WO2017195457A1 - Polyethylene resin porous hollow fiber membrane, separation membrane, and method for manufacturing said membranes - Google Patents

Polyethylene resin porous hollow fiber membrane, separation membrane, and method for manufacturing said membranes Download PDF

Info

Publication number
WO2017195457A1
WO2017195457A1 PCT/JP2017/010112 JP2017010112W WO2017195457A1 WO 2017195457 A1 WO2017195457 A1 WO 2017195457A1 JP 2017010112 W JP2017010112 W JP 2017010112W WO 2017195457 A1 WO2017195457 A1 WO 2017195457A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
porous hollow
polyethylene resin
molecular weight
Prior art date
Application number
PCT/JP2017/010112
Other languages
French (fr)
Japanese (ja)
Inventor
淳一 樋渡
志朗 中島
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Priority to CN201780029407.9A priority Critical patent/CN109070021B/en
Priority to JP2018516368A priority patent/JP6792612B2/en
Publication of WO2017195457A1 publication Critical patent/WO2017195457A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof

Definitions

  • the present invention relates to a porous hollow fiber membrane containing a polyethylene-based resin, and in particular, a separation membrane used for separating and eliminating a specific substance (particularly suitable for separating plasma from blood in plasma exchange therapy).
  • the present invention relates to a porous hollow fiber membrane that can be suitably used as a base material for a separation membrane used in the above and a production method thereof.
  • the melt-stretching and opening method is a method in which a crystalline polymer compound is melted and spun into a hollow fiber shape, and the wound hollow fiber is made porous by stretching to obtain a porous hollow fiber membrane. Since the porous hollow fiber membrane obtained by this method does not use a liquid component such as a solvent or a plasticizer in the production process, there is no fear of elution of the liquid component during use, and it is suitable for plasma separation.
  • the porous hollow fiber membrane When applying to plasma separation, if the porous hollow fiber membrane is made of a hydrophobic polymer, the porous surface is covered with a hydrophilic substance, etc., imparting hydrophilicity / low protein adsorption, and blood compatibility Sexuality is enhanced.
  • the pore diameter of the porous hollow fiber membrane is controlled in the range of 0.01 to 2 ⁇ m from the viewpoint of separation of blood cell components and plasma components from blood. Further, the porous hollow fiber membrane is sterilized from the viewpoint of safety before plasma separation.
  • the porous structure formed by the melt-stretching hole-opening method is such that a lamellar laminate of hollow fibers before stretching (hereinafter referred to as “hollow fibers before stretching”) is cleaved by cold stretching, and the resulting micropores are further expanded by hot stretching. Can be obtained.
  • the hollow fiber before stretching contains an insufficiently grown lamellar laminate
  • the porous hollow fiber membrane after stretching is not perforated by about 0.1 to 50 mm in the yarn length direction. A portion (hereinafter referred to as “unstretched portion”) is generated.
  • the unstretched portion Since the unstretched portion is not porous, it does not have a separation function, but it only constitutes a part of the porous hollow fiber membrane, so that it does not reach the original separation / permeability of the separation membrane. Absent. That is, the porous hollow fiber membrane including the unstretched portion does not cause a problem in terms of function as a separation membrane. However, when a porous hollow fiber membrane containing an unstretched part is used for plasma separation, there are therapeutic problems in the following points. That is, the hollow fiber before stretching has a translucent appearance, but the porous hollow fiber membrane after stretching is whitened due to irregular reflection of light by the pores. On the other hand, the unstretched portion having no pores reflects the appearance of the hollow fiber before stretching and remains translucent.
  • Patent Document 1 as a means for improving the homogeneity of a porous hollow fiber membrane obtained by a melt-stretching hole-opening method, a metal compound having a crystallization nucleation ability is formed on a crystalline polymer constituting the porous hollow fiber membrane. A method of adding 0.01% by weight or more is disclosed.
  • the porous hollow fiber membrane disclosed in Patent Document 1 is intended to improve the fine pore distribution spots in the hollow fiber length direction and the hollow fiber cross-sectional direction, which leads to the elimination of the unstretched portion. Not.
  • An object of the present invention is to provide a polyethylene resin porous hollow fiber membrane having few unstretched parts and excellent in homogeneity, which can be used as a base material for a separation membrane for plasma separation. It is to provide a separation membrane with less pseudo-leakage of blood using a porous hollow fiber membrane.
  • the present inventors have found that the ratio of the component having a molecular weight of 10,000 or less and the component having a molecular weight of 1,000,000 or more contained in the porous hollow fiber membrane is in a specific range, or a polyethylene resin used as a raw material.
  • the resin composition containing a polyethylene-based resin contains 1.0% by mass or more of a component having a molecular weight of 1000 or less
  • the melt flow rate measured by JIS K7210 (Code D) hereinafter, “MFR / D”
  • MFR / G melt flow rate measured in accordance with JIS K7210
  • a porous hollow fiber membrane comprising a polyethylene resin and having a plurality of microfibrils oriented in the yarn length direction, and a knot portion composed of a lamellar laminate connected to both ends of the microfibrils, having a molecular weight of 10,000
  • a polyethylene resin porous hollow fiber membrane having a mass fraction of the following components of 17.5% by mass or more and a mass fraction of a component having a molecular weight of 1 million or more of less than 1.5% by mass.
  • the olefin wax is a high density low molecular weight ethylene polymer having a density of 960 kg / m 3 or more, a low density low molecular weight ethylene polymer having a density of less than 940 kg / m 3 , a low molecular weight ethylene-propylene copolymer, and
  • [5] A polyethylene resin porous hollow fiber membrane according to any one of [1] to [4], and a hydrophilic polymer provided on at least a part of the surface of the polyethylene resin porous hollow fiber membrane. And a hydrophilic layer.
  • [7] The separation membrane according to [5] or [6], wherein a melt flow rate (MFR / D) measured by JIS K7210 (Code D) is 0.03 or more.
  • MFR / D melt flow rate measured by JIS K7210
  • a polyethylene resin porous material comprising a step of producing a hollow fiber from a polyethylene resin or a resin composition containing a polyethylene resin, and a step of forming a porous hollow fiber membrane by stretching the hollow fiber.
  • the olefin wax is a high density low molecular weight ethylene polymer having a density of 960 kg / m 3 or more, a low density low molecular weight ethylene polymer having a density of less than 940 kg / m 3 , a low molecular weight ethylene-propylene copolymer, and
  • [14] The method for producing a polyethylene resin porous hollow fiber membrane according to [13], wherein the olefin wax is a high density low molecular weight ethylene polymer having a density of 960 kg / m 3 or more.
  • a step of obtaining a polyethylene resin porous hollow fiber membrane by the production method according to any one of [9] to [14], and a hydrophilic polymer on at least a part of the surface of the porous hollow fiber membrane The manufacturing method of the separation membrane including the process of providing the hydrophilic layer containing.
  • a polyethylene resin porous hollow fiber membrane having a high degree of homogeneity with few unstretched portions that can be used as a base material for a separation membrane for plasma separation with less pseudo blood leakage. it can.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
  • the porous hollow fiber membrane of this embodiment contains a polyethylene resin.
  • the porous hollow fiber membrane can be used as a separation membrane as it is, but it is more suitable for plasma separation if at least a part of its surface is covered with a hydrophilic layer containing a hydrophilic polymer. It becomes. In addition, by performing sterilization treatment with radiation or the like, a separation membrane more suitable for plasma separation is obtained.
  • the mass fraction of the component having a molecular weight of 10,000 or less is 17.5% by mass or more
  • the mass fraction of the component having a molecular weight of 1,000,000 or more is less than 1.5% by mass. .
  • the porous hollow fiber membrane of the present embodiment is composed of a plurality of microfibrils oriented in the yarn length direction (short fibrous bodies composed of an assembly of molecular chains (however, the length is not limited)), and the microfibrils of the microfibrils It has a nodule part (a nodal connection part connecting the ends of microfibrils) made of a lamellar laminate connected to both ends, and has a plurality of slit-like pores formed between adjacent microfibrils ing.
  • the bundling portion connects, for example, end portions of oriented (or substantially parallel) microfibrils.
  • the structure composed of the knot part-the plurality of microfibrils-knot parts may be repeated in the yarn length direction to constitute a substantially mesh structure.
  • Such a structure is generally a structure found in a porous hollow fiber membrane obtained by a melt-stretch opening method, and is confirmed by observing the surface of the inner wall or outer wall of the hollow fiber with a scanning electron microscope or the like. Can do.
  • a specific example of this structure is shown in FIG.
  • the porous hollow fiber membrane is It is preferable to manufacture by the melt stretch opening method.
  • the porous hollow fiber membrane of this embodiment contains a polyethylene resin.
  • the content of the polyethylene resin in the porous hollow fiber membrane is not limited, but is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. 95% by mass or more is particularly preferable. Moreover, 100 mass% may be sufficient.
  • the mass fraction of the component having a molecular weight of 10,000 or less in the porous hollow fiber membrane is 17.5% by mass or more, preferably 18.0% by mass or more, and particularly preferably 18% by mass or more and 20.0%. It is less than mass%.
  • the mass fraction of the component having a molecular weight of 1,000,000 or more of the porous hollow fiber membrane may be less than 1.5 mass%, may be 1.45 mass% or less, or is 1.35 mass% or less. May be.
  • the porous hollow fiber membrane is porous hollow so that the mass fraction of the component having a molecular weight of 10,000 or less is 17.5% by mass or more and the mass fraction of the component having a molecular weight of 1,000,000 or more is less than 1.5% by mass.
  • the mass fraction of the component having a molecular weight of 10,000 or less is preferably less than 20.0% by mass.
  • the component having a molecular weight of 1 million or more is preferably 1% by mass or more.
  • the mass fraction of the component having a molecular weight of 10,000 or less and the mass fraction of the component having a molecular weight of 1,000,000 or more of the porous hollow fiber membrane are the polyethylene resin or polyethylene resin that is the raw material of the porous hollow fiber membrane.
  • the mass fraction of the component having a molecular weight of 10,000 or less in the porous hollow fiber membrane can be easily made 17.5 mass% or more, and the mass fraction of the component having a molecular weight of 1,000,000 or more can be easily made less than 1.5 mass%. I understood.
  • the “resin composition containing a polyethylene resin” means a material other than a single type of polyethylene resin among the polyethylene resin-containing materials constituting the porous hollow fiber membrane of the present embodiment.
  • a mixture of a plurality of polyethylene resins for example, a mixture of a polyethylene resin and an olefin wax, which are main raw materials described later
  • a mixture of a polyethylene resin and other resins for example, a mixture of a polyethylene resin and other resins, and additives other than resins. And the like added.
  • a porous hollow fiber membrane may be produced while appropriately adjusting the molecular weight distribution, but the component having a molecular weight of 1000 or less as a raw material is generally in the range of 1.0% by mass or more without finely adjusting the molecular weight distribution of the raw material.
  • the mass fraction of the component having a molecular weight of 10,000 or less of the porous hollow fiber membrane is easily 17.5% by mass or more and the component having a molecular weight of 1,000,000 or more.
  • the mass fraction can be less than 1.5% by mass.
  • the MFR / D (melt flow rate measured by JIS K7210 (code D)) is 3.0 to 10.0
  • the MFR / G melt flow rate measured by JIS K7210 (code G)
  • the molecular weight of the porous hollow fiber membrane obtained therefrom is 10,000.
  • the mass fraction of the following components tends to be 17.5% by mass or more, and the mass fraction of a component having a molecular weight of 1 million or more tends to be less than 1.5% by mass.
  • the mass fraction of the component having a molecular weight of 10,000 or less in the porous hollow fiber membrane tends to increase as the proportion of the component having a molecular weight of 1000 or less in the raw material increases.
  • the component having a molecular weight of 1000 or less in the raw polyethylene resin or resin composition is preferably 3% by mass or less. It is more preferably at most mass%, further preferably at most 1.5 mass%.
  • a raw material polyethylene resin or resin composition having a mass fraction of a component having a molecular weight of 1000 or less of 1.0% by mass or more was used.
  • the component having a molecular weight of 1000 or less in the polyethylene resin or the resin composition acts as a plasticizer, and the crystallization rate of the polyethylene resin is reduced, thereby promoting the growth of the lamellar laminate. This is thought to lead to uniformization. Therefore, also from such a viewpoint, it is preferable to use a polyethylene resin or resin composition having a mass fraction of a component having a molecular weight of 1000 or less in a range of 1.0% by mass or more.
  • the component having a molecular weight of 10,000 or less in the porous hollow fiber membrane It becomes easy to make the mass fraction of the component having a mass fraction of 17.5% by mass or more and the molecular weight of 1 million or more less than 1.5% by mass. It tends to be more facilitated to make the lamellar laminate uniform in the yarn length direction and the film thickness direction, which is seen when a material having a mass fraction of 1.0% by mass or more is used.
  • the MFR / D of the polyethylene resin or the resin composition is more preferably 3.5 to 6.0, still more preferably 3.8 to 5.8, and the MFR / G is more preferably 160 to 270, and further Preferably, it is 170-200.
  • the polyethylene resin is an ethylene homopolymer or a copolymer of ethylene and other monomer components (the content of other monomer components is preferably 5 mol% or less).
  • a preferred specific example in this embodiment is high density polyethylene with high density and few branches.
  • the density of the high density polyethylene (according to JIS K7112: 1999) is preferably 950 kg / m 3 or more, more preferably 960 kg / m 3 or more.
  • a pre-stretch raw yarn obtained from high-density polyethylene having a density of less than 950 kg / m 3 has a low crystallinity, so that the pore size of the porous hollow fiber membrane obtained by stretching is desired (for example, suitable for plasma separation). D) It is difficult to adjust the stretching conditions for the range.
  • the porous hollow fiber membrane when used for plasma separation, preferably has a pore size of 0.01 to 2 ⁇ m, more preferably 0.1 to 0.6 ⁇ m.
  • the pore diameter refers to the maximum pore diameter measured by the bubble point method (JIS K3832: 1990).
  • the method for adjusting the mass fraction of the component having a molecular weight of 1000 or less of the polyethylene resin or resin composition that is the raw material of the porous hollow fiber membrane there is no limitation on the method for adjusting the mass fraction of the component having a molecular weight of 1000 or less of the polyethylene resin or resin composition that is the raw material of the porous hollow fiber membrane.
  • the component having a molecular weight of 1000 or less may have a mass fraction of 1.0% by mass or more.
  • a component having a molecular weight of 1000 or less can be obtained by blending an olefin wax with a polyethylene resin as a main raw material.
  • the resin composition having a mass fraction of 1.0% by mass or less can be obtained.
  • the olefinic wax is generally within a range of 0.1 to 10.0% by mass with respect to the total amount of the main raw material polyethylene resin and the olefinic wax (the content of the main raw material polyethylene resin is It may be blended with the polyethylene resin so that it falls within the range of 90.0 to 99.9% by mass.
  • the actual blending amount of the olefin-based wax can be determined according to the respective properties with the above as a guide.
  • the olefin wax preferably has a viscosity average molecular weight of 700 to 8000, more preferably in the range of 2000 to 6000.
  • the olefin wax having a viscosity average molecular weight of less than 700 has a molecular weight that is too low and may be eluted from the porous hollow fiber membrane.
  • an olefin wax having a viscosity average molecular weight of more than 10,000 loses its plasticizer effect due to its too high molecular weight and cannot be expected to promote the growth and uniformity of the lamellar laminate.
  • the olefin wax is a high density low molecular weight ethylene polymer having a density of 960 kg / m 3 or more, a low density low molecular weight ethylene polymer having a density of less than 940 kg / m 3 , a low molecular weight ethylene-propylene copolymer, And at least one selected from the group consisting of low molecular weight ethylene-butene copolymers.
  • the high density low molecular weight ethylene polymer means a polymer having an ethylene group as a basic skeleton having a density of 950 kg / m 3 or more and a viscosity average molecular weight of 10,000 or less.
  • the coalescence refers to a polymer having an ethylene group as a basic skeleton having a density of less than 950 kg / m 3 and a viscosity average molecular weight of 10,000 or less.
  • the low molecular weight ethylene-propylene copolymer means a copolymer having an ethylene-propylene group as a basic skeleton having a viscosity average molecular weight of 10,000 or less
  • the low molecular weight ethylene-butene copolymer means a viscosity average A copolymer having a molecular weight of 10,000 or less and having an ethylene-butene group as a basic skeleton.
  • the olefin wax is preferably a high density low molecular weight ethylene polymer having a density of 960 kg / m 3 or more, more preferably a density of 970 kg / m 3 in view of compatibility with the main raw material polyethylene resin. It is the above high-density low molecular weight ethylene polymer.
  • the MFR / D of the resin composition containing a polyolefin wax is preferably 3.0 to 10.0, more preferably 3.5 to 6.0, and still more preferably 3. 8 to 5.8.
  • the MFR / G of the polyethylene resin mixed with the polyolefin wax is preferably 150 to 300, more preferably 160 to 270, and still more preferably 170 to 200.
  • the porous hollow fiber membrane may contain any additive in addition to the polyethylene resin and the olefin wax.
  • additives include antioxidants, lubricants, ultraviolet absorbers, light stabilizers, and the like.
  • antioxidant include trade names “Irganox 1010”, “Irganox 1076”, and Irgafos 168 ”.
  • lubricant include calcium montanate, calcium stearate, magnesium stearate and the like.
  • the total content of such optional additives is preferably 5% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less of the porous hollow fiber membrane. .
  • the porous hollow fiber membrane of this embodiment contains a polyethylene resin that is a hydrophobic polymer. Hydrophobic polymers interact with blood, so when they are used for plasma separation membranes, etc., the surface of the porous hollow fiber membrane is covered with a hydrophilic layer containing a hydrophilic polymer. It is preferable to do.
  • the hydrophilic polymer include polyhydroxyethyl methacrylate, polyhydroxypropyl methacrylate, polyvinyl pyrrolidone, and an ethylene-vinyl alcohol copolymer. These may be used alone or in combination of two or more.
  • an ethylene-vinyl alcohol copolymer having good adhesion to a polyethylene resin and less peeling from the pore surface of the porous structure is preferable.
  • the ethylene-vinyl alcohol copolymer may be any type such as a random polymer, block polymer, or graft polymer, but the ethylene content of the copolymer is within the range of 20 to 70 mol%. Preferably, it is more preferably in the range of 25 to 50 mol% from the viewpoint of the balance between hydrophilicity and adhesiveness.
  • the adhesiveness of the ethylene-vinyl alcohol copolymer to the polyethylene resin is better, and it is possible to prevent the peeling of the pore surface of the porous structure from the hydrophilic layer. it can. Further, when the ethylene content is 70 mol% or less, the interaction between the hydrophilic layer containing the ethylene-vinyl alcohol copolymer and blood can be reduced.
  • the hydrophilic polymer may be ethylene-vinyl alcohol. It is preferable to use a copolymer.
  • the hydrophilic layer may be composed of only a hydrophilic polymer or may contain additives other than the hydrophilic polymer.
  • the content of the hydrophilic polymer is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the degree of hydrophilicity of the porous hollow fiber membrane covered with the hydrophilic layer can be evaluated by the contact angle of water.
  • contact angle measurement methods There are two types of contact angle measurement methods, the static contact angle method and the dynamic contact angle method, but the dynamic contact angle method reflecting the morphology of the porous membrane surface is preferred.
  • the dynamic contact angle methods the well-helmi method is more preferable because it has a high degree of freedom in the shape of the sample.
  • the receding contact angle directly reflects the hydrophilicity of the surface of the substance in water, and is therefore an important index for judging the degree of hydrophilicity of the porous hollow fiber membrane.
  • the receding contact angle of water of the porous hollow fiber membrane covered with the hydrophilic layer is preferably 0 to 15 degrees, more preferably 0 to 10 degrees, and further preferably 0 to 5 degrees. When the receding contact angle of water exceeds 15 degrees, there is a risk of causing plasma protein adsorption, hemolysis, thrombus formation, etc. when used as a separation membrane for plasma separation.
  • the measurement of the receding contact angle with respect to the water of the porous hollow fiber membrane by a well Helmi method can be implemented as follows, for example.
  • Water for injection Japanese Pharmacopoeia manufactured by Fuso Pharmaceutical Co., Ltd.
  • a dynamic contact angle measuring device DCAT11 manufactured by DataPysics Instrument GmbH
  • the porous hollow fiber membrane is cut to about 2 cm and attached to the measuring device.
  • the motor speed at the time of measurement is 0.10 mm / second, the immersion depth is 10 mm, the forward and backward movements are one cycle, and five cycles are measured.
  • the average value of the values obtained by the five measurements is defined as the receding contact angle.
  • the method for producing a porous hollow fiber membrane according to the present embodiment includes a step of producing a porous hollow fiber membrane by a melt stretch opening method or the like, and further when the porous hollow fiber membrane is used as a separation membrane for plasma separation. It is preferable to include a step of forming a hydrophilic layer containing a hydrophilic polymer on the surface of the porous hollow fiber membrane by a coating method or the like.
  • the melt-stretch opening method the main raw material polyethylene resin and, if necessary, a resin composition containing an olefin wax are melt-spun into a hollow fiber shape, and the wound hollow fiber (original yarn before drawing) is made porous by drawing. To obtain a porous hollow fiber membrane.
  • the porous hollow fiber membrane is dipped in an organic solvent or the like (coating liquid) containing a hydrophilic polymer, and then taken out, and then the solvent is dried by heat to form a porous hollow fiber.
  • the surface of the membrane is coated with a hydrophilic polymer.
  • a main raw material polyethylene resin or a resin composition containing a main raw material polyethylene resin and an olefin wax is melt-kneaded by an extruder.
  • a molten polyethylene-based resin (or resin composition) is extruded into a hollow fiber into a spinning cylinder by a circular double nozzle and wound up with a high draft (for example, a draft ratio of 1000 to 8000). It winds up as the formed hollow fiber (original yarn before drawing).
  • the raw yarn before drawing is heat-treated in two stages in an oven.
  • the pre-stretch raw yarn is stretched (for example, a stretch ratio of 10 to 50%) at a low temperature (for example, 10 to 40 ° C.), and the lamellar laminate is cleaved to form micropores.
  • a low temperature for example, 10 to 40 ° C.
  • the pores are further expanded by thermal stretching (for example, at 80 to 130 ° C. and a stretching ratio of 200 to 500%).
  • the raw material of the porous hollow fiber membrane is a resin composition containing an olefinic wax
  • a polyethylene resin for example, 90.0 to 99.9% by mass
  • an olefinic wax for example, 0.1 to 10.0% by mass
  • a porous hollow fiber membrane is produced by a melt stretch opening method using a resin composition containing a polyethylene resin having a molecular weight of 1000 or less and 1.0 mass% or more, particularly an olefin wax polyethylene, an unstretched part It has been found that it is preferable to satisfy the following two requirements in order to produce a porous hollow fiber membrane with a low content.
  • the idle running time from the formation of the unstretched raw yarn to the winding (the residence time until the raw material is extruded from the spinning nozzle (specifically, a circular double nozzle) and wound as a hollow fiber) ) For 1 second or longer, more preferably 1.1 seconds or longer.
  • the temperature of the first stage is 10 to 15 ° C. lower than that of the second stage.
  • the heat treatment method, temperature and time are not limited.
  • the heat treatment method includes placing in a constant temperature room such as an oven.
  • the temperature and time are about 90 to 105 ° C. for 2 to 10 hours at the first stage.
  • the stage can be 100 to 120 ° C. for 1 to 2 hours.
  • a method for forming a hydrophilic layer containing a hydrophilic polymer on at least a part of the surface of the porous hollow fiber membrane is not particularly limited,
  • an ethylene-vinyl alcohol copolymer is used as the molecule, for example, a coating method disclosed in Japanese Patent Publication No. 4-27891 can be used. That is, the porous hollow fiber membrane is left to stand for a predetermined time in a solution in which an ethylene-vinyl alcohol copolymer is heated and dissolved in a water-miscible organic solvent aqueous solution having a predetermined concentration, and then the excess solution is removed.
  • porous hollow fiber membrane having a hydrophilic layer on the surface By drying with hot air at a predetermined temperature, a porous hollow fiber membrane having a hydrophilic layer on the surface can be obtained.
  • the obtained porous hollow fiber membrane having a hydrophilic layer has few unstretched parts, so there is no pseudo-leakage of blood, is excellent in homogeneity, and is a separation membrane suitable for plasma separation.
  • the porous hollow fiber membrane of the present embodiment has less elution of the hydrophilic polymer even when a hydrophilic layer containing the hydrophilic polymer is provided on the porous hollow fiber membrane.
  • a separation membrane having excellent protein adsorptivity and improved compatibility with blood can be obtained. The reason why the elution of the hydrophilic polymer is small is not clear, but it is assumed that the porous hollow fiber membrane of the present embodiment has a large specific surface area and a large contact area with the hydrophilic polymer.
  • the manufacturing method of the separation membrane of this embodiment includes the process of sterilizing a porous hollow fiber membrane.
  • Sterilization methods include ethylene oxide gas sterilization, high pressure steam sterilization, and radiation sterilization. Among these, radiation sterilization with an electron beam, gamma ray, or the like is preferable because the object to be processed can be processed in a packaged state.
  • the porous hollow fiber membrane is particularly preferably sterilized by irradiation with gamma rays having a high sterilization effect.
  • the irradiation dose of gamma rays is adjusted according to the material of the separation membrane. In the present embodiment, it is preferably in the range of 20 kGy to 40 kGy.
  • the MFR / D of the material constituting the porous hollow fiber membrane after sterilization with gamma rays is preferably 0.03 or more.
  • MFR / D is 0.03 or more, the performance as a separation membrane is not impaired.
  • the porous hollow fiber membrane having many unstretched parts is sterilized with gamma rays, it does not show melt viscosity and MFR / D cannot be measured. The cause is not clear, but since the unstretched part is not made porous, the energy density of the part becomes high, and the generation of radicals causes a crosslinking reaction between the molecular chains, resulting in the formation of a network structure that melts. It is assumed that the viscosity is lost.
  • the method for sterilizing the porous hollow fiber membrane with gamma rays is not limited, but an example of the procedure is given below.
  • a separation membrane bundle in which 2200 separation membranes having a length of 250 mm are bundled is inserted into a plasma separation container, a potting agent such as polyurethane resin is injected into both ends, both ends are sealed, a header is attached, and plasma is added
  • a separation module (hereinafter referred to as a module) is created.
  • (2) Fill the module with physiological saline, apply vibration, etc., and completely evacuate the internal air.
  • E (n / L) ⁇ 100 (pieces / m ⁇ %)
  • the filtrate flow ports at both ends of each module were closed, the module was removed from the holder, and the outer periphery of the inner separation membrane bundle was visually observed from the side of the module to confirm the presence of vermilion spots.
  • a vermilion spot was regarded as a simulated blood leak, and it was determined that there was no simulated blood leak when there were no vermilion spots in all 10 modules.
  • the separation membrane was inserted into a polyethylene tube having an inner diameter of 5 mm, and a silicon adhesive was injected around the separation membrane in the tube. After the silicone adhesive was cured, the cross section of the polyethylene tube was cleaved with a razor. The cross section of the separation membrane exposed on the end face of the tube was observed with a microscope, and the outer diameter (DO) and inner diameter (DI) as the equivalent circle diameter were determined using image analysis software (Image-pro plus manufactured by Media Cyberbertics). . DI was defined as the inner diameter of the separation membrane, and half of the difference between DO and DI was determined as the thickness of the separation membrane.
  • mf (1000) ratio a mass fraction of a component having a molecular weight of 1000 or less (hereinafter referred to as “mf (1000) ratio”) of a polyethylene resin (or a resin composition in which an olefin wax is blended with a polyethylene resin)
  • TCB 1,2,4-Trichlorobenzene
  • mf (10000) fraction The mass fraction of the polyethylene-based resin constituting the porous hollow fiber membrane, or the component having a molecular weight of 10,000 or less (hereinafter referred to as “mf (10000) fraction”) and the mass fraction having a molecular weight of 1,000,000 or more.
  • ⁇ Measuring device High-temperature GPC device (PL-GPC220 manufactured by Agilent Technologies) ⁇ Column: TSKgel GMHHR-H (20) 2 ⁇ Device temperature: 160 °C for all channels -Eluent: TCB (containing 0.05% dibutylhydroxytoluene) Sample injection volume: 500 ⁇ L ⁇ Detector: Suggested refractive index detector RI ⁇ Calibration curve: Calculation was carried out in the first order using a monodisperse polystyrene as a standard sample and a conversion factor (0.43). (6-7) The mass fraction for each molecular weight was calculated from the calibration curve, and the mf (10000) rate and mf million) rate were determined.
  • Example 1 High-density polyethylene (density 965 kg / m 3 , MFR / D: 5.1, MFR / G: 186, mf (1000) rate: 1.4 mass%) as a raw material, polymer extrusion using a hollow double nozzle Spinning was performed at an amount of 16.1 g / min, a hollow nitrogen amount of 22.5 mL / min, a spinning temperature of 150 ° C., a spinning speed of 200 m / min, a spinning draft ratio of 3400, and an idle running time of 1.2 seconds. Thread). Next, the raw yarn before drawing was further heated in an oven at 100 ° C. for 6 hours, and further heat treated at 115 ° C. for 1 hour.
  • this porous hollow fiber membrane When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. It was confirmed that The unstretched incidence of the porous hollow fiber membrane was 0.07 (pieces / m ⁇ %). An ethylene-vinyl alcohol copolymer having an ethylene content of 38 mol% was dissolved by heating in a 75 vol% aqueous ethanol solution to give a 0.5 mass% solution. The porous hollow fiber membrane was immersed in the solution maintained at a temperature of 50 ° C. and left for 10 minutes.
  • the obtained separation membrane had an inner diameter of 320 ⁇ m and a film thickness of 45 ⁇ m.
  • the porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) ratio of 19.0 mass% and an mf (1 million) ratio of 1.4 mass%.
  • the blood pseudoleakage confirmation test no vermilion spot was confirmed, and the blood pseudoleakage was determined to be “none”.
  • a plasma separation module was prepared using the separation membrane, and irradiated with gamma rays at a dose of 25 kGy. Thereafter, the separation membrane was taken out from the plasma separation module, and the separation membrane was immersed in dimethyl sulfoxide for 50 hours, then washed with a 50% by volume aqueous methanol solution, vacuum-dried for 5 hours, and MFR / D was measured. 03.
  • Example 2 High-density polyethylene (density 962 kg / m 3 , MFR / D: 5.2, MFR / G: 195, mf (1000) rate: 1.0 mass%) as a raw material, polymer extrusion using a hollow double nozzle Spinning was carried out at an amount of 16.0 g / min, a hollow nitrogen amount of 22.0 mL / min, a spinning temperature of 149 ° C., a spinning speed of 200 m / min, a spinning draft ratio of 3430, an idle running time of 1.2 seconds, and a hollow fiber (original before drawing) Thread). Next, the raw yarn before drawing was further heated in an oven at 100 ° C.
  • this porous hollow fiber membrane When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. It was. The unstretched incidence was 0.07 (pieces / m ⁇ %). According to the procedure described in Example 1, an ethylene-vinyl alcohol copolymer was applied to obtain a separation membrane. The obtained separation membrane had an inner diameter of 315 ⁇ m and a film thickness of 44 ⁇ m.
  • the porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) ratio of 18.0 mass% and an mf (1 million) ratio of 1.3 mass%.
  • mf (10000) ratio of 18.0 mass% and an mf (1 million) ratio of 1.3 mass% In the blood pseudoleakage confirmation test, no vermilion spot was confirmed, and the blood pseudoleakage was determined to be “none”. In the eluate test, elution of hydrophilic polymer was not observed. According to the procedure described in Example 1, the MFR / D was measured after irradiating the separation membrane with gamma rays and found to be 0.05.
  • Example 3 High-density polyethylene (density 967 kg / m 3 , MFR / D: 2.8, MFR / G: 114, mf (1000) ratio: 0.7% by mass) as a raw material, polymer extrusion using a hollow double nozzle Spinning was performed at an amount of 16.1 g / min, a hollow nitrogen amount of 22.5 mL / min, a spinning temperature of 155 ° C., a spinning speed of 200 m / min, a spinning draft ratio of 3400, and an idle running time of 1.2 seconds. Thread). Next, the raw yarn before drawing was further heated in an oven at 100 ° C. for 8 hours, and further heated at 115 ° C. for 1 hour.
  • cold drawing, hot drawing, and heat setting were continuously performed. Specifically, cold drawing at a cold drawing ratio of 30% is performed at room temperature, followed by two-stage hot drawing at 102 ° C. with a hot drawing ratio of 200% and 115 ° C. with a further 43%, followed by air heating at 127 ° C. By adjusting the speed between the rolls in the tank, a two-stage heat setting was performed at a heat setting rate of 27% for the first stage and 17% for the second stage to obtain a porous hollow fiber membrane.
  • the inner wall of the porous hollow fiber membrane at this time was confirmed by SEM (5000 times), a plurality of microfibrils oriented in the yarn length direction, and a knot portion composed of a lamellar laminate connected to both ends of the microfibrils It was confirmed that it was configured.
  • the unstretched incidence of the porous hollow fiber membrane was 0.29 (pieces / m ⁇ %).
  • the inner diameter of the separation membrane was 315 ⁇ m and the film thickness was 45 ⁇ m.
  • the porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 17.5% by mass and an mf (million) rate of 1.4% by mass.
  • Example 1 The procedure described in Example 1 was followed except that high-density polyethylene (density 966 kg / m 3 , MFR / D: 5.1, MFR / G: 183, mf (1000) ratio: 0.8 mass%) was used as a raw material. A porous hollow fiber membrane and then a separation membrane were obtained. When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. In addition, the unstretched incidence was 1.20 (pieces / m ⁇ %).
  • the inner diameter of the separation membrane was 320 ⁇ m and the film thickness was 46 ⁇ m.
  • the porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) ratio of 17.3 mass% and an mf (1 million) ratio of 1.1 mass%.
  • mf (10000) ratio of 17.3 mass% a bundle having vermilion spots in the test module was confirmed, and the blood pseudoleakage was determined to be “present”. No elution was observed.
  • Example 1 After irradiating the separation membrane with gamma rays, measurement of MFR / D was attempted, but it could not be measured because it did not melt.
  • Example 2 The procedure described in Example 1 was followed except that high-density polyethylene (density 965 kg / m 3 , MFR / D: 5.0, MFR / G: 155, mf (1000) ratio: 0.8% by mass) was used as a raw material. A porous hollow fiber membrane and then a separation membrane were obtained. When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. In addition, the unstretched incidence was 0.34 (pieces / m ⁇ %).
  • the inner diameter of the separation membrane was 320 ⁇ m and the film thickness was 46 ⁇ m.
  • the porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 17.5% by mass and an mf (million) rate of 1.5% by mass.
  • this porous hollow fiber membrane When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. It was. The unstretched occurrence rate was 2.75 (pieces / m ⁇ %). Thereafter, according to the procedure described in Example 1, a separation membrane was obtained. The inner diameter of the separation membrane was 320 ⁇ m and the film thickness was 43 ⁇ m. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 16.9% by mass and an mf (1 million) rate of 2.4% by mass. In the blood pseudoleakage confirmation test, a bundle having vermilion spots in the test module was confirmed, and the blood pseudoleakage was determined to be “present”. Elution was observed.
  • this porous hollow fiber membrane When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. It was. The unstretched incidence was 13.80 (pieces / m ⁇ %). Thereafter, according to the procedure described in Example 1, a separation membrane was obtained. The inner diameter of the separation membrane was 320 ⁇ m and the film thickness was 43 ⁇ m. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 16.0% by mass and an mf (million) rate of 2.8% by mass.
  • the blood pseudoleakage confirmation test a bundle having vermilion spots in the test module was confirmed, and the blood pseudoleakage was determined to be “present”.
  • the dissolution test elution of hydrophilic substances was observed, and the dissolution was judged as “present”.
  • Example 5 The procedure described in Example 3 was followed except that high-density polyethylene (density 961 kg / m 3 , MFR / D: 2.9, MFR / G: 145, mf (1000) ratio: 1.0 mass%) was used as a raw material. A porous hollow fiber membrane and then a separation membrane were obtained. When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. In addition, the unstretched incidence was 0.66 (pieces / m ⁇ %).
  • the inner diameter of the separation membrane was 316 ⁇ m and the film thickness was 45 ⁇ m.
  • the porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 17.0% by mass and an mf (million) rate of 1.7% by mass.
  • mf (10000) rate of 17.0% by mass
  • mf (million) rate of 1.7% by mass.
  • Example 4 A resin containing 99.0% by mass of the high-density polyethylene used in Comparative Example 1 and 1.0% by mass of a high-density low molecular weight ethylene polymer (olefin wax) (density 970 kg / m 3 , viscosity average molecular weight 4000).
  • a composition (MFR / D: 5.1, MFR / G: 188, mf (1000) ratio: 1.1% by mass) was obtained.
  • a porous hollow fiber membrane was prepared according to the procedure described in Example 1, and a separation membrane was further obtained.
  • a knot portion comprising a plurality of microfibrils oriented in the yarn length direction and a lamellar laminate connected to both ends of the microfibrils.
  • the unstretched incidence was 0.08 (pieces / m ⁇ %).
  • the inner diameter of the separation membrane was 321 ⁇ m and the film thickness was 45 ⁇ m.
  • the porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) ratio of 18.5 mass% and an mf (1 million) ratio of 1.1 mass%.
  • Example 5 A resin containing 95.0% by mass of the high-density polyethylene used in Comparative Example 1 and 5.0% by mass of a high-density low molecular weight ethylene polymer (olefin wax) (density 980 kg / m 3 , viscosity average molecular weight 2000).
  • a composition was obtained (MFR / D: 5.8, MFR / G: 239, mf (1000) ratio: 1.2% by mass).
  • a porous hollow fiber membrane was prepared according to the procedure described in Example 1, and a separation membrane was further obtained.
  • Example 6 Resin containing 98.0% by mass of the high-density polyethylene used in Comparative Example 1 and 2.0% by mass of a low-density low-molecular-weight ethylene polymer (olefin wax) (density 935 kg / m 3 , viscosity average molecular weight 2000).
  • a composition was obtained (MFR / D: 5.5, MFR / G: 263, mf (1000) ratio: 1.0 mass%).
  • a porous hollow fiber membrane and then a separation membrane were obtained according to the procedure described in Example 1, except that the second heat treatment temperature and heat treatment time were 117 ° C. and 2 hours, respectively.
  • this porous hollow fiber membrane When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. In addition, the unstretched incidence was 0.16 (pieces / m ⁇ %). The inner diameter of the separation membrane was 322 ⁇ m, and the film thickness was 46 ⁇ m. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 18.7% by mass and an mf (1 million) rate of 1.1% by mass. No simulated blood leak or eluate was observed.
  • Example 7 98.0% by mass of the high density polyethylene used in Comparative Example 1 and 2.0% by mass of a low density low molecular weight ethylene-propylene polymer (olefin wax) (density 940 kg / m 3 , viscosity average molecular weight 2000)
  • the obtained resin composition was obtained (MFR / D: 6.0, MFR / G: 290, mf (1000) rate: 1.1 mass%).
  • a porous hollow fiber membrane was prepared according to the procedure described in Example 1 except that the spinning temperature was 152 ° C., and a separation membrane was obtained.
  • Example 8 A resin containing 95.0% by mass of the high-density polyethylene used in Comparative Example 1 and 5.0% by mass of a high-density low molecular weight ethylene polymer (olefin wax) (density 970 kg / m 3 , viscosity average molecular weight 4000).
  • a composition was obtained (MFR / D: 5.7, MFR / G: 191 and mf (1000) ratio: 1.5 mass%).
  • a porous hollow fiber membrane and a separation membrane were obtained according to the procedure described in Example 1.
  • this porous hollow fiber membrane When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. In addition, the unstretched occurrence rate was 0.17 (pieces / m ⁇ %). The inner diameter of the separation membrane was 318 ⁇ m, and the film thickness was 44 ⁇ m. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) ratio of 20.2 mass% and an mf (1 million) ratio of 1.0 mass%. In the blood pseudoleakage confirmation test, no vermilion spot was confirmed, and the blood pseudoleakage was determined to be “none”. In the eluate test, elution of the hydrophilic polymer was determined to be “present”.
  • a porous hollow fiber membrane was prepared according to the procedure described in Example 1, and then a separation membrane was obtained.
  • the inner wall of the porous hollow fiber membrane obtained here was confirmed by SEM (5000 times), a plurality of microfibrils oriented in the yarn length direction, and a knot portion composed of a lamellar laminate connected to both ends of the microfibrils, Consisted of.
  • the unstretched incidence was 1.55 (pieces / m ⁇ %).
  • the inner diameter of the separation membrane was 322 ⁇ m, and the film thickness was 43 ⁇ m.
  • the porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 17.4% by mass and an mf (million) rate of 1.5% by mass.
  • mf (10000) rate of 17.4% by mass had an mf (million) rate of 1.5% by mass.
  • mf (million) rate was determined to be “present”.
  • eluate test elution of the hydrophilic polymer was judged as “none”.
  • the separation membrane was irradiated with gamma rays, and then MFR / D measurement was attempted. However, the MFR / D could not be measured because it did not melt.
  • the polyethylene resin porous hollow fiber membrane of the present invention has industrial applicability in the medical field that it can be used in plasma exchange therapy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

