JPH02133607A - Porous polyolefin fiber - Google Patents

Porous polyolefin fiber

Info

Publication number
JPH02133607A
JPH02133607A JP28745988A JP28745988A JPH02133607A JP H02133607 A JPH02133607 A JP H02133607A JP 28745988 A JP28745988 A JP 28745988A JP 28745988 A JP28745988 A JP 28745988A JP H02133607 A JPH02133607 A JP H02133607A
Authority
JP
Japan
Prior art keywords
fiber
polyolefin
porous
lamellae
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28745988A
Other languages
Japanese (ja)
Inventor
Hiroya Honda
博也 本田
Kiyonobu Okamura
岡村 清伸
Toshinobu Koshoji
小障子 俊信
Kunio Misoo
久仁夫 三十尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP28745988A priority Critical patent/JPH02133607A/en
Publication of JPH02133607A publication Critical patent/JPH02133607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To provide the title lightweight fiber of opaquely white color with soft feel, having specific porous structure, large in surface area, consisting of a blend polymer comprising polyolefin and hydrophilic polyolefin. CONSTITUTION:The objective porous fiber consisting of a blend polymer comprising (A) 95-40wt.% of a polyolefin (e.g., PE, PP; being pref. with high degree of crystallinity) and (B) 5-60wt.% of a hydrophilic polyolefin (e.g., copolymer from ethylene and vinyl alcohol; pref. <=70 deg. in contact angle to water when determined in the form of a film). This fiber has such a porous structure that spaces surrounded by lamellae and numerous fibrils mutually connecting said lamellae are communicated over the entire range from the fiber surface to the center.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多孔質ポリオレフィンta維に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to porous polyolefin TA fibers.

(従来の技術) 近年、衣料用、産業資材用繊維の多様化が進み、その多
様化の一環として、軽量性、ソフトな風合いを有しなが
ら適切な強度を有する繊i、iiに対する要望が強まっ
ている。!lil量化とソフトな風合いを達成するため
の方法として多孔質化によるものがあり、例えば発泡剤
を熱可塑性高分子にブレンドして溶融紡糸して紡糸段階
で発泡剤を分解させて多孔質化したもの、熱可塑性高分
子に抽出可能な物質(無機塩、有機低分子化合物等)を
ブレンドして紡糸した後、適切な溶剤で抽出して多孔化
したもの等がある。
(Prior art) In recent years, fibers for clothing and industrial materials have become increasingly diverse, and as part of this diversification, there has been an increasing demand for fibers 1 and 2 that are lightweight and have a soft texture, yet have appropriate strength. ing. ! One way to achieve lil weight and soft texture is to make it porous. For example, a blowing agent is blended with a thermoplastic polymer and melt-spun, and the blowing agent is decomposed during the spinning stage to make it porous. There are also those made by blending extractable substances (inorganic salts, organic low-molecular compounds, etc.) with thermoplastic polymers, spinning them, and then extracting them with an appropriate solvent to make them porous.

(発明が解決しようとする問題点) しかし、発泡剤をブレンドして紡糸し、紡糸段階で発泡
、多孔質化したものは、均一かつ微細な発泡構造とする
ことが困難で、安定した品質のものが得られ難く、空孔
率を高めようとすると糸切れの多発や大幅な強度低下が
生ずるので高空孔率の繊維を得難く、紡糸の工程安定性
も低いという問題があり、抽出法によるものは工程が複
雑になること、添加物を抽出で完全に除去するのが困難
で製品である繊維に不純物が残存し易く、これが風合い
にも影響を与え充分良好な風合いのものが得られ難いこ
と、空孔率を高めようとすると大幅な強度低下が生ずる
こと等から、これも充分満足できるものではないという
状況にある。
(Problems to be Solved by the Invention) However, it is difficult to create a uniform and fine foam structure in a product that is blended with a foaming agent and spun, and then foamed and made porous during the spinning stage. It is difficult to obtain fibers with high porosity, and attempts to increase the porosity result in frequent fiber breakage and a significant decrease in strength, making it difficult to obtain fibers with high porosity and low stability in the spinning process. The manufacturing process is complicated, and it is difficult to completely remove additives by extraction, so impurities tend to remain in the fiber product, which also affects the texture, making it difficult to obtain a product with a sufficiently good texture. In addition, if an attempt is made to increase the porosity, a significant decrease in strength occurs, so that this is also not completely satisfactory.

このような状況から本出願人は先にポリエチレンを紡糸
して熱処理をした後冷延伸、次いで熱延伸を行なってラ
メラどラメラ間をつなぐ多数のフィブリルで囲まれてな
る空間が繊維の表面から中心部まで連通してなる多孔質
ポリエチレン繊維を提案した(特願昭63−15895
7号)。
Under these circumstances, the applicant first spun polyethylene, heat-treated it, then cold-stretched it, and then hot-stretched it so that the space surrounded by a large number of fibrils connecting the lamellae was separated from the surface of the fiber to the center. proposed a porous polyethylene fiber that is continuous up to the
No. 7).

