは1.05〜1.5である。ドラフト比をこの範囲に調整することにより、比較的太径の中空糸膜であっても安定に紡糸でき、細孔の変形や破壊を防ぐことができ、膜孔への被処理液中の夾雑物の目詰まりを防ぎ、経時的な性能安定性やシャープな分画特性を発現することが可能となる。   In the present invention, the discharge linear speed / coagulation bath first roller speed ratio (draft ratio) is preferably in the range of 0.9 to 1.8. If the ratio is less than 0.9, the take-off speed is too slow, and the slackness of the traveling hollow fiber membrane cannot be eliminated even if the present invention is applied. When the draft ratio exceeds 1.8, the pore shape of the hollow fiber membrane may be deformed. More preferably, it is 0.95-1.7, More preferably, it is 1.0-1.6, Most preferably, it is 1.05-1.5. By adjusting the draft ratio within this range, even a relatively large diameter hollow fiber membrane can be spun stably, and deformation and destruction of the pores can be prevented. It is possible to prevent clogging of objects, and to exhibit performance stability over time and sharp fractionation characteristics.

本発明の中空糸膜の素材は特に限定されず、セルロース、セルロースアセテート、ポリメチルメタクリレート、ポリスルホン(PSf)、ポリエーテルスルホン(PES)、ポリアミド、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデンなどが挙げられるが、ポリスルホンおよびポリエーテルスルホン等のポリスルホン系ポリマーはポリビニルピロリドン(PVP)等により容易に親水性を付与することができ、可紡性および十分な透過性能を得ることができるため特に好ましい。   The material of the hollow fiber membrane of the present invention is not particularly limited, and examples include cellulose, cellulose acetate, polymethyl methacrylate, polysulfone (PSf), polyethersulfone (PES), polyamide, polyethylene, polypropylene, and polyvinylidene fluoride. Polysulfone-based polymers such as polysulfone and polyethersulfone are particularly preferred because they can easily impart hydrophilicity with polyvinylpyrrolidone (PVP) or the like, and can obtain spinnability and sufficient permeation performance.

製膜溶液に使用される溶媒は、N−メチル−2−ピロリドン(以下NMPと略記する)、N,N−ジメチルホルムアミド(以下DMFと略記する)、N,N−ジメチルアセトアミド(以下DMAcと略記する)、ジメチルスルホキシド(以下DMSOと略記する)、ε−カプロラクタムなど、使用される疎水性高分子、親水性高分子の良溶媒であれば広く使用することが可能であるが、疎水性高分子としてPSf、PESなどのポリスルホン系高分子を使用する場合には、NMP、DMF、DMAcなどの溶媒が好ましく、NMPが特に好ましい。   Solvents used in the film-forming solution are N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP), N, N-dimethylformamide (hereinafter abbreviated as DMF), N, N-dimethylacetamide (hereinafter abbreviated as DMAc). ), Dimethyl sulfoxide (hereinafter abbreviated as DMSO), ε-caprolactam, etc., can be widely used as long as it is a good solvent for hydrophobic polymers and hydrophilic polymers. When a polysulfone polymer such as PSf or PES is used, a solvent such as NMP, DMF, or DMAc is preferable, and NMP is particularly preferable.

また、紡糸原液には必要により高分子に対する非溶媒を添加することも可能である。使用される非溶媒としては、例えば、エチレングリコール(以下EGと略記する)、プロピレングリコール(以下PGと略記する)、ジエチレングリコール(以下DEGと略記する)、トリエチレングリコール(以下TEGと略記する)、ポリエチレングリコール(以下PEGと略記する)、グリセリン、水などが例示されるが、疎水性高分子としてPSf、PESなどのポリスルホン系高分子、親水性高分子としてPVPを使用する場合には、DEG、TEG、PEGなどのエーテルポリオールが好ましく、TEGがより好ましい。   In addition, a non-solvent for the polymer can be added to the spinning dope if necessary. Examples of the non-solvent used include ethylene glycol (hereinafter abbreviated as EG), propylene glycol (hereinafter abbreviated as PG), diethylene glycol (hereinafter abbreviated as DEG), triethylene glycol (hereinafter abbreviated as TEG), Examples include polyethylene glycol (hereinafter abbreviated as PEG), glycerin, water, and the like. When using a polysulfone polymer such as PSf or PES as a hydrophobic polymer, or PVP as a hydrophilic polymer, DEG, Ether polyols such as TEG and PEG are preferred, and TEG is more preferred.

紡糸原液における疎水性高分子の濃度は、該原液からの製膜が可能であれば特に制限されないが、10〜35重量%が好ましく、15〜30重量%がより好ましい。高い透過性を得るには疎水性高分子の濃度は低いほうが好ましいが、過度に低いと強度の低下を招く可能性があるので、10〜25重量%が好ましい。
親水性高分子の添加量は、中空糸膜に親水性を付与し、水性流体処理時の非特異吸着を抑制するのに十分な量であれば特に制限されないが、疎水性高分子に対する親水性高分子の比率として10〜35重量%が好ましく、15〜25重量%がより好ましい。親水性高分子の添加量が少なすぎると膜への親水性付与が不十分となり、膜特性の保持性が低下する可能性がある。また、親水性高分子の添加量が多すぎると親水性付与効果が飽和してしまい効率がよくなく、また、紡糸原液の相分離(凝固)が過度に進行しやすくなり、本発明の好ましい膜構造を形成するのに不利となることがある。
The concentration of the hydrophobic polymer in the spinning stock solution is not particularly limited as long as film formation from the stock solution is possible, but is preferably 10 to 35% by weight, and more preferably 15 to 30% by weight. In order to obtain high permeability, the concentration of the hydrophobic polymer is preferably low, but if it is too low, the strength may be lowered, so 10 to 25% by weight is preferable.
The amount of hydrophilic polymer added is not particularly limited as long as it is sufficient to impart hydrophilicity to the hollow fiber membrane and suppress non-specific adsorption during aqueous fluid treatment. The polymer ratio is preferably 10 to 35% by weight, and more preferably 15 to 25% by weight. If the amount of the hydrophilic polymer added is too small, hydrophilicity imparting to the film may be insufficient, and the retention of the film characteristics may be reduced. Further, when the amount of the hydrophilic polymer added is too large, the hydrophilicity imparting effect is saturated and the efficiency is not good, and the phase separation (coagulation) of the spinning dope tends to proceed excessively. It may be disadvantageous to form the structure.

紡糸原液中における溶媒/非溶媒の比は、紡糸工程における相分離(凝固)の制御に重要な要因の1つである。具体的には、溶媒/非溶媒の含有量が重量比で35/65〜70/30であることが好ましく、40/60〜60/40であることがより好ましく、45/55〜50/50であることがさらに好ましい。溶媒の含有量が少なすぎると凝固が進行しやすくなり、膜構造が緻密化しすぎて透過性が低下することがある。また、溶媒含有量が多すぎると相分離の進行が過度に抑制され、細孔径が大きくなりすぎて、分画特性や強度の低下を招く可能性がある。   The solvent / non-solvent ratio in the spinning dope is one of the important factors for controlling phase separation (coagulation) in the spinning process. Specifically, the content of the solvent / non-solvent is preferably 35/65 to 70/30 by weight, more preferably 40/60 to 60/40, and 45/55 to 50/50. More preferably. If the content of the solvent is too small, solidification tends to proceed, the membrane structure becomes too dense, and the permeability may decrease. On the other hand, if the solvent content is too high, the progress of phase separation is excessively suppressed and the pore diameter becomes too large, which may lead to a decrease in fractionation characteristics and strength.

中空糸膜の製膜時に使用される芯液の組成は、紡糸原液に使用するのと同じ溶媒、非溶媒、水との混合液を使用することが好ましい。この際、芯液中に含まれる溶媒と非溶媒の比率は、紡糸原液の溶媒/非溶媒比率と同一とするのが好ましい。紡糸原液に使用されるのと同一の溶媒および非溶媒を、紡糸原液中の比率と同一にして混合し、これに水を添加して希釈したものが好ましく用いられる。紡糸原液と芯液の溶媒/非溶媒組成を同一とすることにより、原料調達や製造コスト、取り扱いの煩雑さを低減することができる。
芯液中の水の含量は、好ましくは10〜20重量%、より好ましくは14〜18重量%である。水の含有量が多すぎると、凝固が進行しやすくなり、膜構造が緻密化しすぎて透過性が低下する可能性がある。また、水含有量が少なすぎると、相分離の進行が過度に抑
制され、孔径が大きくなりすぎて、分画特性や強度の低下を招く可能性があるとともに中空糸膜が凝固浴内で弛んでしまい、本発明の製造方法を用いても内径および膜厚を十分大きくすることができなくなる。
As the composition of the core liquid used in forming the hollow fiber membrane, it is preferable to use a mixed solution of the same solvent, non-solvent, and water as used for the spinning dope. At this time, the ratio of the solvent and the non-solvent contained in the core liquid is preferably the same as the solvent / non-solvent ratio of the spinning dope. Preferably, the same solvent and non-solvent used in the spinning dope are mixed in the same ratio as in the spinning dope and diluted by adding water. By making the solvent / non-solvent composition of the spinning dope and the core solution the same, it is possible to reduce raw material procurement, manufacturing costs, and complexity of handling.
The content of water in the core liquid is preferably 10 to 20% by weight, more preferably 14 to 18% by weight. If the water content is too high, solidification tends to proceed, the membrane structure becomes too dense, and the permeability may decrease. If the water content is too low, the progress of phase separation is excessively suppressed and the pore size becomes too large, which may lead to a decrease in fractionation characteristics and strength, and the hollow fiber membrane relaxes in the coagulation bath. Therefore, even if the manufacturing method of the present invention is used, the inner diameter and the film thickness cannot be sufficiently increased.