A polyethylene resin porous hollow fiber membrane having a plurality of microfibrils which include a polyethylene resin and which are aligned in the fiber longitudinal direction, and nodular parts comprising a lamellar laminate connected to both ends of the microfibrils, wherein the mass fraction of components having a molecular weight of 10,000 or less is 17.5 mass% or above, and the mass fraction of components having a molecular weight of 1,000,000 or higher is less than 1.5 mass%.

Description

ポリエチレン系樹脂多孔質中空糸膜、分離膜及びそれらの製造方法Polyethylene resin porous hollow fiber membrane, separation membrane, and production method thereof
 本発明は、ポリエチレン系樹脂を含む多孔質中空糸膜に関し、特に、特定の物質を分離、排除するために使用される分離膜(とりわけ、血漿交換療法において、血液から血漿を分離する際に好適に用いられる分離膜)の基材として好適に利用できる多孔質中空糸膜、及びその製造方法に関する。 The present invention relates to a porous hollow fiber membrane containing a polyethylene-based resin, and in particular, a separation membrane used for separating and eliminating a specific substance (particularly suitable for separating plasma from blood in plasma exchange therapy). The present invention relates to a porous hollow fiber membrane that can be suitably used as a base material for a separation membrane used in the above and a production method thereof.
 近年、体外循環血液浄化療法の一つとして、多孔質中空糸膜からなる分離膜を用いて患者の血液から血球成分と、病因物質が含まれる血漿成分とを分離し、代替の血漿成分を、浄化した血液とともに患者の体内に戻す、血漿交換療法が注目されている。 In recent years, as one of the extracorporeal circulation blood purification therapy, blood cell components and plasma components containing a pathogenic substance are separated from a patient's blood using a separation membrane comprising a porous hollow fiber membrane, and an alternative plasma component is obtained. Plasma exchange therapy, which returns the purified blood to the patient's body, has attracted attention.
 多孔質中空糸膜を製造する方法として、非溶媒誘起相分離法、熱誘起相分離法、溶融延伸開孔法等が知られている。このうち、溶融延伸開孔法は、結晶性の高分子化合物を溶融して中空糸状に紡出し、巻き取った中空糸を延伸により多孔化を図り、多孔質中空糸膜とする方法である。この方法で得られる多孔質中空糸膜は、製造工程で溶媒や可塑剤等の液状成分が用いられていないため、使用時に液状成分の溶出の恐れがなく、血漿分離用途に適している。
 なお、血漿分離への適用に際し、多孔質中空糸膜が疎水性高分子を素材とする場合、多孔質表面は親水性物質等で覆われ、親水性・低蛋白吸着性を付与され、血液適合性が高められる。また、多孔質中空糸膜の孔径は、血液から血球成分と血漿成分の分離の点から、0.01~2μmの範囲に制御される。さらに、多孔質中空糸膜は、血漿分離の前に安全性の面から滅菌処理される。 
 ところで、溶融延伸開孔法による多孔構造は、延伸前の中空糸(以下、「延伸前中空糸」という。)のラメラ積層体を冷延伸によって開裂させ、生じた微小孔をさらに熱延伸で拡大させることで得られる。
 しかし、延伸前中空糸に成長の不十分なラメラ積層体が含まれていると、延伸後の多孔質中空糸膜には糸長方向の所々に0.1~50mm程度の開孔されていない部分(以下、「未延伸部」という。)が生じる。未延伸部は多孔化されていないため分離機能を持たないが、多孔質中空糸膜の一部を構成するにすぎないので、分離膜本来の分離性・透過性等を低下させるまでには至らない。つまり未延伸部を含む多孔質中空糸膜は分離膜として機能上、品質上問題とはならない。
 ところが、未延伸部を含む多孔質中空糸膜が血漿分離に用いられる場合、以下の点で治療上の問題がある。すなわち、延伸前中空糸は半透明の外観を呈しているが、延伸後の多孔質中空糸膜は、その細孔による光の乱反射のため白化する。一方、細孔を持たない未延伸部は、延伸前中空糸の外観を反映し、半透明のままである。血漿交換療法において血液は、多孔質中空糸膜の中空部に通液される。この際、多孔質中空糸膜に半透明である未延伸部が存在すると、中空部を通る血液が透過して見える。そのため治療施行者は、未延伸部から血液が漏洩したと誤認する。血漿交換療法において血液の漏洩が発見された場合、治療は中断されるところ、未延伸部による血液のいわば擬似的な漏洩は、実際の血液の漏洩とは区別され難く、そのためこの擬似的な漏洩によっても治療が中断させることになり、患者の治療機会を失わせる。以上の点から、血漿交換療法においては良好な分離性・透過性等に加え、未延伸部がない、均質性に優れた多孔質中空糸膜が求められる。
As a method for producing a porous hollow fiber membrane, a non-solvent induced phase separation method, a thermally induced phase separation method, a melt stretch opening method and the like are known. Among them, the melt-stretching and opening method is a method in which a crystalline polymer compound is melted and spun into a hollow fiber shape, and the wound hollow fiber is made porous by stretching to obtain a porous hollow fiber membrane. Since the porous hollow fiber membrane obtained by this method does not use a liquid component such as a solvent or a plasticizer in the production process, there is no fear of elution of the liquid component during use, and it is suitable for plasma separation.
When applying to plasma separation, if the porous hollow fiber membrane is made of a hydrophobic polymer, the porous surface is covered with a hydrophilic substance, etc., imparting hydrophilicity / low protein adsorption, and blood compatibility Sexuality is enhanced. The pore diameter of the porous hollow fiber membrane is controlled in the range of 0.01 to 2 μm from the viewpoint of separation of blood cell components and plasma components from blood. Further, the porous hollow fiber membrane is sterilized from the viewpoint of safety before plasma separation.
By the way, the porous structure formed by the melt-stretching hole-opening method is such that a lamellar laminate of hollow fibers before stretching (hereinafter referred to as “hollow fibers before stretching”) is cleaved by cold stretching, and the resulting micropores are further expanded by hot stretching. Can be obtained.
However, if the hollow fiber before stretching contains an insufficiently grown lamellar laminate, the porous hollow fiber membrane after stretching is not perforated by about 0.1 to 50 mm in the yarn length direction. A portion (hereinafter referred to as “unstretched portion”) is generated. Since the unstretched portion is not porous, it does not have a separation function, but it only constitutes a part of the porous hollow fiber membrane, so that it does not reach the original separation / permeability of the separation membrane. Absent. That is, the porous hollow fiber membrane including the unstretched portion does not cause a problem in terms of function as a separation membrane.
However, when a porous hollow fiber membrane containing an unstretched part is used for plasma separation, there are therapeutic problems in the following points. That is, the hollow fiber before stretching has a translucent appearance, but the porous hollow fiber membrane after stretching is whitened due to irregular reflection of light by the pores. On the other hand, the unstretched portion having no pores reflects the appearance of the hollow fiber before stretching and remains translucent. In plasma exchange therapy, blood is passed through the hollow portion of the porous hollow fiber membrane. At this time, if there is an unstretched portion that is translucent in the porous hollow fiber membrane, blood passing through the hollow portion appears to permeate. Therefore, the practitioner misunderstands that blood has leaked from the unstretched part. If a blood leak is detected in plasma exchange therapy, the treatment is interrupted, so that the so-called pseudo-leakage of blood due to the unstretched part is difficult to distinguish from the actual blood leak. The treatment will also be interrupted and the patient's opportunity for treatment will be lost. In view of the above, in plasma exchange therapy, there is a demand for a porous hollow fiber membrane excellent in homogeneity having no unstretched part in addition to good separation and permeability.
 特許文献1に、溶融延伸開孔法で得られる多孔質中空糸膜の均質性を改善する手段として、多孔質中空糸膜を構成する結晶性高分子に、結晶化核形成能を有する金属化合物を0.01重量%以上加える方法が開示されている。しかし、特許文献1に開示された多孔質中空糸膜は、中空糸長方向と中空糸断面方向の微細空孔分布の斑の改善を図られたものであり、未延伸部の解消には繋がっていない。 In Patent Document 1, as a means for improving the homogeneity of a porous hollow fiber membrane obtained by a melt-stretching hole-opening method, a metal compound having a crystallization nucleation ability is formed on a crystalline polymer constituting the porous hollow fiber membrane. A method of adding 0.01% by weight or more is disclosed. However, the porous hollow fiber membrane disclosed in Patent Document 1 is intended to improve the fine pore distribution spots in the hollow fiber length direction and the hollow fiber cross-sectional direction, which leads to the elimination of the unstretched portion. Not.
特開昭54-77729号JP 54-77729 A
 本発明の課題は、血漿分離用分離膜の基材としても使用できる、未延伸部が少ない、均質性に優れたポリエチレン系樹脂多孔質中空糸膜を提供すること、さらには、そのような多孔質中空糸膜を用いて、血液の擬似的な漏洩が少ない分離膜を提供することである。 An object of the present invention is to provide a polyethylene resin porous hollow fiber membrane having few unstretched parts and excellent in homogeneity, which can be used as a base material for a separation membrane for plasma separation. It is to provide a separation membrane with less pseudo-leakage of blood using a porous hollow fiber membrane.
 本発明者らは鋭意検討した結果、多孔質中空糸膜に含まれる、分子量が10000以下の成分及び分子量が100万以上の成分の割合が特定の範囲にある場合や、原料として用いるポリエチレン系樹脂、又はポリエチレン系樹脂を含む樹脂組成物が、分子量が1000以下の成分を1.0質量%以上含む場合、とりわけ、JIS K7210(コードD)で測定したメルトフローレート(以下、「MFR/D」という。)、及びJIS K7210(コードG)で測定したメルトフローレート(以下、「MFR/G」という。)が特定の範囲にある場合、に上記課題を解決し得ることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have found that the ratio of the component having a molecular weight of 10,000 or less and the component having a molecular weight of 1,000,000 or more contained in the porous hollow fiber membrane is in a specific range, or a polyethylene resin used as a raw material. When the resin composition containing a polyethylene-based resin contains 1.0% by mass or more of a component having a molecular weight of 1000 or less, the melt flow rate measured by JIS K7210 (Code D) (hereinafter, “MFR / D”) And when the melt flow rate (hereinafter referred to as “MFR / G”) measured in accordance with JIS K7210 (Code G) is within a specific range, the above-described problems can be solved. It came to be completed.
 すなわち本発明は以下の通りである。
[1]ポリエチレン系樹脂を含み、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とを有する多孔質中空糸膜であって、分子量10000以下の成分の質量分率が、17.5質量%以上であり、かつ分子量100万以上の成分の質量分率が、1.5質量%未満であるポリエチレン系樹脂多孔質中空糸膜。
[2]前記ポリエチレン系樹脂が、オレフィン系ワックスを含む、[1]に記載のポリエチレン系樹脂多孔質中空糸膜。[3]前記オレフィン系ワックスが、密度960kg/m3以上の高密度低分子量エチレン重合体、密度940kg/m3未満である低密度低分子量エチレン重合体、低分子量エチレン-プロピレン共重合体、及び、低分子量エチレン-ブテン共重合体からなる群から選ばれる少なくとも一種類である、[2]に記載のポリエチレン系樹脂多孔質中空糸膜。
[4]前記ポリエチレン系樹脂が、高密度ポリエチレンである、[1]~[3]のいずれかに記載のポリエチレン系樹脂多孔質中空糸膜。
[5][1]~[4]のいずれかに記載のポリエチレン系樹脂多孔質中空糸膜と、該ポリエチレン系樹脂多孔質中空糸膜の表面の少なくとも一部に設けられた親水性高分子を含む親水性層と、を有する分離膜。
[6]前記親水性高分子が、エチレン-ビニルアルコール系共重合体である、[5]に記載の分離膜。
[7]JIS K7210(コードD)で測定したメルトフローレート(MFR/D)が0.03以上である、[5]又は[6]に記載の分離膜。
[8]血漿分離用である、[5]~[7]のいずれかに記載の分離膜。
[9]ポリエチレン系樹脂又はポリエチレン系樹脂を含む樹脂組成物から中空糸を製造する工程と、前記中空糸を延伸して多孔質中空糸膜を形成する工程と、を有する、ポリエチレン系樹脂多孔質中空糸膜の製造方法であって、前記ポリエチレン系樹脂又は前記樹脂組成物が、分子量が1000以下の成分を1.0質量%以上含む、ポリエチレン系樹脂多孔質中空糸膜の製造方法。
[10]前記ポリエチレン系樹脂が、粘度平均分子量が700以上8000以下のオレフィン系ワックスを0.1~10.0質量%を含む、[9]に記載のポリエチレン系樹脂多孔質中空糸膜の製造方法。
[11]前記ポリエチレン系樹脂が、高密度ポリエチレンである、[9]又は[10]に記載のポリエチレン系樹脂多孔質中空糸膜の製造方法。
[12]前記ポリエチレン系樹脂又はポリエチレン系樹脂を含む樹脂組成物の、JIS K7210(コードD)で測定したメルトフローレート(MFR/D)が3.0~10.0であり、かつJIS K7210(コードG)で測定したメルトフローレート(MFR/G)が150~300である、[9]~[11]のいずれかに記載のポリエチレン系樹脂多孔質中空糸膜の製造方法。
[13]前記オレフィン系ワックスが、密度960kg/m3以上の高密度低分子量エチレン重合体、密度940kg/m3未満である低密度低分子量エチレン重合体、低分子量エチレン-プロピレン共重合体、及び、低分子量エチレン-ブテン共重合体からなる群から選ばれる少なくとも一種類である、[10]~[12]のいずれかに記載のポリエチレン系樹脂多孔質中空糸膜の製造方法。
[14]前記オレフィン系ワックスが、密度960kg/m3以上の高密度低分子量エチレン重合体である、[13]に記載のポリエチレン系樹脂多孔質中空糸膜の製造方法。
[15][9]~[14]のいずれかに記載の製造方法によってポリエチレン系樹脂多孔質中空糸膜を得る工程と、前記多孔質中空糸膜の表面の少なくとも一部に親水性高分子を含む親水性層を設ける工程とを含む分離膜の製造方法。
[16]前記親水性高分子が、エチレン-ビニルアルコール系共重合体である、[15]に記載の分離膜の製造方法。
[17]
 さらに、前記多孔質中空糸膜を、放射線よって滅菌する工程を含む、[15]又は[16]に記載の分離膜の製造方法。
That is, the present invention is as follows.
[1] A porous hollow fiber membrane comprising a polyethylene resin and having a plurality of microfibrils oriented in the yarn length direction, and a knot portion composed of a lamellar laminate connected to both ends of the microfibrils, having a molecular weight of 10,000 A polyethylene resin porous hollow fiber membrane having a mass fraction of the following components of 17.5% by mass or more and a mass fraction of a component having a molecular weight of 1 million or more of less than 1.5% by mass.
[2] The polyethylene resin porous hollow fiber membrane according to [1], wherein the polyethylene resin contains an olefin wax. [3] The olefin wax is a high density low molecular weight ethylene polymer having a density of 960 kg / m 3 or more, a low density low molecular weight ethylene polymer having a density of less than 940 kg / m 3 , a low molecular weight ethylene-propylene copolymer, and The polyethylene resin porous hollow fiber membrane according to [2], which is at least one selected from the group consisting of a low molecular weight ethylene-butene copolymer.
[4] The polyethylene resin porous hollow fiber membrane according to any one of [1] to [3], wherein the polyethylene resin is high-density polyethylene.
[5] A polyethylene resin porous hollow fiber membrane according to any one of [1] to [4], and a hydrophilic polymer provided on at least a part of the surface of the polyethylene resin porous hollow fiber membrane. And a hydrophilic layer.
[6] The separation membrane according to [5], wherein the hydrophilic polymer is an ethylene-vinyl alcohol copolymer.
[7] The separation membrane according to [5] or [6], wherein a melt flow rate (MFR / D) measured by JIS K7210 (Code D) is 0.03 or more.
[8] The separation membrane according to any one of [5] to [7], which is for plasma separation.
[9] A polyethylene resin porous material comprising a step of producing a hollow fiber from a polyethylene resin or a resin composition containing a polyethylene resin, and a step of forming a porous hollow fiber membrane by stretching the hollow fiber. A method for producing a hollow fiber membrane, wherein the polyethylene resin or the resin composition contains 1.0% by mass or more of a component having a molecular weight of 1000 or less.
[10] The production of a polyethylene resin porous hollow fiber membrane according to [9], wherein the polyethylene resin contains 0.1 to 10.0% by mass of an olefin wax having a viscosity average molecular weight of 700 to 8000. Method.
[11] The method for producing a polyethylene resin porous hollow fiber membrane according to [9] or [10], wherein the polyethylene resin is high-density polyethylene.
[12] The melt flow rate (MFR / D) measured by JIS K7210 (Code D) of the polyethylene resin or the resin composition containing the polyethylene resin is 3.0 to 10.0, and JIS K7210 ( The method for producing a polyethylene resin porous hollow fiber membrane according to any one of [9] to [11], wherein the melt flow rate (MFR / G) measured in Code G) is 150 to 300.
[13] The olefin wax is a high density low molecular weight ethylene polymer having a density of 960 kg / m 3 or more, a low density low molecular weight ethylene polymer having a density of less than 940 kg / m 3 , a low molecular weight ethylene-propylene copolymer, and The method for producing a polyethylene resin porous hollow fiber membrane according to any one of [10] to [12], which is at least one selected from the group consisting of a low molecular weight ethylene-butene copolymer.
[14] The method for producing a polyethylene resin porous hollow fiber membrane according to [13], wherein the olefin wax is a high density low molecular weight ethylene polymer having a density of 960 kg / m 3 or more.
[15] A step of obtaining a polyethylene resin porous hollow fiber membrane by the production method according to any one of [9] to [14], and a hydrophilic polymer on at least a part of the surface of the porous hollow fiber membrane The manufacturing method of the separation membrane including the process of providing the hydrophilic layer containing.
[16] The method for producing a separation membrane according to [15], wherein the hydrophilic polymer is an ethylene-vinyl alcohol copolymer.
[17]
The method for producing a separation membrane according to [15] or [16], further comprising a step of sterilizing the porous hollow fiber membrane with radiation.
 本発明によれば、血液の擬似的な漏洩が少ない、血漿分離用分離膜の基材としても使用できる未延伸部が少なく、均質性の高いポリエチレン系樹脂多孔質中空糸膜を提供することができる。 According to the present invention, it is possible to provide a polyethylene resin porous hollow fiber membrane having a high degree of homogeneity with few unstretched portions that can be used as a base material for a separation membrane for plasma separation with less pseudo blood leakage. it can.
本発明の多孔質中空糸膜の構造の具体例を示すモデル図である。It is a model figure which shows the specific example of the structure of the porous hollow fiber membrane of this invention.
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は以下の実施形態に限定されるものでなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
 本実施形態の多孔質中空糸膜は、ポリエチレン系樹脂を含む。なお、該多孔質中空糸膜は、そのまま分離膜として使用することができるが、さらにその表面の少なくとも一部を、親水性高分子を含む親水性層で被覆すると、より血漿分離に適したものとなる。加えて、放射線などにより滅菌処理を施すことで、一層血漿分離に適した分離膜となる。
 そして、前記多孔質中空糸膜は、分子量10000以下の成分の質量分率が17.5質量%以上であり、かつ分子量100万以上の成分の質量分率が、1.5質量%未満である。
The porous hollow fiber membrane of this embodiment contains a polyethylene resin. The porous hollow fiber membrane can be used as a separation membrane as it is, but it is more suitable for plasma separation if at least a part of its surface is covered with a hydrophilic layer containing a hydrophilic polymer. It becomes. In addition, by performing sterilization treatment with radiation or the like, a separation membrane more suitable for plasma separation is obtained.
In the porous hollow fiber membrane, the mass fraction of the component having a molecular weight of 10,000 or less is 17.5% by mass or more, and the mass fraction of the component having a molecular weight of 1,000,000 or more is less than 1.5% by mass. .
 本実施形態の多孔質中空糸膜は、糸長方向に配向した複数のミクロフィブリル(分子鎖の集合体からなる短繊維状体(ただし、長さに限定はない))と、そのミクロフィブリルの両端に連結したラメラ積層体からなる結節部(ミクロフィブリルどうしの端部をつなぐ節状の連結部)とを有し、隣り合うミクロフィブリルの間に形成されたスリット状の細孔を複数有している。上記結束部は、例えば、配向した(または略平行な)ミクロフィブリル同士の端部をつないでいる。結節部-複数のミクロフィブリル-結節部からなる構造は、糸長方向に繰り返されて、略網目構造を構成していてもよい。このような構造は、一般に、溶融延伸開孔法で得られる多孔質中空糸膜に見られる構造であり、中空糸の内壁や外壁の表面を走査型電子顕微鏡等で観察することによって確認することができる。この構造の具体例を図1に示す。
 溶融延伸開孔法によれば、膜内に残留する液状添加物の溶出が無く、血漿分離用途に適する多孔質中空糸膜が得られることから、本実施形態においては、多孔質中空糸膜は溶融延伸開孔法により製造されることが好ましい。
The porous hollow fiber membrane of the present embodiment is composed of a plurality of microfibrils oriented in the yarn length direction (short fibrous bodies composed of an assembly of molecular chains (however, the length is not limited)), and the microfibrils of the microfibrils It has a nodule part (a nodal connection part connecting the ends of microfibrils) made of a lamellar laminate connected to both ends, and has a plurality of slit-like pores formed between adjacent microfibrils ing. The bundling portion connects, for example, end portions of oriented (or substantially parallel) microfibrils. The structure composed of the knot part-the plurality of microfibrils-knot parts may be repeated in the yarn length direction to constitute a substantially mesh structure. Such a structure is generally a structure found in a porous hollow fiber membrane obtained by a melt-stretch opening method, and is confirmed by observing the surface of the inner wall or outer wall of the hollow fiber with a scanning electron microscope or the like. Can do. A specific example of this structure is shown in FIG.
According to the melt stretch opening method, since there is no elution of the liquid additive remaining in the membrane and a porous hollow fiber membrane suitable for plasma separation is obtained, in this embodiment, the porous hollow fiber membrane is It is preferable to manufacture by the melt stretch opening method.
