JPH0427891B2 - - Google Patents

Info

Publication number
JPH0427891B2
JPH0427891B2 JP60112130A JP11213085A JPH0427891B2 JP H0427891 B2 JPH0427891 B2 JP H0427891B2 JP 60112130 A JP60112130 A JP 60112130A JP 11213085 A JP11213085 A JP 11213085A JP H0427891 B2 JPH0427891 B2 JP H0427891B2
Authority
JP
Japan
Prior art keywords
ethylene
water
membrane
porous
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60112130A
Other languages
Japanese (ja)
Other versions
JPS61271003A (en
Inventor
Yoshiaki Nitori
Tooru Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP60112130A priority Critical patent/JPS61271003A/en
Priority to DE8686106559T priority patent/DE3672898D1/en
Priority to EP19860106559 priority patent/EP0203459B1/en
Publication of JPS61271003A publication Critical patent/JPS61271003A/en
Priority to US07/075,542 priority patent/US5084173A/en
Publication of JPH0427891B2 publication Critical patent/JPH0427891B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は血液処理用の親水性複合多孔質膜およ
びその製法に関する。 (従来の技術) 近年、高分子化合物を材料とした多孔質膜が、
水系溶液あるいは水系懸濁液のロ過に広く利用さ
れており、工業分野では電子工業用等の純水の製
造、医薬品製造用原水の除菌、電池セパレーター
等に、また医療分野では血液成分の分離用、腹水
中の悪性有形成分の除去、各種輸液中の異物の除
去、各種除菌フイルター等に用いられている。 これらの多孔質膜はその素材の特性により親水
性膜と塑水性膜に大別される。親水性多孔質膜の
例としては、セルロース、セルロース誘導体、ポ
リビニルアルコール、エチレン−ビニルアルコー
ル共重合体などが知られている。親水性多孔質膜
の特徴は該膜の細孔表面が親水性であるため、水
に濡れやすく、水系溶液のロ過が特別の前処理な
しに可能な点にある。しかしながら親水性膜は湿
潤時の機械的強度の低下、水による膨潤などが大
きいという欠点を有し、湿潤状態から乾燥させる
と膜性能が劣化しやすいという欠点を有する。 疎水性多孔質膜の例としては、ポリエチレン、
ポリプロピレン、ポリスルホン、ポリテトラフル
オロエチレンなどの多孔質膜が知られている。疎
水性膜は水による膨潤が少なく、湿潤による機械
的強度の低下も少ないという特徴があり水系液体
のロ過に広く用いられている。しかし、疎水性多
孔質膜の欠点として、水系液体は疎水性表面を濡
らさないため、多孔質膜の細孔中への浸透が困難
であり、そのままでは水系液体のロ過はできな
い。そのため疎水性多孔質膜を予め親水化処理す
ることが提案されており、かかる親水化の方法と
しては、水と混合可能な低表面張力有機溶剤を細
孔内に浸透させたのち水と置換する方法、界面活
性剤で疎水性多孔質膜を処理する方法等がある。 しかしながら前者の方法では一度膜を乾燥させ
てしまうとその親水化の効力は失われてしまい再
び同じ操作が必要となる。また後者の方法では界
面活性剤がロ過時に処理液中に溶出し処理液を汚
染したり、親水化の効力が経時的に減少していく
という欠点を有する。 かかる疎水性多孔質膜の欠点を改良するために
親水性多孔性複合構造物が提案されている(特開
昭53−21270、特開昭53−134871、特開昭54−
8669、特開昭54−117978)。これらの構造物は疎
水性多孔質構の多孔性空間に水溶性高分子を含浸
し、さらに電離性放射線照射等の後架橋処理によ
り、該水溶性高分子を不溶化して得られる。 本来、水溶性高分子はその高い溶解度パラメー
タのため、低い溶解度パラメータを示す疎水性高
分子と親和性はなく疎水性高分子に対して全く接
着性を示さないが、後処理により水溶性高分子を
三次元化し該高分子を固定化したものである。こ
れらの構造物は水溶性高分子を使用するため、架
橋処理が不充分であると該水溶性高分子が水系処
理液体中に溶出するという欠点を有し、また架橋
度を上げると膜の細孔径が減少し水透過能力が低
下するという欠点を有する。また実用的な見地か
らは後架橋処理はプロセスが複雑であり、特に電
離性放射線照射は大規模な設備を必要とし、コス
トが高いという問題点もある。 (発明が解決しようとする問題点) 本発明は水系液体の処理にあたつて、特別の前
処理なしに簡便に取り扱いができ、しかも湿潤時
の強度、膨潤などの特性および溶出物などの点で
医療分野における安全性に優れた多孔質膜を提供
するものである。 (問題点を解決するための手段) 本発明の要旨は、ポリオレフインからなり延伸
開孔法によつて製造された平均孔径が0.02〜4.0μ
mの多孔質構造マトリツクスと、該マトリツクス
の細孔表面を実質的に被覆する、エチレン含量20
〜70モル%、ケン化度80%以上のエチレン−ビニ
ルアルコール系共重合体被覆層からなる血液成分
分離用の親水性複合多孔質膜および、ポリオレフ
インからなる多孔質構造マトリツクスの細孔表面
を、水混和性有機溶剤単独または該溶剤と水との
混合溶剤に溶解したエチレン含量20〜70モル%、
ケン化度80%以上のエチレン−ビニルアルコール
系共重合体溶液で処理することを特徴とする前記
親水性複合多孔質膜の製法にある。 (作用及び実施態様) 本発明の血液処理用の親水性複合多孔質膜は疎
水性のポリオレフインからなる多孔質構造マトリ
ツクスと該マトリツクスの細孔表面を実質的に被
覆する、エチレン−ビニルアルコール系共重合体
被覆層からなる複合多孔質膜であるため、疎水性
多孔質膜と同様に水系溶液との接触時に水による
膨潤ならびに水による強度低下が殆どなく、また
表面が親水性の被覆層で構成されているため水濡
れ性が良く、特に親水化の前処理を行うことなし
にロ過膜として使用できる。また本発明の複合多
孔質膜は乾燥、湿潤を繰り返しても寸法変化、性
能の変化がほとんどないためその製造にあたつて
グリセリンのような湿潤剤を用いることなく容易
に乾燥ができ、また親水化のための界面活性剤も
不要なため、処理液体を汚染する溶出物を実質的
に含まない清浄な多孔質膜である。 本発明でいう複合多孔質膜とは、膜の一方の面
から他方の面へ貫通した多数の細孔を有する膜で
あつて、かつ該膜は多孔質構造マトリツクスと該
マトリツクスの細孔表面を実質的に被覆する、被
覆層により構成されるものをいう。なお、多孔質
構造マトリツクスの細孔表面とは、目的とする物
質を透過するに寄与できる貫通した細孔の内壁表
面と多孔質構造マトリツクス体の両表面をあわせ
たものをいう。多孔質構造を有する支持膜の一方
の面の表面上に超薄膜を形成させ逆浸透能をもた
せた非対称型の複合膜とは本質的に異なる。 本発明の複合多孔質膜の形態は平膜状、チユー
ブ状、中空糸状等いずれのものも使用されるが、
小型で効率良くロ過ができる中空糸状が好まし
い。また複合多孔質膜の細孔の好ましい平均孔径
ならびに空孔率は0.02〜4.0μmならびに30〜90体
積%である。 本発明に用いるポリオレフインとしては、例え
ば、ポリエチレン、ポリプロピレン、ポリ−3−
メチルブテン−1、ポリ−4−メチルペンテン−
1およびこれらの構成モノマーによる共重合体が
挙げられるが、中でも充分に大きい孔径の多孔質
構造が得られるポリエチレンおよびポリプロピレ
ンが好ましい。 本発明に用いるエチレン−ビニルアルコール系
共重合体はランダム、ブロツク、グラフト等いず
れのタイプの共重合体であつても良いが、該共重
合体のエチレン含量は20〜70モル%の範囲にある
ことが必要である。エチレン含量が20モル%未満
では、該重合体のポリオレフインに対する接着性
が低く、複合多孔質膜のマトリツクスと被覆層の
剥離が起こり好ましくない。また、70モル%を超
えると被覆層の親水性が失われ好ましくない。特
に25〜50モル%のものが接着性と親水性のバラン
スが良く好ましい。エチレン−ビニルアルコール
系共重合体は構成成分としてマトリツクスとなる
ポリオレフインと共通の構造を有するエチレンを
含有しているため良好な接着性が得られるものと
考えられる。 本発明に用いられる多孔質構造マトリツクスは
疎水性結晶性ポリオレフインを延伸開孔して得ら
れる。延伸開孔法は、結晶性高分子を中空糸また
はフイルム状に成型た後、冷延伸により結晶ラメ
ラ間を開裂させ、さらに熱延伸により孔径を拡大
させ多孔質構造物とする方法であり、高分子素材
に溶剤その他の添加物を加えずに延伸という物理
的手段によつて多孔質構造物を製造するもので、
残留溶剤等の問題が全くないので血液成分分離用
の膜の製法として好ましい方法である。 複合多孔質膜の被覆層は、多孔質構造マトリツ
クスの細孔表面を実質的に被覆していれば良く、
その被覆層の厚みは好ましくは単分子層である約
10Å以上であり、厚みの上限は特にない。被覆層
の量を多孔質構造マトリツクスの単位細孔表面積
当りの重量で表わすと約1×10-3g/m2以上2×
10g/m2程度以下が好ましい。 本発明の血液処理用の親水性複合多孔質膜は以
下の製法により製造される。即ち該複合多孔質膜
はポリオレフインからなる多孔質マトリツクスの
細孔表面を、水混和性有機溶剤単独または、該溶
剤と水との混合溶剤に溶解したエチレン−ビニル
アルコール系共重合体溶液で処理することにより
得られる。 エチレン−ビニルアルコール系共重合体溶液に
よる処理には、前記多孔質構造マトリツクスの細
孔表面に該共重合体溶液を塗布せしめる工程およ
び、前記工程に引き続き該共重合体溶液の溶剤を
蒸発除去させる乾燥工程が含まれる。 本発明のエチレン−ビニルアルコール系共重合
体を溶解させる有機溶剤は水混和性の有機溶剤で
あり、該溶剤の沸点以下の温度で水に対する溶解
度が20wt%以上を示しかつヒルデブランドの溶
解度パラメータが9.5(cal・cm-31/2以上の有機溶
剤が好ましい。好ましい有機溶剤の例としては、
メタノール、エタノール、n−プロパノール、イ
ソプロパノール、sec−ブタノール、t−ブタノ
ール、シクロヘキサノール等のアルコール類、エ
チレングリコール、プロピレングリコール、グリ
セリン等の多価アルコール類、テトラヒドロフラ
ン、ジオキサン、ジメチルホルムアミド、ジメチ
ルスルホキシド、ジメチルアセトアミド、ホルム
アミド、エチレンクロルヒドリンなどが挙げられ
る。これらの中でもエタノールおよびジメチルス
ルホキシドはエチレン−ビニルアルコール系共重
合体の溶解性も良く、低毒性であることから特に
好ましい。これらの有機溶剤は単独でも用いられ
るが混合溶剤系でも用いることができ、特に水と
の混合溶剤系は好ましい。エチレン−ビニルアル
コール系共重合体は非極性で疎水性を示すエチレ
ン部分と極性と親水性のビニルアルコール部分に
より構成されているが、極性の強い溶剤系に溶解
させ非極性のポリオレフインにコーテイングした
場合、非極性のエチレン部分がポリオレフイン側
に局在し、極性のビニルアルコール部分が表面側
に局在しやすいと考えられる。この現象は被覆層
とマトリツクスの接着性が向上し、かつ被覆層表
面の親水性が向上することから好ましい現象であ
る。上記の有機溶剤に水を加え混合溶剤系とする
ことは溶剤の極性をより強くすることになり、上
記現象が促進され好ましい。加える水の割合はエ
チレン−ビニルアルコール系共重合体の溶解性を
阻害しない範囲内で大きい方が好ましく、該共重
合体のエチレン含量、溶液の温度等によりその割
合は異なるが、例えば5〜60重量%が好ましい範
囲として挙げられる。用いる該共重合体濃度は被
覆に適した任意の濃度を選ぶことができるが、例
えば0.1〜5重量%程度の濃度が適している。被
覆処理は一回の処理で完結しても良いが、、比較
的低濃度で数回の処理を繰り返すこともできる。 該共重合体溶液の温度は特に限定されるもので
はないが、一般に高温の方が該共重合体の溶解性
は良く、溶液の粘度も低下するので好ましく、室
温から100℃までの範囲が好ましい。被覆処理の
時間は数秒ないし数十分の範囲が好ましい。 本処理は多孔質構造マトリツクスを一定の形状
に切断してバツチ式に処理することもできるが、
連続した平膜状または中空糸状多孔質構造マトリ
ツクスを長手方向に走行させ連続的に処理するこ
ともでき、生産性に優れた好ましい方法である。 連続処理に際して、多孔質構造マトリツクスが
平膜状の場合、上記共重合体溶液の供給は該マト
リツクスの片面または両面より行うことができ
る。該マトリツクスが中空糸状の場合は中空糸外
表面側より上記共重合体溶液の供給を行うことが
できる。該マトリツクスの形状が中空糸状でも、
構造が多孔質であるため、上記共重合体溶液は該
マトリツクスの内部まで容易に浸透でき本被覆処
理を行うことができる。本処理に用いた溶液の乾
燥方法は通常の乾燥方法、例えば真空乾燥、熱風
乾燥等を使用することができ連続した複合多孔質
膜を走行状態で連続的に乾燥することもできる。 乾燥程度は該複合多孔質膜が熱により変形を受
けない温度であれば良く、130℃以下が好ましい。 本発明の親水性複合多孔質膜は湿潤時の強度、
寸法安定性に優れ、水濡れ性が良く、しかも界面
活性剤等の溶出性物質を用いないので、医学的安
全性に優れ、血漿分離膜、血漿成分分画膜、等の
血液処理用として特に有効である。次に本発明を
実施例で説明する。なお、諸物性の測定は下記の
方法で行つた。 〔平均孔径(μm)〕 水銀ポリシメータにより求めた孔径−空孔面積
積分曲線上で、全空孔容積の1/2の空孔面積を示
す孔径。 〔透水速度(l/hr・m2・mmHg)〕 エタノールによる親水化などの前処理は行わず
に直接純水に浸漬。25℃、差圧50mmHgで測定。 〔引張破断強度(Kgf/cm2)引張破断伸度(%)〕 インストロン型引張試験機にて、歪速度200
%/分で測定。 〔多孔質構造マトリツクスの細孔表面積(m2
g)] BET式表面測定機にて、窒素吸着量により測
定。 〔血漿ロ過速度(ml/hr・m2・mmHg)〕 牛ACD(クエン酸−クエン酸ナトリウム−ブド
ウ糖)加血液(ヘマトクリツト35%)を用い、37
℃にて膜に対する差圧30mmHgをかけた時の血漿
ロ過速度を測定。 〔熱水抽出試験〕 複合多孔質膜を80±5℃の熱水中で3時間抽出
し、抽出前後の重量変化を求める。 〔ポリマーラテツクス透過率〕 平均粒径0.2μmのスチレン−ブタジエンラテツ
クス[ダウケミカル(株)製のSBR636]を用い、濃
度0.033重量%の水懸濁液を調整した。差圧50mm
Hg以内で該液のロ過を行い波長500nmの比濁法
で濃度を求め透過率(SC)=(Cf/Co)×100(%) (Cfは透過液濃度、Coは原液濃度)により求め
た。 実施例 1 高密度ポリエチレン(密度0.968、MI値5.5、商
品名ハイゼツクス2208J)を円形二重紡口を用い、
紡口濃度150℃で紡糸し、得られた中空糸を120℃
で2時間アニール処理した後、室温で30%、つい
で105℃で350%熱延伸を施し中空糸状ポリエチレ
ン多孔質構造マトリツクスを得た。該マトリツク
スの内径は320μm、膜厚は45μm、細孔表面積は
21m2/gであつた。エチレン含量38モル%のエチ
レン−ビニルアルコール系共重合体(日本合成化
学工業製ソアノールE)を75容量%エタノール水
溶液に加熱溶解させ0.5重量%溶液とした。該溶
液の温度を50℃に維持し、前記中空糸状ポリエチ
レン多孔質構造マトリツクスを該溶液中に浸漬し