外部凝固液の組成は、紡糸原液に使用するのと同じ溶媒、非溶媒、水の混合液を使用するのが好ましい。この際、芯液中に含まれる該溶媒と該非溶媒の比率は、紡糸原液の溶媒/非溶媒比率と同一とするのが好ましい。紡糸原液に使用されるのと同一の溶媒および非溶媒を、紡糸原液中の比率と同一にして混合し、これに水を添加して希釈したものが好ましく用いられる。紡糸原液、芯液、外部凝固液の溶媒/非溶媒組成を同一とすることにより、外部凝固液の組成変化を抑制することができ、製造コスト、管理の面より好ましい。
外部凝固液中の水の含量は、好ましくは30〜85重量%、より好ましくは40〜80重量%である。水の含有量が多すぎると凝固が進行しやすくなり、膜構造が緻密化して透過性が低下することがある。また、水含有量が少なすぎると相分離の進行が過度に抑制され、大孔径の空孔が生じやすくなり、分画特性や強度の低下を招く可能性がある。
また、外部凝固液の温度が低すぎると凝固が進行しやすくなり、膜構造が緻密化して透過性が低下する可能性がある。一方、高すぎると相分離の進行が過度に抑制され、大孔径の空孔が生じやすくなり、分画特性や強度の低下を招く可能性がある。したがって、外部凝固液の温度は30〜80℃が好ましく、より好ましくは40〜70℃である。
The composition of the external coagulation liquid is preferably the same solvent, non-solvent and water mixture used for the spinning dope. At this time, the ratio of the solvent and the non-solvent contained in the core liquid is preferably the same as the solvent / non-solvent ratio of the spinning dope. Preferably, the same solvent and non-solvent used in the spinning dope are mixed in the same ratio as in the spinning dope and diluted by adding water. By making the solvent / non-solvent composition of the spinning dope, the core liquid, and the external coagulation liquid the same, it is possible to suppress the composition change of the external coagulation liquid, which is preferable from the viewpoint of manufacturing cost and management.
The content of water in the external coagulation liquid is preferably 30 to 85% by weight, more preferably 40 to 80% by weight. If the water content is too high, solidification tends to proceed, the membrane structure may become dense, and permeability may be reduced. On the other hand, if the water content is too small, the progress of phase separation is excessively suppressed and pores having a large pore diameter are likely to be generated, which may lead to a decrease in fractionation characteristics and strength.
In addition, if the temperature of the external coagulation liquid is too low, coagulation tends to proceed, and the membrane structure may be densified and the permeability may be reduced. On the other hand, if it is too high, the progress of phase separation is excessively suppressed, and pores having a large pore diameter are likely to be generated, which may cause a decrease in fractionation characteristics and strength. Therefore, the temperature of the external coagulation liquid is preferably 30 to 80 ° C, more preferably 40 to 70 ° C.

本発明において、凝固浴中に設置する弛み防止ガイドの数は凝固浴を走行する中空糸膜の弛みを抑えることができれば特に制限は無いが、あまり多くしても中空糸膜の走行抵抗が大きくなるだけであるので2〜7とするのが適当である。より好ましくは2〜5である。   In the present invention, the number of slack prevention guides installed in the coagulation bath is not particularly limited as long as the slack of the hollow fiber membrane running in the coagulation bath can be suppressed. Therefore, it is appropriate to set to 2-7. More preferably, it is 2-5.

本発明において、ノズル温度は、低すぎると凝固が進行しやすくなり、膜構造が緻密化しすぎて透過性が低下することがある。また、高すぎると紡糸原液の粘度が低くなり過ぎて空中走行部での安定性や、凝固浴中の中空糸膜の自重が伝わり空中走行部の未凝固の紡糸原液が引き伸ばされて紡糸できなくなることがある。さらに、相分離の進行が過度に抑制され、大孔径の空孔が生じやすくなり、分画特性や強度の低下を招く可能性がある。したがって、ノズル温度は40〜70℃が好ましく、より好ましくは45〜60℃である。   In the present invention, if the nozzle temperature is too low, solidification tends to proceed, the membrane structure may become too dense, and the permeability may decrease. On the other hand, if the viscosity is too high, the viscosity of the spinning dope becomes too low and stability in the aerial running section, and the weight of the hollow fiber membrane in the coagulation bath is transmitted and the uncoagulated spinning dope in the aerial running section is stretched, making spinning impossible. Sometimes. Furthermore, the progress of phase separation is excessively suppressed, and pores having a large pore diameter are likely to be generated, which may cause a decrease in fractionation characteristics and strength. Therefore, the nozzle temperature is preferably 40 to 70 ° C, more preferably 45 to 60 ° C.

本発明の中空糸膜の内径は、好ましくは700〜2000μmである。発酵液中には、最大で500μm程度の直径を有する微粒子が存在することがあり、内径が小さすぎると中空糸膜の中空部を閉塞させるおそれがあるため、中空糸膜の内径は800μm以上がより好ましい。900μm以上がさらに好ましく、1000μm以上がさらにより好ましい。また、内径が大きすぎる場合には、耐圧性を保つために膜厚も大きくして中空率を維持する必要があるが、膜厚を厚くすると発酵液を濾過する際に膜厚部分が抵抗になり、十分な濾過流量を得られなくなる可能性がある。また、ノズルから紡糸原液と内液とを一緒に吐出して、凝固浴で凝固させる際に、紡糸原液量が多いために凝固が不十分となってしまい、中空糸膜形状を維持できなくなってしまうことがある。さらに、内径が大きすぎるとクロスフロー濾過に必要な線速度を得るために発酵液を流すポンプの電気エネルギーが大きくなるためランニングコストが高くなる可能性がある。したがって、中空糸膜内径は1800μm以下がより好ましく、1700μm以下がさらに好ましく、1600μm以下がさらにより好ましい。   The inner diameter of the hollow fiber membrane of the present invention is preferably 700 to 2000 μm. Fine particles having a diameter of about 500 μm at the maximum may be present in the fermentation broth, and if the inner diameter is too small, the hollow portion of the hollow fiber membrane may be blocked. Therefore, the inner diameter of the hollow fiber membrane should be 800 μm or more. More preferred. 900 μm or more is more preferable, and 1000 μm or more is even more preferable. In addition, if the inner diameter is too large, it is necessary to increase the film thickness to maintain the hollow ratio in order to maintain pressure resistance, but if the film thickness is increased, the film thickness portion becomes resistant to the resistance when filtering the fermentation broth. Therefore, there is a possibility that a sufficient filtration flow rate cannot be obtained. In addition, when the spinning solution and the internal solution are discharged together from the nozzle and coagulated in the coagulation bath, coagulation becomes insufficient due to the large amount of spinning solution, and the hollow fiber membrane shape cannot be maintained. May end up. Furthermore, if the inner diameter is too large, the electric energy of the pump that flows the fermented liquor in order to obtain the linear velocity necessary for cross-flow filtration increases, which may increase the running cost. Accordingly, the inner diameter of the hollow fiber membrane is more preferably 1800 μm or less, further preferably 1700 μm or less, and even more preferably 1600 μm or less.

中空糸膜の膜厚は、好ましくは200〜500μm、より好ましくは250〜350μmである。膜厚が薄すぎると、1.0〜1.5bar程度の圧力をかけて発酵液を濾過する際に、膜が破損する可能性がある。膜厚が厚すぎると、発酵液を濾過する際に十分な濾過流量を得られなくなる可能性がある。   The thickness of the hollow fiber membrane is preferably 200 to 500 μm, more preferably 250 to 350 μm. If the film thickness is too thin, the film may be damaged when the fermentation broth is filtered by applying a pressure of about 1.0 to 1.5 bar. When the film thickness is too thick, there is a possibility that a sufficient filtration flow rate cannot be obtained when the fermentation broth is filtered.

前記したような内径、膜厚を有する中空糸膜を製造するためのノズルとしては、チューブインオリフィス型のノズルを用いるのが好ましく、この場合ノズルスリット外径は1000〜3000μmが好ましく、1300〜2800μmがより好ましく、1500〜2500μmがさらに好ましい。また、ノズルスリット内径は800〜2000μmが好ましく、1000〜1700μmがより好ましい。また、スリット幅は所望する中空糸膜の膜厚にもよるが、500〜1000μmが好ましく、700〜900μmがより好ましい。スリット幅が過剰に大きなノズルを使用すると、所望の膜厚を得るためにノズルドラフトを大きくする必要が生じ、得られる中空糸膜の細孔構造に悪影響を与えることがある。   As a nozzle for producing a hollow fiber membrane having an inner diameter and a film thickness as described above, a tube-in-orifice type nozzle is preferably used. In this case, the nozzle slit outer diameter is preferably 1000 to 3000 μm, and 1300 to 2800 μm. Is more preferable, and 1500 to 2500 μm is more preferable. The nozzle slit inner diameter is preferably 800 to 2000 μm, more preferably 1000 to 1700 μm. The slit width depends on the desired thickness of the hollow fiber membrane, but is preferably 500 to 1000 μm, more preferably 700 to 900 μm. When a nozzle having an excessively large slit width is used, it is necessary to increase the nozzle draft in order to obtain a desired film thickness, which may adversely affect the pore structure of the resulting hollow fiber membrane.