 本実施形態の多孔質中空糸膜は、ポリエチレン系樹脂を含む。多孔質中空糸膜中のポリエチレン系樹脂の含有量に限定はないが、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。また、100質量%であってもよい。
 そして、多孔質中空糸膜の、分子量10000以下の成分の質量分率は、17.5質量%以上であり、好ましくは18.0質量%以上であり、特に好ましくは18質量%以上20.0質量%未満である。また、多孔質中空糸膜の、分子量100万以上の成分の質量分率は、1.5質量%未満であり、1.45質量%以下であってもよいし、1.35質量以下であってもよい。 多孔質中空糸膜中の分子量10000以下の成分の質量分率が17.5質量%以上、かつ分子量100万以上の成分の質量分率は、1.5質量%未満となるように多孔質中空糸膜の原料を調整すると、溶融延伸開孔法によって、未延伸部が少ない多孔質中空糸膜を製造することができることが分かった。ただし、分子量10000以下の成分が多過ぎる場合には多孔質中空糸膜の耐圧強度が低下し、使用時に中空糸膜の破断・破裂が生じる恐れがあるため、分子量10000以下の成分の質量分率は20.0質量%未満であることが好ましい。また、分子量100万以上の成分が少なすぎる場合には、延伸前中空糸の弾性回復率が低下するため適切な延伸開孔がなされず、所望の孔径範囲の多孔質中空糸膜が得られないため、分子量100万以上の成分は1質量%以上であることが好ましい。
The porous hollow fiber membrane of this embodiment contains a polyethylene resin. The content of the polyethylene resin in the porous hollow fiber membrane is not limited, but is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. 95% by mass or more is particularly preferable. Moreover, 100 mass% may be sufficient.
The mass fraction of the component having a molecular weight of 10,000 or less in the porous hollow fiber membrane is 17.5% by mass or more, preferably 18.0% by mass or more, and particularly preferably 18% by mass or more and 20.0%. It is less than mass%. Further, the mass fraction of the component having a molecular weight of 1,000,000 or more of the porous hollow fiber membrane may be less than 1.5 mass%, may be 1.45 mass% or less, or is 1.35 mass% or less. May be. The porous hollow fiber membrane is porous hollow so that the mass fraction of the component having a molecular weight of 10,000 or less is 17.5% by mass or more and the mass fraction of the component having a molecular weight of 1,000,000 or more is less than 1.5% by mass. When the raw material of the yarn membrane was adjusted, it was found that a porous hollow fiber membrane with few unstretched parts could be produced by the melt stretch pore opening method. However, when the component having a molecular weight of 10,000 or less is too much, the pressure resistance of the porous hollow fiber membrane is lowered, and the hollow fiber membrane may be broken or ruptured during use. Therefore, the mass fraction of the component having a molecular weight of 10,000 or less. Is preferably less than 20.0% by mass. In addition, when the component having a molecular weight of 1 million or more is too small, the elastic recovery rate of the hollow fiber before stretching is lowered, so that appropriate stretch opening is not performed, and a porous hollow fiber membrane having a desired pore diameter range cannot be obtained. Therefore, the component having a molecular weight of 1 million or more is preferably 1% by mass or more.
 本実施形態において、多孔質中空糸膜の分子量10000以下の成分の質量分率、及び分子量100万以上の成分の質量分率は、多孔質中空糸膜の原料であるポリエチレン系樹脂又はポリエチレン系樹脂を含む樹脂組成物の分子量分布を適宜調整することにより調整することができるが、特に、原料の分子量1000以下の成分の質量分率やメルトフローレートなどに影響を受けるため、これらを調整することによって、容易に多孔質中空糸膜の分子量10000以下の成分の質量分率を17.5質量%以上、分子量100万以上の成分の質量分率を1.5質量%未満とすることができることが分かった。なお、ここで、「ポリエチレン系樹脂を含む樹脂組成物」とは、本実施形態の多孔質中空糸膜を構成するポリエチレン系樹脂含有材料のうち、一種類のポリエチレン系樹脂単体以外のものをいい、例えば、複数のポリエチレン系樹脂の混合物(例えば、後述する主原料のポリエチレン系樹脂とオレフィン系ワックスの混合物等)、ポリエチレン系樹脂とその他の樹脂の混合物、及び、これらに、樹脂以外の添加物を添加したもの等が挙げられる。
 すなわち、多孔質中空糸膜の分子量10000以下の成分の質量分率を17.5質量%以上、かつ分子量100万以上の成分の質量分率を1.5質量%未満とするには、原料の分子量分布を適宜調整しながら多孔質中空糸膜を製造すればよいが、原料の分子量分布を細かく調整しなくても、原料として分子量1000以下の成分が、概ね1.0質量%以上の範囲に調整されたポリエチレン系樹脂又はポリエチレン系樹脂含有樹脂組成物を用いると、容易に多孔質中空糸膜の分子量10000以下の成分の質量分率を17.5質量%以上、分子量100万以上の成分の質量分率を1.5質量%未満とすることができる。
 とりわけ、MFR/D(JIS K7210(コードD)で測定したメルトフローレート)が3.0~10.0で、MFR/G(JIS K7210(コードG)で測定したメルトフローレート)が150~300となるような分子量分布を有するポリエチレン系樹脂又はポリエチレン系樹脂含有樹脂組成物において、分子量1000以下の成分を1.0質量%以上の範囲とすると、これから得られた多孔質中空糸膜の分子量10000以下の成分の質量分率は17.5質量%以上、分子量100万以上の成分の質量分率は1.5質量%未満となり易い。
 なお、原料の分子量1000以下の成分の割合が多いほど、多孔質中空糸膜の分子量10000以下の成分の質量分率は大きくなる傾向にあるが、分子量1000以下の成分が多すぎる場合には、このような低分子量成分が多孔質中空糸膜から溶出・脱離するという問題が生じるため、原料のポリエチレン系樹脂又は樹脂組成物中の分子量1000以下の成分は、3質量%以下が好ましく、2質量%以下がより好ましく、1.5質量%以下であることがさらに好ましい。
In this embodiment, the mass fraction of the component having a molecular weight of 10,000 or less and the mass fraction of the component having a molecular weight of 1,000,000 or more of the porous hollow fiber membrane are the polyethylene resin or polyethylene resin that is the raw material of the porous hollow fiber membrane. Can be adjusted by appropriately adjusting the molecular weight distribution of the resin composition containing, particularly, because it is affected by the mass fraction of the component having a molecular weight of 1000 or less, the melt flow rate, etc. The mass fraction of the component having a molecular weight of 10,000 or less in the porous hollow fiber membrane can be easily made 17.5 mass% or more, and the mass fraction of the component having a molecular weight of 1,000,000 or more can be easily made less than 1.5 mass%. I understood. Here, the “resin composition containing a polyethylene resin” means a material other than a single type of polyethylene resin among the polyethylene resin-containing materials constituting the porous hollow fiber membrane of the present embodiment. For example, a mixture of a plurality of polyethylene resins (for example, a mixture of a polyethylene resin and an olefin wax, which are main raw materials described later), a mixture of a polyethylene resin and other resins, and additives other than resins. And the like added.
That is, in order to set the mass fraction of the component having a molecular weight of 10,000 or less of the porous hollow fiber membrane to 17.5% by mass or more and the mass fraction of the component having a molecular weight of 1,000,000 or more to less than 1.5% by mass, A porous hollow fiber membrane may be produced while appropriately adjusting the molecular weight distribution, but the component having a molecular weight of 1000 or less as a raw material is generally in the range of 1.0% by mass or more without finely adjusting the molecular weight distribution of the raw material. When the adjusted polyethylene resin or polyethylene resin-containing resin composition is used, the mass fraction of the component having a molecular weight of 10,000 or less of the porous hollow fiber membrane is easily 17.5% by mass or more and the component having a molecular weight of 1,000,000 or more. The mass fraction can be less than 1.5% by mass.
In particular, the MFR / D (melt flow rate measured by JIS K7210 (code D)) is 3.0 to 10.0, and the MFR / G (melt flow rate measured by JIS K7210 (code G)) is 150 to 300. In the polyethylene resin or polyethylene resin-containing resin composition having a molecular weight distribution such that the component having a molecular weight of 1000 or less is in the range of 1.0% by mass or more, the molecular weight of the porous hollow fiber membrane obtained therefrom is 10,000. The mass fraction of the following components tends to be 17.5% by mass or more, and the mass fraction of a component having a molecular weight of 1 million or more tends to be less than 1.5% by mass.
The mass fraction of the component having a molecular weight of 10,000 or less in the porous hollow fiber membrane tends to increase as the proportion of the component having a molecular weight of 1000 or less in the raw material increases. Since such a low molecular weight component has a problem of elution and desorption from the porous hollow fiber membrane, the component having a molecular weight of 1000 or less in the raw polyethylene resin or resin composition is preferably 3% by mass or less. It is more preferably at most mass%, further preferably at most 1.5 mass%.
 また、ポリエチレン系樹脂含有多孔質中空糸膜を製造する際に、原料のポリエチレン系樹脂又は樹脂組成物として、分子量1000以下の成分の質量分率が1.0質量%以上であるものを用いた場合、延伸前原糸のラメラ積層体の成長が促され、それによってラメラ積層体の糸長方向、膜厚方向への均一化が図られることが分かった。作用機構は明らかではないが、ポリエチレン系樹脂又は樹脂組成物中の分子量1000以下の成分が可塑剤的に働き、ポリエチレン系樹脂の結晶化速度を緩和させることが、ラメラ積層体の成長を促進させ、均一化に繋がるものと考えられる。
 したがって、このような観点からも、ポリエチレン系樹脂又は樹脂組成物として、分子量1000以下の成分の質量分率が1.0質量%以上の範囲にあるものを用いることが好ましい。
Further, when the polyethylene resin-containing porous hollow fiber membrane was produced, a raw material polyethylene resin or resin composition having a mass fraction of a component having a molecular weight of 1000 or less of 1.0% by mass or more was used. In this case, it was found that the growth of the lamella laminate of the raw yarn before drawing was promoted, and thereby the lamella laminate was made uniform in the yarn length direction and the film thickness direction. Although the mechanism of action is not clear, the component having a molecular weight of 1000 or less in the polyethylene resin or the resin composition acts as a plasticizer, and the crystallization rate of the polyethylene resin is reduced, thereby promoting the growth of the lamellar laminate. This is thought to lead to uniformization.
Therefore, also from such a viewpoint, it is preferable to use a polyethylene resin or resin composition having a mass fraction of a component having a molecular weight of 1000 or less in a range of 1.0% by mass or more.
 前述のとおり、原料のポリエチレン系樹脂又は樹脂組成物のMFR/Dが3.0~10.0、MFR/Gが150~300であると、多孔質中空糸膜中の分子量10000以下の成分の質量分率を17.5質量%以上、分子量100万以上の成分の質量分率を1.5質量%未満とすることが容易になるが、加えて、前述した、原料として分子量1000以下の成分の質量分率が1.0質量%以上であるものを用いた場合に見られるラメラ積層体の糸長方向、膜厚方向への均一化がより促進される傾向にある。これは、溶融粘度が適切な範囲にあると、分子量1000以下の成分が可塑剤的に働き、ポリエチレン系樹脂の結晶化速度を緩和させるという作用がより発揮されやすいためと推測される。
 ポリエチレン系樹脂又は樹脂組成物のMFR/Dは、より好ましくは3.5~6.0、さらに好ましくは3.8~5.8であり、MFR/Gは、より好ましくは160~270、さらに好ましくは、170~200である。
As described above, when the MFR / D of the raw material polyethylene resin or resin composition is 3.0 to 10.0 and the MFR / G is 150 to 300, the component having a molecular weight of 10,000 or less in the porous hollow fiber membrane It becomes easy to make the mass fraction of the component having a mass fraction of 17.5% by mass or more and the molecular weight of 1 million or more less than 1.5% by mass. It tends to be more facilitated to make the lamellar laminate uniform in the yarn length direction and the film thickness direction, which is seen when a material having a mass fraction of 1.0% by mass or more is used. This is presumably because, when the melt viscosity is in an appropriate range, the component having a molecular weight of 1000 or less acts like a plasticizer, and the effect of reducing the crystallization speed of the polyethylene resin is more easily exhibited.
The MFR / D of the polyethylene resin or the resin composition is more preferably 3.5 to 6.0, still more preferably 3.8 to 5.8, and the MFR / G is more preferably 160 to 270, and further Preferably, it is 170-200.
 ここで、ポリエチレン系樹脂とは、エチレンの単独重合体又はエチレンと他の単量体成分との共重合体(他の単量体成分の含有量は5モル%以下であることが好ましい)をいい、本実施形態における好ましい具体例として高密度で分岐が少ない高密度ポリエチレンが挙げられる。高密度ポリエチレンの密度(JIS K7112:1999による)は、950kg/m3以上が好ましく、より好ましくは960kg/m3以上である。
 一般に、密度が950kg/m3未満の高密度ポリエチレンから得られる延伸前原糸は、結晶化度が低く、そのため、延伸により得られる多孔質中空糸膜の孔径を所望の(例えば、血漿分離に適した)範囲とするための延伸条件の調整が難しい。
Here, the polyethylene resin is an ethylene homopolymer or a copolymer of ethylene and other monomer components (the content of other monomer components is preferably 5 mol% or less). A preferred specific example in this embodiment is high density polyethylene with high density and few branches. The density of the high density polyethylene (according to JIS K7112: 1999) is preferably 950 kg / m 3 or more, more preferably 960 kg / m 3 or more.
In general, a pre-stretch raw yarn obtained from high-density polyethylene having a density of less than 950 kg / m 3 has a low crystallinity, so that the pore size of the porous hollow fiber membrane obtained by stretching is desired (for example, suitable for plasma separation). D) It is difficult to adjust the stretching conditions for the range.
 本実施形態において、血漿分離用途に用いる場合には、多孔質中空糸膜の孔径は、0.01~2μmであることが好ましく、より好ましくは0.1~0.6μmである。
 ここで、孔径は、バブルポイント法(JIS K3832:1990)で測定される最大孔径をいう。
In this embodiment, when used for plasma separation, the porous hollow fiber membrane preferably has a pore size of 0.01 to 2 μm, more preferably 0.1 to 0.6 μm.
Here, the pore diameter refers to the maximum pore diameter measured by the bubble point method (JIS K3832: 1990).
 本実施形態において、多孔質中空糸膜の原料であるポリエチレン系樹脂又は樹脂組成物の分子量1000以下の成分の質量分率を調整する方法に限定はなく、ポリエチレン系樹脂又は樹脂組成物として、最初から分子量1000以下の成分の質量分率が1.0質量%以上であるものを用いてもよいし、例えば、主原料のポリエチレン系樹脂にオレフィン系ワックスを配合することによっても分子量1000以下の成分の質量分率を1.0質量%以下である樹脂組成物とすることができる。
 具体的には、オレフィン系ワックスを、主原料のポリエチレン系樹脂とオレフィン系ワックスの総量に対して概ね0.1~10.0質量%の範囲内で(主原料のポリエチレン系樹脂の含有量が90.0~99.9質量%の範囲内となるように)、ポリエチレン系樹脂に配合すれば良い。ただし、実際の、オレフィン系ワックスの配合量は、上記を目安として、それぞれの性状に応じて決めることができる。
 オレフィン系ワックスは、粘度平均分子量が700~8000であることが好ましく、より好ましくは2000~6000の範囲である。粘度平均分子量が700未満のオレフィン系ワックスは、分子量が低過ぎて多孔質中空糸膜から溶出する恐れがある。一方、粘度平均分子量が10000を超えるオレフィン系ワックスは、分子量が高過ぎて可塑剤効果が失われ、ラメラ積層体の成長促進と均一化が期待できない。
 本実施形態において、粘度平均分子量(Mv)は、デカリン溶液中に試料を異なる濃度で溶解し、135℃で求めた還元粘度を濃度0に外挿して求めた極限粘度[η](dl/g)から、以下の数式Aにより算出される。
  Mv=(5.34×104)×[η]1.49
In this embodiment, there is no limitation on the method for adjusting the mass fraction of the component having a molecular weight of 1000 or less of the polyethylene resin or resin composition that is the raw material of the porous hollow fiber membrane. The component having a molecular weight of 1000 or less may have a mass fraction of 1.0% by mass or more. For example, a component having a molecular weight of 1000 or less can be obtained by blending an olefin wax with a polyethylene resin as a main raw material. The resin composition having a mass fraction of 1.0% by mass or less can be obtained.
Specifically, the olefinic wax is generally within a range of 0.1 to 10.0% by mass with respect to the total amount of the main raw material polyethylene resin and the olefinic wax (the content of the main raw material polyethylene resin is It may be blended with the polyethylene resin so that it falls within the range of 90.0 to 99.9% by mass. However, the actual blending amount of the olefin-based wax can be determined according to the respective properties with the above as a guide.
The olefin wax preferably has a viscosity average molecular weight of 700 to 8000, more preferably in the range of 2000 to 6000. The olefin wax having a viscosity average molecular weight of less than 700 has a molecular weight that is too low and may be eluted from the porous hollow fiber membrane. On the other hand, an olefin wax having a viscosity average molecular weight of more than 10,000 loses its plasticizer effect due to its too high molecular weight and cannot be expected to promote the growth and uniformity of the lamellar laminate.
In this embodiment, the viscosity average molecular weight (Mv) is determined by dissolving the sample in decalin solution at different concentrations, and the intrinsic viscosity [η] (dl / g) obtained by extrapolating the reduced viscosity obtained at 135 ° C. to the concentration 0. ) From the following formula A.
Mv = (5.34 × 10 4 ) × [η] 1.49
 本実施形態において、オレフィン系ワックスは、密度960kg/m3以上の高密度低分子量エチレン重合体、密度940kg/m3未満である低密度低分子量エチレン重合体、低分子量エチレン-プロピレン共重合体、及び、低分子量エチレン-ブテン共重合体からなる群から選ばれる少なくとも一種類であることが好ましい。
 ここで、高密度低分子量エチレン重合体とは、密度が950kg/m3以上であり、粘度平均分子量が10000以下である、エチレン基を基本骨格とする重合体をいい、低密度低分子量エチレン重合体とは、密度が950kg/m3未満であり、粘度平均分子量が10000以下である、エチレン基を基本骨格とする重合体をいう。
 また、低分子量エチレン-プロピレン共重合体とは、粘度平均分子量が10000以下である、エチレン-プロピレン基を基本骨格とする共重合体をいい、低分子量エチレン-ブテン共重合体とは、粘度平均分子量が10000以下である、エチレン-ブテン基を基本骨格とする共重合体をいう。
 本実施形態において、オレフィン系ワックスとしては、主原料のポリエチレン系樹脂との相溶性から、密度が960kg/m3以上の高密度低分子量エチレン重合体が好ましく、より好ましくは密度が970kg/m3以上の高密度低分子量エチレン重合体である。
 本実施形態において、ポリオレフィン系ワックスを含む樹脂組成物のMFR/Dは3.0~10.0であることが好ましく、より好ましくは3.5~6.0であり、さらに好ましくは、3.8~5.8である。またポリオレフィン系ワックスが配合されたポリエチレン系樹脂のMFR/Gは150~300であることが好ましく、より好ましくは160~270であり、さらに好ましくは、170~200である。
In the present embodiment, the olefin wax is a high density low molecular weight ethylene polymer having a density of 960 kg / m 3 or more, a low density low molecular weight ethylene polymer having a density of less than 940 kg / m 3 , a low molecular weight ethylene-propylene copolymer, And at least one selected from the group consisting of low molecular weight ethylene-butene copolymers.
Here, the high density low molecular weight ethylene polymer means a polymer having an ethylene group as a basic skeleton having a density of 950 kg / m 3 or more and a viscosity average molecular weight of 10,000 or less. The coalescence refers to a polymer having an ethylene group as a basic skeleton having a density of less than 950 kg / m 3 and a viscosity average molecular weight of 10,000 or less.
The low molecular weight ethylene-propylene copolymer means a copolymer having an ethylene-propylene group as a basic skeleton having a viscosity average molecular weight of 10,000 or less, and the low molecular weight ethylene-butene copolymer means a viscosity average A copolymer having a molecular weight of 10,000 or less and having an ethylene-butene group as a basic skeleton.
In the present embodiment, the olefin wax is preferably a high density low molecular weight ethylene polymer having a density of 960 kg / m 3 or more, more preferably a density of 970 kg / m 3 in view of compatibility with the main raw material polyethylene resin. It is the above high-density low molecular weight ethylene polymer.
In the present embodiment, the MFR / D of the resin composition containing a polyolefin wax is preferably 3.0 to 10.0, more preferably 3.5 to 6.0, and still more preferably 3. 8 to 5.8. The MFR / G of the polyethylene resin mixed with the polyolefin wax is preferably 150 to 300, more preferably 160 to 270, and still more preferably 170 to 200.
 本実施形態において、多孔質中空糸膜には、ポリエチレン系樹脂、オレフィン系ワックスに加え、任意の添加物を含有してもよい。このような添加物としては、例えば、酸化防止剤、潤滑剤、紫外線吸収剤、光安定剤等が挙げられる。酸化防止剤としては、例えば、商品名「Irganox1010」、「Irganox1076」、Irgafos168」等が挙げられる。潤滑剤としては、例えば、モンタン酸カルシウム、ステアリン酸カルシウム、ステアリン酸マグネシウム等が挙げられる。このような任意の添加物の合計含有量は、多孔質中空糸膜の5質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。 In this embodiment, the porous hollow fiber membrane may contain any additive in addition to the polyethylene resin and the olefin wax. Examples of such additives include antioxidants, lubricants, ultraviolet absorbers, light stabilizers, and the like. Examples of the antioxidant include trade names “Irganox 1010”, “Irganox 1076”, and Irgafos 168 ”. Examples of the lubricant include calcium montanate, calcium stearate, magnesium stearate and the like. The total content of such optional additives is preferably 5% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less of the porous hollow fiber membrane. .
 本実施形態の多孔質中空糸膜は、疎水性高分子であるポリエチレン系樹脂を含む。疎水性高分子は、血液との相互作用が生じるため、これを血漿分離用分離膜等に利用する場合には、多孔質中空糸膜の表面を、親水性高分子を含む親水性層で被覆することが好ましい。
 親水性高分子としては、例えば、ポリヒドロキシエチルメタクリレート、ポリヒドロキシプロピルメタクリレート、ポリビニルピロリドン、及びエチレン-ビニルアルコール系共重合体等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて使用してもよい。中でも、ポリエチレン系樹脂との接着性が良く、多孔構造の孔表面からの剥離が少ないエチレン-ビニルアルコール系共重合体が好ましい。
 エチレン-ビニルアルコール系共重合体としては、ランダム重合体、ブロック重合体、又はグラフト重合体等いずれのタイプであってもよいが、共重合体のエチレン含量は20~70モル%の範囲内にあることが好ましく、親水性と接着性のバランスの観点で、25~50モル%の範囲内にあることがより好ましい。
 エチレン含量が20モル%以上であることにより、エチレン-ビニルアルコール系共重合体のポリエチレン系樹脂に対する接着性がより良く、多孔構造の孔表面と親水性層の剥離が起こるのを防止することができる。