10分間放置した。次いで過剰の共重合体溶液を除
いた後50℃の熱風で3時間乾燥した。 得られた複合多孔質膜の内径は320μm、膜厚
は45μm被覆の量は3.2×10-3g/m2、平均孔径は
0.70μmであつた。またこの膜は水濡れ性が良く、
水に浸すと容易に濡れ、特別の処理をすることな
しに透水性を示し、透水速度は7.9/hr・m2
mmHgであつた。また血漿ロ過速度も85ml/hr・
m2・mmHgと充分な性能を示した。熱水抽水試験
の結果は抽出量0.0%であり、特開昭54−8669、
実施例3の平均値0.4%で、最大値1.6%に比べ低
値であつた。この膜の乾燥時の引張破断強度は
510Kgf/cm2、引張破断伸度は30%、湿潤時の引
張破断強度は517Kgf/cm2、引張破断伸度は31%
と乾燥時、湿潤時に差はなく、いずれも優れた機
械的特性を示した。また湿潤時の糸長方向への膨
潤は認められなかつた。また乾燥−湿潤を十回繰
り返し試験したが、透水性の低下、機械的特性の
変化は認められなかつた。 比較例 1 実施例1で得られた中空糸状ポリエチレン多孔
質構造マトリツクスについて、実施例1と同様に
平均孔径及び透水速度を測定したところ、それぞ
れ0.56μm、3.8/hr・m2・mmHgであつた。 実施例 2 ポリプロピレン(商品名ノーブレンD−501)
23重量%、微分珪酸23.5重量%ジブチルフタレー
ト53.5重量%を混合、ペレツト化した後、円形二
重紡口を取り付けた押出し機で紡糸し、中空糸を
得た。この中空糸を1、1、1−トリクロルエタ
ンで抽出してジブチルフタレートを除き、ついで
40%苛性ソーダ水溶液で微粉珪酸を抽出し、水洗
後乾燥して内径550μm、膜厚160μmの中空糸状
ポリプロピレン多孔質構造マトリツクスを得た。
エチレン含量の異なる各種エチレン−ビニルアル
コール(日本合成化学工業社製、商品名ソアノー
ルおよびクラレ社製商品名エバール)を用い、エ
チレン−ビニルアルコール溶液の温度を75℃に維
持した以外は、実施例1と同様の方法でエチレン
−ビニルアルコール被覆層を形成せしめ、表1に
示す複合多孔質膜を得た。これらの複合多孔質膜
の孔径はいずれも0.25μmであつた。また表1に
示すように高い透水性を示した。
(Industrial Application Field) The present invention relates to a hydrophilic composite porous membrane for blood treatment and a method for producing the same. (Conventional technology) In recent years, porous membranes made of polymer compounds have been developed.
It is widely used for filtration of aqueous solutions or suspensions.In the industrial field, it is used to produce pure water for the electronic industry, sterilize raw water for pharmaceutical manufacturing, and as a battery separator, and in the medical field, it is used to filter blood components. It is used for separation, removal of malignant particles in ascites, removal of foreign substances in various infusions, and various sterilization filters. These porous membranes are broadly classified into hydrophilic membranes and hydroplastic membranes depending on the characteristics of their materials. Known examples of hydrophilic porous membranes include cellulose, cellulose derivatives, polyvinyl alcohol, and ethylene-vinyl alcohol copolymers. Hydrophilic porous membranes are characterized by the fact that the pore surfaces of the membrane are hydrophilic, so they are easily wetted by water and can filter aqueous solutions without special pretreatment. However, hydrophilic membranes have drawbacks such as a decrease in mechanical strength when wet and large swelling due to water, and a drawback that membrane performance tends to deteriorate when dried from a wet state. Examples of hydrophobic porous membranes include polyethylene,
Porous membranes such as polypropylene, polysulfone, and polytetrafluoroethylene are known. Hydrophobic membranes are characterized by less swelling by water and less decrease in mechanical strength due to wetting, and are widely used for filtration of aqueous liquids. However, a disadvantage of hydrophobic porous membranes is that since aqueous liquids do not wet the hydrophobic surface, it is difficult for them to penetrate into the pores of the porous membrane, and the aqueous liquid cannot be filtered as is. Therefore, it has been proposed that a hydrophobic porous membrane be hydrophilized in advance, and the method for making it hydrophilic is to infiltrate a low surface tension organic solvent that is miscible with water into the pores and then replace it with water. There are several methods, including a method of treating a hydrophobic porous membrane with a surfactant. However, in the former method, once the membrane is dried, its hydrophilic effect is lost and the same operation is required again. Furthermore, the latter method has disadvantages in that the surfactant is eluted into the treatment liquid during filtration and contaminates the treatment liquid, and the hydrophilic effect decreases over time. In order to improve the drawbacks of such hydrophobic porous membranes, hydrophilic porous composite structures have been proposed (JP-A-53-21270, JP-A-53-134871, JP-A-54-
8669, Japanese Patent Publication No. 117978). These structures are obtained by impregnating a water-soluble polymer into the porous spaces of a hydrophobic porous structure, and then insolubilizing the water-soluble polymer by a post-crosslinking treatment such as irradiation with ionizing radiation. Originally, water-soluble polymers have a high solubility parameter, so they have no affinity with hydrophobic polymers that have a low solubility parameter, and do not show any adhesion to hydrophobic polymers. However, by post-treatment, water-soluble polymers This is a three-dimensional structure in which the polymer is immobilized. Since these structures use water-soluble polymers, they have the disadvantage that if the crosslinking treatment is insufficient, the water-soluble polymers will be eluted into the aqueous treatment liquid, and if the degree of crosslinking is increased, the fineness of the membrane will increase. It has the disadvantage that the pore size decreases and the water permeation ability decreases. Further, from a practical standpoint, the post-crosslinking treatment is a complicated process, and in particular, ionizing radiation irradiation requires large-scale equipment and is expensive. (Problems to be Solved by the Invention) The present invention allows for easy handling of aqueous liquids without any special pretreatment, and also improves properties such as wet strength, swelling, and eluates. This provides porous membranes with excellent safety in the medical field. (Means for Solving the Problems) The gist of the present invention is to provide polyolefins with an average pore diameter of 0.02 to 4.0 μm, which are made of polyolefin and manufactured by a stretching pore method.
m of porous structured matrix and an ethylene content of 20 m, substantially covering the pore surfaces of the matrix.
A hydrophilic composite porous membrane for blood component separation consisting of an ethylene-vinyl alcohol copolymer coating layer with ~70 mol% and saponification degree of 80% or more, and the pore surface of a porous structure matrix consisting of polyolefin. Ethylene content of 20 to 70 mol% dissolved in a water-miscible organic solvent alone or a mixed solvent of the solvent and water,