このia維は素材がポリエチレンでありながらポリオレ
フィン特有のワキシー感がなく、軽量性と風合いに優れ
た繊維であるが、木質的に疎水性であって、水との親和
性が12いことから衣料用素材とし・て用途が限定され
たものどならざるを得ないものであった。
Although the IA fiber is made of polyethylene, it does not have the waxy feel characteristic of polyolefins, and is lightweight and has an excellent texture. As a raw material, it had no choice but to be of limited use.

この繊維を親水性を要する用途に展開するために界面活
性剤等の親木化剤を用いた親木化処理を行なりてみたと
ころ、親水性が一時的なものでしかあり得ず、水との接
触により親水化剤が脱落して親木性を失うという問題を
有しており、又、親木性物質をブレンドしたものを溶融
紡糸したものは、通常の親木性物質ではポリオレフィン
との親和性が悪いために良好な性能の繊維が得られない
という問題があった。
In order to develop this fiber into uses that require hydrophilicity, we performed a lignophilic treatment using a lignophilic agent such as a surfactant, but found that the hydrophilicity could only be temporary. There is a problem that the hydrophilic agent falls off due to contact with wood and loses its wood-loving properties.Also, melt-spun products blended with wood-loving substances cannot be used with ordinary wood-loving substances as polyolefins. There was a problem in that fibers with good performance could not be obtained due to poor affinity for.

(問題点を解決するための手段) 本発明者らはこのような状況に鑑み鋭意検討した結果、
ポリオレフィンに特定の性能のポリオレフィンをブレン
ドしたものは通常の結晶性ポリオレフィンと同様に溶融
紡糸、延伸により高度に多孔化して軽量性と優れた風合
いを有するとともに恒久的親木性を付与することが可能
であることを見出し、本発明に到達した。
(Means for solving the problem) As a result of intensive study in view of the above situation, the present inventors found that
Blended polyolefins with polyolefins with specific performance properties can be made highly porous by melt spinning and stretching in the same way as ordinary crystalline polyolefins, resulting in lightness and excellent texture, as well as permanent wood-philicity. We have discovered that this is the case, and have arrived at the present invention.

即ち、本発明の要旨はポリオレフィン95〜40重量%
と親水性ポリオレフィン5〜60重量%とからなるブレ
ンドポリマーからなる多孔質繊維であって、該繊維はi
Ak維表面表面繊維中心部に至るまで全体にわたってラ
メラと該ラメラ間をつなぐ多数のフィブリルとでかこま
れてなる空間が連通し2てなる多孔質構造を有すること
を特徴とする多孔質ポリオレフィン繊維にある。
That is, the gist of the present invention is that 95 to 40% by weight of polyolefin
and 5 to 60% by weight of a hydrophilic polyolefin.
A porous polyolefin fiber characterized by having a porous structure consisting of two interconnected spaces surrounded by lamellae and a large number of fibrils connecting the lamellae throughout the surface of the Ak fiber up to the center of the fiber. be.

本発明において用いられるポリオレフィンとしてはポリ
エチレン、ポリプロピレン、ポリ3−メチルブテン−1
、ポリ4−メチルペンテン−1などを例示できる。また
、ポリオレフィンとしては結晶化度の高いものを用いる
ことが好ましく、後述の親木性ポリオレフィンとブレン
ドしたものを溶融紡糸して得られる未延伸糸の結晶化度
が40%以上、好ましくは50%以上であり、結晶配列
度が50%以上、好ましくは60%以上となるようなポ
リマーを選択するのが好ましい。又、本発明においてポ
リオレフィンとブレンドされる親木性ポリオレフィンは
これをフィルムにして測定したときの水との接触角が8
0°以下であるように改質されたポリオレフィンである
ことが々子ましく、70”以下であるように改質された
ポリオレフィンであることがより好ましい。このようノ
ン改質されたポリマーの例としては各種ポリオレフィン
の分子鎖に水酸基、カルボキシル基、アミノ基、スルホ
ン酸基、ポリオキシエチレン基等を結合したものを例示
でき、これにはエチレンとビニルアルコールの共重合体
、エチレンと酢酸ビニルとの共重合体、エチレンと無水
マレイン酸との共重合体、エチレンとポリオキシエチレ
ンとを化学結合させた共重合体、金属イオン架橋ポリオ
レフィン等を例示できる。
Polyolefins used in the present invention include polyethylene, polypropylene, poly3-methylbutene-1
, poly-4-methylpentene-1, and the like. In addition, it is preferable to use a polyolefin with a high degree of crystallinity, and the degree of crystallinity of the undrawn yarn obtained by melt spinning a polyolefin blended with the wood-loving polyolefin described below is 40% or more, preferably 50%. It is preferable to select a polymer having a crystal orientation degree of 50% or more, preferably 60% or more. In addition, the wood-philic polyolefin blended with the polyolefin in the present invention has a contact angle with water of 8 when measured using a film.
It is often a polyolefin modified so that the angle is 0° or less, and more preferably a polyolefin modified so that the angle is 70" or less. Examples of such non-modified polymers Examples include those in which hydroxyl groups, carboxyl groups, amino groups, sulfonic acid groups, polyoxyethylene groups, etc. are bonded to the molecular chains of various polyolefins. Examples include copolymers of ethylene and maleic anhydride, copolymers of ethylene and polyoxyethylene chemically bonded, and metal ion crosslinked polyolefins.

