JPH02133608A - Porous polyolefin hollow fiber - Google Patents

Porous polyolefin hollow fiber

Info

Publication number
JPH02133608A
JPH02133608A JP28746088A JP28746088A JPH02133608A JP H02133608 A JPH02133608 A JP H02133608A JP 28746088 A JP28746088 A JP 28746088A JP 28746088 A JP28746088 A JP 28746088A JP H02133608 A JPH02133608 A JP H02133608A
Authority
JP
Japan
Prior art keywords
polyolefin
hollow fiber
porous
lamellae
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28746088A
Other languages
Japanese (ja)
Inventor
Kiyonobu Okamura
岡村 清伸
Hiroya Honda
博也 本田
Toshinobu Koshoji
小障子 俊信
Kunio Misoo
久仁夫 三十尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP28746088A priority Critical patent/JPH02133608A/en
Publication of JPH02133608A publication Critical patent/JPH02133608A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title fiber having a specific porous structure, excellent in safety and hygiene and mechanical strength characteristics, suitable in filtration and separation for medical or industrial applications, consisting of a blend polymer comprising a polyolefin and hydrophilic polyolefin. CONSTITUTION:The objective hollow fiber consisting of a blend polymer comprising (A) 95-40wt.% of a polyolefin (e.g., PE, PP) and (B) 5-60wt.% of a hydrophilic polyolefin (e.g., a copolymer from ethylene and vinyl alcohol; pref. >=70 in contact angle to water when determined in the form of a film). This fiber is such that its peripheral wall part, from the outer wall surface to the inner one, represents a porous structure made up of communicating spaces surrounded, over the entire range, by lamellae and numerous fibrils mutually connecting said lamellae.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は医療用、工業用の濾過、分離等に適した親水性
多孔質中空繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hydrophilic porous hollow fiber suitable for medical and industrial filtration, separation, etc.

(従来の技術) 高分子膜による分離は従来より広く行なわれており、高
分子膜どしても種々の素材のbのが開発されている。
(Prior Art) Separation using polymer membranes has been widely used in the past, and polymer membranes made of various materials have been developed.

その中でも結晶性熱可塑性面M子を中空11All維に
溶融紡糸し、これを比較的低温で延伸して結晶ラメラ間
の非晶領域にクレーズを発生せしめ、好ましくは、これ
を更に熱延伸してその中空繊維の周壁部に多孔質構造を
形成せしめたものは微細孔形成のための添加側や溶媒を
使用しないため不純物や化合物の系への溶出を嫌う用途
に適した中空糸■葵として注目されている。
Among them, crystalline thermoplastic surface M is melt-spun into hollow 11All fibers, which are stretched at a relatively low temperature to generate crazes in the amorphous regions between crystalline lamellae, and preferably, this is further hot-stretched. Hollow fibers with a porous structure formed on the peripheral wall of the hollow fibers do not require additives or solvents to form micropores, so they are attracting attention as hollow fibers that are suitable for applications where impurities or compounds should not be leached into the system. has been done.

このような中空糸の製法として特開昭52−13702
6号公報、特開昭57−42919号公報、特開昭57
−6611−1号公報等に開示されている。かかる方法
で得られた多孔質中空繊維はポリオレフィンや弗素化ポ
リオレフィンのみからなり、素材が木質的に疎水+j1
であるため、そのままでは、水溶液等の水系液体の濾過
には非常に大ぎな圧力を要し、実際的ではない。そこで
水系液体の濾過に使用する場合はアルコールや界面活性
剤等の親木化剤で処理して用いでいる。
As a manufacturing method for such hollow fibers, Japanese Patent Application Laid-Open No. 52-13702
6, JP-A-57-42919, JP-A-57
It is disclosed in Publication No.-6611-1 and the like. The porous hollow fibers obtained by this method are made only of polyolefin or fluorinated polyolefin, and the material is woody and hydrophobic.
Therefore, as it is, extremely large pressure is required for filtering aqueous liquids such as aqueous solutions, which is not practical. Therefore, when used for filtration of aqueous liquids, it is treated with a wood-enhancing agent such as alcohol or a surfactant.

又、2f!の異なるポリマーをブレンドして溶融紡糸し
た後、延伸処理して異種ポリマーの界面を開裂させて中
空繊維周壁の外壁面から内壁面に連通した連続微細空孔
壁面の少なくとも一部が他と異なった性質を有する異種
ポリマーで構成された不均質tt微細孔壁面を有する微
孔性多孔質中空織碓を形成し・、構成ポリマー中に存在
する側tn基の加水分解、スルホン化等の後処理によっ
て、細孔の表面が親水化された親木性多孔質中空繊維を
製造する方法が特開昭55−137208号公報に開示
されている。
Also, 2f! After blending and melt-spinning different polymers, the interface between the different polymers is stretched and the interface between the different polymers is cleaved, so that at least a part of the wall surface of the continuous micropores communicating from the outer wall surface to the inner wall surface of the hollow fiber peripheral wall is different from the others. A microporous hollow woven fabric with a heterogeneous tt micropore wall surface composed of different types of polymers having properties is formed, and by post-treatment such as hydrolysis and sulfonation of the side tn groups present in the constituent polymers. JP-A-55-137208 discloses a method for producing wood-philic porous hollow fibers whose pore surfaces are made hydrophilic.