The method for producing the hydrophilic composite porous membrane is characterized in that it is treated with an ethylene-vinyl alcohol copolymer solution having a saponification degree of 80% or more. (Functions and Embodiments) The hydrophilic composite porous membrane for blood treatment of the present invention comprises a porous structured matrix made of hydrophobic polyolefin and an ethylene-vinyl alcohol-based copolymer that substantially covers the pore surface of the matrix. Because it is a composite porous membrane consisting of a polymer coating layer, it hardly swells with water or loses strength due to water when it comes in contact with an aqueous solution, similar to hydrophobic porous membranes, and the surface is made of a hydrophilic coating layer. Because of this, it has good water wettability and can be used as a filtration membrane without any pretreatment to make it hydrophilic. In addition, the composite porous membrane of the present invention shows almost no dimensional change or change in performance even after repeated drying and wetting. Since there is no need for a surfactant for oxidation, the porous membrane is clean and substantially free of eluates that contaminate the processing liquid. The composite porous membrane referred to in the present invention is a membrane having a large number of pores penetrating from one side of the membrane to the other, and the membrane has a porous structure matrix and a pore surface of the matrix. Refers to something that is substantially covered by a covering layer. Note that the pore surface of the porous structure matrix refers to the sum of the inner wall surfaces of the pores that penetrate through the pores and both surfaces of the porous structure matrix body, which can contribute to the permeation of the target substance. This is essentially different from an asymmetric composite membrane that has reverse osmosis ability by forming an ultra-thin membrane on one side of a support membrane with a porous structure. The composite porous membrane of the present invention may be in the form of a flat membrane, a tube, a hollow fiber, etc.
Hollow fibers are preferred because they are small and can filter efficiently. Further, the preferable average pore diameter and porosity of the pores of the composite porous membrane are 0.02 to 4.0 μm and 30 to 90% by volume. Examples of the polyolefin used in the present invention include polyethylene, polypropylene, poly-3-
Methylbutene-1, poly-4-methylpentene-
1 and copolymers of these constituent monomers, among which polyethylene and polypropylene are preferred since they provide a porous structure with a sufficiently large pore size. The ethylene-vinyl alcohol copolymer used in the present invention may be any type of copolymer, such as random, block, or graft, but the ethylene content of the copolymer is in the range of 20 to 70 mol%. It is necessary. If the ethylene content is less than 20 mol%, the adhesion of the polymer to polyolefin will be low and peeling of the coating layer from the matrix of the composite porous membrane will occur, which is undesirable. Moreover, if it exceeds 70 mol%, the hydrophilicity of the coating layer will be lost, which is not preferable. In particular, 25 to 50 mol% is preferable since it has a good balance between adhesiveness and hydrophilicity. It is believed that the ethylene-vinyl alcohol copolymer provides good adhesive properties because it contains ethylene, which has a structure common to that of the polyolefin serving as the matrix. The porous structural matrix used in the present invention is obtained by stretching and opening a hydrophobic crystalline polyolefin. The stretching pore method is a method in which a crystalline polymer is formed into a hollow fiber or film, and then the crystal lamellae are cleaved by cold stretching, and the pore diameter is expanded by hot stretching to create a porous structure. Porous structures are manufactured by physical means of stretching without adding solvents or other additives to molecular materials.
This is a preferred method for producing membranes for blood component separation because there are no problems such as residual solvent. The coating layer of the composite porous membrane only needs to substantially cover the pore surface of the porous structure matrix,
The thickness of the coating layer is preferably about a monolayer.
It is 10 Å or more, and there is no particular upper limit to the thickness. The amount of the coating layer expressed as the weight per unit pore surface area of the porous structure matrix is approximately 1×10 -3 g/m 2 or more 2×
It is preferably about 10 g/m 2 or less. The hydrophilic composite porous membrane for blood treatment of the present invention is manufactured by the following manufacturing method. That is, the composite porous membrane is prepared by treating the pore surface of a porous matrix made of polyolefin with a solution of an ethylene-vinyl alcohol copolymer dissolved in a water-miscible organic solvent alone or in a mixed solvent of the solvent and water. It can be obtained by The treatment with an ethylene-vinyl alcohol copolymer solution includes a step of applying the copolymer solution to the pore surface of the porous structure matrix, and subsequent to the step, evaporating and removing the solvent of the copolymer solution. Includes a drying process. The organic solvent for dissolving the ethylene-vinyl alcohol copolymer of the present invention is a water-miscible organic solvent, exhibits a solubility in water of 20 wt% or more at a temperature below the boiling point of the solvent, and has a Hildebrand solubility parameter. An organic solvent of 9.5 (cal·cm -3 ) 1/2 or more is preferable. Examples of preferred organic solvents include:
Alcohols such as methanol, ethanol, n-propanol, isopropanol, sec-butanol, t-butanol, cyclohexanol, polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin, tetrahydrofuran, dioxane, dimethylformamide, dimethyl sulfoxide, dimethyl Examples include acetamide, formamide, and ethylene chlorohydrin. Among these, ethanol and dimethyl sulfoxide are particularly preferred because they have good solubility in the ethylene-vinyl alcohol copolymer and have low toxicity. These organic solvents can be used alone or in a mixed solvent system, and a mixed solvent system with water is particularly preferred. Ethylene-vinyl alcohol copolymer is composed of a non-polar and hydrophobic ethylene part and a polar and hydrophilic vinyl alcohol part, but when it is dissolved in a highly polar solvent and coated on a non-polar polyolefin. It is thought that the non-polar ethylene moiety is likely to be localized on the polyolefin side, and the polar vinyl alcohol moiety is likely to be localized on the surface side. This phenomenon is a desirable phenomenon because it improves the adhesion between the coating layer and the matrix and also improves the hydrophilicity of the surface of the coating layer. Adding water to the above organic solvent to form a mixed solvent system makes the polarity of the solvent stronger, which promotes the above phenomenon, which is preferable. The proportion of water added is preferably as large as possible within a range that does not inhibit the solubility of the ethylene-vinyl alcohol copolymer, and the proportion varies depending on the ethylene content of the copolymer, the temperature of the solution, etc., but for example, 5 to 60% water. A preferred range is weight %. The concentration of the copolymer used can be selected to be any concentration suitable for coating, but a concentration of about 0.1 to 5% by weight is suitable, for example. The coating treatment may be completed in one treatment, but it is also possible to repeat the treatment several times at a relatively low concentration. The temperature of the copolymer solution is not particularly limited, but generally a high temperature is preferable because the solubility of the copolymer is better and the viscosity of the solution is lowered, and a range from room temperature to 100°C is preferable. . The coating treatment time is preferably in the range of several seconds to several tens of minutes. This process can also be carried out in batches by cutting the porous structure matrix into a certain shape.
