JP6707880B2 - Hollow fiber membrane and hollow fiber membrane module - Google Patents

Hollow fiber membrane and hollow fiber membrane module Download PDF

Info

Publication number
JP6707880B2
JP6707880B2 JP2016019477A JP2016019477A JP6707880B2 JP 6707880 B2 JP6707880 B2 JP 6707880B2 JP 2016019477 A JP2016019477 A JP 2016019477A JP 2016019477 A JP2016019477 A JP 2016019477A JP 6707880 B2 JP6707880 B2 JP 6707880B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
concentration
stock solution
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016019477A
Other languages
Japanese (ja)
Other versions
JP2017136555A (en
Inventor
小澤 稔
稔 小澤
上阪 努
努 上阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016019477A priority Critical patent/JP6707880B2/en
Publication of JP2017136555A publication Critical patent/JP2017136555A/en
Application granted granted Critical
Publication of JP6707880B2 publication Critical patent/JP6707880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、浄水器用途等の水処理膜に好適に用いられる中空糸膜に関する。 The present invention relates to a hollow fiber membrane preferably used as a water treatment membrane for water purifier applications and the like.

水処理に用いられるろ過膜として、中空糸膜が知られている。そして、この中空糸膜は、複数の中空糸膜が束ねられた糸束をケースに挿入し、一端あるいは両端を接着剤で固定化した中空糸膜モジュールとして利用されることが多い。 Hollow fiber membranes are known as filtration membranes used for water treatment. This hollow fiber membrane is often used as a hollow fiber membrane module in which a bundle of a plurality of hollow fiber membranes is inserted into a case and one or both ends are fixed with an adhesive.

中空糸膜モジュールの製造工程において、中空糸膜に対して負荷がかかることによって中空糸膜が糸切れした場合、この中空糸膜モジュールの使用時に原水が中空糸膜を通水せずに中空糸膜モジュール外に流出する、いわゆるリーク現象が発生するため、この中空糸膜モジュールは分離膜としての機能に劣るものとなる。また、中空糸膜モジュールの製造工程以外にも、中空糸膜モジュールを使用中に、水流による負荷で中空糸膜が切れることがある。このような糸切れ不良を抑制するためには、中空糸膜の破断伸度と破断強度とを一定以上とすることが重要であることが知られている。 In the manufacturing process of the hollow fiber membrane module, when the hollow fiber membrane is broken due to load on the hollow fiber membrane, raw water does not pass through the hollow fiber membrane when the hollow fiber membrane module is used. Since a so-called leak phenomenon occurs that flows out of the membrane module, this hollow fiber membrane module is inferior in function as a separation membrane. In addition to the manufacturing process of the hollow fiber membrane module, during use of the hollow fiber membrane module, the hollow fiber membrane may be broken due to a load of water flow. It is known that it is important that the breaking elongation and the breaking strength of the hollow fiber membrane are equal to or higher than a certain level in order to prevent such defective yarn breakage.

特開2000−334277号公報JP, 2000-334277, A 特開2004−305953号公報JP 2004-305953 A

ここで、中空糸膜の膜厚を厚くすることで、中空糸膜1本あたりの破断強度は向上するが、中空糸膜の膜厚を厚くするには、中空糸膜の内径を縮小すること、または中空糸膜の外径を拡大することが必要である。しかし、中空糸膜の内径を縮小すると中空部を通過する水の抵抗が大きくなり、流量が減少する問題がある。また、中空糸膜の外径を拡大すると、一定体積の中空糸膜ケースに充填できる中空糸膜の本数が減り、中空糸膜の有効膜面積が減少することにより短寿命の中空糸膜モジュールとなってしまう問題がある。 Here, by increasing the thickness of the hollow fiber membrane, the breaking strength per hollow fiber membrane is improved, but in order to increase the thickness of the hollow fiber membrane, the inner diameter of the hollow fiber membrane should be reduced. Or, it is necessary to increase the outer diameter of the hollow fiber membrane. However, when the inner diameter of the hollow fiber membrane is reduced, there is a problem that the resistance of water passing through the hollow portion increases and the flow rate decreases. Further, when the outer diameter of the hollow fiber membrane is enlarged, the number of hollow fiber membranes that can be packed in a hollow fiber membrane case of a constant volume is reduced, and the effective membrane area of the hollow fiber membrane is reduced, so that a hollow fiber membrane module with a short life can be obtained. There is a problem that becomes.

また、破断伸度が劣る中空糸膜であると、中空糸膜を伸長させる負荷がかかった際、わずかな伸長で破断に至ってしまうため、破断強度のみが優れている中空糸膜である場合、この中空糸膜の糸切れを抑制することが困難であるとの課題がある。 Further, when the hollow fiber membrane is inferior in elongation at break, when a load for elongating the hollow fiber membrane is applied, even if the hollow fiber membrane is excellent in breaking strength, it will be broken by a slight elongation. There is a problem that it is difficult to suppress the yarn breakage of the hollow fiber membrane.

ここで、特許文献1には破断伸度を50%以上と優れたものとした中空糸膜の製造方法が開示されている。また、その中空糸膜においては、その破断強度も優れるものであったが、この中空糸膜の膜厚は厚く、透水性能に劣るものである。 Here, Patent Document 1 discloses a method for producing a hollow fiber membrane having an excellent breaking elongation of 50% or more. The hollow fiber membrane was also excellent in breaking strength, but the hollow fiber membrane had a large film thickness and poor water permeability.

また、特許文献2には、破断強度に優れ、破断伸度についても比較的優れた中空糸膜の記載がある。しかし、その中空糸膜の製造工程で用いられる製膜原液に含まれるポリスルホンの濃度は高く、その中空糸膜は浄水器等の飲用水用途の中空糸膜と比較して透水性能に劣る人工腎臓用の中空糸膜である。すなわち、製膜原液に含まれるポリスルホンの濃度が高いと、得られる中空糸膜の破断伸度および破断強度は優れたものとなるが、一方で透水性能に劣ったものとなるとの課題がある。 Further, Patent Document 2 describes a hollow fiber membrane having excellent breaking strength and comparatively excellent breaking elongation. However, the concentration of polysulfone contained in the membrane forming stock solution used in the manufacturing process of the hollow fiber membrane is high, and the hollow fiber membrane is an artificial kidney that is inferior in water permeability as compared with hollow fiber membranes for drinking water applications such as water purifiers. It is a hollow fiber membrane for. That is, when the concentration of polysulfone contained in the membrane-forming stock solution is high, the resulting hollow fiber membrane has excellent breaking elongation and breaking strength, but on the other hand, it has a problem of poor water permeability.

そこで、本発明は上記の事情に鑑み、高い透水性能を発揮しつつ、破断強度と破断伸度に優れ、糸切れ不良を抑制した中空糸膜を提供することを目的とする。 Therefore, in view of the above circumstances, an object of the present invention is to provide a hollow fiber membrane that exhibits high water permeability, is excellent in breaking strength and breaking elongation, and suppresses yarn breakage defects.