(発明が解決しようとする問題点) 多孔質膜は医療用においては血簗分廁1、輸液濾過、血
漿蛋白の分離、無閑水の製造等、工業用においてはIC
の洗浄暴、食品加工用水の製造、その他の工程用水の浄
化等に用いられ、更には、近年、家庭用、飲食店用等の
浄水器等に多量に用いられている。これらの用途はいず
れも水系プロセスであり、多孔質膜素材から異物が溶出
すると安全性あるいは蹟製氷あるいは水溶液の品質低下
につながることから好ましくないものであり、このよう
な溶出の心配のない膜が要望されている。
(Problems to be solved by the invention) Porous membranes are used for medical purposes such as blood sputum separation, infusion filtration, plasma protein separation, and production of plain water, and for industrial purposes such as IC.
It is used for cleaning, manufacturing water for food processing, and purifying water for other processes, and in recent years, it has also been used in large quantities in water purifiers for homes, restaurants, etc. All of these applications are water-based processes, and the elution of foreign substances from the porous membrane material is undesirable because it may lead to a decrease in safety, ice making, or the quality of the aqueous solution. It is requested.

一方、ポリオレフィンポリマーを溶融紡糸し、低伸ゴる
ことにより多孔質化した中空繊維は抽出用添加剤や溶剤
を使用しないことから膜使用時の溶出の心配がないとい
う優れたものであるが、親水化処理が必要であり、アル
コールや界面活性剤による処理は一時的な親水化であっ
て、しかも、親木化処理したままで濾過等に使用すると
アルコールや界面活性剤が績製氷に移行してこれを汚染
するので、濾過前にこれらの親水化剤を充分洗浄除去す
る必要があり、しかもこのような状態で乾燥すると膜表
面は疎水性に戻るので親木化の後は水で置換し°Cおき
、常に水に接触させておかねばならないという問題を有
している。
On the other hand, hollow fibers made by melt-spinning polyolefin polymers and making them porous by low elongation are excellent because they do not use extraction additives or solvents, so there is no need to worry about elution when using membranes. Hydrophilic treatment is necessary, and treatment with alcohol or surfactant is only temporary hydrophilic treatment, and furthermore, if used for filtration, etc. with the hydrophilic treatment, the alcohol and surfactant will transfer to ice making. These hydrophilizing agents must be thoroughly washed and removed before filtration, as the membrane surface will return to hydrophobicity if it dries under these conditions, so it must be replaced with water after hydrophilization. The problem is that it must be kept in contact with water at all times.

又、特開昭55−137203号公報に記載された異種
ポリマーのブレンド物を溶融紡糸、延伸して多孔質化し
た繊維は、ラメラ間の非晶質部分にりlノーズを発生さ
せてこれをフィブリルにするというよりもむしろ異神ポ
リマー間の界面を開裂させるものであり、従って、ラメ
ラ間の非晶質部分にりIノズを発生させてこれをフィブ
リルにするものに比へて細孔内表面積も小さく、孔径は
異種ポリマーのブレンド状態に影官を受け、異種ポリマ
ー間の親和神のなさを利用して(用孔させるものである
から微細ブ1ノンドが比較的困難であり、孔径のばらつ
ぎも大きくなるという問題を有している。また、親木化
のために加水分解やスルホン化等の後処理が必要であり
、工程が煩雑になるという問題点をも櫓している。
In addition, the fiber made porous by melt-spinning and drawing a blend of different polymers described in JP-A-55-137203 generates a nose in the amorphous portion between the lamellae. Rather than forming fibrils, it cleaves the interface between different polymers, and therefore, compared to generating I-nozzes in the amorphous part between the lamellae and forming them into fibrils, it is difficult to form fibrils within the pores. The surface area is small, and the pore size is affected by the blended state of different types of polymers. There is also the problem of large splinters.Additionally, post-treatments such as hydrolysis and sulfonation are required to make the wood parent, making the process complicated.

(問題点を解決するための手段) 本発明者らはこのようt2状況に鑑み鋭意検討した結果
、ポリオレフィンを用い、溶融紡糸、延伸処理法により
ラメラ間の非結晶質部分にクレーズを発生させて多孔質
化lノて得られる多孔質中空繊維の優れた特性を生かし
、しかも水系液体処理に適した恒久親水性を有する多孔
質中空繊維を工業的に有利な方法で製造できる技術を開
発すべく鋭意検討した結果、本発明に〒1]達した。
(Means for Solving the Problem) As a result of intensive studies in view of the t2 situation, the inventors of the present invention have developed a method of generating crazes in the amorphous portion between the lamellae using polyolefin and using a melt spinning and drawing process. In order to utilize the excellent properties of porous hollow fibers obtained by making them porous, and to develop a technology that can produce porous hollow fibers with permanent hydrophilic properties suitable for aqueous liquid treatment in an industrially advantageous manner. As a result of intensive studies, we have arrived at the present invention (1).