ここで、ポリオレフィンとブレンドするポリマーを親水
性ポリオレフィンに限定した理由は、上述のようなポリ
オレフィンであればポリオレフィンとブレンドしたとき
に両者の間に良好な親和性が得られ、こねによりこれを
溶融紡糸して得られる未延伸糸におけるラメラ結晶の構
造形成をさほど阻害せず、更に、ブレンドポリマー界面
でのff1l離も発生し難いためポリオレフィン単独ポ
リマーを用いた場合と同様の優れた多孔質構造が得られ
、しかも親水性基を有しているため恒久的親木性が得ら
れ、水や湿分が繊維の微細な孔の中まで浸透して繊維の
非常に大台な表面積を有効に生かすことができるという
優れた特長を有している。このポリオレフィンと親木性
ポリオレフィンとの混合比率はポリオレフィン95〜4
0重量%に対して親水性ポリオレフィン5〜60重量%
である必要がある。これは、親木性ポリオレフィンとし
て親木性が高度なものを用いた場合は比較的少量のブレ
ンドで親水性を発揮でき、しかもこのような親木性ポリ
オレフィンは逆に多■にブレンドするとポリオレフィン
のラメラ結晶の生成を阻害する傾向にあるため良好な多
孔質構造が得られ難くなり、親木性がより低く、ポリオ
レフィ〉・の特長をより多く有しているものの場合は逆
に親水性を充分に発揮させるためには比較的多量にブレ
ンドする必要がありしかも多量にブレンドしてもポリオ
レフィン90〜50重量%と親水性ポリオレフィン10
〜50重量%の組み合わせであることが好ましい。ポリ
オレフィンの比率が上記下限未満であると充分均一な多
孔質構造が得られ難くなる傾向にあるため好ましくなく
、上記上限を越えたものでは親木性が不充分となるため
好まし、くない。
Here, the reason why we limited the polymer blended with polyolefin to hydrophilic polyolefin is that when the polyolefin described above is blended with polyolefin, good affinity can be obtained between the two, and this can be melt-spun by kneading. The formation of a lamellar crystal structure in the undrawn yarn obtained by this process is not significantly inhibited, and furthermore, ff1l separation at the blend polymer interface is difficult to occur, so an excellent porous structure similar to that obtained when using a polyolefin monopolymer can be obtained. Moreover, because it has a hydrophilic group, it has permanent wood-philic properties, allowing water and moisture to penetrate into the fine pores of the fibers, making effective use of the extremely large surface area of the fibers. It has the excellent feature of being able to The mixing ratio of this polyolefin and wood-loving polyolefin is polyolefin 95 to 4.
5-60% by weight of hydrophilic polyolefin relative to 0% by weight
It must be. This means that when highly wood-philic polyolefins are used, they can exhibit hydrophilicity with a relatively small amount of blending, and conversely, when such wood-philic polyolefins are blended in large amounts, the polyolefin becomes It tends to inhibit the formation of lamellar crystals, making it difficult to obtain a good porous structure, and on the other hand, in the case of materials that have lower wood-philicity and more of the characteristics of polyolefin, they do not have sufficient hydrophilicity. In order to achieve this effect, it is necessary to blend a relatively large amount, and even when blended in a large amount, the polyolefin is 90 to 50% by weight and the hydrophilic polyolefin is 10%.
The combination is preferably 50% by weight. If the ratio of polyolefin is less than the above-mentioned lower limit, it tends to be difficult to obtain a sufficiently uniform porous structure, which is not preferable, and if it exceeds the above-mentioned upper limit, wood-philicity becomes insufficient, so it is not preferable.

本発明の多孔質繊維の多孔質構造は結晶性高分子を紡糸
して得られる未延伸糸を延伸して、未延伸糸のラメラと
ラメラの間の折り畳まれた分子を引伸してフィブリルに
開裂させて得られる構造であるため、ラメラとラメラの
間を結ぶ繊維長手方向に配列した多数のフィブリルの周
囲が空間となって、この構造が繊維表面からia維中心
部までほぼ同様になっているため空間が繊維表面から中
心部まで連通しており、従って繊維表面積が非常に大ぎ
く、しかも多孔質構造が繊維中心部まで続いているので
単に表面のみを粗面化したような繊維とは異なり優れた
風合いをもたらすものどなっているものである。
The porous structure of the porous fiber of the present invention is obtained by stretching an undrawn yarn obtained by spinning a crystalline polymer, stretching the folded molecules between the lamellae of the undrawn yarn, and cleaving it into fibrils. Because it has a structure obtained by fibers, there is a space around the many fibrils arranged in the longitudinal direction of the fibers that connect the lamellae, and this structure is almost the same from the fiber surface to the center of the IA fiber. The space is connected from the surface of the fiber to the center, so the surface area of the fiber is very large, and the porous structure continues all the way to the center of the fiber. It is something that gives it a unique texture.