本発明は前記の課題を解決するため、下記の手段を採る。
(1)親水性ポリマーを含んだポリスルホン系中空糸膜であって、0.26〜0.34μmの粒子阻止率が99%以上であり、0.05〜0.07μmの粒子阻止率が10%以下であり、破断強度が50kgf/cm以上であり、破断伸度が50%以上であることを特徴とした中空糸膜。
(2)(1)の中空糸膜がケースに充填されており、前記中空糸膜は前記ケースに固定化された開孔端部を有する中空糸膜モジュール。
(3)(2)の中空糸膜モジュールと吸着剤を搭載した浄水カートリッジ。
The present invention adopts the following means in order to solve the above problems.
(1) A polysulfone-based hollow fiber membrane containing a hydrophilic polymer, having a particle blocking rate of 0.26 to 0.34 μm of 99% or more and a particle blocking rate of 0.05 to 0.07 μm of 10%. The hollow fiber membrane is characterized by having a breaking strength of 50 kgf/cm 2 or more and a breaking elongation of 50% or more.
(2) A hollow fiber membrane module in which the hollow fiber membrane of (1) is filled in a case, and the hollow fiber membrane has an open end fixed to the case.
(3) A water purification cartridge equipped with the hollow fiber membrane module of (2) and an adsorbent.

本発明によれば、中空糸膜モジュールの製造工程や使用中に、糸切れが発生する割合を抑制し、かつ高流量のろ過水を得られる中空糸膜を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the hollow fiber membrane which can suppress the ratio which a thread breakage generate|occur|produces during a manufacturing process or use of a hollow fiber membrane module, and can obtain the filtered water of a high flow rate can be provided.

本発明の中空糸膜は、親水性ポリマーを含んだポリスルホン系中空糸膜であって、その0.26〜0.34μmの粒子阻止率が99%以上であり、かつ、その0.05〜0.07μmの粒子阻止率が10%以下であり、さらに、その破断強度が50kgf/cm以上であり、その破断伸度が50%以上である。
The hollow fiber membrane of the present invention is a polysulfone-based hollow fiber membrane containing a hydrophilic polymer, which has a particle rejection of 0.26 to 0.34 μm of 99% or more and 0.05 to 0 thereof. The particle rejection of 0.07 μm is 10% or less, the breaking strength is 50 kgf/cm 2 or more, and the breaking elongation is 50% or more.

ここで、本発明の中空糸膜は、親水性ポリマーを含んだポリスルホン系中空糸膜であり、ポリスルホン系中空糸膜であることで、その耐熱性が優れたものとなる。そのメカニズムについては、ポリスルホン系ポリマーは、その主鎖にベンゼン環が含まれており、分子の運動性が低いポリマーのためであると推測する。また、本発明の中空糸膜は親水性ポリマーを含んでいるため、その透水性能が優れたものとなる。そのメカニズムについては中空糸膜の水濡れ性が優れることで細孔内への水の浸透性が優れるためであると推測する。 Here, the hollow fiber membrane of the present invention is a polysulfone-based hollow fiber membrane containing a hydrophilic polymer, and since it is a polysulfone-based hollow fiber membrane, it has excellent heat resistance. Regarding the mechanism, it is presumed that the polysulfone-based polymer has a benzene ring in its main chain and has low molecular mobility. Further, since the hollow fiber membrane of the present invention contains a hydrophilic polymer, its water permeability is excellent. It is speculated that the mechanism is due to the excellent water wettability of the hollow fiber membrane and the excellent water permeability into the pores.

つぎに、本発明の中空糸膜に含まれる親水性ポリマーの含有量は、透水性能が優れたものとなるとの観点から、下限は中空糸膜を構成する全成分100質量%に対し、1.0質量%以上であることが好ましく、2.0質量%以上であることがより好ましい。一方で、色調の均一性が優れたものとなるとの観点から、上限は中空糸膜を構成する全成分100質量%に対し、15質量%以下であることが好ましく、13質量%以下であることがより好ましい。中空糸膜に含まれる親水性ポリマーの含有量が15質量%を超えると、親水性ポリマーの酸化により中空糸膜が部分的に変色することがある。 Next, the content of the hydrophilic polymer contained in the hollow fiber membrane of the present invention has a lower limit of 1. with respect to 100% by mass of all components constituting the hollow fiber membrane from the viewpoint of excellent water permeability. It is preferably 0% by mass or more, and more preferably 2.0% by mass or more. On the other hand, from the viewpoint that the uniformity of the color tone will be excellent, the upper limit is preferably 15% by mass or less, and 13% by mass or less, based on 100% by mass of all components constituting the hollow fiber membrane. Is more preferable. When the content of the hydrophilic polymer contained in the hollow fiber membrane exceeds 15% by mass, the hollow fiber membrane may be partially discolored due to the oxidation of the hydrophilic polymer.

また、本発明の中空糸膜に用いることができる親水性ポリマーとしては、ポリビニルピロリドン、変性ポリビニルピロリドン、共重合ポリビニルピロリドン、ポリエチレングリコール、ポリ酢酸ビニル等があるが、ポリスルホン系ポリマーとの親和性を考慮すると、ポリビニルピロリドンが最も好ましい。 Further, as the hydrophilic polymer that can be used for the hollow fiber membrane of the present invention, there are polyvinylpyrrolidone, modified polyvinylpyrrolidone, copolymerized polyvinylpyrrolidone, polyethylene glycol, polyvinyl acetate, etc., but they have an affinity with polysulfone-based polymers. Considering it, polyvinylpyrrolidone is most preferable.

また、親水性ポリマーは様々な分子量を選択することができ、分子量が大きいと、同じ親水性ポリマーの添加量でも製膜原液の粘度が大きくなるため、親水性ポリマーの添加量を少なくできることが知られている。適宜得るべき製膜原液粘度のため、親水性ポリマーの分子量と添加量を調整すればよく、異なる分子量の複数の親水性ポリマーを混合して使用してもよい。親水性ポリマーの分子量の範囲は、増粘効果の観点から、下限は重量平均分子量で40,000以上であることが好ましい。一方で、製膜原液調製時の溶解性の観点から、上限は重量平均分子量で1,500,000以下が好ましい。 It is also known that various molecular weights can be selected for the hydrophilic polymer, and if the molecular weight is large, the viscosity of the stock solution for film formation will increase even if the same hydrophilic polymer is added, so it is known that the addition amount of the hydrophilic polymer can be reduced. Has been. Depending on the viscosity of the film-forming stock solution to be appropriately obtained, the molecular weight and addition amount of the hydrophilic polymer may be adjusted, and a plurality of hydrophilic polymers having different molecular weights may be mixed and used. From the viewpoint of thickening effect, the lower limit of the molecular weight range of the hydrophilic polymer is preferably 40,000 or more in terms of weight average molecular weight. On the other hand, the upper limit of the weight average molecular weight is preferably 1,500,000 or less from the viewpoint of solubility when preparing a stock solution for film formation.