 また、エチレン含量が70モル%以下であることにより、エチレン-ビニルアルコール系共重合体を含む親水性層と血液との間の相互作用を小さくすることができる。
 本実施形態において、多孔質中空糸膜に含まれるポリエチレン系樹脂が高密度ポリエチレンである場合、エチレン鎖を共有することから接着性が増加するため、親水性高分子としては、エチレン-ビニルアルコール系共重合体を用いることが好ましい。
The porous hollow fiber membrane of this embodiment contains a polyethylene resin that is a hydrophobic polymer. Hydrophobic polymers interact with blood, so when they are used for plasma separation membranes, etc., the surface of the porous hollow fiber membrane is covered with a hydrophilic layer containing a hydrophilic polymer. It is preferable to do.
Examples of the hydrophilic polymer include polyhydroxyethyl methacrylate, polyhydroxypropyl methacrylate, polyvinyl pyrrolidone, and an ethylene-vinyl alcohol copolymer. These may be used alone or in combination of two or more. Among these, an ethylene-vinyl alcohol copolymer having good adhesion to a polyethylene resin and less peeling from the pore surface of the porous structure is preferable.
The ethylene-vinyl alcohol copolymer may be any type such as a random polymer, block polymer, or graft polymer, but the ethylene content of the copolymer is within the range of 20 to 70 mol%. Preferably, it is more preferably in the range of 25 to 50 mol% from the viewpoint of the balance between hydrophilicity and adhesiveness.
When the ethylene content is 20 mol% or more, the adhesiveness of the ethylene-vinyl alcohol copolymer to the polyethylene resin is better, and it is possible to prevent the peeling of the pore surface of the porous structure from the hydrophilic layer. it can.
Further, when the ethylene content is 70 mol% or less, the interaction between the hydrophilic layer containing the ethylene-vinyl alcohol copolymer and blood can be reduced.
In the present embodiment, when the polyethylene resin contained in the porous hollow fiber membrane is high density polyethylene, since the adhesiveness increases because the ethylene chain is shared, the hydrophilic polymer may be ethylene-vinyl alcohol. It is preferable to use a copolymer.
 親水性層は親水性高分子のみからなっていてもよいし、親水性高分子以外の添加剤を含有してもよい。その場合、親水性高分子の含有量が、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 ここで、親水性層で被覆された多孔質中空糸膜の親水性の度合いは、水の接触角によって評価できる。接触角の測定法には、静的接触角法と動的接触角法の2種類があるが、多孔膜表面のモルフォロジーが反映される動的接触角法が好ましい。動的接触角法の中でも試料の形状の自由度が高い、ウェルヘルミ法がより好ましい。接触角については、後退接触角が水中での物質の表面の親水性を直接反映するため、多孔質中空糸膜の親水性の度合い判断する上で重要な指標となる。
 本実施形態において、親水性層で被覆された多孔質中空糸膜の水の後退接触角は、0~15度であることが好ましく、より好ましくは0~10度であり、さらに好ましくは0~5度である。水の後退接触角が15度を超えると、血漿分離用分離膜として用いた場合に血漿蛋白の吸着、溶血、血栓の形成等を引き起こすおそれが出る。
 なお、ウェルヘルミ法による多孔質中空糸膜の水に対する後退接触角の測定は、例えば、以下のようにして実施することができる。
 検査用水として注射用水(扶桑薬品工業(株)製 日本薬局方)、測定装置として動的接触角測定器(DataPysics Instrument GmbH社製 DCAT11)を用いる。多孔質中空糸膜を約2cmに切断し、上記測定装置に装着する。測定時のモータースピードは0.10mm/秒、浸漬深さは10mmとし、前進及び後退を1サイクルとして、5サイクルの測定を行う。5回の測定によって得られた値の平均値を後退接触角とする。
The hydrophilic layer may be composed of only a hydrophilic polymer or may contain additives other than the hydrophilic polymer. In that case, the content of the hydrophilic polymer is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
Here, the degree of hydrophilicity of the porous hollow fiber membrane covered with the hydrophilic layer can be evaluated by the contact angle of water. There are two types of contact angle measurement methods, the static contact angle method and the dynamic contact angle method, but the dynamic contact angle method reflecting the morphology of the porous membrane surface is preferred. Of the dynamic contact angle methods, the well-helmi method is more preferable because it has a high degree of freedom in the shape of the sample. As for the contact angle, the receding contact angle directly reflects the hydrophilicity of the surface of the substance in water, and is therefore an important index for judging the degree of hydrophilicity of the porous hollow fiber membrane.
In the present embodiment, the receding contact angle of water of the porous hollow fiber membrane covered with the hydrophilic layer is preferably 0 to 15 degrees, more preferably 0 to 10 degrees, and further preferably 0 to 5 degrees. When the receding contact angle of water exceeds 15 degrees, there is a risk of causing plasma protein adsorption, hemolysis, thrombus formation, etc. when used as a separation membrane for plasma separation.
In addition, the measurement of the receding contact angle with respect to the water of the porous hollow fiber membrane by a well Helmi method can be implemented as follows, for example.
Water for injection (Japanese Pharmacopoeia manufactured by Fuso Pharmaceutical Co., Ltd.) is used as the test water, and a dynamic contact angle measuring device (DCAT11 manufactured by DataPysics Instrument GmbH) is used as the measuring device. The porous hollow fiber membrane is cut to about 2 cm and attached to the measuring device. The motor speed at the time of measurement is 0.10 mm / second, the immersion depth is 10 mm, the forward and backward movements are one cycle, and five cycles are measured. The average value of the values obtained by the five measurements is defined as the receding contact angle.
 本実施形態の多孔質中空糸膜の製造方法は、溶融延伸開孔法等により多孔質中空糸膜を作る工程を含み、多孔質中空糸膜を血漿分離用分離膜として使用する場合にはさらにコーティング法等により親水性高分子含む親水性層を多孔質中空糸膜の表面に形成する工程を含むことが好ましい。
 溶融延伸開孔法においては、主原料のポリエチレン系樹脂や必要に応じてオレフィン系ワックスを含む樹脂組成物を中空糸状に溶融紡出し、巻き取った中空糸(延伸前原糸)を延伸により多孔化させ、多孔質中空糸膜を得る。
 また、コーティング法においては、例えば、前記多孔質中空糸膜を親水性高分子が含まれる有機溶媒等(コーティング液)中に浸漬し、取り出したのち、溶媒を熱で乾燥し、多孔質中空糸膜の表面に親水化高分子を被覆する。
 溶融延伸開孔法による多孔質中空糸膜の製造は、例えば特公平6-91945号公報で示される手順に基づいて実施できる。
The method for producing a porous hollow fiber membrane according to the present embodiment includes a step of producing a porous hollow fiber membrane by a melt stretch opening method or the like, and further when the porous hollow fiber membrane is used as a separation membrane for plasma separation. It is preferable to include a step of forming a hydrophilic layer containing a hydrophilic polymer on the surface of the porous hollow fiber membrane by a coating method or the like.
In the melt-stretch opening method, the main raw material polyethylene resin and, if necessary, a resin composition containing an olefin wax are melt-spun into a hollow fiber shape, and the wound hollow fiber (original yarn before drawing) is made porous by drawing. To obtain a porous hollow fiber membrane.
In the coating method, for example, the porous hollow fiber membrane is dipped in an organic solvent or the like (coating liquid) containing a hydrophilic polymer, and then taken out, and then the solvent is dried by heat to form a porous hollow fiber. The surface of the membrane is coated with a hydrophilic polymer.
The production of the porous hollow fiber membrane by the melt drawing / opening method can be performed, for example, based on the procedure shown in Japanese Patent Publication No. 6-91945.
 以下、本実施形態の多孔質中空糸膜/分離膜の製造方法における、多孔質中空糸膜を作成する手順の一例を述べる。
(1)主原料のポリエチレン系樹脂や、主原料のポリエチレン系樹脂及びオレフィン系ワックスを含む樹脂組成物を、押出機により溶融混練する。
(2)溶融状態のポリエチレン系樹脂(又は樹脂組成物)を、円形二重紡口により紡糸筒中へ中空糸状に押し出し、高ドラフト(例えば、ドラフト比1000~8000)で巻き取り、ラメラ積層体が形成された中空糸(延伸前原糸)として巻き取る。
(3)延伸前原糸をオーブンにて二段階に分けて熱処理する。
(4)前記延伸前原糸を低温(例えば、10~40℃)下で延伸(例えば、延伸倍率10~50%)し、ラメラ積層体の間を開裂させ、微小孔を作る。
(5)必要に応じ、さらに熱延伸(例えば、80~130℃下、延伸倍率200~500%)によって孔の拡大を図る。
(6)熱セットで孔構造を固定させる。
 以上の手順によって、糸長方向に配向した複数のミクロフィブリルと、そのミクロフィブリルの両端に連結したラメラ積層体からなる結節部とを有する多孔質中空糸膜を得ることができる。
 なお、多孔質中空糸膜の原料がオレフィン系ワックスを含む樹脂組成物の場合には、例えば、主原料として用いるポリエチレン系樹脂(例えば、90.0~99.9質量%)と、オレフィン系ワックス(例えば、0.1~10.0質量%)とを単軸押出機により溶融混練し、ペレタイザーによってペレット状のものとしてから、溶融混練(上記工程(2))に供してもよい。
Hereinafter, an example of a procedure for creating a porous hollow fiber membrane in the method for producing a porous hollow fiber membrane / separation membrane of the present embodiment will be described.
(1) A main raw material polyethylene resin or a resin composition containing a main raw material polyethylene resin and an olefin wax is melt-kneaded by an extruder.
(2) A molten polyethylene-based resin (or resin composition) is extruded into a hollow fiber into a spinning cylinder by a circular double nozzle and wound up with a high draft (for example, a draft ratio of 1000 to 8000). It winds up as the formed hollow fiber (original yarn before drawing).
(3) The raw yarn before drawing is heat-treated in two stages in an oven.
(4) The pre-stretch raw yarn is stretched (for example, a stretch ratio of 10 to 50%) at a low temperature (for example, 10 to 40 ° C.), and the lamellar laminate is cleaved to form micropores.
(5) If necessary, the pores are further expanded by thermal stretching (for example, at 80 to 130 ° C. and a stretching ratio of 200 to 500%).
(6) Fix the hole structure by heat setting.
By the above procedure, a porous hollow fiber membrane having a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibrils can be obtained.
When the raw material of the porous hollow fiber membrane is a resin composition containing an olefinic wax, for example, a polyethylene resin (for example, 90.0 to 99.9% by mass) used as a main raw material and an olefinic wax are used. (For example, 0.1 to 10.0% by mass) may be melt-kneaded with a single screw extruder, pelletized with a pelletizer, and then subjected to melt-kneading (the above step (2)).
 分子量1000以下の成分が1.0質量%以上であるポリエチレン系樹脂、とりわけオレフィン系ワックスポリエチレンを含む樹脂組成物を用いて溶融延伸開孔法により多孔質中空糸膜を製造する場合、未延伸部が少ない多孔質中空糸膜を製造するには、以下の二要件を満たすことが好ましいことが判明した。
 第一に、延伸前原糸が形成されてから巻き取られるまでの空走時間(原料が紡口(具体的には円形二重紡口)から押し出され、中空糸として巻き取られるまでの滞留時間)を1秒以上、より好ましくは1.1秒以上、確保することである。第二に、延伸前原糸を延伸するのに先立ち、二段階で熱処理することである。特に、一段階目の温度を二段階目よりも10~15℃低くすることが好ましい。熱処理方法、温度及び時間に限定はないが、例えば、熱処理方法としてはオーブン等の恒温室に入れることが挙げられ、温度、時間については、一段目を90~105℃、2~10時間、二段目を100~120℃、1~2時間とすることができる。
 作用機構は明らかではないものの、これらの二要件が、原料であるポリエチレン系樹脂や樹脂組成物の特性と相俟って、延伸前原糸のラメラ積層体の成長と均質性を促し、未延伸部を低減させるものと考える。
In the case where a porous hollow fiber membrane is produced by a melt stretch opening method using a resin composition containing a polyethylene resin having a molecular weight of 1000 or less and 1.0 mass% or more, particularly an olefin wax polyethylene, an unstretched part It has been found that it is preferable to satisfy the following two requirements in order to produce a porous hollow fiber membrane with a low content.
First, the idle running time from the formation of the unstretched raw yarn to the winding (the residence time until the raw material is extruded from the spinning nozzle (specifically, a circular double nozzle) and wound as a hollow fiber) ) For 1 second or longer, more preferably 1.1 seconds or longer. Second, prior to drawing the raw yarn before drawing, heat treatment is performed in two stages. In particular, it is preferable that the temperature of the first stage is 10 to 15 ° C. lower than that of the second stage. The heat treatment method, temperature and time are not limited. For example, the heat treatment method includes placing in a constant temperature room such as an oven. The temperature and time are about 90 to 105 ° C. for 2 to 10 hours at the first stage. The stage can be 100 to 120 ° C. for 1 to 2 hours.
Although the mechanism of action is not clear, these two requirements, combined with the properties of the polyethylene resin and resin composition as raw materials, promote the growth and homogeneity of the lamellar laminate of the raw yarn before drawing, We think that we reduce.
 本実施形態の分離膜を製造するに際し、親水性高分子を含む親水性層を多孔質中空糸膜の表面の少なくとも一部に形成する方法は、特に限定されるものではないが、親水性高分子としてエチレン-ビニルアルコール系共重合体を用いる場合、例えば、特公平4-27891号公報に示されているコーティング法を利用できる。
 すなわち、多孔質中空糸膜を、エチレン-ビニルアルコール系共重合体が所定濃度の水混和性有機溶剤水溶液で加熱溶解された溶液に所定時間浸漬放置し、次いで過剰の該溶液を除去した後、所定温度の熱風で乾燥することで、親水性層を表面に有する多孔質中空糸膜を得ることができる。
 得られた親水性層を有する多孔質中空糸膜は、未延伸部が少ないため血液の擬似漏洩が無く、均質性に優れ、血漿分離用途に適した分離膜となる。
 さらに驚くべきことに、本実施形態の多孔質中空糸膜は、その上に親水性高分子を含む親水性層を設けても、親水性高分子の溶出が少なく、そのため、より親水性・低蛋白質吸着性に優れ、血液との適合性が向上した分離膜とすることができる。
 親水性高分子の溶出が少ない理由は明らかではないが、本実施形態の多孔質中空糸膜は、比表面積が大きく、親水性高分子との接触面積が大きいためと推察する。
In producing the separation membrane of the present embodiment, a method for forming a hydrophilic layer containing a hydrophilic polymer on at least a part of the surface of the porous hollow fiber membrane is not particularly limited, When an ethylene-vinyl alcohol copolymer is used as the molecule, for example, a coating method disclosed in Japanese Patent Publication No. 4-27891 can be used.
That is, the porous hollow fiber membrane is left to stand for a predetermined time in a solution in which an ethylene-vinyl alcohol copolymer is heated and dissolved in a water-miscible organic solvent aqueous solution having a predetermined concentration, and then the excess solution is removed. By drying with hot air at a predetermined temperature, a porous hollow fiber membrane having a hydrophilic layer on the surface can be obtained.
The obtained porous hollow fiber membrane having a hydrophilic layer has few unstretched parts, so there is no pseudo-leakage of blood, is excellent in homogeneity, and is a separation membrane suitable for plasma separation.
Further surprisingly, the porous hollow fiber membrane of the present embodiment has less elution of the hydrophilic polymer even when a hydrophilic layer containing the hydrophilic polymer is provided on the porous hollow fiber membrane. A separation membrane having excellent protein adsorptivity and improved compatibility with blood can be obtained.
The reason why the elution of the hydrophilic polymer is small is not clear, but it is assumed that the porous hollow fiber membrane of the present embodiment has a large specific surface area and a large contact area with the hydrophilic polymer.
 さらに、本実施形態の多孔質中空糸膜を血漿分離用分離膜に使用する場合には、使用前に滅菌処理されていることが好ましい。したがって、本実施形態の分離膜の製造方法は、多孔質中空糸膜を滅菌する工程を含むことが好ましい。上述の親水性層を設ける場合には、親水性層形成後の多孔質中空糸膜を滅菌することが好ましい。
 滅菌法については、エチレンオキサイドガス滅菌、高圧蒸気滅菌、放射線滅菌等がある。このうち電子線やガンマ線等よる放射線滅菌は被処理物を包装状態のまま処理できることから好ましい。本実施形態において、多孔質中空糸膜は、滅菌効果の高いガンマ線を照射して滅菌されることが特に好ましい。ただし、ガンマ線の照射線量が高すぎる場合、分離膜としての性能が低下するため、ガンマ線の照射線量は、分離膜の素材に応じて調整される。本実施形態においては、20kGyから40kGyの範囲であることが好ましい。
 本実施形態において、多孔質中空糸膜がガンマ線滅菌される場合、ガンマ線滅菌後の多孔質中空糸膜を構成する材料のMFR/Dは0.03以上であることが好ましい。MFR/Dが0.03以上であれば分離膜としての性能は損なわれない。
 なお、未延伸部が多い多孔質中空糸膜は、ガンマ線滅菌されると、溶融粘性を示さなくなり、MFR/Dの測定ができなくなる。原因は明らかではないが、未延伸部が多孔化されていないため、その部分のエネルギー密度が高くなり、ラジカルが発生することで分子鎖間に架橋反応が生じ、網状構造が形成されるため溶融粘性が失われるものと推察される。
Furthermore, when using the porous hollow fiber membrane of this embodiment for the separation membrane for plasma separation, it is preferable that it is sterilized before use. Therefore, it is preferable that the manufacturing method of the separation membrane of this embodiment includes the process of sterilizing a porous hollow fiber membrane. When providing the above-mentioned hydrophilic layer, it is preferable to sterilize the porous hollow fiber membrane after forming the hydrophilic layer.
Sterilization methods include ethylene oxide gas sterilization, high pressure steam sterilization, and radiation sterilization. Among these, radiation sterilization with an electron beam, gamma ray, or the like is preferable because the object to be processed can be processed in a packaged state. In this embodiment, the porous hollow fiber membrane is particularly preferably sterilized by irradiation with gamma rays having a high sterilization effect. However, when the irradiation dose of gamma rays is too high, the performance as a separation membrane deteriorates, so the irradiation dose of gamma rays is adjusted according to the material of the separation membrane. In the present embodiment, it is preferably in the range of 20 kGy to 40 kGy.
In the present embodiment, when the porous hollow fiber membrane is sterilized with gamma rays, the MFR / D of the material constituting the porous hollow fiber membrane after sterilization with gamma rays is preferably 0.03 or more. If MFR / D is 0.03 or more, the performance as a separation membrane is not impaired.
When the porous hollow fiber membrane having many unstretched parts is sterilized with gamma rays, it does not show melt viscosity and MFR / D cannot be measured. The cause is not clear, but since the unstretched part is not made porous, the energy density of the part becomes high, and the generation of radicals causes a crosslinking reaction between the molecular chains, resulting in the formation of a network structure that melts. It is assumed that the viscosity is lost.
 本実施形態において多孔質中空糸膜をガンマ線により放射線滅菌する方法に限定はないが、以下にその手順の一例を挙げる。
(1)長さ250mmの分離膜2200本を束ねた分離膜束を血漿分離用の容器に挿入し、両端にポリウレタン樹脂等のポッティング剤を注入して両端をシールした後、ヘッダーを付け、血漿分離モジュール(以下、モジュールという。)を作成する。
(2)モジュールに生理食塩水を充填し、振動などを加え、内部の空気を完全に抜く。
(3)両端のヘッダー部を密封する。
(4)モジュールをガンマ線照射設備に持ち込み、所定の線量でガンマ線を照射する。
In this embodiment, the method for sterilizing the porous hollow fiber membrane with gamma rays is not limited, but an example of the procedure is given below.
(1) A separation membrane bundle in which 2200 separation membranes having a length of 250 mm are bundled is inserted into a plasma separation container, a potting agent such as polyurethane resin is injected into both ends, both ends are sealed, a header is attached, and plasma is added A separation module (hereinafter referred to as a module) is created.
(2) Fill the module with physiological saline, apply vibration, etc., and completely evacuate the internal air.
(3) Seal the headers at both ends.
(4) Bring the module into a gamma irradiation facility and irradiate it with a predetermined dose.
 以下、実施例・比較例により本発明を詳細に説明するが、本発明は、以下の実施例に限定されるものではない。実施例における評価及び分析は下記の方法で行った。
(1)未延伸発生率
 走行する多孔質中空糸膜の下方から光を当て、上方から糸影を画像センサで連続的に所定時間観測し、光の透過により糸影が途切れる部分を未延伸部とみなし、未延伸数n(単位:個)を計測した。観測時間に走行した多孔質中空糸膜の長さL(単位:m)と未延伸数nから未延伸発生率Eを式1から求めた。
 Eが低いほど多孔質中空糸膜の糸長方向の均質性は高く、好ましくは0.2個/m・%以下であり、より好ましくは0.1個/m・%以下である。
 式1:E=(n/L)×100(個/m・%)
EXAMPLES Hereinafter, although this invention is demonstrated in detail by an Example and a comparative example, this invention is not limited to a following example. Evaluation and analysis in the examples were performed by the following methods.
(1) Unstretched incidence Rate Light is applied from below the traveling porous hollow fiber membrane, and the thread shadow is continuously observed from above with an image sensor for a predetermined time, and the portion where the thread shadow is interrupted by light transmission is regarded as an unstretched portion. The unstretched number n (unit: pieces) was measured. The unstretched occurrence rate E was determined from Equation 1 from the length L (unit: m) of the porous hollow fiber membrane that ran during the observation time and the unstretched number n.
The lower E, the higher the homogeneity in the yarn length direction of the porous hollow fiber membrane, preferably 0.2 pieces / m ·% or less, more preferably 0.1 pieces / m ·% or less.
Formula 1: E = (n / L) × 100 (pieces / m ·%)
(2)血液擬似漏洩確認試験
 濾過有効長250mmの分離膜2200本を束ねた分離膜束を、濾液ポートを1つ以上有する筒状透明容器内に挿入して充填し、分離膜束の端部と容器端部とをウレタン樹脂によりポッティング加工し、さらに硬化したウレタン樹脂層を切断して分離膜をその端部に開口させた後、容器両端部に被濾液流通口を有するヘッダーキャップを装着した中空糸膜型モジュールを10点成型した。