It is also possible to carry out continuous treatment by running a continuous flat film-like or hollow fiber-like porous structural matrix in the longitudinal direction, which is a preferred method with excellent productivity. During continuous processing, when the porous structural matrix is in the form of a flat membrane, the copolymer solution can be supplied from one or both sides of the matrix. When the matrix is in the form of hollow fibers, the copolymer solution can be supplied from the outer surface of the hollow fibers. Even if the shape of the matrix is hollow fiber,
Since the structure is porous, the copolymer solution can easily penetrate into the interior of the matrix and the main coating treatment can be performed. The solution used in this treatment can be dried by conventional drying methods such as vacuum drying, hot air drying, etc. A continuous composite porous membrane can also be dried continuously in a running state. The degree of drying may be at a temperature at which the composite porous membrane is not deformed by heat, and is preferably 130° C. or lower. The hydrophilic composite porous membrane of the present invention has strong wet strength,
It has excellent dimensional stability, good water wettability, and does not use leachable substances such as surfactants, so it has excellent medical safety, and is especially suitable for blood processing such as plasma separation membranes and plasma component fractionation membranes. It is valid. Next, the present invention will be explained with examples. The various physical properties were measured using the following methods. [Average pore diameter (μm)] A pore diameter that indicates a pore area that is 1/2 of the total pore volume on a pore diameter-pore area integral curve determined by a mercury polysimeter. [Water permeation rate (l/hr・m 2・mmHg)] Directly immersed in pure water without pretreatment such as hydrophilization with ethanol. Measured at 25℃ and differential pressure of 50mmHg. [Tensile strength at break (Kgf/cm 2 ) Tensile elongation at break (%)] Strain rate 200 using an Instron tensile tester
Measured in %/min. [Pore surface area of porous structure matrix (m 2 /
g)] Measured by nitrogen adsorption amount using a BET surface measuring device. [Plasma flow rate (ml/hr・m2・mmHg)] Using bovine ACD (citric acid-sodium citrate-glucose) blood (hematocrit 35%), 37
Measure the plasma filtration rate when a differential pressure of 30 mmHg is applied to the membrane at ℃. [Hot water extraction test] Extract the composite porous membrane in hot water at 80±5°C for 3 hours, and measure the weight change before and after extraction. [Polymer latex transmittance] Using styrene-butadiene latex [SBR636 manufactured by Dow Chemical Co., Ltd.] with an average particle size of 0.2 μm, an aqueous suspension having a concentration of 0.033% by weight was prepared. Differential pressure 50mm
The liquid is filtered within Hg and the concentration is determined by nephelometric method at a wavelength of 500 nm, and the concentration is determined by transmittance (SC) = (Cf/Co) x 100 (%) (Cf is the concentration of the permeated liquid, and Co is the concentration of the stock solution). Ta. Example 1 High-density polyethylene (density 0.968, MI value 5.5, trade name Hi-Zex 2208J) was made using a circular double spinneret.
Spin at a spinneret concentration of 150°C, and spin the resulting hollow fiber at 120°C.
After annealing for 2 hours at room temperature, the material was hot-stretched by 30% at room temperature and then by 350% at 105°C to obtain a hollow fiber polyethylene porous structure matrix. The inner diameter of the matrix is 320 μm, the film thickness is 45 μm, and the pore surface area is
It was 21m 2 /g. An ethylene-vinyl alcohol copolymer (Soarnol E manufactured by Nippon Gosei Kagaku Kogyo) having an ethylene content of 38 mol % was heated and dissolved in a 75 volume % ethanol aqueous solution to form a 0.5 weight % solution. The temperature of the solution is maintained at 50°C, and the hollow fiber polyethylene porous structure matrix is immersed in the solution.
It was left for 10 minutes. Then, after removing the excess copolymer solution, it was dried with hot air at 50°C for 3 hours. The resulting composite porous membrane had an inner diameter of 320 μm, a film thickness of 45 μm, a coating amount of 3.2×10 -3 g/m 2 , and an average pore diameter of
It was 0.70 μm. This film also has good water wettability,
It easily gets wet when immersed in water, exhibits water permeability without special treatment, and has a water permeability rate of 7.9/hr・m 2
It was mmHg. In addition, the plasma flow rate was 85ml/hr・
It showed sufficient performance with m 2 · mmHg. The result of the hot water extraction test was that the extraction amount was 0.0%.
The average value of Example 3 was 0.4%, which was lower than the maximum value of 1.6%. The tensile breaking strength of this membrane when dry is
510Kgf/cm 2 , tensile elongation at break is 30%, tensile strength at break when wet is 517Kgf/cm 2 , tensile elongation at break is 31%
There was no difference between dry and wet conditions, and both showed excellent mechanical properties. Further, no swelling in the longitudinal direction of the yarn was observed during wetting. Further, although drying and wetting were repeated ten times, no decrease in water permeability or change in mechanical properties was observed. Comparative Example 1 Regarding the hollow fiber polyethylene porous structure matrix obtained in Example 1, the average pore diameter and water permeation rate were measured in the same manner as in Example 1, and they were 0.56 μm and 3.8/hr・m 2・mmHg, respectively. . Example 2 Polypropylene (trade name Noblen D-501)
After mixing and pelletizing 23% by weight of differential silicic acid, 23.5% by weight of dibutyl phthalate, and 53.5% by weight of dibutyl phthalate, the pellets were spun using an extruder equipped with a circular double spinneret to obtain hollow fibers. This hollow fiber was extracted with 1,1,1-trichloroethane to remove dibutyl phthalate, and then
Fine powder silicic acid was extracted with a 40% caustic soda aqueous solution, washed with water, and dried to obtain a hollow fiber polypropylene porous structure matrix with an inner diameter of 550 μm and a film thickness of 160 μm.
Example 1 except that various ethylene-vinyl alcohols with different ethylene contents (manufactured by Nippon Gosei Kagaku Kogyo Co., Ltd., trade name: Soarnol, and Kuraray Co., Ltd., trade name: EVAL) were used, and the temperature of the ethylene-vinyl alcohol solution was maintained at 75°C. An ethylene-vinyl alcohol coating layer was formed in the same manner as above to obtain a composite porous membrane shown in Table 1. The pore diameters of these composite porous membranes were all 0.25 μm. Furthermore, as shown in Table 1, it exhibited high water permeability.