本発明の中空糸膜の粒子径0.26〜0.34μmの粒子阻止率が99%以上であり、かつ、その粒子径0.05〜0.07μmの粒子阻止率が10%以下である。上記のような中空糸膜は優れた分画性能と優れた透水性能とを両立したものであり、0.26〜0.34μmの粒子阻止率が99%以上であることによって一般細菌や濁り成分の標準物質であるカオリンの除去性能が得られる。一方、0.05〜0.07μmの粒子阻止Rが10%以下であることによって、膜のろ過抵抗を抑え、優れた透水性能が得られる。また、上記のような中空糸膜を得る手段としては、詳細は後述するが、非溶媒誘起相分離法を用いた乾湿式紡糸において、相分離の進行の度合いを調整することが挙げられる。ここで、粒子阻止率は、実施例の項の計算式にて算出することができる。すなわち、粒子阻止率は、透過側濃度(Cp)を供給側濃度(Cf)で除したものを1から引き、100を乗ずることで算出できる。
The hollow fiber membrane of the present invention has a particle rejection of 0.26 to 0.34 µm of 99% or more, and a particle rejection of 0.05 to 0.07 µm of 10% or less. The hollow fiber membrane as described above has both excellent fractionation performance and excellent water permeation performance, and since the particle rejection of 0.26 to 0.34 μm is 99% or more, general bacteria and turbid components can be obtained. The removal performance of kaolin, which is the standard substance of On the other hand, when the particle inhibition R of 0.05 to 0.07 μm is 10% or less, the filtration resistance of the membrane is suppressed and excellent water permeability is obtained. Further, as a means for obtaining the hollow fiber membrane as described above, as will be described in detail later, in dry-wet spinning using a non-solvent induced phase separation method, adjustment of the degree of progress of phase separation can be mentioned. Here, the particle rejection rate can be calculated by the calculation formula in the section of the example. That is, the particle blocking rate, pull the permeate side concentration (Cp) divided by the supply side concentration (Cf) from 1, can be calculated by multiplying by 100.

さらに、本発明の中空糸膜は、その破断強度が50kgf/cm以上である。そのような中空糸膜とすることで、中空糸膜モジュールの製造工程において発生し得る中空糸膜の破断などの損傷を抑制でき、さらに、その中空糸膜モジュールを搭載する浄水カートリッジの使用中において発生し得る中空糸膜の破断などの損傷を抑制できる。上記の観点から、中空糸膜の破断強度は60kgf/cm以上であることが好ましく、70kgf/cm以上であることがより好ましい。一方で、その上限については特に限定はしないが、所望の長さに切断する際の取扱い性の観点から100kgf/cm以下であることが好ましい。なお、詳細は後述するが、製膜原液の非溶媒等の濃度を適宜調整することで、上記の破断強度の中空糸膜を得ることができる。 Furthermore, the hollow fiber membrane of the present invention has a breaking strength of 50 kgf/cm 2 or more. By using such a hollow fiber membrane, damage such as breakage of the hollow fiber membrane that may occur in the manufacturing process of the hollow fiber membrane module can be suppressed, and further, during use of a water purification cartridge equipped with the hollow fiber membrane module. It is possible to suppress damage such as breakage of the hollow fiber membrane that may occur. From the above viewpoint, the breaking strength of the hollow fiber membrane is preferably 60 kgf/cm 2 or more, and more preferably 70 kgf/cm 2 or more. On the other hand, although the upper limit is not particularly limited, it is preferably 100 kgf/cm 2 or less from the viewpoint of handleability when cutting to a desired length. Although the details will be described later, the hollow fiber membrane having the above breaking strength can be obtained by appropriately adjusting the concentration of the non-solvent or the like in the stock solution for membrane formation.

さらに、本発明の中空糸膜は、その破断伸度が50%以上である。そのような中空糸膜とすることで、中空糸膜モジュールの製造工程において発生し得る中空糸膜の破断などの損傷を抑制でき、さらに、その中空糸膜モジュールを搭載する浄水カートリッジの使用中において発生し得る中空糸膜の破断などの損傷を抑制できる。上記の観点から、中空糸膜の破断伸度は80%以上であることがより好ましい。一方で、その上限については特に限定はしないが、所望の長さに切断する際の取扱い性の観点から200%以下であることが好ましい。なお、中空糸膜の製造工程における洗浄後の中空糸膜を乾燥させる乾燥温度などを適宜調整することで、所望の破断伸度の中空糸膜を得ることができる。 Furthermore, the breaking elongation of the hollow fiber membrane of the present invention is 50% or more. By using such a hollow fiber membrane, damage such as breakage of the hollow fiber membrane that may occur in the manufacturing process of the hollow fiber membrane module can be suppressed, and further, during use of the water purification cartridge equipped with the hollow fiber membrane module. It is possible to suppress damage such as breakage of the hollow fiber membrane that may occur. From the above viewpoint, the breaking elongation of the hollow fiber membrane is more preferably 80% or more. On the other hand, the upper limit is not particularly limited, but it is preferably 200% or less from the viewpoint of handleability when cutting to a desired length. The hollow fiber membrane having a desired elongation at break can be obtained by appropriately adjusting the drying temperature for drying the washed hollow fiber membrane in the hollow fiber membrane manufacturing process.

また、本発明の中空糸膜は、その外表面側に緻密層を持つ非対称膜であることが好ましい。その様な中空糸膜は、水道水のろ過でしばしば使用される外表面側から被処理水を流通させる使用方法の際に、孔が目詰まりし、中空糸膜が完全閉塞ろ過機構となることを抑制できるので、中空糸膜の透水性能の持続性の観点から好ましい。ここで、本願でいう緻密層とは中空糸膜中の孔の中で、孔径の極めて小さい孔が密集して存在する層で、その中空糸膜の分画特性を決定する部分のことをいう。また、外表面側に緻密層を持つ非対称中空糸膜の製造方法の詳細については後述する。 Further, the hollow fiber membrane of the present invention is preferably an asymmetric membrane having a dense layer on the outer surface side thereof. In such a hollow fiber membrane, pores are clogged and the hollow fiber membrane serves as a completely closed filtration mechanism during the use method in which water to be treated is circulated from the outer surface side, which is often used in filtration of tap water. This is preferable from the viewpoint of sustainability of water permeability of the hollow fiber membrane. Here, the dense layer referred to in the present application is a layer in which pores having extremely small pore diameters are densely present among the pores in the hollow fiber membrane, and refers to a portion that determines the fractionation characteristics of the hollow fiber membrane. .. The details of the method for producing an asymmetric hollow fiber membrane having a dense layer on the outer surface side will be described later.

本発明の中空糸膜は、中空糸膜モジュールに好適に用いることができる。ここで、中空糸膜モジュールの具体的な態様としては、U字状にされた中空糸膜の束が筒状のケースに収納されており、さらに中空糸膜の束の中空糸膜の開孔が存在する方の端部が封止材により上記の筒状のケースの一方の端部に固定されているものを挙げることができる。 The hollow fiber membrane of the present invention can be suitably used for a hollow fiber membrane module. Here, as a specific mode of the hollow fiber membrane module, a bundle of U-shaped hollow fiber membranes is housed in a cylindrical case, and the hollow fiber membranes are opened in the hollow case. One end of the cylindrical case may be fixed to one end of the cylindrical case by a sealing material.

さらに、本発明の中空糸膜を用いた中空糸膜モジュールは浄水カートリッジに好適に用いることができる。ここで、浄水カートリッジの具体的な態様としては、上記の中空糸膜モジュールに加え活性炭などの吸着剤を搭載したものが挙げられる。 Furthermore, the hollow fiber membrane module using the hollow fiber membrane of the present invention can be suitably used for a water purification cartridge. Here, as a specific embodiment of the water purification cartridge, there is one in which an adsorbent such as activated carbon is mounted in addition to the above hollow fiber membrane module.