本発明の多孔’Jt1M維としては、空孔率が30〜8
0%であることが好ましく、強度が0.5〜8g/d、
伸度が1〜300%であることが好ましい。空孔率が上
記下限未満では軽量性、風合いがそれだ?J不充分とな
る傾向にあり、上限を越えると強度が不充分となる傾向
にある。強度、伸度は衣料用途を考慮した場合、上記範
囲にあることが好ましい。
The porous 'Jt1M fiber of the present invention has a porosity of 30 to 8.
It is preferable that it is 0%, and the strength is 0.5 to 8 g/d,
It is preferable that the elongation is 1 to 300%. If the porosity is less than the lower limit above, does it affect lightness and texture? J tends to be insufficient, and if the upper limit is exceeded, strength tends to be insufficient. The strength and elongation are preferably within the above ranges when considering the use in clothing.

以下に、本発明の多孔質繊維の製造方法について説明す
る。
The method for producing porous fibers of the present invention will be explained below.

まず、上述のポリオレフィンと親木性ポリオレフィンと
をブレンドするが、このブレンドは充分均一にブレンド
する必要があり、上記ポリマーを例えばV型ブレンダー
のようなブレンダーであらかじめブレンドするか、溶融
押出し機で溶融ブレンドし、−旦ベレット化したものを
溶融紡糸用押出し機にかけるのが好ましい。これを通常
の繊維紡糸用紡糸口金を用い溶融紡糸1ハ結晶性未延伸
糸を得る。この場合、紡糸口金直下に長さ1−・3m、
雰囲気温度50〜100℃の徐冷区間を設けて溶融紡糸
するのがより結晶化度の高い未延伸糸が得られるので好
ましい。未延伸糸が結晶化度40%未満あるいは結晶配
列度が50%未満ではラメラ構造の形成が不充分であり
、以下に述べる工程を経ても多孔質構造が全く発現しな
いか、生成しても多孔質構造が不均一となって繊維表面
から繊維中心部まで全体にわたって連通した多孔質構造
とならず、本発明の目的とする高い空孔率のものは得ら
れない。紡糸温度はブレンドするポリマーの中で融点の
高い方のポリマーの融点(以下mpHという)より20
℃高い温度以上であって、この融点(m p、)より8
0℃高い温度以下であることが好ましい。この温度範囲
の下限より低い温度で紡糸すると、得られる未延伸糸は
高度に配向しているが、後の工程である延伸工程で延伸
多孔質化を図る時に最大延伸倍率が低くなり、充分高い
空孔率が得卸くなるので好ましくない。逆に上記温度範
囲の上限を越える温度で紡糸した場合も高い空孔率のも
のが得難いので好ましくない。紡糸ドラフトは200〜
10000であることが好ましく200〜5000の紡
糸ドラフトであることがより々了ましい、このような高
いドラフトでテ容融状態にある糸を引き取ることにより
ラメラ結晶が高度に配向したラメラを未延伸糸内に形成
せしめることができ、これによって、その後の延伸工程
で高度に多孔化した多孔質構造の糸が得られるようにな
る。徐冷区間の長さが1m未満あるいはその雰囲気温度
が50℃未満では紡糸口金直下での糸切れが多発して工
程安定性が低下する傾向にあり、好ましくない。逆に徐
冷区間の長さが3mを越える長さであったり、7囲気温
度が100℃を越える温度である場合は糸の冷却が不充
分となって実質的なドラフトが低下する傾向にあるので
、得られる未延伸糸の結晶配向性の点から好ましくない
First, the above-mentioned polyolefin and wood-loving polyolefin are blended, but this blend needs to be sufficiently uniform.The above-mentioned polymers are either blended in advance using a blender such as a V-type blender, or melted using a melt extruder. Preferably, the blended and pelletized mixture is passed through an extruder for melt spinning. This is melt-spun using a conventional spinneret for fiber spinning to obtain a crystalline undrawn yarn. In this case, a length of 1-3 m is placed directly below the spinneret.
It is preferable to carry out melt spinning with a slow cooling section at an ambient temperature of 50 to 100° C., since undrawn yarn with a higher degree of crystallinity can be obtained. If the degree of crystallinity of the undrawn yarn is less than 40% or the degree of crystal orientation is less than 50%, the formation of a lamellar structure is insufficient, and even after the steps described below, a porous structure will not be formed at all, or even if it is formed, it will not be porous. The fiber structure becomes non-uniform, and a porous structure that communicates throughout from the fiber surface to the fiber center cannot be obtained, and the high porosity that is the object of the present invention cannot be obtained. The spinning temperature is 20% higher than the melting point (hereinafter referred to as mpH) of the polymer with a higher melting point among the polymers to be blended.
℃ higher temperature than this melting point (m p, )
The temperature is preferably 0° C. higher or lower. If the yarn is spun at a temperature lower than the lower limit of this temperature range, the resulting undrawn yarn will be highly oriented, but the maximum draw ratio will be low when the drawing process is performed in the later drawing step to make it porous. This is not preferable because the porosity becomes unfavorable. Conversely, spinning at a temperature exceeding the upper limit of the above temperature range is also not preferred, since it is difficult to obtain a high porosity. The spinning draft is 200~
The spinning draft is preferably 10,000, and more preferably 200 to 5,000.By taking the yarn in a molten state at such a high draft, the lamellae in which the lamellar crystals are highly oriented can be unstretched. It can be formed within the yarn, which allows the yarn to have a highly porous porous structure during the subsequent drawing process. If the length of the slow cooling section is less than 1 m or the ambient temperature thereof is less than 50° C., thread breakage immediately below the spinneret tends to occur frequently and process stability tends to decrease, which is not preferable. On the other hand, if the length of the slow cooling section exceeds 3 m or the ambient temperature exceeds 100°C, the cooling of the yarn becomes insufficient and the actual draft tends to decrease. Therefore, it is not preferable from the viewpoint of crystal orientation of the undrawn yarn obtained.