中空糸膜の内径の2乗を外径の2乗で除した中空率は、25〜55%が好ましく、より好ましくは30〜50%、さらに好ましくは30〜45%である。中空率が小さいと所定の膜面積を有するモジュールが大きくなってしまう。中空率が大きいと膜の強度が弱くなり使用に耐えることができなくなる。   The hollow ratio obtained by dividing the square of the inner diameter of the hollow fiber membrane by the square of the outer diameter is preferably 25 to 55%, more preferably 30 to 50%, and still more preferably 30 to 45%. When the hollow ratio is small, a module having a predetermined membrane area becomes large. If the hollow ratio is large, the strength of the membrane becomes weak and it cannot be used.

本発明の中空糸膜は、温度22℃、操作圧1barにおける中空糸膜の内側から中空糸膜の外側への純水の透過速度が好ましくは1000〜5000L/m2/h/bar、より好ましくは1500〜4500L/m2/h/bar、さらに好ましくは2000〜4000L/m2/h/barである。純水の透過速度が小さすぎると単位膜面積当たりの十分な発酵液の濾過流量を得ることができないことがある。純水の透過速度が大きすぎると膜が弱くなり耐圧性が低下する可能性がある。 The hollow fiber membrane of the present invention preferably has a pure water permeation rate from the inside of the hollow fiber membrane to the outside of the hollow fiber membrane at a temperature of 22 ° C. and an operating pressure of 1 bar, more preferably 1000 to 5000 L / m 2 / h / bar. the 1500~4500L / m 2 / h / bar , more preferably from 2000~4000L / m 2 / h / bar . If the permeation rate of pure water is too low, it may not be possible to obtain a sufficient fermentation broth filtration flow rate per unit membrane area. If the permeation rate of pure water is too high, the membrane may become weak and pressure resistance may be reduced.

本発明の中空糸膜を純水に浸漬して測定した時のバースト圧は、6.0MPa以上、より好ましくは7.0MPa以上、さらに好ましくは8.0MPa以上、さらにより好ましくは9.0MPa以上である。発酵液を濾過する際に1.0〜1.5bar程度の圧力をかけて濾過するためバースト圧が低いと膜が破損する可能性がある。発酵液には10〜20%程度のアルコール分を含有するため純水で測定したバースト圧よりも数倍高いバースト圧が必要となる。また、バースト圧が低いと繰返し使用する際の耐久性が低下してしまう。   The burst pressure when measured by immersing the hollow fiber membrane of the present invention in pure water is 6.0 MPa or more, more preferably 7.0 MPa or more, still more preferably 8.0 MPa or more, and even more preferably 9.0 MPa or more. It is. When the fermentation broth is filtered, it is filtered with a pressure of about 1.0 to 1.5 bar, and the membrane may be damaged if the burst pressure is low. Since the fermented liquid contains about 10 to 20% alcohol, a burst pressure several times higher than the burst pressure measured with pure water is required. In addition, if the burst pressure is low, durability during repeated use is lowered.

本発明において、ろ過開始10分後のワインFlux(10)は、50L/m2/h/bar以上が好ましく、70L/m2/h/bar以上がより好ましく、100L/m2/h/bar以上がさらに好ましい。また、ろ過開始120分後のワインFlux(120)は、30L/m2/h/bar以上が好ましく、50L/m2/h/bar以上がより好ましい。ワインFlux(10)は、膜面にケーク層が顕著に形成され始める時点を示し、ワインFlux(120)はFluxがほぼ安定状態に達した状態を示す。すなわち、ろ過開始10分後のワインFlux(10)とろ過開始120分後のワインFlux(120)の比で示されるワインFlux保持率(%)は40%以上が好ましく、45%以上がより好ましく、50%以上がさらに好ましい。 In the present invention, the wine flux (10) 10 minutes after the start of filtration is preferably 50 L / m 2 / h / bar or more, more preferably 70 L / m 2 / h / bar or more, and 100 L / m 2 / h / bar. The above is more preferable. The wine flux (120) 120 minutes after the start of filtration is preferably 30 L / m 2 / h / bar or more, more preferably 50 L / m 2 / h / bar or more. Wine Flux (10) indicates a point in time when a cake layer starts to be noticeably formed on the film surface, and wine Flux (120) indicates a state in which Flux has almost reached a stable state. That is, the wine flux retention (%) indicated by the ratio of wine flux (10) 10 minutes after the start of filtration and wine flux (120) 120 minutes after the start of filtration is preferably 40% or more, more preferably 45% or more. 50% or more is more preferable.

本発明において、中空糸膜の内表面の1万倍の走査型電子顕微鏡(SEM)写真において極大孔が存在する必要がある。ワイン濾過のFluxを高くするためには中空糸膜内表面の開孔を大きくしてケーク層の形成を抑制する必要があるが、内表面に極大孔が無い場合ワインを濾過すると同時に内表面にケーク層が形成してワインFluxが低下してしまう。濾過による流体からの被除去物質の除去には、膜表面の孔径による表層効果と、膜厚部分による深層効果の双方による寄与がある。このうち主として深層効果に依存する分離は、分画特性の鋭敏化が期待でき、ある程度の厚みを利用しての分離であるため、目詰まりの影響が顕在化しにくい利点があり、このような中空糸膜を得る際に、本発明の方法は好適である。   In the present invention, it is necessary that a maximum pore exists in a scanning electron microscope (SEM) photograph of 10,000 times the inner surface of the hollow fiber membrane. In order to increase the Flux of wine filtration, it is necessary to increase the opening on the inner surface of the hollow fiber membrane to suppress the formation of the cake layer, but if there is no maximum pore on the inner surface, the wine is filtered and applied to the inner surface at the same time. A cake layer is formed and the wine flux decreases. The removal of the substance to be removed from the fluid by filtration has contributions from both the surface layer effect due to the pore diameter on the membrane surface and the depth effect due to the film thickness portion. Of these, separation that mainly depends on the depth effect can be expected to be sensitive to fractionation characteristics, and because it is separation using a certain thickness, there is an advantage that the influence of clogging is difficult to be manifested. In obtaining a yarn membrane, the method of the present invention is suitable.

以下、本発明の有効性を実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例における評価方法は以下の通りである。   Hereinafter, the effectiveness of the present invention will be described with reference to examples, but the present invention is not limited thereto. In addition, the evaluation methods in the following examples are as follows.

1.ミニモジュールの作製
中空糸膜を約40cmの長さに切断し、両末端をビニールテープで束ねて中空糸膜束を作製した後、接着後に中空糸膜端部が開口するように予めペンチで端部を潰して中空部を閉塞させた。この中空糸膜束の両端をそれぞれパイプ(スリーブ)に挿入し、パイプにエポキシ接着剤を流し込んだ。エポキシ樹脂が固化した後に端部を切断して両末端が開口したミニモジュールを得た。中空糸膜の本数は、内面の表面積が50〜100cm2になるよう適宜設定した。
1. Fabrication of mini-module Cut the hollow fiber membrane to about 40cm length, bundle both ends with vinyl tape to make a hollow fiber membrane bundle, and then end it with pliers in advance so that the end of the hollow fiber membrane opens after bonding The hollow part was closed by crushing the part. Both ends of the hollow fiber membrane bundle were inserted into pipes (sleeves), and an epoxy adhesive was poured into the pipes. After the epoxy resin was solidified, the end portion was cut to obtain a mini module having both ends opened. The number of hollow fiber membranes was appropriately set so that the surface area of the inner surface was 50 to 100 cm 2 .

2.ループ型ミニモジュールの作製
中空糸膜を約40cmの長さに切断し、ループ型にした後、末端をビニールテープで束ねて中空糸膜束を作製した。接着後に中空糸膜端部が開孔するように予めペンチで端部を潰した後、ループ型中空糸膜束の端部をパイプ(スリーブ)に挿入し、エポキシ樹脂剤をパイプに流し込んだ。エポキシ樹脂が固化した後に端部を切断して、端部が開孔したループ型ミニモジュールを得た。中空糸膜の本数は、内面の表面積が20〜50cm2になるよう設定した。
2. Production of Loop Type Mini-Module A hollow fiber membrane was cut into a length of about 40 cm to form a loop type, and then the ends were bundled with vinyl tape to produce a hollow fiber membrane bundle. After bonding, the end portion was crushed with pliers in advance so that the end portion of the hollow fiber membrane was opened, and then the end portion of the loop type hollow fiber membrane bundle was inserted into a pipe (sleeve), and the epoxy resin agent was poured into the pipe. After the epoxy resin was solidified, the end portion was cut to obtain a loop type minimodule having an open end portion. The number of hollow fiber membranes was set so that the surface area of the inner surface was 20 to 50 cm 2 .

3.膜面積の計算
モジュールの膜面積は中空糸膜の内径を基準として求めた。次式によってモジュールの膜面積が計算できる。
A=n×π×d×L
ここで、nは中空糸膜の本数、πは円周率、dは中空糸膜の内径[m]、Lはモジュールにおける中空糸膜の有効長[m]である。
3. Calculation of membrane area The membrane area of the module was determined based on the inner diameter of the hollow fiber membrane. The module membrane area can be calculated by the following equation.
A = n × π × d × L
Here, n is the number of hollow fiber membranes, π is the circumference ratio, d is the inner diameter [m] of the hollow fiber membrane, and L is the effective length [m] of the hollow fiber membrane in the module.