中空糸膜の寸法は、外径が250〜700μmで中空糸膜の内径が150〜450μmであると、一定体積のケースに十分な糸本数の中空糸膜を充填した中空糸膜モジュールとすることが可能となり好ましい。また、中空糸膜の内径が150μm以上であると、流体が中空糸膜の中空部を通る際の抵抗が大きくならず、好ましい。 When the outer diameter of the hollow fiber membrane is 250 to 700 μm and the inner diameter of the hollow fiber membrane is 150 to 450 μm, the hollow fiber membrane module should have a case of a certain volume filled with a sufficient number of hollow fiber membranes. Is possible and is preferable. Further, when the inner diameter of the hollow fiber membrane is 150 μm or more, the resistance when the fluid passes through the hollow portion of the hollow fiber membrane does not increase, which is preferable.

次に、本発明の中空糸膜の製造方法について説明する。 Next, the method for producing the hollow fiber membrane of the present invention will be described.

本発明の中空糸膜の紡糸方法の例としては、二重管ノズルの外管部から製膜原液を吐出し、二重管ノズルの内管部から注入液を吐出し、所定区間の乾式部を空走した後、凝固浴に導かれる乾湿式紡糸方法を例示できる。 As an example of the method for spinning a hollow fiber membrane of the present invention, the film forming stock solution is discharged from the outer tube section of the double tube nozzle, the injection solution is discharged from the inner tube section of the double tube nozzle, and the dry section of a predetermined section is discharged. An example of the method is a dry-wet spinning method in which the liquid is spun and then introduced into a coagulation bath.

製膜原液には、ポリスルホン系ポリマーや親水性ポリマー等の中空糸膜の構成成分が溶解されている。ポリスルホン系ポリマーは、下記式(1)または(2)の繰り返し単位からなるポリマーであるが、一部の骨格に官能基が付与されているものでもよく、これらに限定されない。 Constituent components of the hollow fiber membrane such as polysulfone-based polymer and hydrophilic polymer are dissolved in the membrane-forming stock solution. The polysulfone-based polymer is a polymer including a repeating unit represented by the following formula (1) or (2), but may have a functional group attached to a part of the skeleton, and is not limited thereto.

Figure 0006707880
Figure 0006707880

Figure 0006707880
Figure 0006707880

製膜原液に用いることができる溶媒としては、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、N−メチル−2−ピロリドンまたはジオキサン等、多種のものを例示できる。これらの中でも、特にジメチルアセトアミドやN−メチル−2−ピロリドンが取り扱う際の安全性の観点から望ましい。 Examples of the solvent that can be used for the stock solution for film formation include various ones such as dimethyl sulfoxide, dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone and dioxane. Among these, dimethylacetamide and N-methyl-2-pyrrolidone are particularly preferable from the viewpoint of safety in handling.

中空糸膜の孔は非溶媒誘起相分離方法によって形成される。相分離とは製膜原液中のポリスルホン系ポリマーの濃度が高い相と低い相に細かく分かれることを言い、製膜原液の非溶媒の濃度が一定以上になった際に引き起こされる。製膜原液の凝固時にポリスルホン系ポリマーの濃度が低い相が中空糸膜の孔となり、ポリスルホン系ポリマーの濃度が高い相が中空糸膜の構造部分になる。 The pores of the hollow fiber membrane are formed by a non-solvent induced phase separation method. The phase separation means that the polysulfone-based polymer in the membrane-forming stock solution is finely divided into a high-concentration phase and a low phase, and is caused when the concentration of the non-solvent in the membrane-forming stock solution exceeds a certain level. During solidification of the membrane forming solution, the phase having a low polysulfone polymer concentration becomes pores of the hollow fiber membrane, and the phase having a high polysulfone polymer concentration becomes the structural portion of the hollow fiber membrane.

製膜原液が二重管ノズルから吐出され、乾式部の空気中の非溶媒が製膜原液へ浸入することによって、製膜原液の相分離が開始され、相分離は凝固浴で製膜原液が凝固するまで進行する。製膜原液の相分離が進行するにつれて、得られる中空糸膜の孔も大きくなる。 The film-forming stock solution is discharged from the double-tube nozzle, and the non-solvent in the air in the dry section penetrates into the film-forming stock solution to start the phase separation of the film-forming stock solution. It progresses until it solidifies. As the phase separation of the membrane-forming stock solution progresses, the pores of the obtained hollow fiber membrane also become larger.

すなわち、中空糸膜の緻密層の孔の孔径は製膜原液が凝固するまでの相分離の進行の度合いによって決まり、相分離の進行の度合いを所望のものとする手段としては製膜原液中のポリスルホン系ポリマーの濃度や非溶媒の濃度、製膜原液が乾式部を空走する距離(以後、乾式長)を適宜調整することが挙げられる。 That is, the pore diameter of the dense layer of the hollow fiber membrane is determined by the degree of progress of phase separation until the membrane-forming stock solution is solidified, and as a means for making the degree of progress of phase separation desired, The concentration of the polysulfone-based polymer, the concentration of the non-solvent, and the distance over which the stock solution for film formation runs in the dry section (hereinafter referred to as the dry length) can be appropriately adjusted.

ここで、粒子径0.26〜0.34μmの粒子阻止率が99%以上であり、かつ、その粒子径0.05〜0.07μmの粒子阻止率が10%以下の中空糸膜を得るための手段としては、相分離の進行の度合いを調整することが挙げられるのは上述したとおりであり、相分離の進行の度合いを調整するにあたり製膜原液のポリスルホン系ポリマーの濃度は13質量%〜17質量%であり、乾式長は40mm〜150mmであることが好ましい。
Here, in order to obtain a hollow fiber membrane having a particle rejection of 99% or more with a particle diameter of 0.26 to 0.34 μm and a particle rejection of 10% or less with a particle diameter of 0.05 to 0.07 μm. The means for adjusting the degree of progress of phase separation is as described above, and the concentration of the polysulfone-based polymer in the membrane-forming stock solution is 13% by mass to adjust the degree of progress of phase separation. It is preferably 17% by mass, and the dry length is preferably 40 mm to 150 mm.

ポリスルホン系ポリマーの濃度が13質量%未満であると、二重管ノズルから吐出したときの紡糸安定性が悪化し、17質量%より高いと、中空糸膜の緻密層の孔の孔径は小さいものとなり、その結果として粒子径0.05〜0.07μmの粒子阻止率が大きいものとなる傾向がみられる。 When the concentration of the polysulfone-based polymer is less than 13% by mass, the spinning stability when discharged from the double tube nozzle is deteriorated, and when it is more than 17% by mass, the pore diameter of the dense layer of the hollow fiber membrane is small. As a result, there is a tendency that the particle rejection rate of the particles having a particle diameter of 0.05 to 0.07 μm becomes large.