こうして得られた未延伸糸をこのまま延伸しても良いが
、m□、以下であって、未延伸糸の構造を実質的に傷め
ない範囲の温度範囲で定長下あるいは弛緩状態でアニー
ル処理をした後延伸してもよい。
The undrawn yarn thus obtained may be drawn as is, but it may be annealed under a constant length or in a relaxed state at a temperature below m□ and which does not substantially damage the structure of the undrawn yarn. It may be stretched after that.

本発明の多孔質繊維はこうし2て得られた未延伸系を延
伸して多孔質化することにより得られるが、延伸どして
はm pu−80℃以下、かつmpH−220℃以上、
好ましくはm、H−160℃〜mp。
The porous fiber of the present invention can be obtained by stretching the unstretched system obtained in the above 2 to make it porous.
Preferably m, H-160°C to mp.

−90℃での冷延伸と、その次にmpH−5o℃−m、
、−5℃での熱延伸の組み合わせで行なわれることが好
ましいや熱延伸は2段以上の多段延伸であってもよい。
Cold stretching at -90°C followed by mpH-5o°C-m;
It is preferable to carry out a combination of hot stretching at -5° C., but the hot stretching may be a multi-stage stretching of two or more stages.

本発明の繊維を製造するうえで冷延伸は重要な工程であ
り、この工程で高配向結晶性未延伸糸のラメラ結晶間の
非晶質部分にミクロなりラックが発生し、引き続く熱延
伸工程での熱可塑化延伸でそれが拡大され、上記の特定
の多孔質構造が得られるものである。冷延伸における延
伸倍率は5〜100%であることが好ましく、熱延伸の
倍率は冷延伸と熱延伸とを合わせた総延伸量が100〜
700%になるように設定するのが好ましい。熱延伸温
度がm、−5℃より高いと繊維は透明化し、目的とする
多孔質構造が得られなくなる。熱延伸温度が上記下限よ
り低い場合は、温度が低けわば低いぼど空孔率が低下す
るので好ましくない。総延伸量が700%を越えると、
延伸時に糸切れが多発するので好ましくない。こうして
得られた多孔質ポリオレフィン繊維は熱延伸によりほぼ
形態の安定性が確保されているが、必要に応じてmpH
60℃〜mpH−5℃の温度で緊張下あるいは制限緩和
状態で熱セットしてもよい。
Cold drawing is an important process in producing the fibers of the present invention, and in this process microscopic racks are generated in the amorphous parts between the lamellar crystals of the highly oriented crystalline undrawn yarn, and in the subsequent hot drawing process. The above-mentioned specific porous structure is obtained by expanding it by thermoplastic stretching. The stretching ratio in cold stretching is preferably 5 to 100%, and the stretching ratio in hot stretching is such that the total stretching amount of cold stretching and hot stretching is 100 to 100%.
It is preferable to set it to 700%. If the hot drawing temperature is higher than m, -5°C, the fiber becomes transparent and the desired porous structure cannot be obtained. When the hot stretching temperature is lower than the above lower limit, it is not preferable because the lower the temperature, the lower the porosity. When the total stretching amount exceeds 700%,
This is not preferable because thread breakage occurs frequently during stretching. The porous polyolefin fiber obtained in this way has almost morphological stability ensured by hot drawing, but if necessary, it can be adjusted to mpH
Heat setting may be performed at a temperature of 60° C. to mpH-5° C. under tension or under relaxed conditions.

(実施例) 以下に実施例を用いて本発明を更に説明するが、実h1
1例において、ブレンドポリマーの結晶化度は広角X線
回折装Jを用いて全方位の回折強度を積算し、下記の式
で求めた。
(Example) The present invention will be further explained below using Examples.
In one example, the crystallinity of the blend polymer was determined by integrating the diffraction intensities in all directions using a wide-angle X-ray diffraction device J and using the following formula.