4.純水の透過速度(純水Fluxと略記する)の測定
ミニモジュールの両端のパイプ2箇所(それぞれ内面流入口、内面流出口と呼称する)に回路を接続し、モジュールへの純水の流入圧とモジュールからの純水の流出圧を測定できるようにした。内面流入口から純水をモジュールに導入し、内面流出口に接続した回路(圧力測定点よりも下流)を閉じて流れを止め、モジュールの内面流入口から入った純水を全濾過するようにした。22℃に保温した純水を加圧タンクに入れ、レギュレーターにより圧力を制御しながら、ミニモジュールへ純水を送り、透析液流出口から流出した一定時間の濾液量を測定した。膜間圧力差(TMP)は
TMP=(Pi+Po)/2
とした。ここで、Piはモジュールの内面流入口側圧力、Poはモジュールの内面流出口側圧力である。中空糸膜の純水Fluxは膜面積とモジュールの透水率から算出した。
純水Flux[L/m2/h/bar]
=(1分あたりの純水の濾過量[L/min]×60/A/TMP[bar]
ここで純水Fluxは中空糸膜の透水率[L/m2/h/bar]、Aはモジュールの膜面積[m2]である。
4). Measurement of pure water permeation rate (abbreviated as pure water Flux) A circuit is connected to two pipes at the ends of the mini module (referred to as the inner surface inlet and the inner surface outlet, respectively), and the inflow pressure of pure water into the module It was possible to measure the outflow pressure of pure water from the module. Pure water is introduced into the module from the inner surface inlet, the circuit connected to the inner surface outlet (downstream from the pressure measurement point) is closed to stop the flow, and the pure water entered from the inner surface inlet of the module is totally filtered. did. Pure water kept at 22 ° C. was placed in a pressurized tank, and while controlling the pressure with a regulator, pure water was sent to the mini module, and the amount of filtrate flowing out from the dialysate outlet was measured. The transmembrane pressure difference (TMP) is
TMP = (Pi + Po) / 2
It was. Here, Pi is the inner surface inlet side pressure of the module, and Po is the inner surface outlet side pressure of the module. The pure water flux of the hollow fiber membrane was calculated from the membrane area and the water permeability of the module.
Pure water Flux [L / m 2 / h / bar]
= (Filtration volume of pure water per minute [L / min] x 60 / A / TMP [bar]
Here, pure water Flux is the water permeability [L / m 2 / h / bar] of the hollow fiber membrane, and A is the membrane area [m 2 ] of the module.

5.ワイン透過率(ワインFluxと略記する)の測定
丹波ワイン社から市販されている酵母を含有した濁りワイン「丹波新酒にごり2005」を1日以上静置後に採取した上澄みにメルシャン社から市販されている「ワインライフ[白]」で希釈し、濁度が10NTUになるよう調整した(以下評価用ワインと呼称する)。モジュールはRO水に1時間以上浸漬した後、評価用ワインで置換し、内外両面に評価用ワインを満たした。容器内に評価用ワインを満たし、22℃になるよう温度を制御した。この容器からポンプを介して評価用ワインがミニモジュールの内面を灌流して容器に戻ると同時に、中空糸膜によって濾過された評価用ワインも容器に戻るよう回路を組んだ。その際、モジュールへの評価用ワインの流入圧とモジュールからの評価用ワインの流出圧を測定できるようにした。中空糸膜の内腔を、評価用ワインが1.5m/secの流速で流れるように、内面流入口から評価用ワインを導入した。この際、TMPは約1.5barになるよう調整した。この状態で、中空糸膜内腔に評価用ワインを灌流、一部を濾過するクロスフロー濾過を継続して実施した。所定の時間が経過した時点で、一定時間に濾過されるワインの量を測定した(例えば、灌流開始後10〜11minの時点における濾過量、20〜21minの時点における濾過量)。ワインFluxを次式により算出した。
ワインFlux [L/m2/h/bar]
=(1分あたりのワイン濾過量[L/min]×60/A/TMP[bar]
ただし、Aはモジュールの膜面積[m2]である。
5. Measurement of wine permeability (abbreviated as Wine Flux) The turbid wine containing yeast marketed by Tamba Wine Co., Ltd. “Tamba Shinshu Nigori 2005” is marketed by Mercian Co., Ltd. It was diluted with “wine life [white]” and adjusted to have a turbidity of 10 NTU (hereinafter referred to as evaluation wine). After immersing the module in RO water for 1 hour or more, the module was replaced with evaluation wine, and both the inner and outer surfaces were filled with the evaluation wine. The container was filled with wine for evaluation and the temperature was controlled to 22 ° C. A circuit was constructed so that the evaluation wine perfused the inner surface of the mini-module from the container through the pump and returned to the container, and the evaluation wine filtered by the hollow fiber membrane also returned to the container. At that time, the inflow pressure of the evaluation wine to the module and the outflow pressure of the evaluation wine from the module can be measured. The evaluation wine was introduced from the inner surface inlet so that the evaluation wine flowed through the lumen of the hollow fiber membrane at a flow rate of 1.5 m / sec. At this time, TMP was adjusted to about 1.5 bar. In this state, the evaluation wine was perfused into the lumen of the hollow fiber membrane, and cross-flow filtration for filtering a part was continued. When a predetermined time has elapsed, the amount of wine filtered in a certain time was measured (for example, the filtration amount at the time point of 10 to 11 minutes after the start of perfusion, and the filtration amount at the time point of 20 to 21 minutes). Wine Flux was calculated by the following formula.
Wine Flux [L / m 2 / h / bar]
= (Wine filtration per minute [L / min] x 60 / A / TMP [bar]
However, A is the membrane area [m 2 ] of the module.

6.中空糸膜の内径、膜厚の測定
中空糸膜を長さ方向に対して垂直に鋭利な剃刀でカットし、断面を20倍の顕微鏡で観察する、内径値と外径値をそれぞれn=10で測定し、平均値を算出する。
膜厚[μm]={(外径)−(内径)}/2
6). Measurement of inner diameter and film thickness of hollow fiber membrane The hollow fiber membrane is cut with a sharp razor perpendicular to the length direction, and the cross section is observed with a 20-fold microscope. And measure the average value.
Film thickness [μm] = {(outer diameter) − (inner diameter)} / 2

7.バースト圧
ループ状ミニモジュールに回路を接続し、ミニモジュールを純水に5分間浸漬した後、空気ボンベで1分間に1barの速度で加圧していき、ミニモジュールが破裂する圧力を測定した。
7). Burst pressure A circuit was connected to the loop mini-module, and the mini-module was immersed in pure water for 5 minutes, and then pressurized with an air cylinder at a rate of 1 bar per minute, and the pressure at which the mini-module burst was measured.

(実施例1)
PES(住友ケムテック社製スミカエクセル(登録商標)5200P)19.0重量部、BASF社製PVP(コリドン(登録商標)K30)5.0重量部、三菱化学社製NMP34.2重量部、三井化学社製TEG41.8重量部を80℃で3時間混合、溶解し均一な溶液を得た。得られた溶液を常圧−0.05MPaに減圧した後3時間放置して脱泡を行い、この溶液を紡糸原液とした。一方、NMP37.8重量部、TEG46.2重量部、RO水16.0重量部の混合液を調製し、この溶液を芯液とした。二重管ノズルの外側環状部から前記紡糸原液を19.1cc/min/錘で、中心部から前記芯液を11.7cc/min/錘で吐出し、15mmのエアギャップを経て、NMP13.5重量部、TEG16.5重量部、RO水70.0重量部の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は65℃、外部凝固液温度は55℃に設定した。用いたノズルは、スリット外径が2300μm、スリット内径が1500μmであった。凝固液内では半径12mmの弛み防止ガイドを4本使用して図1の様に弛み防止ガイドに中空糸膜が接触するように走行させ進行方向を変更した。このとき、各ガイドは表1に示す位置に設置した。なお表中、横方向位置とはノズルからの鉛直下方線からの距離を表し、凝固浴から中空糸膜を引き出す方向をプラス、それとは反対方向に位置する場合マイナスで表す。一方、縦方向位置とは凝固浴液面からの距離を表す。また、4本の弛み防止ガイドはステンレスの丸棒ガイドの表面をハードクロムコートし梨地加工したものを用いた。凝固浴内から中空糸膜を引き出し、水洗槽を通過させ、過剰の溶媒を除去した後、8.2m/minの紡速で綛に捲き上げた。綛に捲き上げた中空糸膜束は、所定の長さになるように切断してバンドルとし、バンドルを縦にして中空糸膜の中空部に含まれる液を除去した。バンドルは、85℃のRO水に60min浸漬して加熱処理を行った後、60℃で10hにわたり熱風乾燥した。得られた乾燥中空糸膜の内径は1210μm、膜厚は349μmであった。
Example 1
19.0 parts by weight of PES (Sumitomo Chemtec (registered trademark) 5200P) manufactured by Sumitomo Chemtech, 5.0 parts by weight of PVP (Koridon (registered trademark) K30) manufactured by BASF, 34.2 parts by weight of NMP manufactured by Mitsubishi Chemical, TEG41 manufactured by Mitsui Chemicals. 8 parts by weight were mixed and dissolved at 80 ° C. for 3 hours to obtain a uniform solution. The resulting solution was depressurized to normal pressure -0.05 MPa and then allowed to stand for 3 hours for defoaming, and this solution was used as a spinning dope. On the other hand, a mixed solution of 37.8 parts by weight of NMP, 46.2 parts by weight of TEG, and 16.0 parts by weight of RO water was prepared, and this solution was used as a core solution. The spinning stock solution is discharged at 19.1 cc / min / weight from the outer annular part of the double-tube nozzle, and the core liquid is discharged at 11.7 cc / min / weight from the center part. After passing through a 15 mm air gap, 13.5 parts by weight of NMP , Led to a coagulation bath filled with an external coagulation liquid consisting of a mixture of 16.5 parts by weight of TEG and 70.0 parts by weight of RO water. At this time, the nozzle temperature was set to 65 ° C., and the external coagulating liquid temperature was set to 55 ° C. The nozzle used had a slit outer diameter of 2300 μm and a slit inner diameter of 1500 μm. In the coagulation liquid, four slack prevention guides having a radius of 12 mm were used, and the traveling direction was changed so that the hollow fiber membranes were in contact with the slack prevention guides as shown in FIG. At this time, each guide was installed at a position shown in Table 1. In the table, the lateral position represents the distance from the vertical downward line from the nozzle, and the direction in which the hollow fiber membrane is drawn out from the coagulation bath is plus, and if it is located in the opposite direction, it is minus. On the other hand, the vertical position represents the distance from the coagulation bath liquid surface. Further, the four slack prevention guides used were a stainless steel round bar guide whose surface was hard chrome coated and textured. The hollow fiber membrane was drawn out from the coagulation bath, passed through a water washing tank, and after removing excess solvent, it was rolled up at a spinning speed of 8.2 m / min. The hollow fiber membrane bundle wound up in a kite was cut to a predetermined length to form a bundle, and the liquid contained in the hollow portion of the hollow fiber membrane was removed by extending the bundle vertically. The bundle was immersed in RO water at 85 ° C. for 60 minutes for heat treatment, and then dried with hot air at 60 ° C. for 10 hours. The obtained dry hollow fiber membrane had an inner diameter of 1210 μm and a film thickness of 349 μm.

