JPH05317664A - Porous hollow fiber membrane - Google Patents

Porous hollow fiber membrane

Info

Publication number
JPH05317664A
JPH05317664A JP4155685A JP15568592A JPH05317664A JP H05317664 A JPH05317664 A JP H05317664A JP 4155685 A JP4155685 A JP 4155685A JP 15568592 A JP15568592 A JP 15568592A JP H05317664 A JPH05317664 A JP H05317664A
Authority
JP
Japan
Prior art keywords
membrane
hollow fiber
pva
weight
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4155685A
Other languages
Japanese (ja)
Other versions
JP3216910B2 (en
Inventor
Kensaku Komatsu
賢作 小松
Takehiko Okamoto
健彦 岡本
Osamu Kusudo
修 楠戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP15568592A priority Critical patent/JP3216910B2/en
Publication of JPH05317664A publication Critical patent/JPH05317664A/en
Application granted granted Critical
Publication of JP3216910B2 publication Critical patent/JP3216910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a low cost porous hollow fiber membrane capable of easily producing by allowing a separation membrane composed of a hydrophobic resin excellent in physical and chemical properties is to contain a hydrophilic PVA based resin excellent in wettability, protein non-adsorptivity, contamination resistance and adhesivity. CONSTITUTION:The porous hollow fiber membrane is formed by using a raw solution composed of a hydrophobic resin, a pore forming agent and a common solvent for them and using a solution containing 1-20wt.% polyvinylalcohol based resin as an internal coagulating solution and/or external coagulating solution and the porous hollow fiber membrane contains 0.5-10wt.% polyvinylalcohol based resin in the membrane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は膜中にポリビニルアルコ
ール(以下PVAと略称する)系樹脂を含有する多孔質
中空糸膜、特に蛋白非吸着性、耐汚染性等に優れた多孔
質中空糸膜に関するものである。
FIELD OF THE INVENTION The present invention relates to a porous hollow fiber membrane containing a polyvinyl alcohol (hereinafter abbreviated as PVA) type resin in the membrane, particularly a porous hollow fiber excellent in protein non-adsorption and stain resistance. It is about membranes.

【0002】[0002]

【従来の技術】近年、選択透過性を有する分離膜を用い
た技術の発展はめざましく、医療用途、工業用途等で実
用化されている。かかる分離膜用の樹脂として、従来よ
りセルロース系、ポリイミド系、ポリアミド系、ポリア
クリロニトリル系、PVA系、ポリスルホン系等の樹脂
が使用されている。なかでもポリスルホン系等の疎水性
樹脂は耐熱性や耐薬品性等の物理化学的性質に優れてお
り、最近各用途に幅広く使用されている。
2. Description of the Related Art In recent years, a technique using a separation membrane having selective permeability has been remarkably developed and has been put to practical use in medical applications, industrial applications and the like. As a resin for such a separation membrane, a resin of cellulose type, polyimide type, polyamide type, polyacrylonitrile type, PVA type, polysulfone type or the like has been conventionally used. Among them, polysulfone-based hydrophobic resins are excellent in physicochemical properties such as heat resistance and chemical resistance, and have been widely used for various purposes recently.

【0003】しかし、疎水性樹脂からなる分離膜は、乾
燥させると透過性能が著しく減少するため、グリセリン
や界面活性剤等を膜に含浸させる親水化処理を施して透
過性能の低下を防止している。また乾燥させた分離膜を
再使用する場合には、アルコールや界面活性剤等による
湿潤化処理が施される。そのため親水化樹脂からなる分
離膜と比べコストが増加するとともに、取り扱いがめん
どうであり、また蛋白等の吸着、膜の汚染や目詰まり等
が生じやすいという欠点があった。
However, the permeation performance of a separation membrane made of a hydrophobic resin is remarkably reduced when dried, so that the permeation performance is prevented from being lowered by applying a hydrophilizing treatment in which the membrane is impregnated with glycerin or a surfactant. There is. When the dried separation membrane is reused, it is subjected to a moistening treatment with alcohol or a surfactant. Therefore, there are drawbacks that the cost is increased as compared with the separation membrane made of the hydrophilic resin, the handling is troublesome, and the adsorption of proteins and the like, the contamination of the membrane and the clogging are likely to occur.

【0004】これらの欠点は膜素材の疎水性に起因して
いるところが大きく、この欠点を、疎水性の分離膜に親
水性を付与することにより解決する試みがなされ、以下
に示すような種々の方法が提案されている。
These drawbacks are largely due to the hydrophobicity of the membrane material. Attempts have been made to solve this drawback by imparting hydrophilicity to the hydrophobic separation membrane, and various problems such as those shown below have been made. A method has been proposed.

【0005】(1) 混合原液法 ポリビニルピロリドン等の親水性樹脂を混合した原液を
用いて製膜し、膜中に親水性樹脂を残存させる方法。
(特開昭58−104940号公報、同60−9700
1号公報、同61−93801号公報、同62−382
05号公報、同63−99325号公報、特開平2−1
15028号公報等)
(1) Mixing stock solution method A method of forming a film using a stock solution in which a hydrophilic resin such as polyvinylpyrrolidone is mixed, and leaving the hydrophilic resin in the film.
(Unexamined-Japanese-Patent No. 58-104940, 60-9700).
1, gazette 61-93801 gazette, gazette 62-382.
No. 05, No. 63-99325, and Japanese Patent Laid-Open No. 2-1.
No. 15028, etc.)

【0006】(2) 膜表面改質法 製膜後に物理的または化学的処理を施して、膜表面に親
水基を導入あるいは親水性樹脂をグラフトする方法(特
開昭59−196322号公報、同60−87803号
公報、同62−45303号公報等) (3) 含浸法 製膜後、膜を親水性樹脂の溶液中に浸漬して膜中に親水
性樹脂を残存させる方法(特開昭61−268032号
公報、同61−268032号公報、同63−2291
08号公報等)
(2) Membrane surface modification method A method of introducing a hydrophilic group to the membrane surface or grafting a hydrophilic resin onto the membrane surface by subjecting the membrane to physical or chemical treatment (Japanese Patent Laid-Open No. 196322/1984). 60-87803, 62-45303, etc.) (3) Impregnation method After film formation, the film is immersed in a solution of hydrophilic resin to leave the hydrophilic resin in the film (JP-A-61-61). -268032 gazette, the same 61-268032 gazette, the same 63-2291.
08 publication)

【0007】[0007]

【発明が解決しようとする課題】しかしながら(1) の方
法のうち、特開昭58−104940号公報、同60−
97001号公報、同61−93801号公報、同62
−38205号公報、同63−99325号公報には、
ポリスルホン、ポリアミド、ポリフッ化ビニリデン等の
疎水性樹脂にポリビニルピロリドンを混合した原液を用
いて製膜して、膜中にポリビニルピロリドンを残存させ
る方法が記載されているが、ポリビニルピロリドンは親
水性には優れているが、他の物質とイオンコンプレック
スを形成したり、他の物質を吸着し易いため、イオンコ
ンプレックスの形成や吸着する物質を含む用途には吸着
性、汚染性、剥離性等において適用できないという欠点
がある。
However, among the methods of (1), the methods disclosed in JP-A-58-104940 and 60-
97001, 61-93801, 62.
-38205 and 63-99325,
Polysulfone, polyamide, polyvinylidene fluoride and other hydrophobic resins such as polyvinylidene fluoride is used to form a film using a stock solution, a method of leaving polyvinylpyrrolidone in the film is described, polyvinylpyrrolidone is not hydrophilic. It is excellent, but it cannot form an ion complex with other substances or easily adsorbs other substances, so it cannot be applied to the formation of ion complexes or applications involving substances that are adsorbed, in terms of adsorptivity, fouling property, peeling property, etc. There is a drawback.

【0008】また、上記の方法は親水性樹脂として、疎
水性樹脂との相溶性が優れたポリビニルピロリドンを用
いることによって初めて製膜できるのであって、疎水性
樹脂との相溶性が劣る他の親水性樹脂に適用できるわけ
ではない。
In the above method, polyvinylpyrrolidone having excellent compatibility with the hydrophobic resin can be used as the hydrophilic resin to form a film for the first time, and other hydrophilic resins having poor compatibility with the hydrophobic resin can be used. It is not applicable to the organic resin.