即ち5本発明の要旨はポリオレフィン95−40重量%
ど親水性ポリオレフィン5〜60重皿%とからなるブレ
ンドポリマーからなる多孔質中空繊維、佳であって、該
中空繊維の周檗部が外壁面から内壁面まで全体にわたっ
てラメラと該ラメラ間をつなぐ多数のフィブリルとでか
こまれてなる空間が連通してなる多孔質構造となってい
ることを特徴とする多孔質ポリオレフィン中空繊維にあ
る。
That is, the gist of the present invention is 95-40% by weight of polyolefin.
A porous hollow fiber made of a blended polymer comprising 5 to 60% of a hydrophilic polyolefin, wherein the hollow fiber has a plurality of lamellae connecting the lamellae over the entire area from the outer wall surface to the inner wall surface. A porous polyolefin hollow fiber characterized by having a porous structure in which spaces surrounded by fibrils communicate with each other.

本発明において用いられるポリオレフィンとしてはポリ
エチレン、ポリプロピレン、ポリ3−メチルブテン〜1
、ポリ4−メチルペンテン−1などを例示できる。又、
本発明においてポリオレフィンとブレンドされる親水性
ポリオレフィンはこねをフィルムにして測定したときの
水との接触角が80°以下であるように改質されたポリ
オレフィンであることが好ましく、70°以下であるよ
うに改質されたポリオレフィンであることがより好まし
い。このような改質されたポリマーの例としては各種ポ
リオレフィンの分子鎖に水酸基、カルボキシル基、アミ
ノ基、スルホン酸基、ポリオキシエチレン基等を結合し
たものを例示でき、これにはエチレンとビニルアルコー
ルの共重合体、エチレンと酢酸ビニルとの共重合体、エ
チレンと無水マレイン酸との共重合体、エチレンとポリ
オキシエチレンとを化学結合させた共重合体、金属イオ
ン架橋ポリオレフィン等を例示できる。
Polyolefins used in the present invention include polyethylene, polypropylene, poly3-methylbutene to 1
, poly-4-methylpentene-1, and the like. or,
In the present invention, the hydrophilic polyolefin to be blended with the polyolefin is preferably a polyolefin modified so that the contact angle with water is 80° or less, and is preferably 70° or less when measured using dough as a film. More preferably, it is a polyolefin modified in the following manner. Examples of such modified polymers include those in which hydroxyl groups, carboxyl groups, amino groups, sulfonic acid groups, polyoxyethylene groups, etc. are bonded to the molecular chains of various polyolefins, including ethylene and vinyl alcohol. Examples include copolymers of ethylene and vinyl acetate, copolymers of ethylene and maleic anhydride, copolymers of ethylene and polyoxyethylene chemically bonded, and metal ion crosslinked polyolefins.