【表】 実施例 3 特開昭57−117951に示される公知の方法により
平膜状ポリエチレン多孔質構造マトリツクスを得
た。エチレン含量47モル%のエチレン−ビニルア
ルコール(商品名エバールEP−G)をジメチル
スルホキシド(DMSO)またはDMSOと水との
混合液に溶解させ0.5重量%溶液とした。該液を
室温で前記マトリツクスに含浸せしめたのち乾燥
し、平膜状複合多孔質膜を得た。該膜の膜厚は
30μ、孔径は0.60μmであつた。透水速度は表2の
通り高い値を示した。
[Table] Example 3 A flat membrane-shaped polyethylene porous structural matrix was obtained by a known method disclosed in JP-A-57-117951. Ethylene-vinyl alcohol (trade name EVAL EP-G) having an ethylene content of 47 mol% was dissolved in dimethyl sulfoxide (DMSO) or a mixture of DMSO and water to form a 0.5% by weight solution. The solution was impregnated into the matrix at room temperature and then dried to obtain a flat composite porous membrane. The thickness of the film is
30μm, and the pore diameter was 0.60μm. The water permeation rate showed a high value as shown in Table 2.

【表】 実施例 4 実施例1に用いたのと同じ中空糸状ポリエチレ
ン多孔質構造マトリツクスを、60℃に維持された
エチレン−ビニルアルコール(エチレン含量29モ
ル%、商品名ソアノールZ)0.5重量%溶液中を、
滞留時間5分間となるように連続的に走行させ、
該マトリツクスに該溶液を含浸せしめ、該マトリ
ツクス細孔表面にエチレン−ビニルアルコール溶
液を塗布せしめ、引き続き走行状態で55℃の熱風
を当てて溶媒を完全に蒸発させ中空糸を乾燥し中
空糸状複合多孔質膜を得た。エチレン−ビニルア
ルコール溶液に用いた溶媒は表3に示すエタノー
ルと水の混合溶媒である。表3に示すようにいず
れも高い透水性を示した。
[Table] Example 4 The same hollow fiber polyethylene porous structure matrix used in Example 1 was added to a 0.5% by weight solution of ethylene-vinyl alcohol (ethylene content 29 mol%, trade name Soarnol Z) maintained at 60°C. Inside,
Run continuously so that the residence time is 5 minutes,
The matrix is impregnated with the solution, the ethylene-vinyl alcohol solution is applied to the surface of the pores of the matrix, and the solvent is completely evaporated by blowing hot air at 55°C while the matrix is running, drying the hollow fibers to form hollow fiber composite pores. A membrane was obtained. The solvent used for the ethylene-vinyl alcohol solution was a mixed solvent of ethanol and water shown in Table 3. As shown in Table 3, all exhibited high water permeability.