乾式長が40mm未満であると、相分離の進行の度合いが不十分なため、中空糸膜の緻密層の孔の孔径は小さいものとなり、その結果として粒子径0.05〜0.07μmの粒子阻止率が大きいものとなり、得られた中空糸膜の透水性能が低下する傾向がみられる。また、乾式長が150mmより長いと紡糸安定性が悪化するだけでなく、中空糸膜の緻密層の孔の孔径が大きいものとなり、その結果として、粒子径0.26〜0.34μmの粒子阻止率が低下し、得られた中空糸膜の分画性能が低下する傾向がみられる。 If the dry length is less than 40 mm, the degree of progress of phase separation is insufficient, so the pore diameter of the dense layer of the hollow fiber membrane becomes small, and as a result, particles having a particle diameter of 0.05 to 0.07 μm are obtained. The blocking rate becomes large, and the water permeability of the obtained hollow fiber membrane tends to deteriorate. Further, if the dry length is longer than 150 mm, not only the spinning stability is deteriorated, but also the pore diameter of the dense layer of the hollow fiber membrane becomes large, resulting in particle inhibition of 0.26 to 0.34 μm. There is a tendency that the ratio is lowered and the fractionation performance of the obtained hollow fiber membrane is lowered.

製膜原液の非溶媒の好ましい濃度範囲は、後述する製膜原液中の他成分の条件により変化する。そのため、製膜原液の非溶媒の濃度の指標として、製膜原液が相分離することにより白濁を引き起こす濃度を基準に置く。製膜原液全体に対する非溶媒の濃度は、製膜原液が白濁を引き起こす製膜原液全体に対する非溶媒の濃度から0.1〜1.2質量%低くすることが好ましい。 The preferred concentration range of the non-solvent in the film-forming stock solution changes depending on the conditions of other components in the film-forming stock solution described later. Therefore, as the index of the concentration of the non-solvent in the stock solution for film formation, the concentration that causes cloudiness due to phase separation of the stock solution for film formation is set as a standard. The concentration of the non-solvent with respect to the whole film-forming stock solution is preferably 0.1 to 1.2% by mass lower than the concentration of the non-solvent with respect to the whole film-forming stock solution that causes the film-forming stock solution to become cloudy.

製膜原液が白濁を引き起こす非溶媒の濃度から1.2質量%以上低いと、中空糸膜の緻密層の孔の孔径は小さいものとなり、その結果として粒子径0.05〜0.07μmの粒子阻止率が大きいものとなる傾向がみられる。一方、製膜原液全体に対する非溶媒の濃度が、製膜原液が白濁を引き起こす製膜原液全体に対する非溶媒の濃度から0.1質量%減より高いと紡糸安定性が悪化する。 If the concentration of the non-solvent that causes the cloudiness of the membrane-forming stock solution is 1.2% by mass or more, the pore diameter of the dense layer of the hollow fiber membrane becomes small, and as a result, particles having a particle diameter of 0.05 to 0.07 μm. The blocking rate tends to be large. On the other hand, if the concentration of the non-solvent with respect to the whole film-forming stock solution is higher than the concentration of the non-solvent with respect to the whole film-forming stock solution with a decrease of 0.1% by mass, the spinning stability deteriorates.

また、本発明の中空糸膜の優れた破断強度を得るためには、製膜原液が白濁を引き起こす非溶媒の濃度から、0.1〜0.8質量%低い非溶媒の濃度が好ましい。製膜原液に予め上記の濃度の非溶媒を添加しておくことで、二重管ノズルから吐出された後に、製膜原液の相分離が迅速に進行し、緻密層以外も含めた中空糸膜全体の孔がより拡大する。この中空糸膜の全体の孔の拡大と相反して、中空糸膜の構造部分であるポリスルホン系ポリマーの密度が高くなるため、優れた破断強度の中空糸膜が得られると推測する。 Further, in order to obtain the excellent breaking strength of the hollow fiber membrane of the present invention, the concentration of the non-solvent which is lower by 0.1 to 0.8% by mass is preferable from the concentration of the non-solvent which causes cloudiness in the membrane forming stock solution. By adding the non-solvent with the above concentration to the membrane forming solution in advance, the phase separation of the membrane forming solution proceeds rapidly after being discharged from the double-tube nozzle, and the hollow fiber membranes other than the dense layer are included. The whole hole becomes larger. Contrary to the expansion of the entire pores of the hollow fiber membrane, the density of the polysulfone-based polymer, which is the structural portion of the hollow fiber membrane, becomes high, and it is speculated that a hollow fiber membrane having excellent breaking strength can be obtained.

製膜原液に用いることができる非溶媒の例としては水、メタノール、エタノール、イソプロパノール、ヘキサノール、1,4−ブタンジオール等がある。コストや取り扱いの容易性から水が好ましい。 Examples of non-solvents that can be used in the film-forming stock solution include water, methanol, ethanol, isopropanol, hexanol, and 1,4-butanediol. Water is preferred because of its cost and ease of handling.

製膜原液の白濁を引き起こす非溶媒の濃度は、製膜原液中の溶媒の種類、ポルスルホン系ポリマーおよび親水性ポリマーの種類、製膜原液中の溶媒の濃度、ポルスルホン系ポリマーおよび親水性ポリマーの濃度、ポルスルホン系ポリマーおよび親水性ポリマーの分子量によって異なる。例えば、ポリスルホン系ポリマーの濃度を上げるにつれて、製膜原液の白濁を引き起こす非溶媒の濃度は低くなり、親水性ポリマーの濃度を上げるにつれて、製膜原液の白濁を引き起こす非溶媒の濃度は高くなる。また、親水性ポリマーの分子量が大きいと、白濁する非溶媒の濃度は高くなる。 The concentration of the non-solvent that causes cloudiness in the film-forming stock solution is determined by the type of solvent in the film-forming stock solution, the type of porsulfone-based polymer and hydrophilic polymer, the concentration of the solvent in the film-forming stock solution, the concentration of porsulfone-based polymer and the hydrophilic polymer. , And depending on the molecular weight of the porsulfone-based polymer and the hydrophilic polymer. For example, as the concentration of the polysulfone-based polymer increases, the concentration of the non-solvent that causes cloudiness of the membrane-forming stock solution decreases, and as the concentration of the hydrophilic polymer increases, the concentration of the non-solvent that causes cloudiness of the membrane-forming stock solution increases. Moreover, when the molecular weight of the hydrophilic polymer is large, the concentration of the cloudy non-solvent becomes high.

二重管ノズルの内管部に注入される注入液として、ポリスルホン系ポリマーの成分に対して非凝固性の液体を用いれば、中空糸膜の内表面側に緻密層を形成させず、内表面側の透水抵抗を抑えた中空糸膜の構造とすることができる。凝固浴によって中空糸膜の外表面から凝固が始まるため、中空糸膜の外表面側に緻密層が形成される。 If a non-coagulating liquid for the components of the polysulfone-based polymer is used as the injection liquid that is injected into the inner tube portion of the double-tube nozzle, the inner surface of the hollow fiber membrane will not form a dense layer and the inner surface will not be formed. The hollow fiber membrane can have a structure in which the water permeation resistance on the side is suppressed. Since the coagulation bath starts coagulation from the outer surface of the hollow fiber membrane, a dense layer is formed on the outer surface side of the hollow fiber membrane.

注入液の主成分には製膜原液と同様の溶媒を用いることが、中空糸膜の製造工程の廃液回収が簡便となる観点から望ましい。 It is desirable to use the same solvent as the membrane-forming stock solution as the main component of the injection liquid from the viewpoint of facilitating recovery of waste liquid in the manufacturing process of the hollow fiber membrane.