 これら10点のモジュールをホルダーに立て置きし、各モジュールの下端の被濾液流通口から朱墨(開明株式会社製朱墨液)をポンプにて送液し、モジュール内部の全ての分離膜の中空部を朱墨で満たした。各モジュールの両端の被濾液流通口を閉じ、モジュールをホルダーから取り外し、モジュール側面から内部の分離膜束の外周を目視し、朱色スポットの有無を確認した。朱色スポットを血液擬似漏洩と見なし、10点のモジュール全てに朱色スポットが無い場合、血液擬似漏洩は無いと判定した。
(2) Blood pseudo-leakage confirmation test A separation membrane bundle in which 2200 separation membranes having an effective filtration length of 250 mm are bundled is inserted and filled into a cylindrical transparent container having one or more filtrate ports, and the end of the separation membrane bundle And the container end by potting with urethane resin, further cutting the cured urethane resin layer and opening the separation membrane at its end, and then attaching header caps with filtrate distribution ports to both ends of the container Ten hollow fiber membrane modules were molded.
These 10 modules are placed on a holder, and red ink (red ink made by Kaimei Co., Ltd.) is pumped from the filtrate outlet at the bottom of each module. Filled with red ink. The filtrate flow ports at both ends of each module were closed, the module was removed from the holder, and the outer periphery of the inner separation membrane bundle was visually observed from the side of the module to confirm the presence of vermilion spots. A vermilion spot was regarded as a simulated blood leak, and it was determined that there was no simulated blood leak when there were no vermilion spots in all 10 modules.
(3)溶出物試験
 分離膜1.5gを70℃の熱水150mLに入れ、温調しながら1時間保持した。その後放冷し、熱水5mLを取り出し、試験管に入れ、栓をした。
 試験管を手で持ち、3分間激しく振り混ぜた。3分間静置後、生じた泡の状態を確認した。泡が完全に消失した場合、親水性高分子の溶出は「無し」と判定した。
(3) Eluate test 1.5 g of separation membrane was put in 150 mL of hot water at 70 ° C. and kept for 1 hour while controlling the temperature. Thereafter, the mixture was allowed to cool, 5 mL of hot water was taken out, put into a test tube, and stoppered.
Hold the test tube by hand and shake vigorously for 3 minutes. After standing for 3 minutes, the state of the generated foam was confirmed. When the foam disappeared completely, the elution of the hydrophilic polymer was judged as “none”.
(4)内径、膜厚測定
 分離膜を内径5mmのポリエチレン製チューブ内に挿入し、チューブ内の分離膜の周りにシリコン接着剤を注入した。シリコン接着剤の硬化後、ポリエチレン製チューブの横断面をカミソリで割断した。チューブ端面に表出した分離膜の断面をマイクロスコープで観察し、画像解析ソフト(MediaCyberbetics社製Image-pro plus)を用い、円相当径としての外径(DO)及び内径(DI)を求めた。
 DIを分離膜の内径とし、DOとDIの差の半分を分離膜の膜厚として求めた。
(4) Inner Diameter and Film Thickness Measurement The separation membrane was inserted into a polyethylene tube having an inner diameter of 5 mm, and a silicon adhesive was injected around the separation membrane in the tube. After the silicone adhesive was cured, the cross section of the polyethylene tube was cleaved with a razor. The cross section of the separation membrane exposed on the end face of the tube was observed with a microscope, and the outer diameter (DO) and inner diameter (DI) as the equivalent circle diameter were determined using image analysis software (Image-pro plus manufactured by Media Cyberbertics). .
DI was defined as the inner diameter of the separation membrane, and half of the difference between DO and DI was determined as the thickness of the separation membrane.
(5)ポリエチレン系樹脂(またはポリエチレン樹脂にオレフィン系ワックスが配合された樹脂組成物)の分子量1000以下の成分の質量分率(以下、「mf(1000)率」という。)の測定
(5-1)ポリエチレン系樹脂の濃度が1.0mg/mLとなるように1,2,4-トリクロロベンゼン(TCB)を添加した。
(5-2)高温溶解器を用いて静置(160℃×0.5時間)の後、揺動(160℃×1時間)を行い、ポリエチレン系樹脂をTCBに溶解させた。
(5-3)加温状態(160℃)のまま、1.0μmフィルターで濾過し、濾過液をGPC測定試料とした。
(5-4)以下の条件でGPC測定を行った。
・測定装置:高温GPC装置(アジレント・テクノロジー製 PL-GPC220)
・カラム:TSKgel GMHHR-H(20) 2本
・装置温度:全流路140℃
・溶離液:TCB(0.05%4,4‘-チオビス(6-t-ブチル-3-メチルフェノール含有)
・試料注入量:200μL
・検出器:示唆屈折率検出器RI
・較正曲線:単分散ポリスチレンを標準試料とし、換算係数(0.43)を用い、1次で計算した。
(5-5)較正曲線から分子量ごとの質量分率を計算し、mf(1000)率を求めた。
(5) Measurement of a mass fraction of a component having a molecular weight of 1000 or less (hereinafter referred to as “mf (1000) ratio”) of a polyethylene resin (or a resin composition in which an olefin wax is blended with a polyethylene resin) (5- 1) 1,2,4-Trichlorobenzene (TCB) was added so that the concentration of the polyethylene resin was 1.0 mg / mL.
(5-2) After standing still (160 ° C. × 0.5 hours) using a high-temperature dissolver, rocking (160 ° C. × 1 hour) was performed to dissolve the polyethylene resin in TCB.
(5-3) The sample was filtered through a 1.0 μm filter in the heated state (160 ° C.), and the filtrate was used as a GPC measurement sample.
(5-4) GPC measurement was performed under the following conditions.
・ Measuring device: High-temperature GPC device (PL-GPC220 manufactured by Agilent Technologies)
・ Column: TSKgel GMH HR -H (20) 2 ・ Device temperature: 140 ℃ for all channels
Eluent: TCB (containing 0.05% 4,4'-thiobis (6-tert-butyl-3-methylphenol)
・ Sample injection amount: 200 μL
・ Detector: Suggested refractive index detector RI
・ Calibration curve: Calculation was carried out in the first order using a monodisperse polystyrene as a standard sample and a conversion factor (0.43).
(5-5) The mass fraction for each molecular weight was calculated from the calibration curve, and the mf (1000) rate was determined.
(6)多孔質中空糸膜を構成するポリエチレン系樹脂、または樹脂組成物の分子量10000以下の成分の質量分率(以下、「mf(10000)率」という。)および分子量100万以上の質量分率(以下「mf(100万)率」という。)の測定
(6-1)分離膜30mgを5mLのジメチルスルホキシド中に50時間浸漬し、表面の親水性層を除去し、多孔質中空糸膜を得た。以下、これを試料とした。
(6-2)前記試料をさらにメタノール/水=60/40(容量比)に6時間浸漬し、その後室温にて真空乾燥した。
(6-3)乾燥後の試料を秤量し、試料濃度が1.0mg/mlとなるようにTCBを添加した。
(6-4)高温溶解器を用いて静置(160℃×0.5時間)の後、揺動(160℃×1時間)を行い、試料をTCBに溶解させた。
(6-5)加温状態(160℃)のまま、1.0μmフィルターで濾過し、濾過液をGPC測定試料とした。
(6-6)以下の条件でGPC測定を行った。
・測定装置:高温GPC装置(アジレント・テクノロジー製 PL-GPC220)
・カラム:TSKgel GMHHR-H(20) 2本
・装置温度:全流路160℃
・溶離液:TCB(0.05%ジブチルヒドロキシトルエン含有)
・試料注入量:500μL
・検出器:示唆屈折率検出器RI
・較正曲線:単分散ポリスチレンを標準試料とし、換算係数(0.43)を用い、1次で計算した。
(6-7)較正曲線から分子量ごとの質量分率を計算し、mf(10000)率、及びmf100万)率を求めた。
(6) The mass fraction of the polyethylene-based resin constituting the porous hollow fiber membrane, or the component having a molecular weight of 10,000 or less (hereinafter referred to as “mf (10000) fraction”) and the mass fraction having a molecular weight of 1,000,000 or more. Measurement of rate (hereinafter referred to as “mf (million) rate”) (6-1) 30 mg of the separation membrane was immersed in 5 mL of dimethyl sulfoxide for 50 hours to remove the hydrophilic layer on the surface, and the porous hollow fiber membrane Got. Hereinafter, this was used as a sample.
(6-2) The sample was further immersed in methanol / water = 60/40 (volume ratio) for 6 hours and then vacuum dried at room temperature.
(6-3) The dried sample was weighed and TCB was added so that the sample concentration was 1.0 mg / ml.
(6-4) After standing (160 ° C. × 0.5 hours) using a high-temperature dissolver, rocking (160 ° C. × 1 hour) was performed to dissolve the sample in TCB.
(6-5) While being heated (160 ° C.), the mixture was filtered through a 1.0 μm filter, and the filtrate was used as a GPC measurement sample.
(6-6) GPC measurement was performed under the following conditions.
・ Measuring device: High-temperature GPC device (PL-GPC220 manufactured by Agilent Technologies)
・ Column: TSKgel GMHHR-H (20) 2 ・ Device temperature: 160 ℃ for all channels
-Eluent: TCB (containing 0.05% dibutylhydroxytoluene)
Sample injection volume: 500 μL
・ Detector: Suggested refractive index detector RI
・ Calibration curve: Calculation was carried out in the first order using a monodisperse polystyrene as a standard sample and a conversion factor (0.43).
(6-7) The mass fraction for each molecular weight was calculated from the calibration curve, and the mf (10000) rate and mf million) rate were determined.
(実施例1)
 高密度ポリエチレン(密度965kg/m3、MFR/D:5.1、MFR/G:186、mf(1000)率:1.4質量%)を原料とし、中空二重紡口を用い、ポリマー押出量16.1g/分、中空窒素量22.5mL/分、紡口温度150℃、紡速200m/分、紡糸ドラフト比3400、空走時間1.2秒にて紡糸し、中空糸(延伸前原糸)を得た。
 次いで延伸前原糸をオーブン中で100℃にて6時間、更に温度を上げ、115℃にて1時間熱処理した。熱処理後の延伸前原糸を用いて、以下連続的に冷延伸、熱延伸、熱セットを行った。具体的には、室温下で冷延伸倍率30%の冷延伸を行い、次いで102℃で熱延伸倍率200%、115℃でさらに43%の2段熱延伸を行った後、128℃の空気加熱槽中でロール間の速度調整により、第1段が27%、第2段が17%の熱セット率にて2段熱セットを行い、多孔質中空糸膜を得た。この多孔質中空糸膜の内壁をSEM(5000倍)で確認したところ、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とから構成されていることが確認できた。また、多孔質中空糸膜の未延伸発生率は0.07(個/m・%)であった。
 エチレン含量38モル%のエチレン-ビニルアルコール系共重合体を75容量%エタノール水溶液に加熱溶解させ0.5質量%溶液とした。温度を50℃に維持した該溶液中に、前記多孔質中空糸膜を浸漬し、10分間放置した。次いで過剰のエチレン-ビニルアルコール系共重合体を除いた後、50℃の熱風で3時間乾燥して、エチレン-ビニルアルコール系共重合体からなる親水性層を表面に有する分離膜を得た。得られた分離膜の内径は320μm、膜厚は45μmであった。
 分離膜からエチレン-ビニルアルコール共重合体を除去して得た多孔質中空糸膜のmf(10000)率は19.0質量%、mf(100万)率は1.4質量%だった。
 血液擬似漏洩確認試験において、朱色スポットは確認されず、血液擬似漏洩は「無し」と判定された。溶出物試験において、3分間静置の間に泡は消失し、親水性高分子の溶出は「無し」と判定された。
 さらに、前記分離膜を用いて血漿分離モジュールを作成し、25kGyの線量でガンマ線を照射した。しかる後、血漿分離モジュールから分離膜を取り出し、該分離膜をジメチルスルホキシドに50時間浸漬し、その後50容量%メタノール水溶液にて洗浄し、5時間真空乾燥後、MFR/Dを測定したところ0.03であった。
Example 1
High-density polyethylene (density 965 kg / m 3 , MFR / D: 5.1, MFR / G: 186, mf (1000) rate: 1.4 mass%) as a raw material, polymer extrusion using a hollow double nozzle Spinning was performed at an amount of 16.1 g / min, a hollow nitrogen amount of 22.5 mL / min, a spinning temperature of 150 ° C., a spinning speed of 200 m / min, a spinning draft ratio of 3400, and an idle running time of 1.2 seconds. Thread).
Next, the raw yarn before drawing was further heated in an oven at 100 ° C. for 6 hours, and further heat treated at 115 ° C. for 1 hour. Using the undrawn raw yarn after the heat treatment, cold drawing, hot drawing, and heat setting were continuously performed. Specifically, after performing cold drawing at a cold drawing ratio of 30% at room temperature, followed by two-stage hot drawing at 102 ° C. with a hot drawing ratio of 200% and 115 ° C. with a further 43%, air heating at 128 ° C. By adjusting the speed between the rolls in the tank, a two-stage heat setting was performed at a heat setting rate of 27% for the first stage and 17% for the second stage to obtain a porous hollow fiber membrane. When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. It was confirmed that The unstretched incidence of the porous hollow fiber membrane was 0.07 (pieces / m ·%).
An ethylene-vinyl alcohol copolymer having an ethylene content of 38 mol% was dissolved by heating in a 75 vol% aqueous ethanol solution to give a 0.5 mass% solution. The porous hollow fiber membrane was immersed in the solution maintained at a temperature of 50 ° C. and left for 10 minutes. Next, excess ethylene-vinyl alcohol copolymer was removed, followed by drying with hot air at 50 ° C. for 3 hours to obtain a separation membrane having a hydrophilic layer made of an ethylene-vinyl alcohol copolymer on the surface. The obtained separation membrane had an inner diameter of 320 μm and a film thickness of 45 μm.
The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) ratio of 19.0 mass% and an mf (1 million) ratio of 1.4 mass%.
In the blood pseudoleakage confirmation test, no vermilion spot was confirmed, and the blood pseudoleakage was determined to be “none”. In the eluate test, the foam disappeared after standing for 3 minutes, and the elution of the hydrophilic polymer was judged as “none”.
Further, a plasma separation module was prepared using the separation membrane, and irradiated with gamma rays at a dose of 25 kGy. Thereafter, the separation membrane was taken out from the plasma separation module, and the separation membrane was immersed in dimethyl sulfoxide for 50 hours, then washed with a 50% by volume aqueous methanol solution, vacuum-dried for 5 hours, and MFR / D was measured. 03.
(実施例2)
 高密度ポリエチレン(密度962kg/m3、MFR/D:5.2、MFR/G:195、mf(1000)率:1.0質量%)を原料とし、中空二重紡口を用い、ポリマー押出量16.0g/分、中空窒素量22.0mL/分、紡口温度149℃、紡速200m/分、紡糸ドラフト比3430、空走時間1.2秒にて紡糸し、中空糸(延伸前原糸)を得た。
 次いで延伸前原糸をオーブン中で100℃にて8時間、更に温度を上げ、115℃にて2時間熱処理した。熱処理後の延伸前原糸を用いて、以下連続的に冷延伸、熱延伸、熱セットを行った。具体的には、室温下で冷延伸倍率30%の冷延伸を行い、次いで105℃で熱延伸倍率200%、115℃でさらに43%の2段熱延伸を行った後、127℃の空気加熱槽中でロール間の速度調整により、第1段が27%、第2段が17%の熱セット率にて2段熱セットを行い、多孔質中空糸膜を得た。この多孔質中空糸膜の内壁をSEM(5000倍)で確認したところ、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とから構成されていた。未延伸発生率は0.07(個/m・%)であった。
 実施例1記載の手順に従い、エチレン-ビニルアルコール系共重合体を塗布処理し、分離膜を得た。得られた分離膜の内径は315μm、膜厚は44μmであった。
 分離膜からエチレン-ビニルアルコール共重合体を除去して得た多孔質中空糸膜のmf(10000)率は18.0質量%、mf(100万)率は1.3質量%だった。
 血液擬似漏洩確認試験において、朱色スポットは確認されず、血液擬似漏洩は「無し」と判定された。溶出物試験において、親水性高分子の溶出は認められなかった。
 実施例1記載の手順に従い、前記分離膜にガンマ線を照射した後、MFR/Dを測定したところ、0.05であった。
(Example 2)
High-density polyethylene (density 962 kg / m 3 , MFR / D: 5.2, MFR / G: 195, mf (1000) rate: 1.0 mass%) as a raw material, polymer extrusion using a hollow double nozzle Spinning was carried out at an amount of 16.0 g / min, a hollow nitrogen amount of 22.0 mL / min, a spinning temperature of 149 ° C., a spinning speed of 200 m / min, a spinning draft ratio of 3430, an idle running time of 1.2 seconds, and a hollow fiber (original before drawing) Thread).
Next, the raw yarn before drawing was further heated in an oven at 100 ° C. for 8 hours, and further heat treated at 115 ° C. for 2 hours. Using the undrawn raw yarn after the heat treatment, cold drawing, hot drawing, and heat setting were continuously performed. Specifically, cold drawing at a cold drawing ratio of 30% is performed at room temperature, followed by two-stage hot drawing at 105 ° C. with a hot drawing ratio of 200% and 115 ° C. with a further 43%, followed by air heating at 127 ° C. By adjusting the speed between the rolls in the tank, a two-stage heat setting was performed at a heat setting rate of 27% for the first stage and 17% for the second stage to obtain a porous hollow fiber membrane. When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. It was. The unstretched incidence was 0.07 (pieces / m ·%).
According to the procedure described in Example 1, an ethylene-vinyl alcohol copolymer was applied to obtain a separation membrane. The obtained separation membrane had an inner diameter of 315 μm and a film thickness of 44 μm.
The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) ratio of 18.0 mass% and an mf (1 million) ratio of 1.3 mass%.
In the blood pseudoleakage confirmation test, no vermilion spot was confirmed, and the blood pseudoleakage was determined to be “none”. In the eluate test, elution of hydrophilic polymer was not observed.
According to the procedure described in Example 1, the MFR / D was measured after irradiating the separation membrane with gamma rays and found to be 0.05.
(実施例3)
 高密度ポリエチレン(密度967kg/m3、MFR/D:2.8、MFR/G:114、mf(1000)率:0.7質量%)を原料とし、中空二重紡口を用い、ポリマー押出量16.1g/分、中空窒素量22.5mL/分、紡口温度155℃、紡速200m/分、紡糸ドラフト比3400、空走時間1.2秒にて紡糸し、中空糸(延伸前原糸)を得た。
 次いで延伸前原糸をオーブン中で100℃にて8時間、更に温度を上げ、115℃にて1時間熱処理した。熱処理後の延伸前原糸を用いて、以下連続的に冷延伸、熱延伸、熱セットを行った。具体的には、室温下で冷延伸倍率30%の冷延伸を行い、次いで102℃で熱延伸倍率200%、115℃でさらに43%の2段熱延伸を行った後、127℃の空気加熱槽中でロール間の速度調整により、第1段が27%、第2段が17%の熱セット率にて2段熱セットを行い、多孔質中空糸膜を得た。
 この際の多孔質中空糸膜の内壁をSEM(5000倍)で確認したところ、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とから構成されていることが確認できた。多孔質中空糸膜の未延伸発生率は0.29(個/m・%)であった。
 分離膜の内径は315μm、膜厚は45μmであった。分離膜からエチレン-ビニルアルコール共重合体を除去して得た多孔質中空糸膜のmf(10000)率は17.5質量%、mf(100万)率は1.4質量%だった。
 血液擬似漏洩確認試験において、試験モジュールに朱色スポットがある束が確認され、血液擬似漏洩は「有り」と判定された。溶出物試験において、3分間静置の間に泡は消失し、親水性高分子の溶出は「無し」と判定された。
(Example 3)
High-density polyethylene (density 967 kg / m 3 , MFR / D: 2.8, MFR / G: 114, mf (1000) ratio: 0.7% by mass) as a raw material, polymer extrusion using a hollow double nozzle Spinning was performed at an amount of 16.1 g / min, a hollow nitrogen amount of 22.5 mL / min, a spinning temperature of 155 ° C., a spinning speed of 200 m / min, a spinning draft ratio of 3400, and an idle running time of 1.2 seconds. Thread).
Next, the raw yarn before drawing was further heated in an oven at 100 ° C. for 8 hours, and further heated at 115 ° C. for 1 hour. Using the undrawn raw yarn after the heat treatment, cold drawing, hot drawing, and heat setting were continuously performed. Specifically, cold drawing at a cold drawing ratio of 30% is performed at room temperature, followed by two-stage hot drawing at 102 ° C. with a hot drawing ratio of 200% and 115 ° C. with a further 43%, followed by air heating at 127 ° C. By adjusting the speed between the rolls in the tank, a two-stage heat setting was performed at a heat setting rate of 27% for the first stage and 17% for the second stage to obtain a porous hollow fiber membrane.
When the inner wall of the porous hollow fiber membrane at this time was confirmed by SEM (5000 times), a plurality of microfibrils oriented in the yarn length direction, and a knot portion composed of a lamellar laminate connected to both ends of the microfibrils It was confirmed that it was configured. The unstretched incidence of the porous hollow fiber membrane was 0.29 (pieces / m ·%).
The inner diameter of the separation membrane was 315 μm and the film thickness was 45 μm. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 17.5% by mass and an mf (million) rate of 1.4% by mass.
In the blood pseudoleakage confirmation test, a bundle having vermilion spots in the test module was confirmed, and the blood pseudoleakage was determined to be “present”. In the eluate test, the foam disappeared after standing for 3 minutes, and the elution of the hydrophilic polymer was judged as “none”.
(比較例1)
 高密度ポリエチレン(密度966kg/m3、MFR/D:5.1、MFR/G:183、mf(1000)率:0.8質量%)を原料とした以外は、実施例1記載の手順に従い、多孔質中空糸膜、次いで分離膜を得た。
 この多孔質中空糸膜の内壁をSEM(5000倍)で確認したところ、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とから構成されており、また、未延伸発生率は1.20(個/m・%)であった。
 分離膜の内径は320μm、膜厚は46μmであった。分離膜からエチレン-ビニルアルコール共重合体を除去して得た多孔質中空糸膜のmf(10000)率は17.3質量%、mf(100万)率は1.1質量%であった。
 血液擬似漏洩確認試験において、試験モジュールに朱色スポットがある束が確認され、血液擬似漏洩は「有り」と判定された。溶出は認められなかった。
 実施例1、前記分離膜をガンマ線照射した後、MFR/Dの測定を試みたが、溶融しなかったため測定できなかった。
(Comparative Example 1)
The procedure described in Example 1 was followed except that high-density polyethylene (density 966 kg / m 3 , MFR / D: 5.1, MFR / G: 183, mf (1000) ratio: 0.8 mass%) was used as a raw material. A porous hollow fiber membrane and then a separation membrane were obtained.
When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. In addition, the unstretched incidence was 1.20 (pieces / m ·%).
The inner diameter of the separation membrane was 320 μm and the film thickness was 46 μm. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) ratio of 17.3 mass% and an mf (1 million) ratio of 1.1 mass%.
In the blood pseudoleakage confirmation test, a bundle having vermilion spots in the test module was confirmed, and the blood pseudoleakage was determined to be “present”. No elution was observed.
Example 1 After irradiating the separation membrane with gamma rays, measurement of MFR / D was attempted, but it could not be measured because it did not melt.
(比較例2)
 高密度ポリエチレン(密度965kg/m3、MFR/D:5.0、MFR/G:155、mf(1000)率:0.8質量%)を原料とした以外は、実施例1記載の手順に従い、多孔質中空糸膜、次いで分離膜を得た。
 この多孔質中空糸膜の内壁をSEM(5000倍)で確認したところ、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とから構成されており、また、未延伸発生率は0.34(個/m・%)であった。
 分離膜の内径は320μm、膜厚は46μmであった。分離膜からエチレン-ビニルアルコール共重合体を除去して得た多孔質中空糸膜のmf(10000)率は17.5質量%、mf(100万)率は1.5質量%であった。