ここで、ポリオレフィンとブレンドするポリマーを親水
性ポリオレフィンに限定した理由は、上述のようなポリ
オレフィンであれはポリオレフィンとブレンドしたとき
に両者の間に良好な親和性が得られ、こねによりこわを
溶融紡糸して得られる未延伸中空繊維の周壁におりる高
配向高結晶性のラメラ構造の形成をさほど阻害せず、更
に、ブレンドポリマー界面での創口も発生し難いためポ
リオレフィン単独ポリマーを用いた場合と同様の潰れた
多孔質膜構造が得られ、しかも親木性基を有しているた
め恒久的親水性が得られ、水や湿分を容易に透過でき、
かつ、空孔がフィブリルの周囲の空間であるため1か所
が詰まっても容易に迂回できるため実質的に目詰まりが
少11いという優れた特長を有している。このポリオレ
フィンと親水性ポリオレフィンとの混合比率はポリオレ
フィン95〜40重量%、親水性ポリオレフィン5〜6
0重量%である必要がある。これは、親水性ポリオレフ
ィンとして高度に親木性であるものを用いた場合は比較
的少量のブレンドで親木性を発揮でき、しかもこのよう
な親水性ポリオレフィンは逆に多量にブレンドするとラ
メラ結晶の生成を阻害する傾向にあるため良好な多孔質
構造が得られ難くなり、親木性が比較的低く、ポリオレ
フィンの特徴をより多く有しているものの場合は逆に親
木性を充分に発揮させるためには比較的多量にブレシト
する必要があり、しかも多量にブレンドしてちラメラ結
晶の生成を阻害することもない。ポリオレフィンと親木
性ポリオレフィンの混合比率はポリオレフィン90〜5
0重量%、親水性ポリオレフィン10〜50重量%であ
ることが好ましい。ポリオレフィンの比率が上記下限未
満であると充分均一な多孔質構造が得られ難くなる傾向
にあるため好ましくなく、上記上限を越えたものでは親
水性が不充分となるため好ましくない。
Here, the reason why we limited the polymers to be blended with polyolefins to hydrophilic polyolefins is that when the above-mentioned polyolefins are blended with polyolefins, good affinity can be obtained between the two, and stiffness can be removed by melt spinning. The formation of a highly oriented, highly crystalline lamellar structure on the peripheral wall of the undrawn hollow fibers obtained by the process is not significantly inhibited, and furthermore, it is difficult to create a wound at the blend polymer interface, so it is different from the case where a polyolefin monopolymer is used. A similar collapsed porous membrane structure is obtained, and since it has a woody group, it has permanent hydrophilicity and can easily permeate water and moisture.
In addition, since the pores are the spaces around the fibrils, even if one location becomes clogged, it can be easily bypassed, so it has an excellent feature of virtually no clogging. The mixing ratio of this polyolefin and hydrophilic polyolefin is 95 to 40% by weight of polyolefin and 5 to 6% by weight of hydrophilic polyolefin.
It must be 0% by weight. This is because when highly wood-philic hydrophilic polyolefins are used, wood-philic properties can be achieved with a relatively small amount of blending, and conversely, when such hydrophilic polyolefins are blended in large amounts, lamellar crystals form. It tends to inhibit the formation of polyolefins, making it difficult to obtain a good porous structure, and in the case of products that have relatively low wood-philicity and have more of the characteristics of polyolefins, conversely, it is difficult to obtain a good porous structure. In order to achieve this, it is necessary to blend a relatively large amount, and furthermore, blending in a large amount does not inhibit the formation of lamellar crystals. The mixing ratio of polyolefin and wood-loving polyolefin is polyolefin 90-5
0% by weight and preferably 10 to 50% by weight of the hydrophilic polyolefin. If the proportion of polyolefin is less than the above-mentioned lower limit, it tends to be difficult to obtain a sufficiently uniform porous structure, which is not preferable, and if it exceeds the above-mentioned upper limit, hydrophilicity becomes insufficient, which is not preferable.

本発明の多孔質中空繊維の多孔質構造は結晶性高分子を
紡糸して得られる未延伸中空糸を延伸して、未延伸糸の
ラメラとラメラの間の折り畳まねた分子を引伸してフィ
ブリルに開裂さゼて得られる構造であるため、ラメラと
ラメラの間を結ぶ繊維長手方向に配列した多数のフィブ
リルの周囲が空間となって、この構造が中空tAIi 
finの周壁部の外壁面から内壁面までつながっている
ものである。
The porous structure of the porous hollow fibers of the present invention is created by stretching undrawn hollow fibers obtained by spinning a crystalline polymer, and stretching the folded molecules between the lamellae of the undrawn fibers to form fibrils. Since the structure is obtained by cleavage, a large number of fibrils arranged in the longitudinal direction of the fibers connecting the lamellae becomes a space, and this structure becomes a hollow tAIi.
It is connected from the outer wall surface to the inner wall surface of the peripheral wall portion of the fin.

以下に、本発明の多孔質繊維の製造方法について説明す
る。
The method for producing porous fibers of the present invention will be explained below.

まず、上述のポリオレフィンと親木性ポリオレフィンと
をブレンドするが、このブレンドは充分均一にブレンド
する必要があり、上記ポリマーを例えばV型ブレンダー
のようなブレンダーであらかじめブレンドするか、溶融
押出し機で溶融ブレンドし、−旦ベレット化したものを
溶融紡糸用押出し機にかけるのが好ましい。
First, the above-mentioned polyolefin and wood-loving polyolefin are blended, but this blend needs to be sufficiently uniform.The above-mentioned polymers are either blended in advance using a blender such as a V-type blender, or melted using a melt extruder. Preferably, the blended and pelletized mixture is passed through an extruder for melt spinning.

次にこのブレンドポリマーを中空繊維用ノズルを用いて
溶融紡糸を行なうが、中空繊維用ノズルとしては二重管
構造を有するものが偏肉の少ないことから好まし・く用
いられる。もちろん中空繊維用ノズルであれは、鳴%形
その他のものち用いることができる。
Next, this blended polymer is melt-spun using a nozzle for hollow fibers, and a nozzle for hollow fibers having a double tube structure is preferably used because it has less uneven thickness. Of course, as for the nozzle for hollow fibers, other types such as the hollow type can also be used.