【0009】特開平2−115028号公報には、耐汚
染性や蛋白非吸着性等が優れるPVA系樹脂を含有した
ポリスルホン膜およびその製法が記載されているが、P
VA系樹脂はポリスルホンとの相溶性が劣るため、製膜
原液へ電解質を大量に添加してポリスルホンとの相溶性
を上げたり、氷浴中で製膜する等の特別な製造方法を採
用する必要があり、コストアップが避けられない。また
特別な製造方法であるために透過性の低い膜しか得られ
ていない。
Japanese Unexamined Patent Publication (Kokai) No. 2-115028 discloses a polysulfone membrane containing a PVA-based resin which is excellent in stain resistance and protein non-adsorption and a method for producing the same.
Since the VA resin has poor compatibility with polysulfone, it is necessary to adopt a special production method such as adding a large amount of electrolyte to the membrane-forming stock solution to increase the compatibility with polysulfone or forming a membrane in an ice bath. There is an unavoidable increase in cost. Further, since it is a special production method, only a membrane having low permeability is obtained.

【0010】(2) の方法は膜素材と反応させる薬品が危
険物であることが多く、取扱いに注意を要する上、反応
中に膜素材の分解や膜の変質が起こる恐れがある。また
反応の制御も困難であり、工業的規模の実施には適当で
ない。(3) の方法は孔径の極めて小さな膜、例えば逆浸
透膜、透析膜あるいは限外濾過膜では膜中に親水性高分
子を含浸させることは困難である。そのため適用される
分離膜が比較的孔径の大きい膜、例えば精密濾過膜等に
限定される。また、孔径制御が困難なため膜を安定に製
造することが難しく、工業的規模での実施には適当でな
い。
In the method (2), the chemical that reacts with the membrane material is often a dangerous substance, requires careful handling, and may cause decomposition of the membrane material or deterioration of the membrane during the reaction. In addition, the reaction is difficult to control and is not suitable for industrial scale implementation. In the method (3), it is difficult to impregnate a hydrophilic polymer into a membrane having a very small pore size, such as a reverse osmosis membrane, a dialysis membrane or an ultrafiltration membrane. Therefore, the applicable separation membrane is limited to a membrane having a relatively large pore size, such as a microfiltration membrane. In addition, it is difficult to control the pore size because it is difficult to stably manufacture the membrane, and it is not suitable for implementation on an industrial scale.

【0011】したがって、本発明の目的は、物理化学的
性能に優れた疎水性樹脂からなる分離膜に、水濡れ性、
蛋白非吸着性、耐汚染性、剥離性等に優れた親水性のP
VA系樹脂を含有させた、製造が容易で、安価な多孔質
中空糸膜を提供することにある。
Therefore, an object of the present invention is to provide a separation membrane made of a hydrophobic resin excellent in physicochemical performance with a water wettability,
Hydrophilic P with excellent protein non-adsorption, stain resistance, and peelability
An object of the present invention is to provide a porous hollow fiber membrane containing a VA resin, which is easy to manufacture and inexpensive.

【0012】[0012]

【課題を解決するための手段】本発明者らは疎水性樹脂
からなる分離膜に親水性を付与する上記従来の方法を徹
底的に検討した結果、多孔質中空糸膜においては、中空
糸膜を製造する際に、PVA系樹脂を含有させた内部凝
固液及び/または外部凝固液を使用すると、凝固段階で
凝固液中に含まれるPVA系樹脂が膜内部に拡散する
が、この膜内部に拡散したPVA系樹脂は、意外にも後
工程における洗浄によっても完全には抽出されず、膜内
部及び膜の内外表面に残存すること、また疎水性樹脂と
PVA系樹脂の相互作用の影響がほとんどないため任意
の疎水性樹脂との組み合わせが可能であることを見いだ
し、更に鋭意検討した結果本発明に到達したものであ
る。
Means for Solving the Problems As a result of a thorough study of the above-mentioned conventional method for imparting hydrophilicity to a separation membrane made of a hydrophobic resin, the present inventors have found that in a hollow hollow fiber membrane, a hollow fiber membrane is used. When an internal coagulation liquid and / or an external coagulation liquid containing a PVA-based resin is used in the production of, the PVA-based resin contained in the coagulation liquid at the coagulation stage diffuses inside the film. Surprisingly, the diffused PVA-based resin is not completely extracted even by the washing in the subsequent step, and remains on the inside of the membrane and the inner and outer surfaces of the membrane, and the influence of the interaction between the hydrophobic resin and the PVA-based resin is almost all. Since it is not present, it was found that it can be combined with any hydrophobic resin, and as a result of further intensive studies, the present invention has been achieved.

【0013】すなわち本発明は、疎水性樹脂、孔形成剤
およびそれらの共通溶媒からなる原液を用い、かつ内部
凝固液および/または外部凝固液として0.1〜20重
量%のポリビニルアルコール系樹脂を含有する溶液を用
いて製膜された多孔質中空糸膜であって、該多孔質中空
糸膜は膜中にポリビニルアルコール系樹脂を0.5〜1
0重量%含有することを特徴とする多孔質中空糸膜であ
る。
That is, the present invention uses a stock solution of a hydrophobic resin, a pore-forming agent and their common solvent, and uses 0.1 to 20% by weight of a polyvinyl alcohol resin as an internal coagulating liquid and / or an external coagulating liquid. A porous hollow fiber membrane produced by using a solution containing the polyvinyl alcohol-based resin in an amount of 0.5 to 1
The porous hollow fiber membrane is characterized by containing 0% by weight.

【0014】本発明の多孔質中空糸膜は精密濾過、限外
濾過の範疇の膜であり、膜の少なくとも一方の表面に平
均孔径が100オングストローム以上、通常500オン
グストローム以上の多数の微細孔を有し、かつ透水性は
100l/(m↑2 ・hr・Kg/cm↑2)以上、通常50
0l/(m↑2 ・hr/Kg)以上の膜をいう。また膜構造
はスポンジやフィンガーライク等の公知の構造を有する
膜である。通常膜の少なくとも一表面に緻密層を有する
非対称構造の膜が好適に用いられる。
The porous hollow fiber membrane of the present invention is a membrane in the category of microfiltration and ultrafiltration, and has a large number of fine pores having an average pore diameter of 100 Å or more, usually 500 Å or more, on at least one surface of the membrane. And the water permeability is 100 l / (m ↑ 2 ・ hr ・ Kg / cm ↑ 2) or more, usually 50
Means a film of 0 l / (m ↑ 2 · hr / Kg) or more. The film structure is a film having a known structure such as sponge or finger-like. Usually, a film having an asymmetric structure having a dense layer on at least one surface of the film is preferably used.

【0015】多孔質中空糸膜の膜内部及び膜内外表面
(以下膜中という)にはPVA系樹脂を0.5〜10重
量%含有している。PVA系樹脂の含有量が0.5重量
%未満であると十分な親水性が得られず、また10重量
%を越えると透水性の低下や膜を構成する疎水性樹脂の
特性が低下する。通常PVA系樹脂の含有量は1.0〜
7.0重量%、好ましくは2.5〜5.0重量%であ
る。
The porous hollow fiber membrane contains 0.5 to 10% by weight of a PVA-based resin on the inside and outside surfaces of the membrane (hereinafter referred to as the inside of the membrane). If the content of the PVA-based resin is less than 0.5% by weight, sufficient hydrophilicity cannot be obtained, and if it exceeds 10% by weight, the water permeability is lowered and the characteristics of the hydrophobic resin constituting the membrane are deteriorated. Usually, the PVA resin content is 1.0 to
It is 7.0% by weight, preferably 2.5 to 5.0% by weight.

【0016】本発明の多孔質中空糸膜の製法は、内部凝
固液および/または外部凝固液(以下凝固液という)に
PVA系樹脂を含有する溶液を使用し、凝固中にPVA
系樹脂を膜内部に拡散させて、該PVA系樹脂を膜内部
や内外表面に残存させるため、原液を形成する疎水性樹
脂は任意の樹脂が使用できる。また原液としては従来公
知の技術をそのまま採用することができる。従来より疎
水性樹脂、溶媒、ポア形成剤からなる原液が一般的に使
用されており、本発明でも上記原液を使用することがで
きる。
The method for producing a porous hollow fiber membrane of the present invention uses a solution containing a PVA-based resin as an internal coagulation liquid and / or an external coagulation liquid (hereinafter referred to as a coagulation liquid), and PVA is used during coagulation.
Since the PVA-based resin is diffused inside the film and the PVA-based resin is left inside the film or on the inner and outer surfaces, any resin can be used as the hydrophobic resin forming the stock solution. Further, as a stock solution, a conventionally known technique can be directly adopted. Conventionally, an undiluted solution comprising a hydrophobic resin, a solvent and a pore forming agent has been generally used, and the above undiluted solution can also be used in the present invention.