結晶化度χc=(全回折強度の積分値−非晶部分の回折
強度の積分値)/全回折強度の積分値又、結晶配列度は
広角X線回折装置を用いて(110)面の回折強度の繊
維軸方向への分布の半価値を求め、下記の式により求め
た。
Crystallinity χc = (integral value of total diffraction intensity - integral value of diffraction intensity of amorphous portion) / integral value of total diffraction intensity Also, the degree of crystal alignment can be determined by diffraction of the (110) plane using a wide-angle X-ray diffractometer. The half value of the distribution of strength in the fiber axis direction was determined using the following formula.

結晶配列度= (Ht目o+ / (180−Ht++
o+ )X100(%) 但し、Hn+o+  : (110)面の半価値又、フ
ィルム状態にした時の水との接触角は協和化学@製、協
和コンタクトアングルメーターにより公知の方法で測定
した。
Crystal alignment degree = (Htth o+ / (180−Ht++
o+ )

実施例1 糸瓜0 、 968g/cm3の高密度ポリエチレン(
三井石油化学■製ハイゼックス2200J)とポリエチ
レンとアクリル酸の共重合体の亜鉛イオンによる架橋体
(三井ポリケミカル■製、ハイミラン−1702、フィ
ルムにした時の水との接触角69″″)を■型ブレンダ
ーで1=1の比率でブレンドし、乾燥した後、孔径0.
8mm、36ホールのノズルから紡糸温度200℃、紡
糸速度30011/…jnで紡糸し、巻取った。
Example 1 Gourd 0, 968 g/cm3 high density polyethylene (
Hyzex 2200J (manufactured by Mitsui Petrochemicals ■) and a cross-linked product of polyethylene and acrylic acid copolymer using zinc ions (Himilan-1702, manufactured by Mitsui Polychemicals ■, contact angle with water when made into a film: 69''). After blending in a mold blender at a ratio of 1=1 and drying, the pore size is 0.
The fibers were spun from an 8 mm, 36-hole nozzle at a spinning temperature of 200° C. and a spinning speed of 30011/...jn, and then wound up.

得られた未延伸糸を115℃で120秒間定長下で熱処
理した。この未延伸糸の結晶化度は62%、結晶配列度
は75%であった。この未延伸糸を25℃で80%の冷
延伸を行ない、次いで、115℃に加熱した長さ2mの
加熱雨中で全延伸倍率が520%になる迄熱延伸を行な
った。更に、同じ温度に加熱した長さ2mの加熱雨中で
総延伸倍率が400%になるよう級和熱セットを行なっ
た。
The obtained undrawn yarn was heat treated at 115° C. for 120 seconds under constant length. The degree of crystallinity of this undrawn yarn was 62%, and the degree of crystal orientation was 75%. This undrawn yarn was cold-stretched to 80% at 25°C, and then hot-stretched in a 2 m long heated rain bath heated to 115°C until the total stretching ratio reached 520%. Furthermore, grade heating setting was performed in a 2 m long heated rain shower heated to the same temperature so that the total stretching ratio was 400%.

得られた多孔質繊維は繊維表面から中心部まで全体にわ
たってラメラど該ラメラ間をつなぐ多数のフィブリルと
でかこまれてなる空間が連通してなる多孔質構造を有し
ており、非常にソフトな風合いを有しており、空孔率6
6.8%、強度4゜85g/d、伸度38.9%であっ
た。
The obtained porous fiber has a porous structure in which spaces formed by lamellae and many fibrils connecting between the lamellae are connected throughout the entire fiber from the surface to the center, making it extremely soft. It has a texture and a porosity of 6
The strength was 4°85 g/d, and the elongation was 38.9%.

次いで、この多孔質ポリエチレン織Jl1gを200c
cのイオン交換水に1時間浸漬した後、これを遠心分子
111機で1000「11111で5分間脱水した後重
量増加率を測定して含水率を求めたところ76%であフ
た。
Next, 200 c of this porous polyethylene woven Jl1g
After being immersed in ion-exchanged water (c) for 1 hour, it was dehydrated for 5 minutes using a centrifugal molecular 111 machine at 1000 x 11111, and the weight increase rate was measured to determine the water content, which was found to be 76%.

比較として密度0 、 968g/co+3の高密度ポ
リエチレンのみを用いて上記と同様にして多孔質ボリエ
ヂレンi/a維を作成し、含水率を測定したところ6%
であった。
For comparison, porous polyethylene I/A fibers were prepared in the same manner as above using only high-density polyethylene with a density of 0 and 968 g/co+3, and the moisture content was measured to be 6%.
Met.

実施例2 密度0 、968g/cm3の高密度ポリエチレン(三
井石油化学■製ハイゼックス2200J)とエヂレンー
ビニルアルコ・−ル共重合体(日本合成化学和製、ソア
ノールD、フィルムでの水との接触角56°)を■型ブ
レンダーで7:3の比率でブレンドし、乾燥した後、3
6ホール、0.6mmのノズルより紡糸温度200℃、
紡糸速度300m/winで紡糸し巻取った。
Example 2 High-density polyethylene (HIZEX 2200J manufactured by Mitsui Petrochemical Co., Ltd.) with a density of 0 and 968 g/cm3 and ethylene-vinyl alcohol copolymer (Soarnol D manufactured by Nippon Gosei Kagakuwa Co., Ltd.) and contact with water in a film 56°) in a ratio of 7:3 with a ■ type blender, and after drying,
Spinning temperature 200℃ from 6 holes, 0.6mm nozzle,
The fibers were spun and wound at a spinning speed of 300 m/win.