得られた中空糸膜の内表面には1万倍のSEM観察で極大孔が見られた。得られた中空糸膜からミニモジュールを作製し、ワインFluxを測定したところ、10分後に測定したワインFlux(10)、120分後に測定したワインFlux(120)からワインFlux(10)/ワインFlux(120)×100=保持率(%)を求めたところ、高いワインFlux性能を示していた。結果を表2にまとめる。   Maximum pores were observed on the inner surface of the obtained hollow fiber membrane by SEM observation at a magnification of 10,000 times. A mini-module was made from the obtained hollow fiber membrane, and the wine flux was measured. The wine flux measured after 10 minutes (10), the wine flux measured after 120 minutes (120) to the wine flux (10) / wine flux. When (120) × 100 = retention rate (%) was determined, it showed high wine flux performance. The results are summarized in Table 2.

(実施例2)
PES(住友ケムテック社製スミカエクセル(登録商標)4800P)19.0重量部、BASF社製PVP(コリドン(登録商標)K30)7.0重量部、三菱化学社製NMP33.3重量部、三井化学社製TEG40.7重量部を72℃で3時間混合、溶解し均一な溶液を得た。得られた溶液を常圧−0.05MPaに減圧した後3時間放置して脱泡を行い、この溶液を紡糸原液とし。一方、NMP37.8重量部、TEG46.2重量部、RO水16.0重量部の混合液を調製し、この溶液を芯液とした。二重管ノズルの環状部から前記紡糸原液を25.3cc/min/錘で、中心部から前記芯液を15.2cc/min/錘で吐出し、15mmのエアギャップを経て、NMP13.5重量部、TEG16.5重量部、RO水70.0重量部の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は60℃、外部凝固液温度は65℃に設定した。用いたノズルは、スリット外径が2300μm、スリット内径が1500μmであった。凝固液内では半径15mmの弛み防止ガイドを2本使用して図2の様に弛み防止ガイドに中空糸膜が接触するように走行させて進行方向を変更した。各ガイドの位置は表1に示す。また、2本の弛み防止ガイドはステンレスの丸棒ガイドを用いた。凝固浴内から中空糸膜を引き出し、水洗槽を通過させ、過剰の溶媒を除去した後、8.2m/minの紡速で綛に捲き上げた。綛に捲き上げた中空糸膜束は、所定の長さになるように切断してバンドルとし、バンドルを縦にして中空糸膜の中空部に含まれる液を除去した。バンドルは、80℃のRO水に60min浸漬して加熱処理を行った後、60℃で10hにわたり熱風乾燥した。得られた乾燥中空糸膜の内径は1985μm、膜厚は493μmであった。内表面には1万倍のSEM写真で極大孔が見られた。結果を表2に示す。
(Example 2)
19.0 parts by weight of PES (Sumitomo Chemtech (registered trademark) 4800P manufactured by Sumitomo Chemtech), 7.0 parts by weight of PVP (Koridon (registered trademark) K30) manufactured by BASF, 33.3 parts by weight of NMP manufactured by Mitsubishi Chemical, and TEG40 manufactured by Mitsui Chemicals. 7 parts by weight were mixed and dissolved at 72 ° C. for 3 hours to obtain a uniform solution. The resulting solution was depressurized to normal pressure -0.05 MPa and allowed to stand for 3 hours for defoaming. This solution was used as the spinning dope. On the other hand, a mixed solution of 37.8 parts by weight of NMP, 46.2 parts by weight of TEG, and 16.0 parts by weight of RO water was prepared, and this solution was used as a core solution. The spinning solution is discharged from the annular part of the double pipe nozzle at 25.3 cc / min / weight, and the core liquid is discharged from the center part at 15.2 cc / min / weight, passing through a 15 mm air gap, 13.5 parts by weight of NMP, The solution was introduced into a coagulation bath filled with an external coagulation liquid consisting of a mixture of 16.5 parts by weight of TEG and 70.0 parts by weight of RO water. At this time, the nozzle temperature was set to 60 ° C., and the external coagulation liquid temperature was set to 65 ° C. The nozzle used had a slit outer diameter of 2300 μm and a slit inner diameter of 1500 μm. In the coagulation liquid, two slack prevention guides having a radius of 15 mm were used, and the travel direction was changed by running so that the hollow fiber membrane was in contact with the slack prevention guides as shown in FIG. The position of each guide is shown in Table 1. The two slack prevention guides were stainless steel round bar guides. The hollow fiber membrane was drawn out from the coagulation bath, passed through a water washing tank, and after removing excess solvent, it was rolled up at a spinning speed of 8.2 m / min. The hollow fiber membrane bundle wound up in a kite was cut to a predetermined length to form a bundle, and the liquid contained in the hollow portion of the hollow fiber membrane was removed by extending the bundle vertically. The bundle was immersed in 80 ° C. RO water for 60 min and heat-treated, and then dried with hot air at 60 ° C. for 10 hours. The obtained dry hollow fiber membrane had an inner diameter of 1985 μm and a film thickness of 493 μm. A maximum pore was seen on the inner surface in a 10,000 times SEM photograph. The results are shown in Table 2.

(実施例3)
PES(住友ケムテック社製スミカエクセル(登録商標)5200P)19.0重量部、BASF社製PVP(コリドン(登録商標)K30)5.0重量部、三菱化学社製NMP34.2重量部、三井化学社製TEG41.8重量部を80℃で3時間混合、溶解し均一な溶液を得た。得られた溶液を常圧−0.05MPaに減圧した後3時間放置して脱泡を行い、この溶液を紡糸原液とした。一方、NMP37.8重量部、TEG46.2重量部、RO水16.0重量部の混合液を調製し、この溶液を芯液とした。二重管ノズルの環状部から前記紡糸原液を16.4cc/min/錘で、中心部から前記芯液を11.7cc/min/錘で吐出し、15mmのエアギャップを経て、NMP13.5重量部、TEG16.5重量部、RO水70.0重量部の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は65℃、外部凝固液温度は55℃に設定した。用いたノズルは、スリット外径が2300μm、スリット内径が1500μmであった。凝固液内では半径12mmの弛み防止ガイドを4本使用して図1の様に弛み防止ガイドに中空糸膜が接触するように走行させ進行方向を変更した。各ガイドの位置は表1に示す。また、4本の弛み防止ガイドは表面が梨地加工されたものを用いた。凝固浴内から中空糸膜を引き出し、水洗槽を通過させ、過剰の溶媒を除去した後、8.2m/minの紡速で綛に捲き上げた。綛に捲き上げた中空糸膜束は、所定の長さになるように切断してバンドルとし、バンドルを縦にして中空糸膜の中空部に含まれる液を除去した。バンドルは、85℃のRO水に60min浸漬して加熱処理を行った後、60℃で10hにわたり熱風乾燥した。得られた乾燥中空糸膜の内径は1150μm、膜厚は206μmであった。内表面には1万倍のSEM写真で極大孔が見られた。結果を表2にまとめる。
(Example 3)
19.0 parts by weight of PES (Sumitomo Chemtec (registered trademark) 5200P) manufactured by Sumitomo Chemtech, 5.0 parts by weight of PVP (Koridon (registered trademark) K30) manufactured by BASF, 34.2 parts by weight of NMP manufactured by Mitsubishi Chemical, TEG41 manufactured by Mitsui Chemicals. 8 parts by weight were mixed and dissolved at 80 ° C. for 3 hours to obtain a uniform solution. The resulting solution was depressurized to normal pressure -0.05 MPa and then allowed to stand for 3 hours for defoaming, and this solution was used as a spinning dope. On the other hand, a mixed solution of 37.8 parts by weight of NMP, 46.2 parts by weight of TEG, and 16.0 parts by weight of RO water was prepared, and this solution was used as a core solution. The spinning solution is discharged at 16.4 cc / min / weight from the annular part of the double-tube nozzle, and the core liquid is discharged at 11.7 cc / min / weight from the central part, and through an air gap of 15 mm, 13.5 parts by weight of NMP, The solution was introduced into a coagulation bath filled with an external coagulation liquid consisting of a mixture of 16.5 parts by weight of TEG and 70.0 parts by weight of RO water. At this time, the nozzle temperature was set to 65 ° C., and the external coagulating liquid temperature was set to 55 ° C. The nozzle used had a slit outer diameter of 2300 μm and a slit inner diameter of 1500 μm. In the coagulation liquid, four slack prevention guides having a radius of 12 mm were used, and the traveling direction was changed so that the hollow fiber membranes were in contact with the slack prevention guides as shown in FIG. The position of each guide is shown in Table 1. In addition, four slack prevention guides having a satin finish on the surface were used. The hollow fiber membrane was drawn out from the coagulation bath, passed through a water washing tank, and after removing excess solvent, it was rolled up at a spinning speed of 8.2 m / min. The hollow fiber membrane bundle wound up in a kite was cut to a predetermined length to form a bundle, and the liquid contained in the hollow portion of the hollow fiber membrane was removed by extending the bundle vertically. The bundle was immersed in RO water at 85 ° C. for 60 minutes for heat treatment, and then dried with hot air at 60 ° C. for 10 hours. The obtained dry hollow fiber membrane had an inner diameter of 1150 μm and a film thickness of 206 μm. A maximum pore was seen on the inner surface in a 10,000 times SEM photograph. The results are summarized in Table 2.