【0017】疎水性樹脂としては従来公知の膜形成用の
樹脂が使用できる。かかる疎水性樹脂としては、例えば
ポリスルホン、ポリエーテルスルホン、ポリアミド、ポ
リイミド、ポリアクリロニトリル、ポリスチレン、ポリ
フッ化ビニリデン、ポリ塩化ビニル、ポリメタクリル酸
メチル等が例示できる。
As the hydrophobic resin, a conventionally known film-forming resin can be used. Examples of such hydrophobic resin include polysulfone, polyether sulfone, polyamide, polyimide, polyacrylonitrile, polystyrene, polyvinylidene fluoride, polyvinyl chloride, polymethyl methacrylate and the like.

【0018】孔形成剤は膜の孔径の制御に用いられるも
のであり、膜素材や溶媒によりその種類や添加量が異な
るが、例えば水、アルコール類、グリコール類、エステ
ル類、グリセリン、有機酸、ポリエチレングリコール、
無機塩類等の単独あるいは2種類以上の混合物等の疎水
性樹脂の非溶媒、貧溶媒、膨潤剤等や、ZnO 、シリカ等
の無機微粒子が使用される。溶媒は疎水性樹脂と孔形成
剤を溶解し、かつPVA系樹脂を溶解できるものであれ
ば特に制限はない。
The pore-forming agent is used for controlling the pore size of the membrane, and the kind and the amount of addition are different depending on the membrane material and the solvent. For example, water, alcohols, glycols, esters, glycerin, organic acids, Polyethylene glycol,
Non-solvents, poor solvents, swelling agents and the like of hydrophobic resins such as inorganic salts and the like or a mixture of two or more kinds thereof, and inorganic fine particles such as ZnO and silica are used. The solvent is not particularly limited as long as it can dissolve the hydrophobic resin and the pore-forming agent and can dissolve the PVA-based resin.

【0019】凝固液は、例えば水、アルコール類、グリ
コール類、エステル類、グリセリン等の疎水性樹脂に対
して非溶媒又は貧溶媒の単独又は2種類以上の混合溶
液、あるいはこれらと溶媒との混合溶液にPVA系樹脂
を添加した系が用いられる。
The coagulating liquid is, for example, a nonsolvent or a poor solvent alone or a mixed solution of two or more kinds with respect to hydrophobic resins such as water, alcohols, glycols, esters and glycerin, or a mixture of these with a solvent. A system in which a PVA resin is added to the solution is used.

【0020】凝固液中に添加されるPVA系樹脂として
は、PVA、ビニルアルコールと酢酸ビニル、スチレ
ン、イタコン酸等のビニル化合物との共重合体、あるい
はグラフトポリマー等が例示できる。さらに荷電基を有
するPVA系樹脂を用いれば、親水性の他にイオン交換
性やイオン選択透過性をも付与することができる。また
PVA系樹脂の平均分子量は1万以上が好ましい。平均
分子量が1万未満であると拡散速度が速く膜中に比較的
均一に分散するが、洗浄によって抽出され易いため、膜
中の残存量を増加させることが困難である。また高分子
量のPVA系樹脂を用いれば拡散速度が遅くなって膜中
に残存させ易いが、凝固液の粘度上昇が大きく製膜が困
難となったり、洗浄に長時間を要する場合がある。
Examples of the PVA-based resin added to the coagulation liquid include PVA, copolymers of vinyl alcohol and vinyl compounds such as vinyl acetate, styrene and itaconic acid, and graft polymers. Furthermore, by using a PVA-based resin having a charged group, it is possible to impart not only hydrophilicity but also ion exchangeability and ion selective permeability. The average molecular weight of the PVA resin is preferably 10,000 or more. When the average molecular weight is less than 10,000, the diffusion rate is high and the particles are relatively uniformly dispersed in the film, but they are easily extracted by washing, and it is difficult to increase the residual amount in the film. Further, if a high molecular weight PVA-based resin is used, the diffusion rate becomes slow and it is likely to remain in the film, but the viscosity of the coagulating liquid increases so much that it may be difficult to form the film, or the cleaning may take a long time.

【0021】したがって、凝固液中に添加されるPVA
系樹脂の分子量は、疎水性樹脂の種類、膜構造により適
宜決定されるが、通常例えば限外濾過膜のように孔径の
小さい膜は比較的低分子量のもの、精密濾過膜等のよう
な孔径の大きな膜は比較的高分子量のものが用いられ
る。また、平均分子量の異なる2種類以上のPVA系樹
脂を混合使用することもできる。
Therefore, PVA added to the coagulating liquid
The molecular weight of the system resin is appropriately determined depending on the type of hydrophobic resin and the membrane structure. Normally, a membrane with a small pore size such as an ultrafiltration membrane has a relatively low molecular weight, and a pore size such as a microfiltration membrane. A relatively high molecular weight film is used. Further, two or more kinds of PVA-based resins having different average molecular weights can be mixed and used.

【0022】内部凝固液にPVA系樹脂を添加する場合
は、凝固液中のPVA系樹脂の濃度管理が容易で、また
少ない添加量でもPVA系樹脂を効率よく膜中に残存さ
せることができる。しかし溶液の粘度が紡糸性に影響を
与える場合があるので添加できるPVA系樹脂の量が限
定される場合がある。逆に外部凝固液にPVA系樹脂を
添加する場合は添加できるPVA系樹脂の量は任意であ
る。内部凝固液にPVA系樹脂を添加すると内表面側
に、また外部凝固液にPVA系樹脂を添加すると外表面
側にPVA系樹脂を局在化させることもできる。上記P
VA系樹脂の局在化はPVA系樹脂の分子量や添加量を
調節することで可能である。PVA系樹脂を内部凝固液
または外部凝固液に添加するか、あるいはその両方に添
加するかは紡糸方法、工程管理、コスト、膜特性等を考
慮にいれて選択することができる。
When the PVA-based resin is added to the internal coagulation liquid, it is easy to control the concentration of the PVA-based resin in the coagulation liquid, and the PVA-based resin can be efficiently left in the film even with a small addition amount. However, since the viscosity of the solution may affect the spinnability, the amount of PVA-based resin that can be added may be limited. On the contrary, when the PVA-based resin is added to the external coagulation liquid, the amount of the PVA-based resin that can be added is arbitrary. It is also possible to localize the PVA-based resin on the inner surface side by adding the PVA-based resin to the internal coagulating liquid and on the outer surface side by adding the PVA-based resin to the external coagulating liquid. Above P
The VA-based resin can be localized by adjusting the molecular weight and the addition amount of the PVA-based resin. Whether the PVA-based resin is added to the internal coagulation liquid or the external coagulation liquid, or both of them can be selected in consideration of the spinning method, process control, cost, film characteristics and the like.

【0023】凝固液へのPVA系樹脂の添加量は0.1
〜20重量%、通常1〜10重量%が好ましい。PVA
系樹脂の添加量が0.1重量%未満では疎水性膜に充分
な親水性効果を付与することができない。またPVA系
樹脂の添加量が20重量%を越えると余剰のPVA系樹
脂の洗浄除去が困難であるとともに、不経済でもある。
The amount of PVA resin added to the coagulation liquid is 0.1.
-20% by weight, usually 1-10% by weight is preferred. PVA
If the amount of the system resin added is less than 0.1% by weight, a sufficient hydrophilic effect cannot be imparted to the hydrophobic film. If the amount of PVA-based resin added exceeds 20% by weight, it is difficult to wash and remove the excess PVA-based resin, and it is uneconomical.