得られた未延伸糸を11′5℃で120秒間定長下で熱
処理した。この未延伸糸の結晶化度は68%、結晶配列
度は82%であった。この未延伸糸を25℃で80%の
冷延伸を行ない、次いで、115℃に加熱した長さ2m
の加熱函中で全延伸倍率が520%になる迄熱延伸を行
なった。更に、同じ温度に加熱した長さ2mの加熱函中
で総延伸倍率が400%になるよう緩和熱セラ1−を行
なった。
The resulting undrawn yarn was heat treated at 11'5° C. for 120 seconds under constant length. The degree of crystallinity of this undrawn yarn was 68%, and the degree of crystal orientation was 82%. This undrawn yarn was cold-stretched by 80% at 25°C, and then heated to 115°C to a length of 2 m.
Hot stretching was carried out in a heating box until the total stretching ratio reached 520%. Further, relaxation heat curing 1- was performed in a heating box 2 m long heated to the same temperature so that the total stretching ratio was 400%.

得られた多孔質繊維は繊維表面から中心部まで全体にわ
たってラメラと該ラメラ間をつなぐ多数のフィブリルと
でかこまれてなる空間が連通してなる多孔質構造を有し
ており、非常にソフl−lx風合いを有しており、空孔
率52.4%、強度240 g/d 、伸度109%で
あった。
The obtained porous fiber has a porous structure in which spaces formed by lamellae and a large number of fibrils connecting the lamellae are connected throughout from the fiber surface to the center, and it is extremely soft and flexible. -lx texture, porosity was 52.4%, strength was 240 g/d, and elongation was 109%.

この繊維の含水率を実施例1と同様にし′C測定したと
ころ62%であった。
The moisture content of this fiber was measured in the same manner as in Example 1 and found to be 62%.

(発明の効果) 以上述べたように、本発明の多孔質ポリオレフィン繊維
は繊維表面から繊に、I中心部に至るまで全体にわたっ
てラメラと該ラメラ間をつなぐ多数のフィブリルとでか
こまれてなる空間が連通してなる多孔質構造を有してい
るので表面積が大きく、又、非常に軽量でソフトな風合
いを有し、透明感のないぎれいな白色となり、しかも高
い空孔率であるにもかかわらず優れた力学特性を示して
いる。
(Effects of the Invention) As described above, the porous polyolefin fiber of the present invention has a space surrounded by lamellae and a large number of fibrils connecting the lamellae from the fiber surface to the I center. Because it has a porous structure made up of interconnected pores, it has a large surface area, is extremely lightweight, has a soft texture, has a clean white color with no transparency, and has a high porosity. It shows excellent mechanical properties.

又、溶剤その他の抽出により多孔質化したものと異なり
延伸のみにより多孔質化されているので溶剤や抽出用添
加剤などを含まず衛生的な素材であり、しかも恒久的親
水性を有しているので吸汗性に優れ、肌着等の直接肌に
触ねる衣料や医療用布帛素材として最適である。又、そ
の大きな含水率および細孔内戦水性を利用して各種産業
資材用途に活用可能である。
In addition, unlike those made porous by solvent or other extraction, it is made porous only by stretching, so it is a hygienic material that does not contain solvents or extraction additives, and has permanent hydrophilic properties. It has excellent sweat absorption properties, making it ideal for clothing that comes in direct contact with the skin, such as underwear, and for medical fabrics. In addition, it can be used for various industrial materials by taking advantage of its high water content and water content within the pores.

特許出願人  三菱レイヨン株式会社Patent applicant: Mitsubishi Rayon Co., Ltd.

Claims (1)

【特許請求の範囲】 1)ポリオレフィン95〜40重量%と親水性ポリオレ
フィン5〜60重量%とからなるブレンドポリマーから
なる多孔質繊維であって、該繊維は繊維表面から繊維中
心部に至るまで全体にわたつてラメラと該ラメラ間をつ
なぐ多数のフィブリルとでかこまれてなる空間が連通し
てなる多孔質構造を有することを特徴とする多孔質ポリ
オレフィン繊維。 2)親水性ポリオレフィンがフィルム状態で測定した時
の水との接触角が80°以下であるものであることを特
徴とする請求項1記載の多孔質ポリオレフィン繊維。 3)多孔質繊維の空孔率が30〜80%、強度が0.5
〜8g/d、伸度が1〜300%であることを特徴とす
る請求項1記載の多孔質ポリオレフィン繊維。
[Scope of Claims] 1) A porous fiber made of a blend polymer consisting of 95 to 40% by weight of polyolefin and 5 to 60% by weight of hydrophilic polyolefin, wherein the fiber is entirely covered from the fiber surface to the center of the fiber. A porous polyolefin fiber characterized in that it has a porous structure in which spaces formed by lamellae and a large number of fibrils connecting the lamellae communicate with each other. 2) The porous polyolefin fiber according to claim 1, wherein the hydrophilic polyolefin has a contact angle with water of 80° or less when measured in a film state. 3) The porosity of the porous fiber is 30-80% and the strength is 0.5
The porous polyolefin fiber according to claim 1, having an elongation of 1 to 300%.
JP28745988A 1988-11-14 1988-11-14 Porous polyolefin fiber Pending JPH02133607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28745988A JPH02133607A (en) 1988-11-14 1988-11-14 Porous polyolefin fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28745988A JPH02133607A (en) 1988-11-14 1988-11-14 Porous polyolefin fiber