(実施例4)
PES(住友ケムテック社製スミカエクセル(登録商標)4800P)19.0重量部、BASF社製PVP(コリドン(登録商標)K30)7.0重量部、三菱化学社製NMP33.3重量部、三井化学社製TEG40.7重量部を72℃で3時間混合、溶解し均一な溶液を得た。得られた溶液を常圧−0.05MPaに減圧した後3時間放置して脱泡を行い、この溶液を紡糸原液とし。一方、NMP37.8重量部、TEG46.2重量部、RO水16.0重量部の混合液を調製し、この溶液を芯液とした。二重管ノズルの環状部から前記紡糸原液を18.5cc/min/錘で、中心部から前記芯液を7.3cc/min/錘で吐出し、15mmのエアギャップを経て、NMP13.5重量部、TEG16.5重量部、RO水70.0重量部の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は59.1℃、外部凝固液温度は63.7℃に設定した。用いたノズルは、スリット外径が1500μm、スリット内径が1000μmであった。凝固液内では半径15mmの弛み防止ガイドを2本使用して図2の様に弛み防止ガイドに中空糸膜が接触するように走行させ進行方向を変更した。各ガイドの位置は表1に示す。また、2本の弛み防止ガイドは表面が梨地加工されたものを用いた。凝固浴内から中空糸膜を引き出し、水洗槽を通過させ、過剰の溶媒を除去した後、8.2m/minの紡速で綛に捲き上げた。綛に捲き上げた中空糸膜束は、所定の長さになるように切断してバンドルとし、バンドルを縦にして中空糸膜の中空部に含まれる液を除去した。バンドルは、80℃のRO水に60min浸漬して加熱処理を行った後、60℃で10hにわたり熱風乾燥した。得られた乾燥中空糸膜の内径は703μm、膜厚は349μmであった。内表面には1万倍のSEM写真で極大孔が見られた。結果を表2に示す。
Example 4
19.0 parts by weight of PES (Sumitomo Chemtech (registered trademark) 4800P manufactured by Sumitomo Chemtech), 7.0 parts by weight of PVP (Koridon (registered trademark) K30) manufactured by BASF, 33.3 parts by weight of NMP manufactured by Mitsubishi Chemical, and TEG40 manufactured by Mitsui Chemicals. 7 parts by weight were mixed and dissolved at 72 ° C. for 3 hours to obtain a uniform solution. The resulting solution was depressurized to normal pressure -0.05 MPa and allowed to stand for 3 hours for defoaming. This solution was used as the spinning dope. On the other hand, a mixed solution of 37.8 parts by weight of NMP, 46.2 parts by weight of TEG, and 16.0 parts by weight of RO water was prepared, and this solution was used as a core solution. The spinning stock solution is discharged at 18.5 cc / min / weight from the annular part of the double-tube nozzle, and the core liquid is discharged at 7.3 cc / min / weight from the center part, and through an air gap of 15 mm, 13.5 parts by weight of NMP, The solution was introduced into a coagulation bath filled with an external coagulation liquid consisting of a mixture of 16.5 parts by weight of TEG and 70.0 parts by weight of RO water. At this time, the nozzle temperature was set to 59.1 ° C., and the external coagulating liquid temperature was set to 63.7 ° C. The nozzle used had a slit outer diameter of 1500 μm and a slit inner diameter of 1000 μm. In the coagulation liquid, two slack prevention guides having a radius of 15 mm were used, and the traveling direction was changed so that the hollow fiber membranes were in contact with the slack prevention guides as shown in FIG. The position of each guide is shown in Table 1. In addition, two slack prevention guides having a textured surface were used. The hollow fiber membrane was drawn out from the coagulation bath, passed through a water washing tank, and after removing excess solvent, it was rolled up at a spinning speed of 8.2 m / min. The hollow fiber membrane bundle wound up in a kite was cut to a predetermined length to form a bundle, and the liquid contained in the hollow portion of the hollow fiber membrane was removed by extending the bundle vertically. The bundle was immersed in 80 ° C. RO water for 60 min and heat-treated, and then dried with hot air at 60 ° C. for 10 hours. The obtained dry hollow fiber membrane had an inner diameter of 703 μm and a film thickness of 349 μm. A maximum pore was seen on the inner surface in a 10,000 times SEM photograph. The results are shown in Table 2.

(実施例5)
PES(住友ケムテック社製スミカエクセル(登録商標)5200P)19.0重量部、BASF社製PVP(コリドン(登録商標)K30)5.0重量部、三菱化学社製NMP34.2重量部、三井化学社製TEG41.8重量部を80℃で3時間混合、溶解し均一な溶液を得た。得られた溶液を常圧−0.05MPaに減圧した後3時間放置して脱泡を行い、この溶液を紡糸原液とした。一方、NMP37.8重量部、TEG46.2重量部、RO水16.0重量部の混合液を調製し、この溶液を芯液とした。二重管ノズルの環状部から前記紡糸原液を20.7cc/min/錘で、中心部から前記芯液を12.0cc/min/錘で吐出し、15mmのエアギャップを経て、NMP13.5重量部、TEG16.5重量部、RO水70.0重量部の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は65℃、外部凝固液温度は55℃に設定した。用いたノズルは、スリット外径が2300μm、スリット内径が1500μmであった。凝固液内では半径12mmの弛み防止ガイドを4本使用して図1の様に弛み防止ガイドに中空糸膜が接触するように走行させ進行方向を変更した。各ガイドの位置は表1に示す。また、4本の弛み防止ガイドは表面が梨地加工されたものを用いた。凝固浴内から中空糸膜を引き出し、水洗槽を通過させ、過剰の溶媒を除去した後、8.2m/minの紡速で綛に捲き上げた。綛に捲き上げた中空糸膜束は、所定の長さになるように切断してバンドルとし、バンドルを縦にして中空糸膜の中空部に含まれる液を除去した。バンドルは、85℃のRO水に60min浸漬して加熱処理を行った後、60℃で10hにわたり熱風乾燥した。得られた乾燥中空糸膜の内径は1230μm、膜厚は433μmであった。内表面には1万倍のSEM写真で極大孔が見られた。結果を表2にまとめる。
(Example 5)
19.0 parts by weight of PES (Sumitomo Chemtec (registered trademark) 5200P) manufactured by Sumitomo Chemtech, 5.0 parts by weight of PVP (Koridon (registered trademark) K30) manufactured by BASF, 34.2 parts by weight of NMP manufactured by Mitsubishi Chemical, TEG41 manufactured by Mitsui Chemicals. 8 parts by weight were mixed and dissolved at 80 ° C. for 3 hours to obtain a uniform solution. The resulting solution was depressurized to normal pressure -0.05 MPa and then allowed to stand for 3 hours for defoaming, and this solution was used as a spinning dope. On the other hand, a mixed solution of 37.8 parts by weight of NMP, 46.2 parts by weight of TEG, and 16.0 parts by weight of RO water was prepared, and this solution was used as a core solution. The spinning solution is discharged from the annular part of the double pipe nozzle at 20.7cc / min / weight, and the core liquid is discharged from the center part at 12.0cc / min / weight, passing through a 15mm air gap, NMP13.5 parts by weight, The solution was introduced into a coagulation bath filled with an external coagulation liquid consisting of a mixture of 16.5 parts by weight of TEG and 70.0 parts by weight of RO water. At this time, the nozzle temperature was set to 65 ° C., and the external coagulating liquid temperature was set to 55 ° C. The nozzle used had a slit outer diameter of 2300 μm and a slit inner diameter of 1500 μm. In the coagulation liquid, four slack prevention guides having a radius of 12 mm were used, and the traveling direction was changed so that the hollow fiber membranes were in contact with the slack prevention guides as shown in FIG. The position of each guide is shown in Table 1. In addition, four slack prevention guides having a satin finish on the surface were used. The hollow fiber membrane was drawn out from the coagulation bath, passed through a water washing tank, and after removing excess solvent, it was rolled up at a spinning speed of 8.2 m / min. The hollow fiber membrane bundle wound up in a kite was cut to a predetermined length to form a bundle, and the liquid contained in the hollow portion of the hollow fiber membrane was removed by extending the bundle vertically. The bundle was immersed in RO water at 85 ° C. for 60 minutes for heat treatment, and then dried with hot air at 60 ° C. for 10 hours. The obtained dry hollow fiber membrane had an inner diameter of 1230 μm and a film thickness of 433 μm. A maximum pore was seen on the inner surface in a 10,000 times SEM photograph. The results are summarized in Table 2.