【0024】本発明の多孔質中空糸膜は公知の方法、例
えば乾湿式法、湿式法等により製膜できる。透過性能の
優れた膜を得る場合は通常乾湿式法が採用される。ノズ
ルから吐出された膜を湿式法では直接外部凝固液に浸漬
する。一方乾湿式法ではノズルから吐出された膜を気体
中(一般的には空気中)を通過させた後、外部凝固液に
浸漬する。乾湿式法ではノズルの吐出面と外部凝固液の
表面との距離、すなわち気中走行距離(ドライゾーン長
という)は0.1〜100cm、通常1〜50cmが好
ましく採用される。ドライゾーン長が0.1cm未満で
は外部凝固液の僅かな波立ちでノズルの先端が外部凝固
液に接触する恐れがある。一方ドライゾーン長が100
cmを越えると多ホール紡糸においては糸揺れによる中
空糸膜同志の膠着が発生する。
The porous hollow fiber membrane of the present invention can be formed by a known method such as a dry-wet method or a wet method. A dry-wet method is usually used to obtain a membrane having excellent permeability. In the wet method, the film discharged from the nozzle is directly immersed in the external coagulating liquid. On the other hand, in the dry-wet method, the film discharged from the nozzle is passed through gas (generally in air) and then immersed in an external coagulating liquid. In the dry-wet method, the distance between the discharge surface of the nozzle and the surface of the external coagulation liquid, that is, the running distance in air (called dry zone length) is preferably 0.1 to 100 cm, and usually 1 to 50 cm. If the dry zone length is less than 0.1 cm, the tip of the nozzle may come into contact with the external coagulating liquid due to slight waviness of the external coagulating liquid. On the other hand, the dry zone length is 100
If it exceeds 10 cm, in the multi-hole spinning, the hollow fiber membranes stick to each other due to the shaking of the yarn.

【0025】乾湿式法においてドライゾーンを相対湿度
80%以上に加湿すると、空気中の水分によりミクロ相
分離や緩和な凝固が促進されて膜外表面に孔径の大きな
多数の微孔を容易に形成することができる。この効果
は、ドライゾーン長が0.1cmと非常に短い場合にも
同様に認められる。
When the dry zone is humidified to a relative humidity of 80% or more in the dry-wet method, a large number of large pores having a large pore size are easily formed on the outer surface of the membrane by promoting microphase separation and mild solidification due to moisture in the air. can do. This effect is also recognized when the dry zone length is as short as 0.1 cm.

【0026】外部凝固液で凝固した中空糸膜は、次いで
水洗、または40〜70℃以下の温水で処理され、膜に
含有される溶媒、非溶媒、膨潤剤および余剰のPVA系
樹脂が抽出除去される。膜中に含ませたZno 、シリカ等
の無機粒子を抽出して微孔を形成させる場合には、特別
な抽出処理を行う必要がある。これらの処理によって余
剰のPVA系樹脂が膜から抽出除去される。しかし上記
処理によってもPVA系樹脂は完全に抽出することがで
きず、膜中に残存する。本発明では膜中に残存するPV
A系樹脂量を制御することにより、疎水性膜に親水性を
付与する。PVA系樹脂が膜中に残存する理由として
は、凝固段階でPVA系樹脂が膜中に拡散し、凝固によ
って膜中に取り込まれ固定化されるためと推測される。
The hollow fiber membrane coagulated with the external coagulation liquid is then washed with water or treated with warm water at 40 to 70 ° C. or less to extract and remove the solvent, non-solvent, swelling agent and excess PVA-based resin contained in the membrane. To be done. When extracting the inorganic particles such as Zno and silica contained in the film to form the micropores, it is necessary to perform a special extraction treatment. Excess PVA-based resin is extracted and removed from the membrane by these treatments. However, even with the above treatment, the PVA-based resin cannot be completely extracted and remains in the film. In the present invention, PV remaining in the film
By controlling the amount of A-based resin, hydrophilicity is imparted to the hydrophobic film. It is speculated that the reason why the PVA-based resin remains in the film is that the PVA-based resin diffuses into the film during the coagulation stage and is incorporated into the film by coagulation and immobilized.

【0027】次に、必要に応じて80℃以上の熱水処理
を行う。熱水処理をあらかじめ行っておくと、洗浄効率
が向上する上に熱に対する安定性が向上し、例えば高圧
蒸気滅菌処理を行う際に、中空糸膜の収縮等が防止でき
るので高圧蒸気滅菌処理を施す用途には有効である。ま
た、必要に応じて使用中に膜中に残存するPVA系樹脂
の溶出を防止するために、膜に物理的、または化学的処
理を施して膜中のPVA系樹脂を不溶化することもでき
る。不溶化処理には100℃以上の乾熱処理、アルデヒ
ドによるアセタール化、紫外線照射等の公知の技術が用
いられる。
Next, if necessary, hot water treatment at 80 ° C. or higher is performed. Performing hot water treatment in advance improves washing efficiency and improves stability to heat. For example, when performing high-pressure steam sterilization treatment, it is possible to prevent shrinkage of the hollow fiber membranes, etc. It is effective for application. Further, if necessary, in order to prevent the PVA-based resin remaining in the film during use from being eluted, the PVA-based resin in the film may be insolubilized by subjecting the film to a physical or chemical treatment. For the insolubilization treatment, known techniques such as dry heat treatment at 100 ° C. or higher, acetalization with aldehyde, and UV irradiation are used.

【0028】上述の処理を終えた中空糸膜は、たとえば
枠等に捲き取り、乾燥される。乾燥した中空糸膜は束ね
られて、ハウジング内に収納された後、その両端部はポ
リウレタン樹脂などの熱硬化性樹脂によりハウジングに
固定されモジュール化される。
The hollow fiber membrane which has undergone the above-mentioned treatment is wound on a frame or the like and dried. After the dried hollow fiber membranes are bundled and housed in the housing, both ends thereof are fixed to the housing with a thermosetting resin such as polyurethane resin to be modularized.

【0029】[0029]

【実施例】次に、本発明の多孔質中空糸膜を実施例によ
って更に詳しく説明する。なお、透水性は有効長15c
mのモジュールを作製し、乾燥状態の膜を25℃の純水
で膜の内側から1Kg/cm↑2の水圧をかけ、膜を透
過してきた純水の量を測定し、膜面積単位当たりの透水
量を算出した値であり、分画粒子径は90%以上阻止す
る粒子の大きさを示した。また、PVA系樹脂の膜中の
残存量は疎水性樹脂を溶媒で抽出した後に、残存した未
溶解物量の重量を測定し算出した。
EXAMPLES Next, the porous hollow fiber membranes of the present invention will be described in more detail by way of examples. The water permeability is an effective length of 15c.
A module of m was prepared, and the dry film was subjected to a water pressure of 1 Kg / cm ↑ 2 from the inside of the film with pure water at 25 ° C., and the amount of pure water that had permeated the film was measured. It is a value obtained by calculating the amount of water permeation, and the fractional particle size shows the size of particles that prevent 90% or more. The residual amount of the PVA-based resin in the film was calculated by extracting the hydrophobic resin with a solvent and then measuring the weight of the remaining undissolved substance.

【0030】実施例1 ポリスルホン(アモコ製 UDEL P−1700)2
0重量%、ポリエチレングリコール(三洋化成工業製
#600、分子量600) 36重量%、ジメチルホル
ムアミド 44重量部%を混合し、加熱撹拌して均一透
明な原液を調整した。この原液は33℃以上で相分離を
起こす性状を示した。上記原液を28℃にて16時間静
置し、脱泡した後、外径1.6mm、内径0.8mmの
2重環状ノズルより、ポリビニルアルコール(クラレ製
PVA−217)3重量%、ジメチルホルムアミド8
0重量%、水17重量%からなる28℃の内部凝固液と
ともに、50℃、相対湿度100%に調整された空気中
に押し出し、10cmの空中走行後、50℃の水からな
る外部凝固液中に浸漬して凝固させた。
Example 1 Polysulfone (UDEL P-1700 manufactured by Amoco) 2
0% by weight, polyethylene glycol (manufactured by Sanyo Kasei Co., Ltd.
# 600, molecular weight 600) 36% by weight and dimethylformamide 44% by weight were mixed and heated and stirred to prepare a uniform transparent stock solution. This stock solution exhibited the property of causing phase separation at 33 ° C or higher. The above stock solution was allowed to stand at 28 ° C. for 16 hours to be defoamed, then, from a double annular nozzle having an outer diameter of 1.6 mm and an inner diameter of 0.8 mm, 3% by weight of polyvinyl alcohol (PVA-217 manufactured by Kuraray) and dimethylformamide. 8
With an internal coagulating liquid of 0% by weight and 17% by weight of water at 28 ° C, extruded into air adjusted to 50 ° C and a relative humidity of 100%, after running in air for 10 cm, in an external coagulating liquid consisting of water at 50 ° C It was dipped in and solidified.