溶融紡糸の紡糸温度は使用するポリマーの種類、メルト
インデックス、採用する吐出量、冷却条イ′4、巻取り
速度等の条件との兼ね合いで、目的とする中空繊維の内
径、膜厚を安定に確保しつる範囲で適宜設定すればよく
、通常は、ブレンドするポリマーの中、融点の高いほう
のポリマーの融点(以下、mp、1という)より20℃
以上高く、かつ該融点(m p、)より100℃高い温
度を越えない温度範囲で紡糸すればよい。この温度範囲
の下限より低い温度で紡糸すると、得られる未延伸糸は
高度に配向しているが、後の工程である延伸工程で延伸
多孔質化を図る時に最大延伸倍率が低くなり、充分高い
空孔率が得難くなるので好ましくない。
The spinning temperature for melt spinning is determined by considering the type of polymer used, the melt index, the discharge rate used, the cooling strip '4, the winding speed, etc., to stabilize the inner diameter and film thickness of the target hollow fiber. It may be set as appropriate within the range that can be ensured, and usually the temperature is 20°C higher than the melting point (hereinafter referred to as mp, 1) of the polymer with a higher melting point among the polymers to be blended.
The spinning may be carried out at a temperature higher than 100° C. and not exceeding 100° C. higher than the melting point (mp, ). If the yarn is spun at a temperature lower than the lower limit of this temperature range, the resulting undrawn yarn will be highly oriented, but the maximum draw ratio will be low when the drawing process is performed in the later drawing step to make it porous. This is not preferable because it becomes difficult to obtain sufficient porosity.

逆に上記温度範囲の上限を越える温度で紡糸しt、:場
合も高い空孔率のt・のが得難いので好ましくない。
On the other hand, spinning at a temperature exceeding the upper limit of the above temperature range is also not preferred because it is difficult to obtain a high porosity.

溶融紡糸で得られる未延伸系の高配向高結晶化を達成す
るために、紡糸ドラフトを100乃至10000とする
ことが好ましく、1000乃至t ooooであること
がより好ましい。紡糸ドラフトが100未満ではラメラ
結晶構造の形成が不充分となり、従ってその後の延伸工
程を経ても8Q好な多孔質構造の形成が行なわれ難くな
る。溶融紡糸で得らtする未延伸糸としては中空内径5
0〜2000μm5膜厚10〜200μmであることが
好ましいが、必要に応じてこの範111外の手法のもの
にしても良い。
In order to achieve highly oriented and highly crystallized undrawn material obtained by melt spinning, the spinning draft is preferably from 100 to 10,000, more preferably from 1,000 to toooo. If the spinning draft is less than 100, the formation of a lamellar crystal structure will be insufficient, and therefore it will be difficult to form a good porous structure of 8Q even through the subsequent drawing process. The undrawn yarn obtained by melt spinning has a hollow inner diameter of 5
Although it is preferable that the film thickness is 0 to 2000 μm5 and 10 to 200 μm, a method outside this range 111 may be used if necessary.

こうして得られた未延伸中空繊維をこのまま延伸し7て
も良いが、配向結晶化を高めるため、mp+1以下であ
って、未延伸糸の構造を実質的に傷めない範囲の温度節
回で、定長下あるいは弛緩状態でアニール処理をした後
延伸してもよい。
The undrawn hollow fibers obtained in this way may be drawn as they are, but in order to enhance oriented crystallization, the temperature should be controlled at a constant temperature of mp+1 or less and within a range that does not substantially damage the structure of the undrawn yarn. It may be stretched after being annealed in a stretched or relaxed state.

本発明の多孔質中空繊維はこうして得られた未延伸系を
延伸して多孔質化することにより得られるが、延伸とし
てはmptl−ao℃以下、かつmp。
The porous hollow fiber of the present invention is obtained by stretching the unstretched system thus obtained to make it porous, and the stretching temperature is below mptl-ao°C and mp.

−220℃以上、好ましくはm、、−160℃〜m p
H−90℃での冷延伸と、その次にrllpu60℃〜
mpn−5℃での熱延伸の組み合わせで行なわれること
が好ましい。熱延伸は2段以上の多段延伸であってもよ
い。熱延伸温度が上記上限より高いと目的とする多孔質
構造が得られなくなる。熱延伸温度が上記下限より低い
場合は、温度が低りれば低いぼど空孔率が低下するので
好まし・くない。
-220°C or higher, preferably -160°C to m p
Cold stretching at H-90°C, then rllpu60°C~
Preferably, this is carried out in combination with hot stretching at mpn-5°C. The hot stretching may be a multi-stage stretching of two or more stages. If the hot stretching temperature is higher than the above upper limit, the desired porous structure cannot be obtained. When the hot stretching temperature is lower than the above lower limit, it is not preferable or undesirable because the lower the temperature, the lower the porosity.