【表】 実施例 5 高密度ポリエチレン(密度0.968、MI値5.5、商
品名ハイゼツクス2208J)を円形二重紡口を用い、
紡口温度150℃でで紡糸し、得られた中空糸を120
℃で2時間アニール処理した後、室温で30%、つ
いで98℃で200%の熱延伸、さらに110℃で2段目
の熱延伸、あわせて330%の熱延伸を施し中空糸
状ポリエチレン多孔質構造マトリツクスを得た。
該マトリツクスの内径は340μm、膜厚は50μmで
あつた。該マトリツクス840本を束ね、長さ30cm
の中空糸束を得た。 エチレン含量29モル%のエチレン−ビニルアル
コール共重合体(日本合成化学工業社製ソアノル
Z)を60容量%エタノール水溶液に加熱溶解させ
0.5重量%溶液とした。該溶液の温度を50℃に維
持し、前記中空糸束を該溶液中に浸漬し5分間放
置した。次いで過剰の共重合体溶液を除いた後55
℃の熱風で2時間乾燥した。このエチレン−ビニ
ルアルコール共重合体溶液による処理、乾燥を再
度繰り返し複合多孔質膜束を得た。得られた複合
多孔質膜の内径は340μm、膜厚は50μmであつ
た。またこの膜の透水速度は、9.5/hr・m2
mmHg、平均粒径0.2μmのポリマーラテツクスの
透過率は29%であつた。 この複合多孔質膜束を、内径18mm、長さ220mm
のポリカーボネート製円筒容器に収容し、両端を
ウレタン接着剤で固定し、膜束両端の端面を切り
出したのち、両端にノズルを取りつけ、複合多孔
質膜モジユールを製造した。該モジユールの有効
長は20cm、有効膜面積は0.18m2であつた。ついで
該モジユールの空間内に無菌蒸留水を充填し、
121℃、30分間の条件で、高圧蒸気滅菌を施した。
該モジユールの血漿分離器としての性能を測定す
るため、先ずモジユール内に充填された蒸留水を
生理食塩水に置換し、ついで抗血凝固剤として
ACD液(クエン酸−クエン酸ナトリウム−ブド
ウ糖液)を添加したヘマトクリツト35%の牛血液
を、血流量60m3/分の割合で流し、膜間差圧40mm
Hgをかけて血漿を採取した。採血漿速度および
蛋白質の透過率は表4に示す通りで、血漿分離器
としてすぐれた能力を示した。
[Table] Example 5 High-density polyethylene (density 0.968, MI value 5.5, trade name Hi-Zex 2208J) was made using a circular double spinneret.
Spun at a spinneret temperature of 150°C, the resulting hollow fiber was
After annealing at ℃ for 2 hours, hot stretching was carried out at room temperature for 30%, then at 98℃ for 200%, and then at 110℃ for a second step of hot stretching for a total of 330% to create a hollow fiber polyethylene porous structure. I got the matrix.
The inner diameter of the matrix was 340 μm, and the film thickness was 50 μm. 840 such matrices are bundled and the length is 30cm.
A hollow fiber bundle was obtained. An ethylene-vinyl alcohol copolymer (Soarnol Z manufactured by Nippon Gosei Kagaku Kogyo Co., Ltd.) with an ethylene content of 29 mol% was dissolved by heating in a 60 volume% ethanol aqueous solution.
A 0.5% by weight solution was prepared. The temperature of the solution was maintained at 50° C., and the hollow fiber bundle was immersed in the solution and left for 5 minutes. Then after removing excess copolymer solution 55
It was dried with hot air at ℃ for 2 hours. The treatment with the ethylene-vinyl alcohol copolymer solution and drying were repeated again to obtain a composite porous membrane bundle. The resulting composite porous membrane had an inner diameter of 340 μm and a film thickness of 50 μm. The water permeation rate of this membrane is 9.5/hr・m 2
The transmittance of the polymer latex with mmHg and average particle size of 0.2 μm was 29%. This composite porous membrane bundle has an inner diameter of 18 mm and a length of 220 mm.
The membrane bundle was placed in a polycarbonate cylindrical container, both ends were fixed with urethane adhesive, the end faces of both ends of the membrane bundle were cut out, and nozzles were attached to both ends to produce a composite porous membrane module. The effective length of the module was 20 cm, and the effective membrane area was 0.18 m 2 . Then, fill the space of the module with sterile distilled water,
High-pressure steam sterilization was performed at 121°C for 30 minutes.
In order to measure the performance of the module as a plasma separator, first, the distilled water filled in the module was replaced with physiological saline, and then as an anticoagulant.
Bovine blood with a hematocrit of 35% to which ACD solution (citric acid-sodium citrate-glucose solution) was added was passed at a blood flow rate of 60 m 3 /min, and the transmembrane pressure was 40 mm.
Plasma was collected by applying Hg. The plasma collection rate and protein permeability are shown in Table 4, indicating excellent performance as a plasma separator.