【0031】次いで、50℃の温水洗浄および95℃の
熱水洗浄により膜中のジメチルホルムアミド、ポリエチ
レングリコールおよび過剰のPVAを抽出した後、枠に
捲き取った。ついで膜をグルタールアルデヒド0.2重
量%、硫酸2重量%からなる60℃の溶液中に60分間
浸漬してPVAを架橋させた後、グルタールアルデヒド
及び硫酸を洗浄除去し、しかる後50℃の温風で乾燥し
て外径1.3mm、内径0.8mmの中空糸膜を得た。
Then, dimethylformamide, polyethylene glycol and excess PVA in the membrane were extracted by washing with hot water at 50 ° C. and washing with hot water at 95 ° C., and then wound on a frame. Then, the membrane is immersed in a solution of 0.2% by weight of glutaraldehyde and 2% by weight of sulfuric acid at 60 ° C. for 60 minutes to crosslink the PVA, and then glutaraldehyde and sulfuric acid are removed by washing, and then 50 ° C. To obtain a hollow fiber membrane having an outer diameter of 1.3 mm and an inner diameter of 0.8 mm.

【0032】この中空糸膜は、図1に示す膜の外表面の
5000倍の走査型電子顕微鏡写真(以下SEM写真と
いう)から、外表面には約0.1〜2μの多数の微細孔
が存在しており、また図2に示す膜の内表面の5000
倍のSEM写真から、内表面には約0.05〜0.1μ
の多数の微細孔が存在している。図3は膜の中央部の断
面、図4は膜の外表面側の断面、図5は膜の内表面側の
断面を示す5000倍のSEM写真である。図3〜図5
により、膜の断面構造は、外表面側と内表面側が比較的
緻密な構造であり、中央部が粗い非対称のスポンジ構造
であった。
This hollow fiber membrane has a large number of micropores of about 0.1 to 2 μm on the outer surface from the scanning electron microscope photograph (hereinafter referred to as SEM photograph) of 5000 times the outer surface of the membrane shown in FIG. Present and 5000 of the inner surface of the membrane shown in FIG.
Approximately 0.05-0.1μ on the inner surface from a double SEM photograph
There are a large number of micropores. 3 is a cross section of the central part of the film, FIG. 4 is a cross section of the outer surface side of the film, and FIG. 5 is a 5000 × SEM photograph showing a cross section of the inner surface side of the film. 3 to 5
As a result, the cross-sectional structure of the film was a relatively dense structure on the outer surface side and the inner surface side, and an asymmetric sponge structure with a rough central portion.

【0033】この中空糸膜の乾燥状態の透水性能は35
00l/(m↑2 ・hr・Kg/cm↑2)、分画粒子径は
0.1μであった。また中空糸膜中のPV系樹脂の残存
量は3.8重量%であった。この膜は乾燥と湿潤化を5
回繰り返しても透水性の変化は認められず、恒久的な親
水性が認められた。
The water permeability of this hollow fiber membrane in the dry state is 35.
001 / (m ↑ 2 · hr · Kg / cm ↑ 2), and the fractional particle diameter was 0.1μ. The residual amount of PV resin in the hollow fiber membrane was 3.8% by weight. This membrane is dry and moisturizing 5
No change in water permeability was observed even after repeated times, and permanent hydrophilicity was observed.

【0034】比較例1 ポリスルホン(アモコ製 UDEL P−1700)2
0重量%をジメチルホルムアミドに溶解し、この溶液に
ポリビニルアルコール(クラレ製 PVA−217)を
ポリスルホンに対して5重量%添加させただけで溶液は
白濁し、完全に相分離した。この原液では全く製膜でき
なかった。
Comparative Example 1 Polysulfone (UDEL P-1700 manufactured by Amoco) 2
Only 0% by weight was dissolved in dimethylformamide, and 5% by weight of polyvinyl alcohol (PVA-217 manufactured by Kuraray Co., Ltd.) was added to this solution, and the solution became cloudy and completely separated into phases. No film could be formed with this stock solution.

【0035】比較例2 実施例1と同じ原液を外径1.6mm、内径0.8mm
の2重環状ノズルより、ジメチルホルムアミド80重量
%、水20重量%からなる28℃の内部凝固液ととも
に、50℃、相対湿度100%に調整された空気中に押
し出し、10cmの空中走行後、50℃の水からなる外
部凝固液中に浸漬して凝固させた。次いで50℃の温水
洗浄と95℃の熱水洗浄によってジメチルホルムアミ
ド、ポリエチレングリコールを抽出除去し、ラウリル硫
酸ナトリウム0.1重量%の溶液中に浸漬した後に枠に
捲き取り、50℃の温風で乾燥して、外径1.3mm、
内径0.8mmの中空糸膜を得た。
Comparative Example 2 The same stock solution as in Example 1 was used with an outer diameter of 1.6 mm and an inner diameter of 0.8 mm.
From the double annular nozzle of No. 2, extruded into the air adjusted to 50 ° C. and relative humidity of 100% together with the internal coagulation liquid of 28 ° C. consisting of 80% by weight of dimethylformamide and 20% by weight of water, and after running in air for 10 cm, 50 It was solidified by immersing it in an external coagulating liquid consisting of water at ℃. Then, dimethylformamide and polyethylene glycol are extracted and removed by washing with warm water at 50 ° C. and washing with hot water at 95 ° C., soaked in a solution of sodium lauryl sulfate 0.1% by weight, wound on a frame, and warmed at 50 ° C. Dried to an outer diameter of 1.3 mm,
A hollow fiber membrane having an inner diameter of 0.8 mm was obtained.

【0036】この膜をラウリル硫酸ナトリウム0.1重
量%の水溶液で湿潤化し、水洗した後に透水性を測定し
たところ、3600l/(m↑2 ・hr・Kg/cm↑
2 )であり、分画粒子径は0.1μであった。しかしこ
の膜を乾燥した後に再度測定すると透水性はほとんどゼ
ロであった。
This membrane was moistened with an aqueous solution of 0.1% by weight of sodium lauryl sulfate, washed with water, and then the water permeability was measured to find that it was 3600 l / (m ↑ 2 · hr · Kg / cm ↑).
2), and the fractional particle size was 0.1 μm. However, when the film was dried and then measured again, the water permeability was almost zero.

【0037】実施例2 実施例1と比較例2で得られた中空糸膜を用いて、有効
長30cm、有効膜面積500cm↑2 の内圧型ラボモ
ジュールを作製した。このモジュールを用いて水道水の
内圧全濾過を実施し、透水性が300l/(m↑2 ・h
r・Kg/cm↑2 )になった時点で、膜間圧力差1k
g/cm↑2 で1分間透過液逆洗を行い、透水性の回復
性を調べた。上記試験を3回繰り返した結果、比較例2
の中空糸膜を用いたモジュールでは透水性が21%、1
5%、8%しか回復しなかったのに対し、実施例1の中
空糸膜を用いたモジュールは透水性が88%、85%、
87%と回復し、実施例1の中空糸膜が透過液逆洗によ
る剥離性が格段に優れていることが認められた。
Example 2 Using the hollow fiber membranes obtained in Example 1 and Comparative Example 2, an internal pressure type lab module having an effective length of 30 cm and an effective membrane area of 500 cm ↑ 2 was produced. This module was used to carry out total internal pressure filtration of tap water, and the water permeability was 300 l / (m ↑ 2 ・ h
r ・ Kg / cm ↑ 2), transmembrane pressure difference 1k
The permeated liquid was backwashed for 1 minute at g / cm ↑ 2, and the water permeability recovery property was examined. As a result of repeating the above test three times, Comparative Example 2
The module using the hollow fiber membrane has a water permeability of 21%, 1
Whereas only 5% and 8% were recovered, the module using the hollow fiber membrane of Example 1 had a water permeability of 88%, 85%,
It was recovered to 87%, and it was confirmed that the hollow fiber membrane of Example 1 had remarkably excellent releasability by backwashing with the permeated liquid.

【0038】次に実施例1と比較例2で得られた中空糸
膜を25℃のγ−グロブリン0.1重量%溶液中に24
時間浸漬して吸着性を調べた結果、γ−グロブリン吸着
率が比較例2の中空糸膜が35%であるのに対し、実施
例1の中空糸膜はわずかに1.5%であり実施例1の中
空糸膜は蛋白非吸着性に優れていることが認められた。
Next, the hollow fiber membranes obtained in Example 1 and Comparative Example 2 were placed in a 0.1% by weight solution of γ-globulin at 25 ° C. for 24 hours.
As a result of examining the adsorptivity by immersion for a time, the γ-globulin adsorption rate was 35% in the hollow fiber membrane of Comparative Example 2, whereas the hollow fiber membrane of Example 1 was only 1.5%. It was confirmed that the hollow fiber membrane of Example 1 was excellent in protein non-adsorption.