Publications (1)

Publication Number Publication Date
JPH02133607A true JPH02133607A (en) 1990-05-22

Family

ID=17717607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28745988A Pending JPH02133607A (en) 1988-11-14 1988-11-14 Porous polyolefin fiber

Country Status (1)

Country Link
JP (1) JPH02133607A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991000935A1 (en) * 1989-07-13 1991-01-24 Mitsubishi Rayon Co., Ltd. Porous fiber and production thereof
EP0525204A1 (en) * 1991-02-13 1993-02-03 Mitsubishi Rayon Co., Ltd. Hydrophilic polymer alloy, fiber and porous film produced therefrom, and production of the same
US6287730B1 (en) 1998-08-14 2001-09-11 Celgard Inc. Hydrophilic polyolefin having a coating containing a surfactant and an EVOH copolymer
US6537696B2 (en) 2000-12-20 2003-03-25 Daramic, Inc. Nonwoven separator for a nickel-metal hydride battery
WO2003054984A1 (en) 2001-12-19 2003-07-03 Daramic, Inc. A melt blown battery separator
WO2017195457A1 (en) * 2016-05-13 2017-11-16 旭化成メディカル株式会社 Polyethylene resin porous hollow fiber membrane, separation membrane, and method for manufacturing said membranes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991000935A1 (en) * 1989-07-13 1991-01-24 Mitsubishi Rayon Co., Ltd. Porous fiber and production thereof
EP0525204A1 (en) * 1991-02-13 1993-02-03 Mitsubishi Rayon Co., Ltd. Hydrophilic polymer alloy, fiber and porous film produced therefrom, and production of the same
US6287730B1 (en) 1998-08-14 2001-09-11 Celgard Inc. Hydrophilic polyolefin having a coating containing a surfactant and an EVOH copolymer
US6537696B2 (en) 2000-12-20 2003-03-25 Daramic, Inc. Nonwoven separator for a nickel-metal hydride battery
WO2003054984A1 (en) 2001-12-19 2003-07-03 Daramic, Inc. A melt blown battery separator
US6692868B2 (en) 2001-12-19 2004-02-17 Daramic, Inc. Melt blown battery separator
US7214444B2 (en) 2001-12-19 2007-05-08 Daramic, Inc. Melt blown battery separator
WO2017195457A1 (en) * 2016-05-13 2017-11-16 旭化成メディカル株式会社 Polyethylene resin porous hollow fiber membrane, separation membrane, and method for manufacturing said membranes
JPWO2017195457A1 (en) * 2016-05-13 2018-12-06 旭化成メディカル株式会社 Polyethylene resin porous hollow fiber membrane, separation membrane, and production method thereof

Similar Documents

Publication Publication Date Title
US4833172A (en) Stretched microporous material
US5677360A (en) Hydrophilic polymer alloy, fiber and porous membrane comprising this polymer alloy, and methods for preparing them
US5435955A (en) Process of producing porous polypropylene hollow fiber and film
CA1316314C (en) Stretched microporous material
JPS6385107A (en) Production of filament high in modulus and tensile strength
JPH0214011A (en) Porous polyethylene fiber
JPH0124888B2 (en)
JPH02144132A (en) Porous polyolefin film
WO1991000935A1 (en) Porous fiber and production thereof
JPH02133607A (en) Porous polyolefin fiber
KR930011759B1 (en) Porous resin film and process for producing the smme
EP0525204B1 (en) Method for preparing hydrophilic porous fibers an membranes
KR100402761B1 (en) Multi-component microporous membrane and method for preparing the same
JP3281014B2 (en) Method for producing hydrophilic polymer alloy and method for producing porous membrane comprising hydrophilic polymer alloy
JPH02133608A (en) Porous polyolefin hollow fiber
JPH03249217A (en) Light-weight sheath-core conjugate hollow polyester fiber
Ogita et al. Morphology and mechanical properties of ultrahigh-molecular-weight polyethylene prepared by gelation/crystallization at various temperatures
JPH044028A (en) Porous membrane and production thereof
JP2543369B2 (en) Manufacturing method of super absorbent synthetic fiber
KR950010747B1 (en) Composite fiber and its manufacturing method
JPH06272109A (en) Hygroscopic netlike fiber and its production
JPH03249216A (en) Light-weight polyester fiber
JPS6094613A (en) Production of high-strength and high-modulus fiber
JPS5929681B2 (en) Acrylonitrile cage
JPH11302433A (en) Preparation of polyolefin fine porous film