 血液擬似漏洩確認試験において、試験モジュールに朱色スポットがある束が確認され、血液擬似漏洩は「有り」と判定された。溶出は認められなかった。
(Comparative Example 2)
The procedure described in Example 1 was followed except that high-density polyethylene (density 965 kg / m 3 , MFR / D: 5.0, MFR / G: 155, mf (1000) ratio: 0.8% by mass) was used as a raw material. A porous hollow fiber membrane and then a separation membrane were obtained.
When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. In addition, the unstretched incidence was 0.34 (pieces / m ·%).
The inner diameter of the separation membrane was 320 μm and the film thickness was 46 μm. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 17.5% by mass and an mf (million) rate of 1.5% by mass.
In the blood pseudoleakage confirmation test, a bundle having vermilion spots in the test module was confirmed, and the blood pseudoleakage was determined to be “present”. No elution was observed.
(比較例3)
 高密度ポリエチレン(密度965kg/m3、MFR/D:1.4、MFR/G:90、mf(1000)率:0.6質量%)を原料とし、中空二重紡口を用い、ポリマー押出量15.5g/分、中空窒素量22.5mL/分、紡口温度155℃、紡速200m/分、紡糸ドラフト比3540、空走時間1.2秒にて紡糸し、中空糸(延伸前原糸)を得た。
 次いで延伸前原糸をオーブン中で100℃にて6時間、更に温度を上げ、115℃にて1時間熱処理した。熱処理後の延伸前原糸を用いて、以下連続的に冷延伸、熱延伸、熱セットを行った。具体的には、室温下で冷延伸倍率30%の冷延伸を行い、次いで102℃で熱延伸倍率200%、115℃でさらに43%の2段熱延伸を行った後、128℃の空気加熱槽中でロール間の速度調整により、第1段が27%、第2段が17%の熱セット率にて2段熱セットを行い、多孔質中空糸膜を得た。この多孔質中空糸膜の内壁をSEM(5000倍)で確認したところ、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とから構成されていた。未延伸発生率は2.75(個/m・%)であった。
 その後、実施例1記載の手順に従い、分離膜を得た。
 分離膜の内径は320μm、膜厚は43μmであった。分離膜からエチレン-ビニルアルコール共重合体を除去して得た多孔質中空糸膜のmf(10000)率は16.9質量%、mf(100万)率は2.4質量%であった。
 血液擬似漏洩確認試験において、試験モジュールに朱色スポットがある束が確認され、血液擬似漏洩は「有り」と判定された。溶出が認められた。
(Comparative Example 3)
High-density polyethylene (density 965 kg / m 3 , MFR / D: 1.4, MFR / G: 90, mf (1000) ratio: 0.6% by mass) as a raw material, polymer extrusion using a hollow double nozzle Spinning was performed at an amount of 15.5 g / min, an amount of hollow nitrogen of 22.5 mL / min, a spinning temperature of 155 ° C., a spinning speed of 200 m / min, a spinning draft ratio of 3540, and an idle running time of 1.2 seconds. Thread).
Next, the raw yarn before drawing was further heated in an oven at 100 ° C. for 6 hours, and further heat treated at 115 ° C. for 1 hour. Using the undrawn raw yarn after the heat treatment, cold drawing, hot drawing, and heat setting were continuously performed. Specifically, after performing cold drawing at a cold drawing ratio of 30% at room temperature, followed by two-stage hot drawing at 102 ° C. with a hot drawing ratio of 200% and 115 ° C. with a further 43%, air heating at 128 ° C. By adjusting the speed between the rolls in the tank, a two-stage heat setting was performed at a heat setting rate of 27% for the first stage and 17% for the second stage to obtain a porous hollow fiber membrane. When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. It was. The unstretched occurrence rate was 2.75 (pieces / m ·%).
Thereafter, according to the procedure described in Example 1, a separation membrane was obtained.
The inner diameter of the separation membrane was 320 μm and the film thickness was 43 μm. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 16.9% by mass and an mf (1 million) rate of 2.4% by mass.
In the blood pseudoleakage confirmation test, a bundle having vermilion spots in the test module was confirmed, and the blood pseudoleakage was determined to be “present”. Elution was observed.
(比較例4)
 高密度ポリエチレン(密度944kg/m3、MFR/D:0.5、MFR/G:33、mf(1000)率:0.6質量%)を原料とし、中空二重紡口を用い、ポリマー押出量15.6g/分、中空窒素量22.5mL/分、紡口温度170℃、紡速200m/分、紡糸ドラフト比3520、空走時間1.2秒にて紡糸し、中空糸(延伸前原糸)を得た。
 次いで延伸前原糸をオーブン中で100℃にて6時間、更に温度を上げ、115℃にて1時間熱処理した。熱処理後の延伸前原糸を用いて、以下連続的に冷延伸、熱延伸、熱セットを行った。具体的には、室温下で冷延伸倍率30%の冷延伸を行い、次いで102℃で熱延伸倍率200%、115℃でさらに43%の2段熱延伸を行った後、128℃の空気加熱槽中でロール間の速度調整により、第1段が27%、第2段が17%の熱セット率にて2段熱セットを行い、多孔質中空糸膜を得た。この多孔質中空糸膜の内壁をSEM(5000倍)で確認したところ、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とから構成されていた。未延伸発生率は13.80(個/m・%)であった。
 その後、実施例1記載の手順に従い、分離膜を得た。
 分離膜の内径は320μm、膜厚は43μmであった。分離膜からエチレン-ビニルアルコール共重合体を除去して得た多孔質中空糸膜のmf(10000)率は16.0質量%、mf(100万)率は2.8質量%であった。
 血液擬似漏洩確認試験において、試験モジュールに朱色スポットがある束が確認され、血液擬似漏洩は「有り」と判定された。溶出試験において、親水性物質の溶出が認められ、溶出は「有り」と判定された。
(Comparative Example 4)
High-density polyethylene (density 944 kg / m 3 , MFR / D: 0.5, MFR / G: 33, mf (1000) rate: 0.6 mass%) as a raw material, polymer extrusion using a hollow double nozzle Spinning was performed at an amount of 15.6 g / min, a hollow nitrogen amount of 22.5 mL / min, a spinning temperature of 170 ° C., a spinning speed of 200 m / min, a spinning draft ratio of 3520, and an idle running time of 1.2 seconds. Thread).
Next, the raw yarn before drawing was further heated in an oven at 100 ° C. for 6 hours, and further heat treated at 115 ° C. for 1 hour. Using the undrawn raw yarn after the heat treatment, cold drawing, hot drawing, and heat setting were continuously performed. Specifically, after performing cold drawing at a cold drawing ratio of 30% at room temperature, followed by two-stage hot drawing at 102 ° C. with a hot drawing ratio of 200% and 115 ° C. with a further 43%, air heating at 128 ° C. By adjusting the speed between the rolls in the tank, a two-stage heat setting was performed at a heat setting rate of 27% for the first stage and 17% for the second stage to obtain a porous hollow fiber membrane. When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. It was. The unstretched incidence was 13.80 (pieces / m ·%).
Thereafter, according to the procedure described in Example 1, a separation membrane was obtained.
The inner diameter of the separation membrane was 320 μm and the film thickness was 43 μm. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 16.0% by mass and an mf (million) rate of 2.8% by mass.
In the blood pseudoleakage confirmation test, a bundle having vermilion spots in the test module was confirmed, and the blood pseudoleakage was determined to be “present”. In the dissolution test, elution of hydrophilic substances was observed, and the dissolution was judged as “present”.
(比較例5)
 高密度ポリエチレン(密度961kg/m3、MFR/D:2.9、MFR/G:145、mf(1000)率:1.0質量%)を原料とした以外は、実施例3記載の手順に従い、多孔質中空糸膜、次いで分離膜を得た。
 この多孔質中空糸膜の内壁をSEM(5000倍)で確認したところ、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とから構成されており、また、未延伸発生率は0.66(個/m・%)であった。
 分離膜の内径は316μm、膜厚は45μmであった。分離膜からエチレン-ビニルアルコール共重合体を除去して得た多孔質中空糸膜のmf(10000)率は17.0質量%、mf(100万)率は1.7質量%であった。
 血液擬似漏洩確認試験において、朱色スポットが確認され、血液擬似漏洩は「有り」と判定された。溶出は認められなかった。
(Comparative Example 5)
The procedure described in Example 3 was followed except that high-density polyethylene (density 961 kg / m 3 , MFR / D: 2.9, MFR / G: 145, mf (1000) ratio: 1.0 mass%) was used as a raw material. A porous hollow fiber membrane and then a separation membrane were obtained.
When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. In addition, the unstretched incidence was 0.66 (pieces / m ·%).
The inner diameter of the separation membrane was 316 μm and the film thickness was 45 μm. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 17.0% by mass and an mf (million) rate of 1.7% by mass.
In the blood pseudoleakage confirmation test, vermilion spots were confirmed, and the blood pseudoleakage was determined to be “present”. No elution was observed.
(実施例4)
 比較例1で用いた高密度ポリエチレンを99.0質量%、並びに高密度低分子量エチレン重合体(オレフィン系ワックス)(密度970kg/m3、粘度平均分子量4000)を1.0質量%配合した樹脂組成物(MFR/D:5.1、MFR/G:188、mf(1000)率:1.1質量%)を得た。この樹脂組成物を原料とし、実施例1記載の手順に従い、多孔質中空糸膜を作成し、さらに分離膜を得た。
 ここで得られた多孔質中空糸膜の内壁をSEM(5000倍)で確認したところ、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とから構成されており、また、未延伸発生率は0.08(個/m・%)だった。
 分離膜の内径は321μm、膜厚は45μmであった。分離膜からエチレン-ビニルアルコール共重合体を除去して得た多孔質中空糸膜のmf(10000)率は18.5質量%、mf(100万)率は1.1質量%だった。
 血液擬似漏洩確認試験において、朱色スポットは確認されず、血液擬似漏洩は「無し」と判定された。溶出物は認められなかった。
 実施例1記載の手順に従い、前記分離膜にガンマ線を照射した後、MFR/Dを測定したところ、0.11であった。
Example 4
A resin containing 99.0% by mass of the high-density polyethylene used in Comparative Example 1 and 1.0% by mass of a high-density low molecular weight ethylene polymer (olefin wax) (density 970 kg / m 3 , viscosity average molecular weight 4000). A composition (MFR / D: 5.1, MFR / G: 188, mf (1000) ratio: 1.1% by mass) was obtained. Using this resin composition as a raw material, a porous hollow fiber membrane was prepared according to the procedure described in Example 1, and a separation membrane was further obtained.
When the inner wall of the porous hollow fiber membrane obtained here was confirmed by SEM (5000 times), a knot portion comprising a plurality of microfibrils oriented in the yarn length direction and a lamellar laminate connected to both ends of the microfibrils. In addition, the unstretched incidence was 0.08 (pieces / m ·%).
The inner diameter of the separation membrane was 321 μm and the film thickness was 45 μm. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) ratio of 18.5 mass% and an mf (1 million) ratio of 1.1 mass%.
In the blood pseudoleakage confirmation test, no vermilion spot was confirmed, and the blood pseudoleakage was determined to be “none”. No eluate was observed.
The MFR / D was measured after irradiating the separation membrane with gamma rays according to the procedure described in Example 1. As a result, it was 0.11.
(実施例5)
 比較例1で用いた高密度ポリエチレンを95.0質量%、並びに高密度低分子量エチレン重合体(オレフィン系ワックス)(密度980kg/m3、粘度平均分子量2000)を5.0質量%配合した樹脂組成物を得た(MFR/D:5.8、MFR/G:239、mf(1000)率:1.2質量%)。この樹脂組成物を原料とし、実施例1記載の手順に従い、多孔質中空糸膜を作成し、さらに分離膜を得た。
 ここで得られた多孔質中空糸膜の内壁をSEM(5000倍)で確認したところ、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とから構成されていた。未延伸発生率は0.10(個/m・%)であった。
 分離膜の内径は320μm、膜厚は46μmであった。分離膜からエチレン-ビニルアルコール共重合体を除去して得た多孔質中空糸膜のmf(10000)率は19.3質量%、mf(100万)率は1.0質量%であった。
 血液擬似漏洩確認試験において、血液擬似漏洩は認められなかった。溶出物試験において溶出物は認められなかった。
(Example 5)
A resin containing 95.0% by mass of the high-density polyethylene used in Comparative Example 1 and 5.0% by mass of a high-density low molecular weight ethylene polymer (olefin wax) (density 980 kg / m 3 , viscosity average molecular weight 2000). A composition was obtained (MFR / D: 5.8, MFR / G: 239, mf (1000) ratio: 1.2% by mass). Using this resin composition as a raw material, a porous hollow fiber membrane was prepared according to the procedure described in Example 1, and a separation membrane was further obtained.
When the inner wall of the porous hollow fiber membrane obtained here was confirmed by SEM (5000 times), a knot portion comprising a plurality of microfibrils oriented in the yarn length direction and a lamellar laminate connected to both ends of the microfibrils. And consisted of The unstretched incidence was 0.10 (pieces / m ·%).
The inner diameter of the separation membrane was 320 μm and the film thickness was 46 μm. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) ratio of 19.3% by mass and an mf (1 million) ratio of 1.0 mass%.
In the simulated blood leak test, no simulated blood leak was observed. In the eluate test, no eluate was observed.
(実施例6)
 比較例1で用いた高密度ポリエチレンを98.0質量%、並びに低密度低分子量エチレン重合体(オレフィン系ワックス)(密度935kg/m3、粘度平均分子量2000)を2.0質量%配合した樹脂組成物を得た(MFR/D:5.5、MFR/G:263、mf(1000)率:1.0質量%)。この樹脂組成物を原料とし、2回目の熱処理温度、熱処理時間が各々117℃、2時間であること以外は実施例1記載の手順に従い、多孔質中空糸膜、続いて分離膜を得た。
 この多孔質中空糸膜の内壁をSEM(5000倍)で確認したところ、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とから構成されており、また、未延伸発生率は0.16(個/m・%)だった。
 分離膜の内径は322μm、膜厚は46μmであった。分離膜からエチレン-ビニルアルコール共重合体を除去して得た多孔質中空糸膜のmf(10000)率は18.7質量%、mf(100万)率は1.1質量%であった。
 血液擬似漏洩及び溶出物は認められなかった。
(Example 6)
Resin containing 98.0% by mass of the high-density polyethylene used in Comparative Example 1 and 2.0% by mass of a low-density low-molecular-weight ethylene polymer (olefin wax) (density 935 kg / m 3 , viscosity average molecular weight 2000). A composition was obtained (MFR / D: 5.5, MFR / G: 263, mf (1000) ratio: 1.0 mass%). Using this resin composition as a raw material, a porous hollow fiber membrane and then a separation membrane were obtained according to the procedure described in Example 1, except that the second heat treatment temperature and heat treatment time were 117 ° C. and 2 hours, respectively.
When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. In addition, the unstretched incidence was 0.16 (pieces / m ·%).
The inner diameter of the separation membrane was 322 μm, and the film thickness was 46 μm. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 18.7% by mass and an mf (1 million) rate of 1.1% by mass.
No simulated blood leak or eluate was observed.
(実施例7)
 比較例1で用いた高密度ポリエチレンを98.0質量%、並びに低密度低分子量エチレン-プロピレン重合体(オレフィン系ワックス)(密度940kg/m3、粘度平均分子量2000)を2.0質量%配合した樹脂組成物を得た(MFR/D:6.0、MFR/G:290、mf(1000)率:1.1質量%)。この樹脂組成物を原料とし、紡口温度が152℃あること以外は実施例1記載の手順に従い、多孔質中空糸膜を作成し、さらに分離膜を得た。
 ここで得られた多孔質中空糸膜の内壁をSEM(5000倍)で確認したところ、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とから構成された。未延伸発生率は0.20(個/m・%)であった。
 分離膜の内径は326μm、膜厚は44μmであった。分離膜からエチレン-ビニルアルコール共重合体を除去して得た多孔質中空糸膜のmf(10000)率は18.0質量%、mf(100万)率は1.1質量%であった。
 血液擬似漏洩確認試験において、朱色スポットは確認されず、血液擬似漏洩は「無し」と判定された。溶出物試験において、親水性高分子の溶出は「無し」と判定された。
(Example 7)
98.0% by mass of the high density polyethylene used in Comparative Example 1 and 2.0% by mass of a low density low molecular weight ethylene-propylene polymer (olefin wax) (density 940 kg / m 3 , viscosity average molecular weight 2000) The obtained resin composition was obtained (MFR / D: 6.0, MFR / G: 290, mf (1000) rate: 1.1 mass%). Using this resin composition as a raw material, a porous hollow fiber membrane was prepared according to the procedure described in Example 1 except that the spinning temperature was 152 ° C., and a separation membrane was obtained.
When the inner wall of the porous hollow fiber membrane obtained here was confirmed by SEM (5000 times), a knot portion comprising a plurality of microfibrils oriented in the yarn length direction and a lamellar laminate connected to both ends of the microfibrils. And consisted of The unstretched incidence was 0.20 (pieces / m ·%).
The inner diameter of the separation membrane was 326 μm, and the film thickness was 44 μm. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 18.0% by mass and an mf (million) rate of 1.1% by mass.
In the blood pseudoleakage confirmation test, no vermilion spot was confirmed, and the blood pseudoleakage was determined to be “none”. In the eluate test, elution of the hydrophilic polymer was judged as “none”.
(実施例8)
 比較例1で用いた高密度ポリエチレンを95.0質量%、並びに高密度低分子量エチレン重合体(オレフィン系ワックス)(密度970kg/m3、粘度平均分子量4000)を5.0質量%配合した樹脂組成物を得た(MFR/D:5.7、MFR/G:191、mf(1000)率:1.5質量%)。この樹脂組成物を原料とし、実施例1記載の手順に従い、多孔質中空糸膜、さらに分離膜を得た。
 この多孔質中空糸膜の内壁をSEM(5000倍)で確認したところ、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とから構成されており、また、未延伸発生率は0.17(個/m・%)であった。
 分離膜の内径は318μm、膜厚は44μmであった。分離膜からエチレン-ビニルアルコール共重合体を除去して得た多孔質中空糸膜のmf(10000)率は20.2質量%、mf(100万)率は1.0質量%であった。
 血液擬似漏洩確認試験において、朱色スポットは確認されず、血液擬似漏洩は「無し」と判定された。溶出物試験において、親水性高分子の溶出は「有り」と判定された。
(Example 8)
A resin containing 95.0% by mass of the high-density polyethylene used in Comparative Example 1 and 5.0% by mass of a high-density low molecular weight ethylene polymer (olefin wax) (density 970 kg / m 3 , viscosity average molecular weight 4000). A composition was obtained (MFR / D: 5.7, MFR / G: 191 and mf (1000) ratio: 1.5 mass%). Using this resin composition as a raw material, a porous hollow fiber membrane and a separation membrane were obtained according to the procedure described in Example 1.
When the inner wall of this porous hollow fiber membrane was confirmed by SEM (5000 times), it was composed of a plurality of microfibrils oriented in the yarn length direction and a knot portion composed of a lamellar laminate connected to both ends of the microfibril. In addition, the unstretched occurrence rate was 0.17 (pieces / m ·%).
The inner diameter of the separation membrane was 318 μm, and the film thickness was 44 μm. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) ratio of 20.2 mass% and an mf (1 million) ratio of 1.0 mass%.
In the blood pseudoleakage confirmation test, no vermilion spot was confirmed, and the blood pseudoleakage was determined to be “none”. In the eluate test, elution of the hydrophilic polymer was determined to be “present”.
(比較例6)
 高密度ポリエチレン(密度964kg/m3、MFR/D:5.0、MFR/G:172、mf(1000率):0.7質量%)を99.0質量%、並びに高密度低分子量エチレン重合体(オレフィン系ワックス)(密度970kg/m3、粘度平均分子量4000)を1.0質量%配合した樹脂組成物を得た(MFR/D:5.2、MFR/G:193、mf(1000)率:0.9.質量%)。この樹脂組成物を原料とし、実施例1記載の手順に従い、多孔質中空糸膜を作成し、次いで分離膜を得た。
 ここで得た多孔質中空糸膜の内壁をSEM(5000倍)で確認したところ、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とから構成されていた。未延伸発生率は1.55(個/m・%)であった。
 分離膜の内径は322μm、膜厚は43μmであった。分離膜からエチレン-ビニルアルコール共重合体を除去して得た多孔質中空糸膜のmf(10000)率は17.4質量%、mf(100万)率は1.5質量%であった。
 血液擬似漏洩確認試験において、試験モジュールに朱色スポットがある束が確認され、血液擬似漏洩は「有り」と判定された。溶出物試験において、親水性高分子の溶出は「無し」と判定された。
 実施例1記載の手順に従い、前記分離膜をガンマ線照射した後、MFR/Dの測定を試みたが、溶融しなかったため測定できなかった。
(Comparative Example 6)
99.0% by mass of high density polyethylene (density 964 kg / m 3 , MFR / D: 5.0, MFR / G: 172, mf (1000 ratio): 0.7% by mass), and high density low molecular weight ethylene weight The resin composition which mix | blended 1.0 mass% of coalesced (olefin type wax) (density 970 kg / m < 3 >, viscosity average molecular weight 4000) was obtained (MFR / D: 5.2, MFR / G: 193, mf (1000 ) Rate: 0.9. Mass%). Using this resin composition as a raw material, a porous hollow fiber membrane was prepared according to the procedure described in Example 1, and then a separation membrane was obtained.
When the inner wall of the porous hollow fiber membrane obtained here was confirmed by SEM (5000 times), a plurality of microfibrils oriented in the yarn length direction, and a knot portion composed of a lamellar laminate connected to both ends of the microfibrils, Consisted of. The unstretched incidence was 1.55 (pieces / m ·%).
The inner diameter of the separation membrane was 322 μm, and the film thickness was 43 μm. The porous hollow fiber membrane obtained by removing the ethylene-vinyl alcohol copolymer from the separation membrane had an mf (10000) rate of 17.4% by mass and an mf (million) rate of 1.5% by mass.
In the blood pseudoleakage confirmation test, a bundle having vermilion spots in the test module was confirmed, and the blood pseudoleakage was determined to be “present”. In the eluate test, elution of the hydrophilic polymer was judged as “none”.
Following the procedure described in Example 1, the separation membrane was irradiated with gamma rays, and then MFR / D measurement was attempted. However, the MFR / D could not be measured because it did not melt.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明のポリエチレン系樹脂多孔質中空糸膜は、血漿交換療法において用いることができるという医療分野における産業上の利用可能性を有する。 The polyethylene resin porous hollow fiber membrane of the present invention has industrial applicability in the medical field that it can be used in plasma exchange therapy.
 本願は、2016年5月13日に日本国特許庁に出願された日本特許出願(特願2016-097423)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2016-097423) filed with the Japan Patent Office on May 13, 2016, the contents of which are incorporated herein by reference.