注入液に増粘剤を添加する方法もあり、注入液が高粘度であるほうが、二重管ノズルへ注入液を送液する計量性が向上することがある。増粘剤の例としてはポリビニルピロリドンやポリエチレングリコール、ポリビニルアルコール、グリセリン、グルコース、フルクトース、ラクトース、スクロース、マルトテトラオースが挙げられる。 There is also a method of adding a thickening agent to the injection liquid, and the higher the viscosity of the injection liquid, the better the metering property for sending the injection liquid to the double pipe nozzle. Examples of the thickener include polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol, glycerin, glucose, fructose, lactose, sucrose and maltotetraose.

凝固浴にて構造形成された中空糸膜を、巻取り工程前に設けられた水洗浴にて洗浄する。また、巻取り後、オフラインで中空糸膜を洗浄する方法があり、両者を適宜組み合わせて実施することが好ましい。中空糸膜の洗浄は水やアルコール等の水溶性成分の溶媒を用いることが好ましく、80℃以上の高温の液で洗浄すると洗浄効率がよく、好ましい。中空糸膜を洗浄後は、保管中の品質保持と取扱い性の面から、中空糸膜を乾燥させておくことが好ましい。この時、乾燥温度は60℃以上であることが好ましく、140℃未満であることが好ましい。60℃未満の乾燥温度では、乾燥速度が遅くなるため、中空糸膜の製造効率が悪い。140℃以上の乾燥温度では、本発明の中空糸膜のごとく優れた破断伸度の中空糸膜が得られない傾向がある。そのメカニズムは、中空糸膜に含まれている親水性ポリマーの架橋反応が起こり、中空糸膜の弾性率が増大するためと推測する。 The hollow fiber membrane having a structure formed in the coagulation bath is washed in a washing bath provided before the winding step. In addition, there is a method of washing the hollow fiber membrane off-line after winding, and it is preferable to carry out the combination of both as appropriate. For cleaning the hollow fiber membrane, it is preferable to use a solvent of water-soluble component such as water or alcohol, and it is preferable to wash the hollow fiber membrane with a liquid having a high temperature of 80° C. or higher for good cleaning efficiency. After washing the hollow fiber membrane, it is preferable to dry the hollow fiber membrane from the viewpoints of quality retention during storage and handleability. At this time, the drying temperature is preferably 60° C. or higher, and preferably lower than 140° C. If the drying temperature is lower than 60° C., the drying speed becomes slow, and the production efficiency of the hollow fiber membrane is poor. At a drying temperature of 140° C. or higher, a hollow fiber membrane having an excellent breaking elongation like the hollow fiber membrane of the present invention tends not to be obtained. The mechanism is presumed to be that the cross-linking reaction of the hydrophilic polymer contained in the hollow fiber membrane occurs and the elastic modulus of the hollow fiber membrane increases.

得られた中空糸膜を複数本束ねてU字状にした糸束を筒状のモジュールケースに挿入し、封止材で固定して中空糸膜モジュールとする。 A plurality of the obtained hollow fiber membranes are bundled to form a U-shaped fiber bundle, which is inserted into a tubular module case and fixed with a sealing material to obtain a hollow fiber membrane module.

中空糸膜モジュールをカートリッジケースへ挿入し、活性炭等の吸着剤やイオン交換体を充填することで、一般的な水道水に含まれることのある人体に不要な物質の除去が可能な浄水器カートリッジにすることができる。 By inserting the hollow fiber membrane module into the cartridge case and filling it with an adsorbent such as activated carbon or an ion exchanger, a water purifier cartridge that can remove substances unnecessary for the human body that may be contained in general tap water Can be

以下、実施例により本発明を詳述するが、本発明はこれらの実施例のみに限定されるものではない。なお、各特性値は以下の方法で測定した。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples. The characteristic values were measured by the following methods.

(1)透水性能測定
管形状のケースに中空糸膜を挿入し、ケースの両端部に中空糸膜を接着固定して、有効長12cmの小型モジュールを作成した。次に、中空糸膜へ37℃の水を供給し、中空糸膜を透過して流出してくる単位時間当たりの水の量を測定し、以下の式により透水性能を算出した
透水性能(mL/hr/Pa/m)=Q/(T×P×A)
Q : 中空糸膜の内側に流出した水の量(mL)
T : 水圧をかけた時間(hr)
P : 水圧(Pa)
A : 中空糸膜の有効面積(m) 。
(1) Water Permeation Performance Measurement A hollow fiber membrane was inserted into a tubular case, and the hollow fiber membrane was adhesively fixed to both ends of the case to prepare a small module having an effective length of 12 cm. Next, water at 37° C. was supplied to the hollow fiber membrane, the amount of water per unit time flowing out through the hollow fiber membrane was measured, and the water permeation performance was calculated by the following formula. /Hr/Pa/m 2 )=Q/(T×P×A)
Q: Amount of water flowing out inside the hollow fiber membrane (mL)
T: Water pressure time (hr)
P: Water pressure (Pa)
A: Effective area (m 2 ) of the hollow fiber membrane.

(2)粒子阻止率の測定
(1)の透水性能測定と同様の小型モジュールを作製し、200ppmの濃度のラテックスビーズ水溶液(invitrogen社製、Sulfate latex、粒子径0.3μm製品番号S37492、および0.06μm製品番号37202)を供給し、膜を透過させた液の濃度を測定した。供給側濃度200ppmと透過側濃度から阻止率Rを求めた
粒子阻止率=(1−Cp/Cf)×100
Cp:透過側濃度 Cf:供給側濃度
260nmの吸光度とラテックスビーズ濃度の関係を各粒子径においてあらかじめ測定しておき、透過側の液の吸光度を測定することで濃度を求めた。吸光度の測定は分光光度計(日立社製、U−5100)を用いて求めた。
(2) Measurement of particle rejection rate
A small module similar to the water permeability performance measurement of (1) was prepared and a latex bead aqueous solution having a concentration of 200 ppm (Invitrogen, Sulfate latex, particle size 0.3 μm product number S37492, and 0.06 μm product number 37202) was supplied. Then, the concentration of the liquid permeated through the membrane was measured. The rejection rate R was calculated from the supply side concentration of 200 ppm and the permeation side concentration.
Particle rejection rate = (1-Cp/Cf) x 100
Cp: concentration on the transmission side Cf: concentration on the supply side The relationship between the absorbance at 260 nm and the concentration of latex beads was measured in advance for each particle size, and the concentration was determined by measuring the absorbance of the liquid on the transmission side. The absorbance was measured using a spectrophotometer (U-5100 manufactured by Hitachi Ltd.).