【表】 (発明の効果) 本発明の血液処理用親水性複合多孔質膜は水濡
れ性が良く特別の前処理なしに水透過性を示すと
ともに、湿潤による機械的強度の低下、膨潤もな
くまた水可溶性溶出物を含まない優れた多孔質膜
である。
[Table] (Effects of the invention) The hydrophilic composite porous membrane for blood treatment of the present invention has good water wettability and exhibits water permeability without any special pretreatment, and there is no decrease in mechanical strength or swelling due to wetting. It is also an excellent porous membrane that does not contain water-soluble eluates.

Claims (1)

【特許請求の範囲】 1 ポリオレフインからなり延伸開孔法によつて
製造された平均孔径が0.02〜4.0μmの多孔質構造
マトリツクスと、該マトリツクスの細孔表面を実
質的に被覆する、エチレン含量20〜70モル%、ケ
ン化度80%以上のエチレン−ビニルアルコール系
共重合体被覆層からなる血液処理用の親水性複合
多孔質膜。 2 多孔質構造マトリツクスを構成するポリオレ
フインがポリエチレンまたはポリプロピレンであ
る特許請求の範囲第1項記載の親水性複合多孔質
膜。 3 膜が中空糸膜である特許請求の範囲第1項又
は第2項に記載の親水性複合多孔質膜。 4 ポリオレフインからなり延伸開孔法によつて
製造された平均孔径が0.02〜4.0μmの多孔質構造
マトリツクスの細孔表面を、水混和性有機溶剤単
独または該溶剤と水との混合溶剤に溶解したエチ
レン含量20〜70モル%、ケン化度80%以上のエチ
レン−ビニルアルコール系共重合体溶液で処理す
ることを特徴とする血液処理用の親水性多孔質膜
の製法。 5 水混和性有機溶剤がジメチルスルホキシドま
たはエタノールである特許請求の範囲第4項記載
の製法。 6 エチレン−ビニルアルコール系共重合体溶液
による処理が、以下の(イ)及び(ロ)の連続処理である
特許請求の範囲第4項又は第5項に記載の製法。 (イ) 走行状態の多孔質構造マトリツクスの片面ま
たは両面に、エチレン−ビニルアルコール系共
重体溶液を供給する工程。 (ロ) 走行状態で、溶剤を蒸発除去する乾燥工程。 7 ポリオレフインからなる多孔質構造マトリツ
クスの形状が中空糸状である特許請求の範囲第6
項記載の製法。
[Scope of Claims] 1. A porous structured matrix made of polyolefin and manufactured by a stretch pore method and having an average pore diameter of 0.02 to 4.0 μm, and an ethylene content of 20 μm that substantially covers the pore surface of the matrix. A hydrophilic composite porous membrane for blood treatment comprising a coating layer of an ethylene-vinyl alcohol copolymer with a saponification degree of ~70 mol% and a saponification degree of 80% or more. 2. The hydrophilic composite porous membrane according to claim 1, wherein the polyolefin constituting the porous structure matrix is polyethylene or polypropylene. 3. The hydrophilic composite porous membrane according to claim 1 or 2, wherein the membrane is a hollow fiber membrane. 4. The pore surface of a porous structure matrix made of polyolefin and having an average pore diameter of 0.02 to 4.0 μm manufactured by a stretch pore method was dissolved in a water-miscible organic solvent alone or in a mixed solvent of the solvent and water. A method for producing a hydrophilic porous membrane for blood treatment, which comprises treating with an ethylene-vinyl alcohol copolymer solution having an ethylene content of 20 to 70 mol% and a degree of saponification of 80% or more. 5. The manufacturing method according to claim 4, wherein the water-miscible organic solvent is dimethyl sulfoxide or ethanol. 6. The manufacturing method according to claim 4 or 5, wherein the treatment with the ethylene-vinyl alcohol copolymer solution is a continuous treatment of the following (a) and (b). (a) A step of supplying an ethylene-vinyl alcohol copolymer solution to one or both sides of the porous structure matrix in a running state. (b) A drying process in which the solvent is evaporated and removed while the vehicle is running. 7 Claim 6, wherein the porous structural matrix made of polyolefin has a hollow fiber shape.
Manufacturing method described in section.
JP60112130A 1985-05-27 1985-05-27 Hydrophilic compound porous membrane and its preparation Granted JPS61271003A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60112130A JPS61271003A (en) 1985-05-27 1985-05-27 Hydrophilic compound porous membrane and its preparation
DE8686106559T DE3672898D1 (en) 1985-05-27 1986-05-14 HYDROPHILE POROESE COMPOSITE MEMBRANE, METHOD FOR THEIR PRODUCTION AND A PLASMA SEPARATOR.
EP19860106559 EP0203459B1 (en) 1985-05-27 1986-05-14 A hydrophilic composite porous membrane, a method of producing the same and a plasma separator
US07/075,542 US5084173A (en) 1985-05-27 1987-07-20 Hydrophilic composite porous membrane, a method of producing the plasma separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60112130A JPS61271003A (en) 1985-05-27 1985-05-27 Hydrophilic compound porous membrane and its preparation