冷延伸及び熱延伸の倍率は多孔質中空繊維の空孔率等、
目的とする品質性能に応じて適宜設定ずねばよいが、冷
延伸における延伸倍率は10〜100%であることが好
ましく、熱延伸の倍率は冷延伸と熱延伸とを合わせた総
延伸量が150〜900%になるように設定するのが好
ましい。総延伸量が700%を越えると、延伸時に糸切
れが多発するので好ましくない。こうして得られた多孔
質ポリオレフィン繊維は熱延伸によりほぼ形態の安定性
が確保されているが、必要に応じてm、、、−60℃〜
mp、(−5℃の温度で緊張下あるいは制限緩和状態で
熱セット1.・でもよい。本発明者らの検討によれば、
この冷延伸及び熱延伸の温度、倍率などにより空孔率、
濾過における阻止率等目的とする多孔質9]空繊維の品
質性能を適宜実現させることができる。
The magnification of cold stretching and hot stretching depends on the porosity of the porous hollow fiber, etc.
Although it should be set appropriately depending on the desired quality performance, the stretching ratio in cold stretching is preferably 10 to 100%, and the stretching ratio in hot stretching is such that the total stretching amount of cold stretching and hot stretching is 150%. It is preferable to set it to 900%. If the total stretching amount exceeds 700%, it is not preferable because thread breakage occurs frequently during stretching. The porous polyolefin fibers obtained in this way are almost stable in shape by hot drawing, but if necessary,
mp, (Heat set 1 under tension or in a relaxed state at a temperature of -5°C. According to the study by the present inventors,
The porosity varies depending on the temperature and magnification of this cold stretching and hot stretching.
It is possible to appropriately achieve the desired quality performance of the porous fibers (9), such as the rejection rate in filtration.

(実施例) 以下に実施例を用いて本発明を更に説明するが、実施例
において、ブレンドポリマーの結晶化度は広角X線回折
装置を用いて全方位の回折強度を積算し、下記の式で求
めた。
(Example) The present invention will be further explained below using an example. In the example, the crystallinity of the blend polymer was calculated by integrating the diffraction intensity in all directions using a wide-angle X-ray diffraction device, and using the following formula. I asked for it.

結晶化度χ。−(全回折強度の積分値−非晶部分の回折
強度の積分値)/全回折強度の積分値又、結晶配列度は
広角X線回折装置を用いて(110)面の回折強度の繊
維軸方向への分布の半価値を求め、下記の式により求め
た。
Crystallinity χ. -(integral value of total diffraction intensity - integral value of diffraction intensity of amorphous part)/integral value of total diffraction intensity Also, the degree of crystal alignment is determined using a wide-angle X-ray diffractometer.The fiber axis of the diffraction intensity of the (110) plane The half value of the distribution in the direction was determined using the following formula.

結晶配列度= (Ht+to+ / (180−H(1
1111)xtoO(%) 但し、HNI。+:(110)面の半価値又、フィルム
状態での水との接触角は協和科学■製、協和コンタクト
アングルメーターにより、公知の方法で測定した。
Crystal alignment degree = (Ht+to+ / (180-H(1
1111) xtoO (%) However, HNI. +: Half value of (110) plane Also, the contact angle with water in the film state was measured by a known method using a Kyowa Contact Angle Meter manufactured by Kyowa Kagaku ■.

実施例1 密度0 、 968g/cm’の高密度ポリエチレン(
ヨ井石油化学■製ハイゼックス2200J)とポリエチ
レンとアクリル酸の共重合体の亜鉛イオンによる架橋体
(三井ポリケミカル■製、ハイミシン−1フ02.フイ
ルム状態での水との接触角69°)をV型ブレンダーで
1=1の比率でブレンドし、乾燥した後、吐出口径が2
8mm、円管スリット幅が3.5mmの二重管構造の中
空繊維製造用ノズルを用い、自給式で空気を導入し、紡
糸温度170℃、紡糸ドラフト3400、紡糸速度20
0 m/r+inで紡糸し、巻取った。
Example 1 High-density polyethylene (density 0, 968 g/cm')
HIZEX 2200J (manufactured by Yoi Petrochemical ■) and a cross-linked product of polyethylene and acrylic acid copolymer with zinc ions (manufactured by Mitsui Polychemical ■, HiSeishin-1 F02. Contact angle with water in film state: 69°). Blend with a V-type blender at a ratio of 1=1, and after drying, the outlet diameter is 2.
Using a hollow fiber manufacturing nozzle with a double tube structure of 8 mm and a circular tube slit width of 3.5 mm, air is introduced in a self-contained manner, the spinning temperature is 170°C, the spinning draft is 3400, and the spinning speed is 20.
The yarn was spun at 0 m/r+in and wound.

得られた未延伸糸を115℃でt2oJ!;間足長下で
熱処理した。この未延伸糸の結晶化度は62%、結晶配
列度は75%であった。この未延伸糸を25℃で80%
の冷延伸を行ない、次いで、115℃に加熱した長さ2
mの加熱山中で全延伸倍率が520%になる迄熱延伸を
行なった。更に、同じ温度に加熱した長ざ2mの加熱山
中で総延伸倍率が400%になるよう緩和熱セラ!・を
行なった。
The obtained undrawn yarn was heated to t2oJ! at 115°C. ;Heat-treated under a short distance. The degree of crystallinity of this undrawn yarn was 62%, and the degree of crystal orientation was 75%. This undrawn yarn was heated to 80% at 25°C.
Cold stretching was carried out, and then the length 2 was heated to 115°C.
Hot stretching was carried out in a heated pile of 500 m until the total stretching ratio reached 520%. Furthermore, in a heating pile of 2 m length heated to the same temperature, the total stretching ratio is 400% by relaxing heat cera!・I did the following.