(3)破断強度と破断伸度の測定
有効試料長50mmの乾燥状態の中空糸膜1本を50mm/minの速度で引張り試験を行った。測定には引張試験機(エー・アンド・ディー社製、STA−1150)を用い、雰囲気温度は25℃で行った。試料が破断する際に負荷されていた荷重(kgf)を引張り試験前の中空糸膜の断面積(cm)で除した値を破断強度として(kgf/cm)算出した。引張り試験前の試料長に対する破断するまで伸ばした変移の割合を破断伸度(%)として算出した。この操作を中空糸膜10本に対して繰り返し行い、算術平均値を破断強度と破断伸度の結果とした。
(3) Measurement of breaking strength and breaking elongation One dry hollow fiber membrane having an effective sample length of 50 mm was subjected to a tensile test at a speed of 50 mm/min. A tensile tester (STA-1150, manufactured by A&D Company) was used for the measurement, and the ambient temperature was 25°C. A value obtained by dividing the load (kgf) applied when the sample was broken by the cross-sectional area (cm 2 ) of the hollow fiber membrane before the tensile test was calculated as the breaking strength (kgf/cm 2 ). The ratio of the displacement extended to break to the sample length before the tensile test was calculated as the breaking elongation (%). This operation was repeated for 10 hollow fiber membranes, and the arithmetic mean value was taken as the result of the breaking strength and the breaking elongation.

(4)モジュール化時の糸切れ発生率
全長200mmの中空糸膜1000本の糸束をU字状に曲げて糸の先端をプレスによる目止めを行った。その後、内径φ30mmの筒状ケースに糸束を組み込み、封止材による固定化を行い、封止材と共に固定化された中空糸膜を切断することにより中空糸膜の開口端部を得た。以上の工程を経た中空糸膜モジュール内の糸切れ有無を目視で検査し、糸切れがある中空糸膜モジュールの発生率を求めた。
(4) Occurrence rate of yarn breakage during modularization A yarn bundle of 1000 hollow fiber membranes having a total length of 200 mm was bent into a U shape, and the tip of the yarn was stopped by pressing. Thereafter, the yarn bundle was incorporated into a cylindrical case having an inner diameter of 30 mm, fixed with a sealing material, and the hollow fiber membrane fixed together with the sealing material was cut to obtain an open end of the hollow fiber membrane. The presence or absence of yarn breakage in the hollow fiber membrane module that has undergone the above steps was visually inspected to determine the incidence of hollow fiber membrane modules with yarn breakage.

[実施例1]
ポリスルホン(BASF社製:UltrasonS6010)15質量%とポリビニルピロリドン(BASF社製K−90:重量平均分子量120万、以下PVP(K−90))2質量%とポリビニルピロリドン(BASF社製K−30:重量平均分子量4万、以下PVP(K−30))7質量%とジメチルアセトアミド(以下DMAc)73質量%と水3質量%を溶解撹拌し、製膜原液を調製した。この製膜原液を40℃に保たれた外周スリット幅0.15mmの二重管ノズルより吐出した。内管からはDMAc90質量%と水10質量%の注入液を吐出させた。二重管ノズルから吐出された製膜原液は乾式長80mmを空走した後、80℃の凝固浴にて凝固され、水洗工程を経て巻き取った。巻き取られた中空糸膜は外径460μm、膜厚80μmであった。上記の中空糸膜を洗浄し、100℃10時間の乾燥を行った。得られた中空糸膜は高い透水性能を発揮し、破断強度と破断伸度が優れているため糸切れ発生率を抑制できた。
[Example 1]
15% by mass of polysulfone (manufactured by BASF: Ultrason S6010) and 2% by mass of polyvinylpyrrolidone (K-90 manufactured by BASF: weight-average molecular weight 1.2 million, hereinafter PVP (K-90)) and polyvinylpyrrolidone (K-30 manufactured by BASF: A weight average molecular weight of 40,000, 7% by mass of PVP (K-30) below, 73% by mass of dimethylacetamide (hereinafter DMAc) and 3% by mass of water were dissolved and stirred to prepare a stock solution for film formation. This stock solution for film formation was discharged from a double tube nozzle having a peripheral slit width of 0.15 mm kept at 40°C. An injection liquid containing 90% by mass of DMAc and 10% by mass of water was discharged from the inner tube. The film forming stock solution discharged from the double tube nozzle was run dry for 80 mm in length, coagulated in a coagulation bath at 80° C., and washed with water to be wound up. The hollow fiber membrane wound up had an outer diameter of 460 μm and a thickness of 80 μm. The above hollow fiber membrane was washed and dried at 100° C. for 10 hours. The obtained hollow fiber membrane exhibited high water permeability and excellent breaking strength and breaking elongation, so that the occurrence rate of yarn breakage could be suppressed.

[実施例2]
ポリスルホン(BASF社製:UltrasonS6010)15質量%とPVP(K−90)4質量%とDMAc78質量%と水3質量%を溶解撹拌し、製膜原液を調製した。その他の条件を実施例1と同様として中空糸膜を得た。製膜原液のポリビニルピロリドンの濃度が実施例1より低いが、重量平均分子量が大きいPVP(K−90)の濃度が実施例1より高いため、製膜原液の非溶媒を実施例1と同一の濃度として優れた破断強度の中空糸膜が得られた。
[Example 2]
15% by mass of polysulfone (manufactured by BASF: Ultrason S6010), 4% by mass of PVP (K-90), 78% by mass of DMAc and 3% by mass of water were dissolved and stirred to prepare a stock solution for film formation. The other conditions were the same as in Example 1 to obtain a hollow fiber membrane. The concentration of polyvinylpyrrolidone in the film-forming stock solution was lower than that in Example 1, but the concentration of PVP (K-90) having a large weight average molecular weight was higher than that in Example 1. Therefore, the non-solvent of the film-forming stock solution was the same as in Example 1. A hollow fiber membrane having an excellent breaking strength as a concentration was obtained.

[比較例1]
ポリスルホン(BASF社製:UltrasonS6010)15質量%とPVP(K−90)8質量%とDMAc74質量%と水3質量%を溶解撹拌し、製膜原液を調製した。注入液の組成はDMAc65質量%、PVP(K−30)35質量%とし、その他の条件を実施例2と同様として中空糸膜を得た。製膜原液が白濁を引き起こす非溶媒濃度から0.8質量%以上低い非溶媒濃度であったため、実施例1〜2の中空糸膜と比較し破断強度が劣る中空糸膜であった。
[Comparative Example 1]
15% by mass of polysulfone (manufactured by BASF: Ultrason S6010), 8% by mass of PVP (K-90), 74% by mass of DMAc and 3% by mass of water were dissolved and stirred to prepare a stock solution for film formation. The composition of the injection liquid was DMAc 65% by mass and PVP(K-30) 35% by mass, and other conditions were the same as in Example 2 to obtain a hollow fiber membrane. Since the non-solvent concentration of the stock solution for membrane formation was 0.8 mass% or more lower than the non-solvent concentration causing cloudiness, the hollow fiber membrane was inferior in breaking strength to the hollow fiber membranes of Examples 1 and 2.

[比較例2]
ポリスルホン(BASF社製:UltrasonS6010)18質量%とPVP(K−90)2質量%とPVP(K−30)5質量%とDMAc73質量%と水2質量%を溶解撹拌し、製膜原液を調製した。その他の条件を実施例1と同様として中空糸膜を得た。製膜原液のポリスルホン系ポリマーの濃度が高いため、中空糸膜の緻密層の孔の孔径が小さいものとなり、実施例1〜2の中空糸膜と比較し透水性能が低い中空糸膜であった。
[Comparative example 2]
18% by mass of polysulfone (manufactured by BASF: Ultrason S6010), 2% by mass of PVP(K-90), 5% by mass of PVP(K-30), 73% by mass of DMAc and 2% by mass of water were dissolved and stirred to prepare a stock solution for film formation. did. The other conditions were the same as in Example 1 to obtain a hollow fiber membrane. Since the concentration of the polysulfone-based polymer in the membrane-forming stock solution was high, the pore diameter of the pores of the dense layer of the hollow fiber membrane was small, and the hollow fiber membrane had low water permeability as compared with the hollow fiber membranes of Examples 1 and 2. ..