Claims (17)

  1.  ポリエチレン系樹脂を含み、糸長方向に配向した複数のミクロフィブリルと、該ミクロフィブリルの両端に連結したラメラ積層体からなる結節部とを有する多孔質中空糸膜であって、
     分子量10000以下の成分の質量分率が、17.5質量%以上であり、かつ分子量100万以上の成分の質量分率が、1.5質量%未満である、
     ポリエチレン系樹脂多孔質中空糸膜。
    A porous hollow fiber membrane comprising a polyethylene-based resin and having a plurality of microfibrils oriented in the yarn length direction and a knot portion made of a lamellar laminate connected to both ends of the microfibrils,
    The mass fraction of the component having a molecular weight of 10,000 or less is 17.5% by mass or more, and the mass fraction of the component having a molecular weight of 1,000,000 or more is less than 1.5% by mass.
    Polyethylene resin porous hollow fiber membrane.
  2.  前記ポリエチレン系樹脂が、オレフィン系ワックスを含む、請求項1に記載のポリエチレン系樹脂多孔質中空糸膜。 The polyethylene resin porous hollow fiber membrane according to claim 1, wherein the polyethylene resin contains an olefin wax.
  3.  前記オレフィン系ワックスが、密度960kg/m3以上の高密度低分子量エチレン重合体、密度940kg/m3未満である低密度低分子量エチレン重合体、低分子量エチレン-プロピレン共重合体、及び、低分子量エチレン-ブテン共重合体からなる群から選ばれる少なくとも一種類である、請求項2に記載のポリエチレン系樹脂多孔質中空糸膜。 The olefin wax is a high density low molecular weight ethylene polymer having a density of 960 kg / m 3 or more, a low density low molecular weight ethylene polymer having a density of less than 940 kg / m 3 , a low molecular weight ethylene-propylene copolymer, and a low molecular weight The polyethylene resin porous hollow fiber membrane according to claim 2, which is at least one selected from the group consisting of ethylene-butene copolymers.
  4.  前記ポリエチレン系樹脂が、高密度ポリエチレンである、請求項1~3のいずれか1項に記載のポリエチレン系樹脂多孔質中空糸膜。 The polyethylene resin porous hollow fiber membrane according to any one of claims 1 to 3, wherein the polyethylene resin is high-density polyethylene.
  5.  請求項1~4のいずれかに記載のポリエチレン系樹脂多孔質中空糸膜と、該ポリエチレン系樹脂多孔質中空糸膜の表面の少なくとも一部に設けられた親水性高分子を含む親水性層と、を有する分離膜。 The polyethylene resin porous hollow fiber membrane according to any one of claims 1 to 4, and a hydrophilic layer containing a hydrophilic polymer provided on at least a part of the surface of the polyethylene resin porous hollow fiber membrane; A separation membrane.
  6.  前記親水性高分子が、エチレン-ビニルアルコール系共重合体である、請求項5に記載の分離膜。 The separation membrane according to claim 5, wherein the hydrophilic polymer is an ethylene-vinyl alcohol copolymer.
  7.  JIS K7210(コードD)で測定したメルトフローレート(MFR/D)が0.03以上である、請求項5又は6に記載の分離膜。 The separation membrane according to claim 5 or 6, wherein the melt flow rate (MFR / D) measured by JIS K7210 (code D) is 0.03 or more.
  8.  血漿分離用である、請求項5~7いずれか1項に記載の分離膜。 The separation membrane according to any one of claims 5 to 7, which is used for plasma separation.
  9.  ポリエチレン系樹脂又はポリエチレン系樹脂を含む樹脂組成物から中空糸を製造する工程と、前記中空糸を延伸して多孔質中空糸膜を形成する工程と、を有する、ポリエチレン系樹脂多孔質中空糸膜の製造方法であって、
     前記ポリエチレン系樹脂又は前記樹脂組成物が、分子量が1000以下の成分を1.0質量%以上含む、
     ポリエチレン系樹脂多孔質中空糸膜の製造方法。
    A polyethylene resin porous hollow fiber membrane, comprising: a step of producing a hollow fiber from a polyethylene resin or a resin composition containing a polyethylene resin; and a step of drawing the hollow fiber to form a porous hollow fiber membrane. A manufacturing method of
    The polyethylene resin or the resin composition contains 1.0% by mass or more of a component having a molecular weight of 1000 or less,
    A method for producing a polyethylene resin porous hollow fiber membrane.
  10.  前記ポリエチレン系樹脂が、粘度平均分子量が700以上8000以下のオレフィン系ワックスを0.1~10.0質量%を含む、請求項9に記載のポリエチレン系樹脂多孔質中空糸膜の製造方法。 The method for producing a polyethylene resin porous hollow fiber membrane according to claim 9, wherein the polyethylene resin contains 0.1 to 10.0% by mass of an olefin wax having a viscosity average molecular weight of 700 to 8000.
  11.  前記ポリエチレン系樹脂が、高密度ポリエチレンである、請求項9又は10に記載のポリエチレン系樹脂多孔質中空糸膜の製造方法。 The method for producing a polyethylene resin porous hollow fiber membrane according to claim 9 or 10, wherein the polyethylene resin is high-density polyethylene.
  12.  前記ポリエチレン系樹脂又はポリエチレン系樹脂を含む樹脂組成物の、JIS K7210(コードD)で測定したメルトフローレート(MFR/D)が3.0~10.0であり、かつJIS K7210(コードG)で測定したメルトフローレート(MFR/G)が150~300である、請求項9~11いずれか1項に記載のポリエチレン系樹脂多孔質中空糸膜の製造方法。 The melt flow rate (MFR / D) measured by JIS K7210 (code D) of the polyethylene resin or the resin composition containing the polyethylene resin is 3.0 to 10.0, and JIS K7210 (code G). The method for producing a polyethylene resin porous hollow fiber membrane according to any one of claims 9 to 11, wherein the melt flow rate (MFR / G) measured in 1 is 150 to 300.
  13.  前記オレフィン系ワックスが、密度960kg/m3以上の高密度低分子量エチレン重合体、密度940kg/m3未満である低密度低分子量エチレン重合体、低分子量エチレン-プロピレン共重合体、及び、低分子量エチレン-ブテン共重合体からなる群から選ばれる少なくとも一種類である、請求項10~12のいずれか1項に記載のポリエチレン系樹脂多孔質中空糸膜の製造方法。 The olefin wax is a high density low molecular weight ethylene polymer having a density of 960 kg / m 3 or more, a low density low molecular weight ethylene polymer having a density of less than 940 kg / m 3 , a low molecular weight ethylene-propylene copolymer, and a low molecular weight The method for producing a polyethylene resin porous hollow fiber membrane according to any one of claims 10 to 12, which is at least one selected from the group consisting of ethylene-butene copolymers.
  14.  前記オレフィン系ワックスが、密度960kg/m3以上の高密度低分子量エチレン重合体である、請求項13に記載のポリエチレン系樹脂多孔質中空糸膜の製造方法。 The method for producing a polyethylene resin porous hollow fiber membrane according to claim 13, wherein the olefin wax is a high-density low molecular weight ethylene polymer having a density of 960 kg / m 3 or more.
  15.  請求項9~14のいずれか1項に記載の製造方法によってポリエチレン系樹脂多孔質中空糸膜を得る工程と、前記多孔質中空糸膜の表面の少なくとも一部に親水性高分子を含む親水性層を設ける工程とを含む分離膜の製造方法。 A step of obtaining a polyethylene resin porous hollow fiber membrane by the production method according to any one of claims 9 to 14, and a hydrophilic property comprising a hydrophilic polymer on at least a part of the surface of the porous hollow fiber membrane. And a step of providing a layer.
  16.  前記親水性高分子が、エチレン-ビニルアルコール系共重合体である、請求項15に記載の分離膜の製造方法。 The method for producing a separation membrane according to claim 15, wherein the hydrophilic polymer is an ethylene-vinyl alcohol copolymer.
  17.  さらに、前記多孔質中空糸膜を、放射線よって滅菌する工程を含む、請求項15又は16に記載の分離膜の製造方法。 The method for producing a separation membrane according to claim 15 or 16, further comprising a step of sterilizing the porous hollow fiber membrane with radiation.
PCT/JP2017/010112 2016-05-13 2017-03-14 Polyethylene resin porous hollow fiber membrane, separation membrane, and method for manufacturing said membranes WO2017195457A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780029407.9A CN109070021B (en) 2016-05-13 2017-03-14 Porous hollow fiber membrane of polyethylene resin, separation membrane, and method for producing same
JP2018516368A JP6792612B2 (en) 2016-05-13 2017-03-14 Polyethylene resin porous hollow fiber membranes, separation membranes and their manufacturing methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-097423 2016-05-13
JP2016097423 2016-05-13