【0039】実施例3 ポリスルホン(アモコ製 UDEL P−1800)2
0重量%、ポリエチレングリコール(三洋化成工業製
#600、分子量600)10重量%、ジメチルホルム
アミド58.5重量%、無定形シリカ(徳山曹達社製
ファインシールB)11.5重量%を混合し、無定形シ
リカが均一に分散した白色の原液を調整した。
Example 3 Polysulfone (UDEL P-1800 manufactured by Amoco) 2
0% by weight, polyethylene glycol (manufactured by Sanyo Kasei Co., Ltd.
# 600, molecular weight 600) 10% by weight, dimethylformamide 58.5% by weight, amorphous silica (manufactured by Tokuyama Soda Co., Ltd.)
Fineseal B) 11.5 wt% was mixed to prepare a white stock solution in which amorphous silica was uniformly dispersed.

【0040】この原液を30℃にて、外径2.6mm、
内径1.5mmの2重環状ノズルよりポリビニルアルコ
ール(クラレ製 PVA−217)6重量%、ジメチル
ホルムアミド75重量%、水19重量%からなる30℃
の内部凝固液とともに、40℃、相対湿度100%に調
整された空気中に押し出し、10cmの空中走行後、3
0℃の水からなる外部凝固液中に浸漬して凝固させた。
This stock solution was heated at 30 ° C. and had an outer diameter of 2.6 mm,
30 ° C composed of 6% by weight of polyvinyl alcohol (PVA-217 manufactured by Kuraray), 75% by weight of dimethylformamide and 19% by weight of water from a double annular nozzle having an inner diameter of 1.5 mm.
Extruded into the air adjusted to 40 ° C and 100% relative humidity together with the internal coagulation liquid of 3 and after running in the air for 10 cm, 3
It was immersed in an external coagulating liquid consisting of water at 0 ° C. to coagulate.

【0041】次に、50℃の温水洗浄および95℃の熱
水洗浄によってジメチルホルムアミド、ポリエチレング
リコールおよび過剰のPVA系樹脂を抽出除去した後、
枠に捲き取った。更に実施例1と同様な方法でPVA系
樹脂を架橋した後、硫酸およびグルタールアルデヒドを
洗浄除去し、しかる後90℃に加温された15重量%の
水酸化ナトリウム水溶液で2時間処理して無定形シリカ
を抽出し、水酸化ナトリウムを洗浄除去し、50℃の温
風で乾燥することにより外径1.9mm、内径1.2m
mの中空糸膜を得た。
Next, dimethylformamide, polyethylene glycol and excess PVA resin were extracted and removed by washing with warm water at 50 ° C. and washing with hot water at 95 ° C.
It was rolled up on the frame. Further, after cross-linking the PVA-based resin in the same manner as in Example 1, the sulfuric acid and glutaraldehyde were washed and removed, and then treated with a 15 wt% sodium hydroxide aqueous solution heated at 90 ° C. for 2 hours. Amorphous silica is extracted, sodium hydroxide is removed by washing, and dried with warm air at 50 ° C to give an outer diameter of 1.9 mm and an inner diameter of 1.2 m.
m hollow fiber membrane was obtained.

【0042】この中空糸膜の透水性は9500l/(m
↑2 ・hr・Kg/cm↑2 )、分画粒子径は0.3μ
であった。また中空糸膜中のPVAの残存量は4.8重
量%であった。この膜は乾燥と湿潤化の繰り返しによっ
ても透水性の変化は認められず、恒久的な親水性が認め
られた。
The water permeability of this hollow fiber membrane is 9500 l / (m
↑ 2 ・ hr ・ Kg / cm ↑ 2), fraction particle size is 0.3μ
Met. The residual amount of PVA in the hollow fiber membrane was 4.8% by weight. This membrane showed no change in water permeability even after repeated drying and moistening, and showed permanent hydrophilicity.

【0043】実施例4 ポリスルホン(アモコ製 UDEL P−1700)1
8重量%、ポリエチレングリコール(三洋化成工業製
#600、分子量600)36重量%、ジメチルホルム
アミド 46重量部%を混合溶解して原液とした。この
原液は37℃以上で相分離を起こす性状を示した。32
℃に保ったこの原液を、外径1.0mm、内径0.5m
mの2重環状ノズルよりポリビニルアルコール(クラレ
製 PVA−205)3重量%、ジメチルホルムアミド
81重量%、水16重量%からなる32℃に加温された
内部凝固液とともに、50℃、相対湿度100%に調整
された空気中に押し出し、10cmの空中走行後に50
℃の水からなる外部凝固液に浸漬凝固させた。
Example 4 Polysulfone (UDEL P-1700 manufactured by Amoco) 1
8% by weight, polyethylene glycol (manufactured by Sanyo Kasei Co., Ltd.
# 600, molecular weight 600) 36% by weight and dimethylformamide 46% by weight were mixed and dissolved to obtain a stock solution. This stock solution exhibited the property of causing phase separation at 37 ° C or higher. 32
This undiluted solution kept at ℃, outside diameter 1.0mm, inside diameter 0.5m
From a double annular nozzle of m, polyvinyl alcohol (PVA-205 manufactured by Kuraray) 3% by weight, dimethylformamide 81% by weight, and water 16% by weight together with an internal coagulating liquid heated to 32 ° C, 50 ° C, relative humidity 100. Extruded into the air adjusted to 50%, and after running in the air for 10 cm, 50
It was dipped and solidified in an external coagulating liquid consisting of water at ℃.

【0044】次に、50℃の温水洗浄と95℃の熱水洗
浄によってジメチルホルムアミド、ポリエチレングリコ
ールおよび過剰のPVA系樹脂を抽出除去して、枠に捲
き取った。ついで実施例1と同様な方法でPVA系樹脂
を架橋した後、グルタールアルデヒド及び硫酸を洗浄除
去し、50℃の温風で乾燥して外径0.45mm、内径
0.32mmの中空糸膜を得た。この膜の乾燥状態の透
水性は7000l/(m↑2 ・hr・Kg/cm↑2
)、分画粒子径は0.2μであった。また中空糸膜中
のPVAの残存量は3.4重量%であった。この膜は乾
燥と湿潤化の繰り返しによって透水性の変化は認められ
ず、恒久的な親水性が認められた。
Then, dimethylformamide, polyethylene glycol and excess PVA-based resin were extracted and removed by washing with warm water at 50 ° C. and washing with hot water at 95 ° C. and wound on a frame. Then, after cross-linking the PVA-based resin in the same manner as in Example 1, the glutaraldehyde and sulfuric acid were washed and removed, and dried with warm air at 50 ° C. to form a hollow fiber membrane having an outer diameter of 0.45 mm and an inner diameter of 0.32 mm. Got The water permeability of this membrane is 7,000 l / (m ↑ 2 ・ hr ・ Kg / cm ↑ 2
), And the fractional particle size was 0.2 μm. The residual amount of PVA in the hollow fiber membrane was 3.4% by weight. This membrane showed no change in water permeability due to repeated drying and moistening, and permanent hydrophilicity.

【0045】次に、上記中空糸膜を用いてACD加採血
した牛血液によるin vitro評価を行った。その
結果透水性:QF max=40ml/min(血液流
量:QB =100ml/min),血中蛋白の透過率は
95%以上と優れた濾過性能を示した。
Next, in vitro evaluation was performed using ACD-added bovine blood using the above hollow fiber membrane. As a result, excellent filtration performance was obtained with a water permeability: QF max = 40 ml / min (blood flow rate: QB = 100 ml / min) and a blood protein permeability of 95% or more.