Publications (2)

Publication Number Publication Date
JPS61271003A JPS61271003A (en) 1986-12-01
JPH0427891B2 true JPH0427891B2 (en) 1992-05-13

Family

ID=14578947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60112130A Granted JPS61271003A (en) 1985-05-27 1985-05-27 Hydrophilic compound porous membrane and its preparation

Country Status (1)

Country Link
JP (1) JPS61271003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195457A1 (en) * 2016-05-13 2017-11-16 旭化成メディカル株式会社 Polyethylene resin porous hollow fiber membrane, separation membrane, and method for manufacturing said membranes

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0513390B1 (en) * 1990-11-28 1996-02-14 Mitsubishi Rayon Co., Ltd. Porous hollow fiber membrane of polyethylene and production thereof
US6287730B1 (en) * 1998-08-14 2001-09-11 Celgard Inc. Hydrophilic polyolefin having a coating containing a surfactant and an EVOH copolymer
CN103517725A (en) 2011-03-04 2014-01-15 Dic株式会社 Sugar-immobilized polymer substrate for removing viruses, and method for removing viruses
JP5867901B2 (en) * 2012-01-19 2016-02-24 三菱レイヨン株式会社 Polyolefin hollow fiber membrane
WO2014034787A1 (en) * 2012-08-31 2014-03-06 Dic株式会社 Dialyzer capable of removing viruses
ES2902798T3 (en) * 2017-09-12 2022-03-29 Basf Se Melamine/formaldehyde foam, impregnated with phyllosilicate
EP3933023A4 (en) 2019-03-14 2022-09-28 Teijin Limited Membrane for concentrating biological particles, concentrating device, concentrating system, concentrating method, and method for detecting biological particles
JP7255945B2 (en) 2019-03-14 2023-04-11 帝人株式会社 Hydrophilic composite porous membrane
CN111644080B (en) * 2020-06-03 2022-03-22 武汉纺织大学 High-hydrophilicity nanofiber coating-based nanofiltration membrane and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638333A (en) * 1979-09-04 1981-04-13 Celanese Corp Microporous film treated with hydrophilic monomer
JPS58146405A (en) * 1982-02-24 1983-09-01 Nitto Electric Ind Co Ltd Treatment of permselective ultrafilter membrane
JPS609460A (en) * 1983-06-27 1985-01-18 Osaka Chem Lab Food composed of vinegar, soybean and unrefined vinegar
JPS61125408A (en) * 1984-11-20 1986-06-13 Mitsubishi Rayon Co Ltd Method for making porous polyolefin hollow yarn hydrophilic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638333A (en) * 1979-09-04 1981-04-13 Celanese Corp Microporous film treated with hydrophilic monomer
JPS58146405A (en) * 1982-02-24 1983-09-01 Nitto Electric Ind Co Ltd Treatment of permselective ultrafilter membrane
JPS609460A (en) * 1983-06-27 1985-01-18 Osaka Chem Lab Food composed of vinegar, soybean and unrefined vinegar
JPS61125408A (en) * 1984-11-20 1986-06-13 Mitsubishi Rayon Co Ltd Method for making porous polyolefin hollow yarn hydrophilic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195457A1 (en) * 2016-05-13 2017-11-16 旭化成メディカル株式会社 Polyethylene resin porous hollow fiber membrane, separation membrane, and method for manufacturing said membranes
JPWO2017195457A1 (en) * 2016-05-13 2018-12-06 旭化成メディカル株式会社 Polyethylene resin porous hollow fiber membrane, separation membrane, and production method thereof

Also Published As

Publication number Publication date
JPS61271003A (en) 1986-12-01

Similar Documents

Publication Publication Date Title
EP0203459B1 (en) A hydrophilic composite porous membrane, a method of producing the same and a plasma separator
US5084173A (en) Hydrophilic composite porous membrane, a method of producing the plasma separator
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
EP0498414B1 (en) Porous hollow fiber membrane of polypropylene and production thereof
EP0513390B1 (en) Porous hollow fiber membrane of polyethylene and production thereof
US4073733A (en) PVA membrane and method for preparing the same
KR900000773B1 (en) Hydrophilized membrane of porous hydrophobic material and process for preparing the same
JPS6214642B2 (en)
JPH0427891B2 (en)
JPH0525529B2 (en)
JP3168036B2 (en) Large-pore porous polyethylene hollow fiber membrane, method for producing the same, and hydrophilic porous polyethylene hollow fiber membrane
JPH05317664A (en) Porous hollow fiber membrane
JP3130996B2 (en) Large pore porous polypropylene hollow fiber membrane, method for producing the same, and hydrophilized porous polypropylene hollow fiber membrane
JPH04346825A (en) Production of hydrophilic porous membrane
JPS6339602A (en) Fine porous polyethylene membrane and its production
JPH02208333A (en) Porous hydrophilic polyolefin film and its production
JPS5836602B2 (en) Ethylene-vinyl alcohol copolymer membrane and its manufacturing method
EP0164468A2 (en) Porous membrane
KR20210124410A (en) Hydrophilic composite porous membrane
JPS5814906A (en) Permeable membrane
JPS61125408A (en) Method for making porous polyolefin hollow yarn hydrophilic
JPS63260938A (en) Porous membrane having heat resistance imparted thereto and its production
JPH0470936B2 (en)
JP2759339B2 (en) Manufacturing method of hydrophilized porous membrane
JPH0429409B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term