得られた多孔質中空繊維は内径270μm、膜厚51μ
m、空孔率62%、透水圧(水が中空繊維の表面より均
一に透過する時の水圧)1.1kg7cm2であった。
The obtained porous hollow fiber had an inner diameter of 270 μm and a membrane thickness of 51 μm.
m, porosity 62%, and water permeability pressure (water pressure when water permeates uniformly from the surface of the hollow fiber) 1.1 kg 7 cm2.

実施例2 密度0 、968g/cm3の高密度ポリエチレンとポ
リエチレンとアクリル酸の共重合体の亜鉛イオンによる
架橋体をV型ブレンダーで1:1の比率でブレンドし、
乾燥したもののかわりに密度0、968g/cm3の高
密度ポリエチレン(三井石油化学a勾製ハイゼックス2
200J)とエチレン−ビニルアルコール共重合体(日
本合成化学fm製、ソアノールD1フィルムでの水との
接触角56°)を押出し機で7=3の比率でブL−シト
し、乾燥したものを用いた以外は実施例1ど同様にした
。熱処理後の未延伸中空繊維の結晶化度は68%、結晶
配列度は82%であった。
Example 2 High-density polyethylene with a density of 0 and 968 g/cm3 and a crosslinked product of a copolymer of polyethylene and acrylic acid using zinc ions were blended at a ratio of 1:1 using a V-type blender.
High-density polyethylene with a density of 0.968 g/cm3 (Mitsui Petrochemical A-Kasei Hi-ZEX 2) is used instead of the dried one.
200J) and an ethylene-vinyl alcohol copolymer (manufactured by Nippon Gosei Kagaku FM, contact angle with water on Soarnol D1 film 56°) were extruded at a ratio of 7=3 using an extruder and dried. The same procedure as in Example 1 was carried out except for using the following. The degree of crystallinity of the undrawn hollow fibers after heat treatment was 68%, and the degree of crystal orientation was 82%.

延伸、熱セツト後に得られた多孔質中空繊維は内径28
0μm、膜厚55μm、空孔率65%、透水圧1 、 
5 kg/cm”であった。
The porous hollow fiber obtained after stretching and heat setting has an inner diameter of 28
0 μm, membrane thickness 55 μm, porosity 65%, water permeability 1,
5 kg/cm".

比較例1 密度0 、9683/cm’の高密度ポリエチレンとポ
リエチレンとアクリル酸の共重合体の亜鉛イオンによる
架橋体を■型ブレンダーで1=1の比率でブレンドし、
乾燥したもののかわりに密度0゜968 g/cm’の
高密度ポリエチレン(三井石油化学■製ハイゼックス2
200J)を用いた以外は実施例1と同様にして多孔質
中空繊維を得た。得られた多孔質中空繊維は内径285
μm′n、膜厚58μm、空孔率72%、透水圧4゜9
 J/c+++’であった。
Comparative Example 1 High-density polyethylene with a density of 0 and 9683/cm' and a crosslinked product of a copolymer of polyethylene and acrylic acid with zinc ions were blended in a ratio of 1=1 in a ■ type blender,
High-density polyethylene with a density of 0°968 g/cm' (Hizex 2 manufactured by Mitsui Petrochemicals) can be used instead of dried polyethylene.
A porous hollow fiber was obtained in the same manner as in Example 1, except that 200J) was used. The obtained porous hollow fiber has an inner diameter of 285
μm'n, membrane thickness 58μm, porosity 72%, water permeability 4゜9
J/c+++'.

(発明の効果) 本発明の中空繊維は製造に、ヤ)たって溶剤や抽出用の
添加剤を使用しないで得られるものであるため安全衛生
面での信頼性に優れた中空糸膜であり、しかも従来の湿
式法あるいは抽出法による膜に比べて強度特性に優れ、
又、該中空繊維の周壁部が外壁面から内壁面まで全体に
わたってラメラと該ラメラ間をつなぐ多数のフィブリル
とでかこまれてなる空間が連通してなる多孔質構造とな
っているため目詰まりが少なく、又、ポリオレフィンを
ベースにしながら、親水性ポリオレフィンとのブレンド
物を用いているため恒久的親木性を有しており、医壕用
、食品工業用等の水系液体の処理に適しているという優
れた性能を有している。
(Effects of the Invention) The hollow fiber of the present invention is a hollow fiber membrane that is highly reliable in terms of safety and hygiene because it can be produced without using any solvent or extraction additive. Moreover, it has superior strength properties compared to membranes made using conventional wet or extraction methods.
In addition, since the peripheral wall of the hollow fiber has a porous structure in which spaces formed by lamellae and a large number of fibrils connecting between the lamellae are connected throughout from the outer wall surface to the inner wall surface, clogging is prevented. Moreover, since it is based on polyolefin and is blended with hydrophilic polyolefin, it has permanent wood-philicity, making it suitable for treating aqueous liquids in medical trenches, food industries, etc. It has excellent performance.