Publications (1)

Publication Number Publication Date
WO2017195457A1 true WO2017195457A1 (en) 2017-11-16

Family

ID=60267683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010112 WO2017195457A1 (en) 2016-05-13 2017-03-14 Polyethylene resin porous hollow fiber membrane, separation membrane, and method for manufacturing said membranes

Country Status (4)

Country Link
JP (1) JP6792612B2 (en)
CN (1) CN109070021B (en)
TW (1) TWI626986B (en)
WO (1) WO2017195457A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147701A (en) * 2019-03-14 2020-09-17 帝人株式会社 Hydrophilic composite porous membrane

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119069A (en) * 1975-03-20 1976-10-19 Nippon Oil Co Ltd Method of producing permeable film
JPH01228505A (en) * 1988-03-09 1989-09-12 Terumo Corp Porous hollow yarn membrane, production thereof and artificial lung utilizing said hollow yarn membrane
JPH02133607A (en) * 1988-11-14 1990-05-22 Mitsubishi Rayon Co Ltd Porous polyolefin fiber
JPH03111057A (en) * 1989-09-25 1991-05-10 Terumo Corp Porous hollow membrane yarn and hollow membrane yarn type artificial lung
JPH03238029A (en) * 1990-08-03 1991-10-23 Terumo Corp Hollow yarn membrane
JPH0427891B2 (en) * 1985-05-27 1992-05-13 Asahi Medical Co
JPH0549878A (en) * 1990-10-19 1993-03-02 Mitsubishi Rayon Co Ltd Large-diameter-pore porous polyethylene hollow fiber membrane, its production and hydrophilic porous polyethylene hollow fiber membrane
JPH05202240A (en) * 1991-02-13 1993-08-10 Mitsubishi Rayon Co Ltd Hydrophilic polymer alloy, fiber and porous membrane comprising same, and their production
JPH11262639A (en) * 1998-03-16 1999-09-28 Mitsubishi Rayon Co Ltd Hollow fiber membrane module
US6436319B1 (en) * 1999-04-27 2002-08-20 Agency For Technology And Standards Method of preparing hollow fiber-type separation membrane from high density polyethylene
WO2002072248A1 (en) * 2001-03-09 2002-09-19 Asahi Kasei Kabushiki Kaisha Microporous film and method for preparation thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190705A (en) * 1984-10-09 1986-05-08 Terumo Corp Hollow yarn membrane and its production
EP0203459B1 (en) * 1985-05-27 1990-07-25 ASAHI MEDICAL Co., Ltd. A hydrophilic composite porous membrane, a method of producing the same and a plasma separator
US5139529A (en) * 1987-01-20 1992-08-18 Terumo Kabushiki Kaisha Porous polypropylene membrane and methods for production thereof
ES2054849T3 (en) * 1987-10-29 1994-08-16 Terumo Corp OXYGENER USING POROUS HOLLOW FIBER MEMBRANES.
JP3238238B2 (en) * 1993-05-12 2001-12-10 株式会社トクヤマ Ion exchange membrane
JP3497569B2 (en) * 1994-08-17 2004-02-16 旭化成ケミカルズ株式会社 Polyethylene microporous membrane for non-aqueous battery separator
KR100264676B1 (en) * 1998-03-03 2000-09-01 이승배 Manufacturing method of high density polyethylene hollow fiber separator
JP3584855B2 (en) * 1999-10-07 2004-11-04 ダイキン工業株式会社 Air filter media
US6737158B1 (en) * 2002-10-30 2004-05-18 Gore Enterprise Holdings, Inc. Porous polymeric membrane toughened composites
CN100455342C (en) * 2006-12-29 2009-01-28 浙江大学 Hydrophilicity polyethylene hollow fiber micro-hole film and the preparation method
JP5519682B2 (en) * 2008-10-24 2014-06-11 東レバッテリーセパレータフィルム株式会社 Multilayer microporous membranes and methods for making and using such membranes
CN101670243B (en) * 2009-09-30 2011-11-09 浙江工业大学 Preparation method of polyethylene hollow fiber membrane with aperture in gradient distribution
WO2012043613A1 (en) * 2010-09-29 2012-04-05 三菱レイヨン株式会社 Polyolefin-composite hollow-fiber membrane and manufacturing method for same, and hollow-fiber membrane module
KR101536836B1 (en) * 2010-09-29 2015-07-14 미쯔비시 레이온 가부시끼가이샤 Porous polyethylene hollow-fiber membrane, cartridge for water purifier, and hollow-fiber membrane module
CN102743977A (en) * 2012-06-18 2012-10-24 上海百菲特环保科技有限公司 Preparation method of novel ultrahigh molecular weight polyethylene hollow fiber membrane
WO2014199271A1 (en) * 2013-06-12 2014-12-18 Kimberly-Clark Worldwide, Inc. Polyolefin film for use in packaging

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119069A (en) * 1975-03-20 1976-10-19 Nippon Oil Co Ltd Method of producing permeable film
JPH0427891B2 (en) * 1985-05-27 1992-05-13 Asahi Medical Co
JPH01228505A (en) * 1988-03-09 1989-09-12 Terumo Corp Porous hollow yarn membrane, production thereof and artificial lung utilizing said hollow yarn membrane
JPH02133607A (en) * 1988-11-14 1990-05-22 Mitsubishi Rayon Co Ltd Porous polyolefin fiber
JPH03111057A (en) * 1989-09-25 1991-05-10 Terumo Corp Porous hollow membrane yarn and hollow membrane yarn type artificial lung
JPH03238029A (en) * 1990-08-03 1991-10-23 Terumo Corp Hollow yarn membrane
JPH0549878A (en) * 1990-10-19 1993-03-02 Mitsubishi Rayon Co Ltd Large-diameter-pore porous polyethylene hollow fiber membrane, its production and hydrophilic porous polyethylene hollow fiber membrane
JPH05202240A (en) * 1991-02-13 1993-08-10 Mitsubishi Rayon Co Ltd Hydrophilic polymer alloy, fiber and porous membrane comprising same, and their production
JPH11262639A (en) * 1998-03-16 1999-09-28 Mitsubishi Rayon Co Ltd Hollow fiber membrane module
US6436319B1 (en) * 1999-04-27 2002-08-20 Agency For Technology And Standards Method of preparing hollow fiber-type separation membrane from high density polyethylene
WO2002072248A1 (en) * 2001-03-09 2002-09-19 Asahi Kasei Kabushiki Kaisha Microporous film and method for preparation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147701A (en) * 2019-03-14 2020-09-17 帝人株式会社 Hydrophilic composite porous membrane
WO2020183950A1 (en) * 2019-03-14 2020-09-17 帝人株式会社 Hydrophilic porous composite membrane
JP7255945B2 (en) 2019-03-14 2023-04-11 帝人株式会社 Hydrophilic composite porous membrane

Also Published As

Publication number Publication date
JP6792612B2 (en) 2020-11-25
CN109070021A (en) 2018-12-21
CN109070021B (en) 2022-04-01
JPWO2017195457A1 (en) 2018-12-06
TWI626986B (en) 2018-06-21
TW201739504A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
US4501785A (en) Hydrophilized membrane of porous hydrophobic material and process of producing same
ES2374913T3 (en) MULTI-PAPER MICROPOROUS PULP.
ES2267574T3 (en) MICROPOROUS HEAT RESISTANT FILM.
US5202025A (en) Porous membrane and method for preparing the same
ES2843689T3 (en) Virus removal membrane
JP2014131752A (en) Membranes having improved performance
KR20150123780A (en) Hollow-fiber membrane module, process for producing hollow-fiber membrane, and process for producing hollow-fiber membrane module
JP2012527341A (en) Membrane with improved performance
JPH11313886A (en) Use of neutral or cathionic polymer for preventing activation of contact period of blood or plasma coming in contact with semipermeable membrane
US9849427B2 (en) Hollow fiber membrane for blood purification and blood purification apparatus using the same
WO2017195457A1 (en) Polyethylene resin porous hollow fiber membrane, separation membrane, and method for manufacturing said membranes
JPS59211459A (en) Pasturization of blood treating device
JP2004305840A (en) Method for preserving hollow fiber membrane
US8119702B2 (en) Resin compound containing a functionalized polypropylene and a functionalized styrenic thermoplastic elastomer
JP6291970B2 (en) Protein adsorbing material, method for producing the same, blood purifier
JP2010233999A (en) Blood purifier
JP2010233980A (en) Hollow fiber membrane for blood purification
JPS61271003A (en) Hydrophilic compound porous membrane and its preparation
JP2000288085A (en) Irradiation sterilization method of blood treating device and blood treating device subjected to irradiation sterilization
JP6502111B2 (en) Hollow fiber type blood purifier and method of manufacturing the same
JPH1057787A (en) Separating membrane and its production
JP2798267B2 (en) Gamma-ray sterilizable hydrophilized porous material
JP2002212333A (en) Antithrombotic porous membrane and method for producing the same
JP5481379B2 (en) Blood purifier manufacturing method and blood purifier
JP2011212233A (en) Hollow fiber membrane module and method for manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018516368

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795818

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795818

Country of ref document: EP

Kind code of ref document: A1