(実施例6)
PES(住友ケムテック社製スミカエクセル(登録商標)4800P)19.0重量部、BASF社製PVP(コリドン(登録商標)K30)7.0重量部、三菱化学社製NMP33.3重量部、三井化学社製TEG40.7重量部を72℃で3時間混合、溶解し均一な溶液を得た。得られた溶液を常圧−0.05MPaに減圧した後3時間放置して脱泡を行い、この溶液を紡糸原液とした。一方、NMP37.8重量部、TEG46.2重量部、RO水16.0重量部の混合液を調製し、この溶液を芯液とした。二重管ノズルの環状部から前記紡糸原液を17.8cc/min/錘で、中心部から前記芯液を13.6cc/min/錘で吐出し、15mmのエアギャップを経て、NMP13.5重量部、TEG16.5重量部、RO水70.0重量部の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は59.1℃、外部凝固液温度は63.7℃に設定した。用いたノズルは、スリット外径が2500μm、スリット内径が1700μmであった。凝固液内では半径15mmの弛み防止ガイドを4本使用して図1の様に弛み防止ガイドに中空糸膜が接触するように走行させ進行方向を変更した。各ガイドの位置は表1に示す。また、4本の弛み防止ガイドは表面が梨地加工されたものを用いた。凝固浴内から中空糸膜を引き出し、水洗槽を通過させ、過剰の溶媒を除去した後、8.2m/minの紡速で綛に捲き上げた。綛に捲き上げた中空糸膜束は、所定の長さになるように切断してバンドルとし、バンドルを縦にして中空糸膜の中空部に含まれる液を除去した。バンドルは、80℃のRO水に60min浸漬して加熱処理を行った後、60℃で10hにわたり熱風乾燥した。得られた乾燥中空糸膜の内径は1533μm、膜厚は265μmであった。内表面には1万倍のSEM写真で極大孔が見られた。結果を表2に示す。
(Example 6)
19.0 parts by weight of PES (Sumitomo Chemtech (registered trademark) 4800P manufactured by Sumitomo Chemtech), 7.0 parts by weight of PVP (Koridon (registered trademark) K30) manufactured by BASF, 33.3 parts by weight of NMP manufactured by Mitsubishi Chemical, and TEG40 manufactured by Mitsui Chemicals. 7 parts by weight were mixed and dissolved at 72 ° C. for 3 hours to obtain a uniform solution. The resulting solution was depressurized to normal pressure -0.05 MPa and then allowed to stand for 3 hours for defoaming, and this solution was used as a spinning dope. On the other hand, a mixed solution of 37.8 parts by weight of NMP, 46.2 parts by weight of TEG, and 16.0 parts by weight of RO water was prepared, and this solution was used as a core solution. The spinning solution is discharged at 17.8 cc / min / weight from the annular part of the double tube nozzle, and the core liquid is discharged at 13.6 cc / min / weight from the center part, and through an air gap of 15 mm, 13.5 parts by weight of NMP, The solution was introduced into a coagulation bath filled with an external coagulation liquid consisting of a mixture of 16.5 parts by weight of TEG and 70.0 parts by weight of RO water. At this time, the nozzle temperature was set to 59.1 ° C., and the external coagulating liquid temperature was set to 63.7 ° C. The nozzle used had a slit outer diameter of 2500 μm and a slit inner diameter of 1700 μm. In the coagulation liquid, four slack prevention guides having a radius of 15 mm were used, and the traveling direction was changed so that the hollow fiber membranes were in contact with the slack prevention guides as shown in FIG. The position of each guide is shown in Table 1. In addition, four slack prevention guides having a satin finish on the surface were used. The hollow fiber membrane was drawn out from the coagulation bath, passed through a water washing tank, and after removing excess solvent, it was rolled up at a spinning speed of 8.2 m / min. The hollow fiber membrane bundle wound up in a kite was cut to a predetermined length to form a bundle, and the liquid contained in the hollow portion of the hollow fiber membrane was removed by extending the bundle vertically. The bundle was immersed in 80 ° C. RO water for 60 min and heat-treated, and then dried with hot air at 60 ° C. for 10 hours. The obtained dry hollow fiber membrane had an inner diameter of 1533 μm and a film thickness of 265 μm. A maximum pore was seen on the inner surface in a 10,000 times SEM photograph. The results are shown in Table 2.

(比較例1)
図3の様に弛み防止ガイドを1本用いて中空糸膜を弛み防止ガイドの二重管口金と反対の外周方向を走行させた以外は実施例1と同じ条件で紡糸した。弛み防止ガイドは、ほぼノズルの鉛直下方線上の凝固浴液面からの深さ45cmの位置に設置した。内径を1200μmに維持しながら紡糸原液の吐出量を上げていったところ、約10cc/min/錘で凝固液中で中空糸膜が弛んでしまい、これ以上膜厚を厚くすることができなかった。得られた乾燥中空糸膜の内径は1252μm、膜厚は187μmであった。ワインFluxを測定したところ測定を開始してすぐ膜が破損してしまい測定を中止した。結果を表2に示す。
(Comparative Example 1)
As shown in FIG. 3, spinning was performed under the same conditions as in Example 1 except that the hollow fiber membrane was run in the outer peripheral direction opposite to the double tube cap of the slack preventing guide using one slack preventing guide. The sagging prevention guide was installed at a position of a depth of 45 cm from the coagulation bath liquid surface on the vertical downward line of the nozzle. When the discharge rate of the spinning solution was increased while maintaining the inner diameter at 1200 μm, the hollow fiber membrane loosened in the coagulation liquid at about 10 cc / min / weight, and the film thickness could not be increased any more. . The obtained dry hollow fiber membrane had an inner diameter of 1252 μm and a film thickness of 187 μm. When wine Flux was measured, the measurement was stopped as soon as the measurement was started and the membrane was damaged. The results are shown in Table 2.

(比較例2)
PES(住友ケムテック社製スミカエクセル(登録商標)4800P)19.0重量部、BASF社製PVP(コリドン(登録商標)K30)3.0重量部、三菱化学社製NMP35.1重量部、三井化学社製TEG42.9重量部を80℃で4時間混合、溶解し均一な溶液を得た。さらに、常圧−0.05MPaまで減圧した後、溶媒等が揮発して溶液組成が変化しないようにすぐに系内を密封して3時間放置して脱泡を行い、この溶液を紡糸原液とした。一方、NMP34.875重量部、TEG42.625重量部、RO水22.5重量部の混合液を調製し、この溶液を芯液とした。二重管ノズルの環状部から上記紡糸原液を、中心部から上記芯液を吐出し、20mmのエアギャップを経て、NMP13.5重量部、TEG16.5重量部、RO水70.0重量部の混合液からなる外部凝固液を満たした凝固浴に導いた。この際、ノズル温度は72℃、外部凝固液温度は55℃に設定した。用いたノズルは、スリット外径が1000μm、スリット内径が800μmであった。図3の様に弛み防止ガイド1本を用いて中空糸膜を弛み防止ガイドの外側(下側)を走行させた。さらに、凝固浴内から中空糸膜を引き出し、水洗槽を45秒通過させ過剰の溶媒を除去した後、8.2m/minの紡速で綛に捲き上げた。綛に捲き上げた中空糸膜束は、そのまま40分間放置した後、綛の両端をテープで留めテープの外側を中空糸膜の断面が潰れないようにカッターで切断後、バンドルを縦にして中空糸膜の中空部に含まれる液を除去した。中空糸膜束は、80℃のRO水に60min浸漬して加熱処理を行った後、60℃で10hにわたり熱風乾燥を実施し、内径561μm、膜厚84μmの中空糸膜を得た。
(Comparative Example 2)
19.0 parts by weight of PES (Sumitomo Chemtech (registered trademark) 4800P manufactured by Sumitomo Chemtech), 3.0 parts by weight of PVP (Koridon (registered trademark) K30) manufactured by BASF, 35.1 parts by weight of NMP manufactured by Mitsubishi Chemical, and TEG42 manufactured by Mitsui Chemicals. 9 parts by weight were mixed and dissolved at 80 ° C. for 4 hours to obtain a uniform solution. Furthermore, after reducing the pressure to normal pressure -0.05 MPa, the system was immediately sealed so that the solvent composition would not volatilize and the solution composition would not change, and left for 3 hours to degas, and this solution was used as the spinning dope. . On the other hand, a mixed solution of 34.875 parts by weight of NMP, 42.625 parts by weight of TEG, and 22.5 parts by weight of RO water was prepared, and this solution was used as a core solution. The spinning solution is discharged from the annular part of the double tube nozzle, the core liquid is discharged from the center part, and after passing through an air gap of 20 mm, a mixed liquid of NMP 13.5 parts by weight, TEG 16.5 parts by weight, RO water 70.0 parts by weight Led to a coagulation bath filled with an external coagulation liquid. At this time, the nozzle temperature was set to 72 ° C., and the external coagulation liquid temperature was set to 55 ° C. The nozzle used had a slit outer diameter of 1000 μm and a slit inner diameter of 800 μm. As shown in FIG. 3, the hollow fiber membrane was run on the outside (lower side) of the slack prevention guide using one slack prevention guide. Further, the hollow fiber membrane was drawn out from the coagulation bath, passed through a washing tank for 45 seconds to remove excess solvent, and then spun at a spinning speed of 8.2 m / min. The hollow fiber membrane bundle that has been wound up on the scissors is left as it is for 40 minutes, and then both ends of the scissors are taped, and the outside of the tape is cut with a cutter so that the cross section of the hollow fiber membrane is not crushed, and then the bundle is hollowed vertically. The liquid contained in the hollow part of the yarn membrane was removed. The hollow fiber membrane bundle was immersed in 80 ° C. RO water for 60 minutes and heat-treated, and then dried with hot air at 60 ° C. for 10 hours to obtain a hollow fiber membrane having an inner diameter of 561 μm and a film thickness of 84 μm.