【0046】実施例5 ポリスルホン(アモコ製 UDEL P−3500)1
8重量%、ポリエチレングリコール(三洋化成工業製
#600、分子量600)34重量%、水0.1重量%
をジメチルホルムアミドで混合溶解して原液とした。こ
の原液は21℃以上で相分離する性状を示した。18℃
に保ったこの原液を、外径1.0mm、内径0.5mm
の2重環状ノズルよりジメチルホルムアミド75重量
%、水25重量%からなる18℃の内部凝固液ととも
に、40℃、相対湿度100%に調整された空気中に押
し出し、20cmの空中走行後に40℃のポリビニルア
ルコール(PVA−205)12重量%水溶液からなる
外部凝固液中に浸漬凝固させた。
Example 5 Polysulfone (UDEL P-3500 manufactured by Amoco) 1
8% by weight, polyethylene glycol (manufactured by Sanyo Kasei Co., Ltd.
# 600, molecular weight 600) 34% by weight, water 0.1% by weight
Was mixed and dissolved with dimethylformamide to obtain a stock solution. This stock solution showed a property of phase separation at 21 ° C. or higher. 18 ° C
This undiluted solution kept at 1.0 mm outer diameter, 0.5 mm inner diameter
Extruded into the air adjusted to 40 ° C and relative humidity of 100% together with the internal coagulating liquid of 75% by weight of dimethylformamide and 25% by weight of water from the double annular nozzle of 40 ° C. It was immersed and solidified in an external coagulating liquid consisting of a 12% by weight aqueous solution of polyvinyl alcohol (PVA-205).

【0047】次に、50℃の温水洗浄と95℃の熱水洗
浄によってジメチルホルムアミド、ポリエチレングリコ
ールおよび過剰のPVA系樹脂を抽出除去して、枠に捲
き取った。ついで実施例1と同様な方法でPVA系樹脂
を架橋した後、グルタールアルデヒド及び硫酸を洗浄除
去し、50℃の温風で乾燥して外径0.8mm、内径
0.5mmの中空糸膜を得た。この膜の乾燥状態の透水
性は1600l/(m↑2 ・hr・Kg/cm↑2 )、
分画粒子径は0.02μであった。また中空糸膜中のP
VAの残存量は2.6重量%であり、乾燥と湿潤化の繰
り返しによって透水性の変化は認められず、恒久的な親
水性が認められた。
Next, dimethylformamide, polyethylene glycol and excess PVA-based resin were extracted and removed by washing with warm water at 50 ° C. and washing with hot water at 95 ° C. and wound on a frame. Then, after cross-linking the PVA-based resin in the same manner as in Example 1, glutaraldehyde and sulfuric acid were washed and removed, and dried with warm air at 50 ° C. to obtain a hollow fiber membrane having an outer diameter of 0.8 mm and an inner diameter of 0.5 mm. Got The water permeability of this membrane in the dry state is 1600 l / (m ↑ 2 · hr · Kg / cm ↑ 2),
The fractional particle size was 0.02μ. In addition, P in the hollow fiber membrane
The residual amount of VA was 2.6% by weight, no change in water permeability was observed due to repeated drying and moistening, and permanent hydrophilicity was observed.

【0048】実施例6 内部凝固液組成をアニオン変性PVA(クラレ製 KL
−506)3重量%、ジメチルホルムアミド79重量
%、水18重量%とした以外は実施例1と同一の方法で
中空糸膜を作製した。得られた中空糸膜の乾燥状態の透
水性は2800l/(m↑2 ・hr・Kg/cm↑2
)、分画粒子径は0.08μであった。また中空糸膜
中のPVAの残存量は2.8重量%であり、アニオン基
のイオン基量は0.1ミリ当量であった。この膜は乾燥
と湿潤化の繰り返しによって透水性の変化は認められ
ず、恒久的な親水性が認められた。
Example 6 The composition of the internal coagulation liquid was anion-modified PVA (Kuraray KL
-506) A hollow fiber membrane was produced in the same manner as in Example 1 except that 3% by weight, 79% by weight of dimethylformamide, and 18% by weight of water were used. The water permeability of the obtained hollow fiber membrane in the dry state is 2800 l / (m ↑ 2 ・ hr ・ Kg / cm ↑ 2
), And the fractional particle size was 0.08μ. The residual amount of PVA in the hollow fiber membrane was 2.8% by weight, and the amount of ionic groups of anion groups was 0.1 meq. This membrane showed no change in water permeability due to repeated drying and moistening, and permanent hydrophilicity.

【0049】実施例7 ポリイミド(アップジョン製 2080D)20重量
%、エチレングリコール20重量%をジメチルホルムア
ミドに混合溶解して原液とした。この原液を30℃に保
ち、外径1.6mm、内径0.8mmの2重環状ノズル
よりポリビニルアルコール(クラレ製 PVA−20
5)4重量%、ジメチルホルムアミド70重量%、エチ
レングリコール6重量%、水20重量%からなる30℃
の内部凝固液とともに、50℃、相対湿度100%の空
気中に押し出し、10cmの空中走行後、50℃の水か
らなる外部凝固液中に浸漬して凝固させた。
Example 7 20% by weight of polyimide (2080D manufactured by Upjohn) and 20% by weight of ethylene glycol were mixed and dissolved in dimethylformamide to obtain a stock solution. This stock solution was kept at 30 ° C., and polyvinyl alcohol (PVA-20 manufactured by Kuraray Co., Ltd.
5) 30 ° C consisting of 4% by weight, dimethylformamide 70% by weight, ethylene glycol 6% by weight, water 20% by weight
Was extruded into the air of 50 ° C. and a relative humidity of 100% together with the internal coagulating liquid of Example 1, and after running in the air for 10 cm, it was immersed in an external coagulating liquid of water at 50 ° C. to coagulate.

【0050】次いで、50℃の温水洗浄と95℃の熱水
洗浄でジメチルホルムアミド、ポリエチレングリコール
および過剰のPVAを抽出して、枠に捲き取った。つい
でグルタールアルデヒド0.2重量%、硫酸2重量%か
らなる60℃の溶液中に60分間浸漬してPVAを架橋
し、グルタールアルデヒドおよび硫酸を洗浄除去してか
ら、50℃の温風で乾燥して、外径1.3mm、内径
0.8mmの中空糸膜を得た。この膜の乾燥状態の透水
性は1300l/(m↑2 ・hr・Kg/cm↑2 )、
分画粒子径は0.02μであった。また中空糸膜中のP
VAの残存量は3.5重量%であり、乾燥と湿潤化の繰
り返しによって透水性の変化は認められず、恒久的な親
水性が認められた。
Then, dimethylformamide, polyethylene glycol and excess PVA were extracted by washing with warm water at 50 ° C. and washing with hot water at 95 ° C. and wound on a frame. Then, the PVA was crosslinked by immersing it in a solution of glutaraldehyde (0.2% by weight) and sulfuric acid (2% by weight) at 60 ° C for 60 minutes to wash and remove the glutaraldehyde and sulfuric acid, and then with warm air at 50 ° C. After drying, a hollow fiber membrane having an outer diameter of 1.3 mm and an inner diameter of 0.8 mm was obtained. The water permeability of this membrane is 1300 l / (m ↑ 2 · hr · Kg / cm ↑ 2),
The fractional particle size was 0.02μ. In addition, P in the hollow fiber membrane
The residual amount of VA was 3.5% by weight, no change in water permeability was observed due to repeated drying and moistening, and permanent hydrophilicity was observed.

【0051】[0051]

【発明の効果】以上のように本発明の多孔質中空糸膜
は、特定量のPVA系樹脂を含有する凝固液を用いるだ
けのわずかな操作で、疎水性樹脂をベースとする膜中に
PVA系樹脂が0.5〜10重量%残存させることがで
き、疎水性膜の性質の他に、親水性、蛋白非吸着性にも
優れた多孔性中空糸膜が提供できる。そのため逆洗等で
簡単に濾過性能が回復できるために安定した濾過性能を
得ることができる。
Industrial Applicability As described above, the porous hollow fiber membrane of the present invention contains PVA in a hydrophobic resin-based membrane by a slight operation using a coagulating liquid containing a specific amount of PVA-based resin. It is possible to provide 0.5 to 10% by weight of the resin, and it is possible to provide a porous hollow fiber membrane which is excellent in hydrophilicity and protein non-adsorbability in addition to the properties of the hydrophobic membrane. Therefore, the filtration performance can be easily recovered by backwashing or the like, so that stable filtration performance can be obtained.

【0052】また、PVA系樹脂は血液適合性にも優れ
ているため、本発明の多孔性中空糸膜を医療用途に適用
すると、蛋白付着が抑制できて安定した濾過性能が得ら
れる。そして、抗血栓性の作用により、膜表面への血小
板付着の抑制と凝固系の非活性化等をもたすことができ
る。
Since the PVA-based resin is also excellent in blood compatibility, when the porous hollow fiber membrane of the present invention is applied to medical purposes, protein attachment can be suppressed and stable filtration performance can be obtained. The antithrombotic action can suppress the adhesion of platelets to the membrane surface and deactivate the coagulation system.