[比較例3]
乾燥条件を170℃10時間とし、その他の条件を比較例1と同様として中空糸膜を得た。乾燥温度が高いため、中空糸膜に含まれる親水性ポリマーが架橋し、実施例1〜2の中空糸膜と比較し破断伸度が劣る中空糸膜であった。
[Comparative Example 3]
The drying conditions were 170° C. for 10 hours, and the other conditions were the same as in Comparative Example 1 to obtain a hollow fiber membrane. Since the drying temperature was high, the hydrophilic polymer contained in the hollow fiber membrane was crosslinked, and the breaking elongation was inferior to the hollow fiber membranes of Examples 1 and 2.

また、実施例1〜2および比較例1〜3の組成等を表1にまとめ、評価結果を表2にまとめた。 The compositions and the like of Examples 1 and 2 and Comparative Examples 1 to 3 are summarized in Table 1, and the evaluation results are summarized in Table 2.

Figure 0006707880
Figure 0006707880

Figure 0006707880
Figure 0006707880

本発明の中空糸膜は優れた透水性能と強伸度特性を有し、浄水器用途等の水処理膜や気体分離膜、医療用分離膜等に好適に用いられる。 INDUSTRIAL APPLICABILITY The hollow fiber membrane of the present invention has excellent water permeability and strong elongation characteristics, and is suitably used for water treatment membranes for water purifier applications, gas separation membranes, medical separation membranes and the like.

Claims (3)

親水性ポリマーを含んだポリスルホン系中空糸膜であって、
0.26〜0.34μmの粒子阻止率が99%以上であり、0.05〜0.07μmの粒子阻止率が10%以下であり、
破断強度が50kgf/cm以上であり、
破断伸度が50%以上であることを特徴とした中空糸膜。
A polysulfone-based hollow fiber membrane containing a hydrophilic polymer,
The particle rejection of 0.26 to 0.34 μm is 99% or more, and the particle rejection of 0.05 to 0.07 μm is 10% or less,
Breaking strength is 50 kgf/cm 2 or more,
A hollow fiber membrane having a breaking elongation of 50% or more.
請求項1の中空糸膜がケースに充填されており、前記中空糸膜は前記ケースに固定化された開孔端部を有する中空糸膜モジュール。 A hollow fiber membrane module in which the hollow fiber membrane according to claim 1 is filled in a case, and the hollow fiber membrane has an open end fixed to the case. 請求項2の中空糸膜モジュールと吸着剤を搭載した浄水カートリッジ。
A water purification cartridge equipped with the hollow fiber membrane module of claim 2 and an adsorbent.
JP2016019477A 2016-02-04 2016-02-04 Hollow fiber membrane and hollow fiber membrane module Active JP6707880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016019477A JP6707880B2 (en) 2016-02-04 2016-02-04 Hollow fiber membrane and hollow fiber membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016019477A JP6707880B2 (en) 2016-02-04 2016-02-04 Hollow fiber membrane and hollow fiber membrane module

Publications (2)

Publication Number Publication Date
JP2017136555A JP2017136555A (en) 2017-08-10
JP6707880B2 true JP6707880B2 (en) 2020-06-10

Family

ID=59565364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016019477A Active JP6707880B2 (en) 2016-02-04 2016-02-04 Hollow fiber membrane and hollow fiber membrane module

Country Status (1)

Country Link
JP (1) JP6707880B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111036088B (en) * 2018-10-11 2022-03-25 河南工程学院 Preparation method of lotus leaf surface structure-simulated super-hydrophobic porous separation membrane

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3255385B2 (en) * 1993-12-15 2002-02-12 株式会社クラレ Polysulfone hollow fiber membrane and method for producing the same
JP3921873B2 (en) * 1999-05-31 2007-05-30 東レ株式会社 Method for producing polysulfone-based hollow fiber membrane
JP3594946B2 (en) * 2002-09-12 2004-12-02 旭メディカル株式会社 High performance microfiltration membrane
JP2004305953A (en) * 2003-04-09 2004-11-04 Asahi Medical Co Ltd Method of manufacturing hollow fiber membrane
TWI406703B (en) * 2003-11-17 2013-09-01 Asahi Kasei Medical Co Ltd Purify blood with hollow fiber membrane and use its blood purifier
EP2335814B1 (en) * 2008-09-26 2016-12-28 Asahi Kasei Kabushiki Kaisha Use of porous hollow-fiber membrane for producing clarified biomedical culture medium
JP5371867B2 (en) * 2009-03-31 2013-12-18 旭化成メディカル株式会社 Hollow fiber membrane and method for producing the same
JP6155908B2 (en) * 2013-07-03 2017-07-05 東レ株式会社 Method for producing hollow fiber membrane
JP2015221400A (en) * 2014-05-22 2015-12-10 Nok株式会社 Manufacturing method of hollow fiber membrane for ultrafiltration membrane

Also Published As

Publication number Publication date
JP2017136555A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP5622833B2 (en) High durability PVDF porous membrane, method for producing the same, and cleaning method and filtration method using the same
JP5433921B2 (en) Polymer porous hollow fiber membrane
KR101077954B1 (en) A polysulfone-based hollowfiber membrane having a excellent impact strength and water permeability and preparing the same
JP4931796B2 (en) Vinylidene fluoride resin hollow fiber porous membrane, water filtration method using the same, and production method thereof
JP6827030B2 (en) Porous Membrane, Porous Membrane Module, Porous Membrane Manufacturing Method, Clarified Liquid Manufacturing Method and Beer Manufacturing Method
WO2009104705A1 (en) Hollow-fiber ultrafiltration membrane with excellent fouling resistance
JP4299468B2 (en) Cellulose derivative hollow fiber membrane
CN109070011B (en) Hollow fiber membrane
US20010047959A1 (en) Polyacrylonitrile-based filtration membrane in a hollow fiber state
JP6707880B2 (en) Hollow fiber membrane and hollow fiber membrane module
EP0923984B1 (en) Polyacrylonitrile-based hollow-fiber filtration membrane
WO2021132399A1 (en) Separation membrane and method for producing separation membrane
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JP6390326B2 (en) Method for producing porous filtration membrane for water treatment
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
JP2675197B2 (en) Manufacturing method of high strength and porous polysulfone hollow fiber membrane
JP4164730B2 (en) Selective separation membrane
JP7351822B2 (en) Hollow fiber membrane and method for manufacturing hollow fiber membrane
JP5423326B2 (en) Method for producing hollow fiber membrane
JP4164774B2 (en) Method for producing selective separation membrane
KR102048428B1 (en) hollow fiber membrane for water treatement and preparation method thereof
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
JP3464000B1 (en) Manufacturing method of high performance hollow fiber microfiltration membrane
JP6649779B2 (en) Hollow fiber type semipermeable membrane and method for producing the same
JP2023157444A (en) Hollow fiber type microfiltration membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200504

R151 Written notification of patent or utility model registration

Ref document number: 6707880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151