内表面には1万倍のSEM写真で極大孔が観測されなかった。ワインFluxを測定したところ値が低く実際の濾過工程に用いることができなかった。   No maximum pores were observed on the inner surface in a 10,000 times SEM photograph. When the wine flux was measured, the value was low and could not be used in the actual filtration process.

本発明の高分子多孔質中空糸膜は、食品分野、医薬分野、半導体分野、エネルギー分野および水処理分野における液体の処理に使用される中空糸膜は、精密濾過、限外濾過などの工業用途や、血液透析、血液濾過、血液透析濾過などの医療用途に広く利用可能である。特に、食品分野において発酵液に使用される液体処理用の中空糸膜としてワイン、ビール中の酵母、固形物、コロイド等の除去に好適である。   The polymer porous hollow fiber membrane of the present invention is used in the field of food, medicine, semiconductor, energy and water treatment, and the hollow fiber membrane is used for industrial applications such as microfiltration and ultrafiltration. It can be widely used for medical applications such as hemodialysis, hemofiltration, and hemodiafiltration. In particular, it is suitable as a hollow fiber membrane for liquid processing used for fermentation broth in the food field for the removal of wine, yeast in beer, solids, colloids and the like.

1 二重管口金
2−1 凝固浴中の弛み防止ガイドまたはローラー
2−2 凝固浴中の弛み防止ガイドまたはローラー
2−3 凝固浴中の弛み防止ガイドまたはローラー
2−4 凝固浴中の弛み防止ガイドまたはローラー
3 凝固浴
4 空中走行部
5 中空糸膜
6 引取りローラー
7 最下部に位置する弛み防止ガイドまたはタッチローラーと中空糸膜との接点と接点から最短の凝固浴液面との距離
1 Double tube cap 2-1 Anti-sagging guide or roller in coagulation bath 2-2 Anti-sagging guide or roller in coagulation bath 2-3 Anti-sagging guide or roller in coagulation bath 2-4 Anti-sagging in coagulation bath Guide or roller 3 Coagulation bath 4 Aerial running part 5 Hollow fiber membrane 6 Take-off roller 7 Slack prevention guide or touch roller located at the bottom and the distance between the contact point of the hollow fiber membrane and the shortest coagulation bath liquid surface

Claims (5)

ポリマー、溶媒からなる紡糸原液をチューブインオリフィスノズルの外側環状部より吐出し、空中走行部を通過した後、凝固浴に浸漬して中空糸膜を形成する乾湿式紡糸法において、凝固浴中を走行する中空糸膜の走行軌道が複数の弛み防止ガイドからなるガイド群により構成される内接軌道に沿って走行させることを特徴とする中空糸膜の製造方法。   In the dry-wet spinning method, in which a spinning stock solution composed of a polymer and a solvent is discharged from the outer annular portion of the tube-in orifice nozzle, passes through the aerial running portion, and is immersed in the coagulation bath to form a hollow fiber membrane. A method for producing a hollow fiber membrane, characterized in that the traveling track of the traveling hollow fiber membrane travels along an inscribed track constituted by a guide group composed of a plurality of slack prevention guides. 弛み防止ガイドの数を2〜7とすることを特徴とする請求項1に記載の中空糸膜の製造方法。   The method for producing a hollow fiber membrane according to claim 1, wherein the number of loosening prevention guides is 2-7. 凝固浴中を走行する中空糸膜が最初に接触する弛み防止ガイドの接点がチューブインオリフィスノズルの鉛直線を基準にして1〜10cm凝固浴から中空糸膜を引き出す方向と反対側に位置することを特徴とする請求項1または2に記載の中空糸膜の製造方法。   The contact point of the slack prevention guide with which the hollow fiber membrane traveling in the coagulation bath first contacts is located on the side opposite to the direction in which the hollow fiber membrane is drawn from the 1-10 cm coagulation bath with respect to the vertical line of the tube-in orifice nozzle. The method for producing a hollow fiber membrane according to claim 1 or 2. 凝固浴中を走行する中空糸膜が最初に接触する弛み防止ガイドの接点が凝固浴の液面より深さ10〜30cmの位置に設置されることを特徴とする請求項1〜3いずれかに記載の中空糸膜の製造方法。   The contact point of the slack prevention guide with which the hollow fiber membrane traveling in the coagulation bath first contacts is installed at a position 10 to 30 cm deep from the liquid level of the coagulation bath. The manufacturing method of the hollow fiber membrane of description. 凝固浴の最下部に位置する弛み防止ガイドと中空糸膜との接点と凝固浴液面との最短距離である最大浸漬長が0.2〜1mであることを特徴とする請求項1〜4いずれかに記載の中空糸膜の製造方法。
5. The maximum immersion length, which is the shortest distance between the contact between the slack prevention guide located at the bottom of the coagulation bath and the hollow fiber membrane and the liquid level of the coagulation bath, is 0.2 to 1 m. The manufacturing method of the hollow fiber membrane in any one.
JP2009258778A 2009-06-30 2009-11-12 Method for producing hollow fiber membrane Active JP5423326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258778A JP5423326B2 (en) 2009-06-30 2009-11-12 Method for producing hollow fiber membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009155132 2009-06-30
JP2009155132 2009-06-30
JP2009258778A JP5423326B2 (en) 2009-06-30 2009-11-12 Method for producing hollow fiber membrane

Publications (2)

Publication Number Publication Date
JP2011025222A JP2011025222A (en) 2011-02-10
JP5423326B2 true JP5423326B2 (en) 2014-02-19

Family

ID=43634606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258778A Active JP5423326B2 (en) 2009-06-30 2009-11-12 Method for producing hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP5423326B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115787111B (en) * 2022-06-24 2023-11-21 南通大学 Integrated multifunctional desk type miniature spinning equipment and spinning method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167414A (en) * 1981-04-03 1982-10-15 Ube Ind Ltd Production of polyimide hollow fiber
JPH0739731A (en) * 1993-07-28 1995-02-10 Toyobo Co Ltd Production of hollow fiber type separation membrane
JP4606848B2 (en) * 2004-11-15 2011-01-05 旭化成ケミカルズ株式会社 Membrane filtration method of alcoholic beverage fermentation liquid
JP2008284471A (en) * 2006-11-28 2008-11-27 Toyobo Co Ltd Polymeric porous hollow fiber membrane

Also Published As

Publication number Publication date
JP2011025222A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
JP5504560B2 (en) Hollow fiber membrane for liquid processing
JP5433921B2 (en) Polymer porous hollow fiber membrane
WO2007125943A1 (en) Polymeric porous hollow fiber membrane
US10188991B2 (en) Permselective asymmetric membranes
JP5798680B2 (en) Pressurized hollow fiber membrane module
JP5293959B2 (en) Hollow fiber membrane and method for producing the same
JP2006088148A (en) Hollow fiber membrane having excellent water permeability
JP5609116B2 (en) Hollow fiber ultrafiltration membrane with excellent fouling resistance
JP2008284471A (en) Polymeric porous hollow fiber membrane
WO2009125598A1 (en) Hydrophilic polyethersulfone filtration membrane, method for production thereof, and stock solution of production of membrane
JP2008237987A (en) Manufacturing method of hollow fiber membrane and hollow fiber membrane
JP5423326B2 (en) Method for producing hollow fiber membrane
JP2008246402A (en) Hollow fiber type blood purification membrane and method of manufacturing the same
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JP6155908B2 (en) Method for producing hollow fiber membrane
JP2008194647A (en) Hollow fiber membrane
JP4036740B2 (en) Method for producing hollow fiber blood purification membrane
JP2009006230A (en) Polymeric porous hollow fiber membrane
JP3128875B2 (en) Polyphenylene sulfide sulfone hollow fiber membrane and method for producing the same
JP6707880B2 (en) Hollow fiber membrane and hollow fiber membrane module
JP5267831B2 (en) Method for producing polymer porous hollow fiber membrane
JP4164730B2 (en) Selective separation membrane
JP3473202B2 (en) Manufacturing method of hollow fiber membrane
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
JP4164774B2 (en) Method for producing selective separation membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R151 Written notification of patent or utility model registration

Ref document number: 5423326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350