【0053】さらにPVA系樹脂としてアニオン変性P
VA等の荷電基を有するPVA系樹脂を選択すると、親
水性効果の他に電気的作用により耐汚染性や分離性能を
向上させることやイオン選択透過性、イオン交換性を付
与することができる。
Further, as a PVA-based resin, anion-modified P
When a PVA-based resin having a charged group such as VA is selected, in addition to the hydrophilic effect, it is possible to improve the stain resistance and the separation performance by an electric action, and impart the ion selective permeability and the ion exchange property.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた多孔質中空糸膜の外表面の
構造を示す5000倍のSEM写真である。
FIG. 1 is a 5000 × SEM photograph showing the structure of the outer surface of the porous hollow fiber membrane obtained in Example 1.

【図2】上記多孔質中空糸膜の内表面の構造を示す50
00倍のSEM写真である。
FIG. 2 shows the structure of the inner surface of the porous hollow fiber membrane 50.
It is a SEM photograph of 00 times.

【図3】上記多孔質中空糸膜の断面中央部の構造を示す
5000倍のSEM写真である。
FIG. 3 is a 5000 × SEM photograph showing the structure of the central portion of the cross section of the porous hollow fiber membrane.

【図4】上記多孔質中空糸膜の外表面側の断面構造を示
す5000倍のSEM写真である。
FIG. 4 is a 5000 × SEM photograph showing a cross-sectional structure of the outer surface side of the porous hollow fiber membrane.

【図5】上記多孔質中空糸膜の内表面側の断面構造を示
す5000倍のSEM写真である。
FIG. 5 is a 5000 × SEM photograph showing a cross-sectional structure on the inner surface side of the porous hollow fiber membrane.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 疎水性樹脂、孔形成剤およびそれらの共
通溶媒からなる原液を用い、かつ0.1〜20重量%の
ポリビニルアルコール系樹脂を含有する溶液を内部凝固
液および/または外部凝固液として用いて製膜された多
孔質中空糸膜であって、該多孔質中空糸膜は膜中にポリ
ビニルアルコール系樹脂を0.5〜10重量%含有する
ことを特徴とする多孔質中空糸膜。
1. An internal coagulation liquid and / or an external coagulation liquid is prepared by using a stock solution containing a hydrophobic resin, a pore-forming agent and a common solvent thereof, and containing 0.1 to 20% by weight of a polyvinyl alcohol resin. A porous hollow fiber membrane produced by using as a membrane, wherein the porous hollow fiber membrane contains polyvinyl alcohol-based resin in an amount of 0.5 to 10% by weight. ..
JP15568592A 1992-05-22 1992-05-22 Porous hollow fiber membrane Expired - Lifetime JP3216910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15568592A JP3216910B2 (en) 1992-05-22 1992-05-22 Porous hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15568592A JP3216910B2 (en) 1992-05-22 1992-05-22 Porous hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPH05317664A true JPH05317664A (en) 1993-12-03
JP3216910B2 JP3216910B2 (en) 2001-10-09

Family

ID=15611323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15568592A Expired - Lifetime JP3216910B2 (en) 1992-05-22 1992-05-22 Porous hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP3216910B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193200A (en) * 2004-01-09 2005-07-21 Kuraray Co Ltd Hollow fiber membrane having excellent mechanical strength and its production method
JP2005230811A (en) * 2004-01-19 2005-09-02 Mitsubishi Rayon Co Ltd Production method for porous membrane
JP2005329087A (en) * 2004-05-20 2005-12-02 Toyobo Co Ltd Polysulfone base permselective hollow fiber membrane excellent in hemocompatibility
JP2005342102A (en) * 2004-06-01 2005-12-15 Toyobo Co Ltd Polysulfone based permselective hollow yarn membrane with excellent blood compatibility
WO2006001528A1 (en) * 2004-06-28 2006-01-05 Kureha Corporation Porous membrane for water treatment and process for producing the same
JP2010155204A (en) * 2008-12-26 2010-07-15 Kuraray Co Ltd Method of producing composite hollow fiber membrane
WO2015008668A1 (en) * 2013-07-18 2015-01-22 株式会社クラレ Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
WO2016072409A1 (en) * 2014-11-04 2016-05-12 旭化成メディカル株式会社 Hollow fiber filtration membrane
CN107158845A (en) * 2017-04-27 2017-09-15 舒尔环保科技(合肥)有限公司 It is a kind of to have air-filtering membrane of adsorptivity and preparation method thereof
CN114272773A (en) * 2021-12-24 2022-04-05 中化(宁波)润沃膜科技有限公司 High-strength large-flux porous nanofiltration membrane and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104705A1 (en) 2008-02-21 2009-08-27 東洋紡績株式会社 Hollow-fiber ultrafiltration membrane with excellent fouling resistance

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193200A (en) * 2004-01-09 2005-07-21 Kuraray Co Ltd Hollow fiber membrane having excellent mechanical strength and its production method
JP2005230811A (en) * 2004-01-19 2005-09-02 Mitsubishi Rayon Co Ltd Production method for porous membrane
JP4502324B2 (en) * 2004-01-19 2010-07-14 三菱レイヨン株式会社 Method for producing porous membrane
JP2005329087A (en) * 2004-05-20 2005-12-02 Toyobo Co Ltd Polysulfone base permselective hollow fiber membrane excellent in hemocompatibility
JP2005342102A (en) * 2004-06-01 2005-12-15 Toyobo Co Ltd Polysulfone based permselective hollow yarn membrane with excellent blood compatibility
WO2006001528A1 (en) * 2004-06-28 2006-01-05 Kureha Corporation Porous membrane for water treatment and process for producing the same
JP2010155204A (en) * 2008-12-26 2010-07-15 Kuraray Co Ltd Method of producing composite hollow fiber membrane
WO2015008668A1 (en) * 2013-07-18 2015-01-22 株式会社クラレ Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
CN105392553A (en) * 2013-07-18 2016-03-09 可乐丽股份有限公司 Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
JPWO2015008668A1 (en) * 2013-07-18 2017-03-02 株式会社クラレ Hydrophilic vinylidene fluoride porous hollow fiber membrane and method for producing the same
US10406487B2 (en) 2013-07-18 2019-09-10 Kuraray Co., Ltd. Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
WO2016072409A1 (en) * 2014-11-04 2016-05-12 旭化成メディカル株式会社 Hollow fiber filtration membrane
CN107158845A (en) * 2017-04-27 2017-09-15 舒尔环保科技(合肥)有限公司 It is a kind of to have air-filtering membrane of adsorptivity and preparation method thereof
CN114272773A (en) * 2021-12-24 2022-04-05 中化(宁波)润沃膜科技有限公司 High-strength large-flux porous nanofiltration membrane and preparation method thereof

Also Published As

Publication number Publication date
JP3216910B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
EP0568045B1 (en) Polysulfone-based hollow fiber membrane and process for manufacturing the same
US6432309B1 (en) Polysulfone-base hollow-fiber hemocathartic membrane and processes for the production thereof
CA2530805C (en) Membranes containing poly(vinyl methyl ether) and hydrophilisation of membranes using poly(vinyl methyl ether)
US20080214687A1 (en) Cross Linking Treatment of Polymer Membranes
JPH06165926A (en) Polysulfone hollow fabric membrane and production therefor
WO2015032786A1 (en) Permselective asymmetric membranes
JP3216910B2 (en) Porous hollow fiber membrane
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JP3617194B2 (en) Permselective separation membrane and method for producing the same
JPS61283305A (en) Porous hollow yarn membrane
JP2519831B2 (en) Method for producing charged separation membrane
JPH07289863A (en) Polysulfone hollow fiber membrane and its production
JP3314861B2 (en) Hollow fiber membrane
JPH11309355A (en) Polysulfone hollow fiber type blood purifying membrane and its production
JP3211701B2 (en) Hollow fiber type selective separation membrane and method for producing the same
JPH0929078A (en) Production of hollow yarn membrane
JPH04293528A (en) Treatment of separating membrane
JP2883406B2 (en) Hydrophilic membrane
CN114749035B (en) Low-pressure large-flux hollow fiber nanofiltration membrane, and preparation method and application thereof
JPH09253463A (en) Manufacture of polysulfone type ultrafiltration film
JP2000210544A (en) Production of semipermeable membrane
JPH0924261A (en) Manufacture of polysulfone porous hollow yarn membrane
JPH04166219A (en) Production of membrane provided with hydrophilic property
JPH0534046B2 (en)
JP2899348B2 (en) Porous hollow fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11