Claims (1)

【特許請求の範囲】 1)ポリオレフィン95〜40重量%と親水性ポリオレ
フィン5〜60重量%とからなるブレンドポリマーから
なる多孔質中空繊維であって、該中空繊維の周壁部が外
壁面から内壁面まで全体にわたってラメラと該ラメラ間
をつなぐ多数のフィブリルとでかこまれてなる空間が連
通してなる多孔質構造となっていることを特徴とする多
孔質ポリオレフィン中空繊維。 2)親水性ポリオレフィンがフィルム状態で測定した時
の水との接触角が80°以下であるものであることを特
徴とする請求項1記載の多孔質ポリオレフィン中空繊維
[Scope of Claims] 1) A porous hollow fiber made of a blend polymer consisting of 95 to 40% by weight of polyolefin and 5 to 60% by weight of hydrophilic polyolefin, wherein the peripheral wall of the hollow fiber extends from the outer wall surface to the inner wall surface. A porous polyolefin hollow fiber characterized in that it has a porous structure in which spaces formed by encircling lamellae and a large number of fibrils connecting the lamellae are connected throughout. 2) The porous polyolefin hollow fiber according to claim 1, wherein the hydrophilic polyolefin has a contact angle with water of 80° or less when measured in a film state.
JP28746088A 1988-11-14 1988-11-14 Porous polyolefin hollow fiber Pending JPH02133608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28746088A JPH02133608A (en) 1988-11-14 1988-11-14 Porous polyolefin hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28746088A JPH02133608A (en) 1988-11-14 1988-11-14 Porous polyolefin hollow fiber

Publications (1)

Publication Number Publication Date
JPH02133608A true JPH02133608A (en) 1990-05-22

Family

ID=17717622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28746088A Pending JPH02133608A (en) 1988-11-14 1988-11-14 Porous polyolefin hollow fiber

Country Status (1)

Country Link
JP (1) JPH02133608A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287730B1 (en) 1998-08-14 2001-09-11 Celgard Inc. Hydrophilic polyolefin having a coating containing a surfactant and an EVOH copolymer
US6537696B2 (en) 2000-12-20 2003-03-25 Daramic, Inc. Nonwoven separator for a nickel-metal hydride battery
WO2003054984A1 (en) 2001-12-19 2003-07-03 Daramic, Inc. A melt blown battery separator
WO2010072233A1 (en) * 2008-12-22 2010-07-01 Lydall Solutech B.V Hydrophilic porous polymer blend membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287730B1 (en) 1998-08-14 2001-09-11 Celgard Inc. Hydrophilic polyolefin having a coating containing a surfactant and an EVOH copolymer
US6537696B2 (en) 2000-12-20 2003-03-25 Daramic, Inc. Nonwoven separator for a nickel-metal hydride battery
WO2003054984A1 (en) 2001-12-19 2003-07-03 Daramic, Inc. A melt blown battery separator
US6692868B2 (en) 2001-12-19 2004-02-17 Daramic, Inc. Melt blown battery separator
US7214444B2 (en) 2001-12-19 2007-05-08 Daramic, Inc. Melt blown battery separator
WO2010072233A1 (en) * 2008-12-22 2010-07-01 Lydall Solutech B.V Hydrophilic porous polymer blend membrane

Similar Documents

Publication Publication Date Title
KR100885340B1 (en) Microporous materials and Methods of Making the Same
EP0050399B1 (en) Microporous polyethylene hollow fibers and a process for preparing the same
US5435955A (en) Process of producing porous polypropylene hollow fiber and film
JPH02144132A (en) Porous polyolefin film
JPH0428803B2 (en)
JPH0211619B2 (en)
WO1995033549A1 (en) Porous polysulfone membrane and process for producing the same
JPH04187224A (en) Production of fluorine-based porous hollow yarn membrane
US4530809A (en) Process for making microporous polyethylene hollow fibers
JPH02133608A (en) Porous polyolefin hollow fiber
US5057218A (en) Porous membrane and production process thereof
JPH11262764A (en) Water purifier
JPS6342006B2 (en)
JPS6328406A (en) Network porous hollow yarn membrane
KR20040077322A (en) Preparation of asymmetric polyethylene hollow fiber membrane having high strength
JPH044028A (en) Porous membrane and production thereof
WO1992014783A1 (en) Hydrophilic polymer alloy, fiber and porous film produced therefrom, and production of the same
JPH02133607A (en) Porous polyolefin fiber
JPS59216915A (en) Ultrafine fiber structure and production thereof
JPH04265134A (en) Hydrophilic polypropyrene hollow fiber membrane and its manufacture
JPS62269706A (en) Composite membrane of porous hollow polyolefin yarn and its production
JP3281014B2 (en) Method for producing hydrophilic polymer alloy and method for producing porous membrane comprising hydrophilic polymer alloy
JPH119977A (en) Polyethylene composite microporous hollow fiber membrane
JPH08252441A (en) Polypropylene hollow yarn membrane and its production
JP2000107758A (en) Treatment of condensed water and hollow fiber membrane module for treating condensed water