KR100264676B1 - Manufacturing method of high density polyethylene hollow fiber separator - Google Patents
Manufacturing method of high density polyethylene hollow fiber separator Download PDFInfo
- Publication number
- KR100264676B1 KR100264676B1 KR1019980006962A KR19980006962A KR100264676B1 KR 100264676 B1 KR100264676 B1 KR 100264676B1 KR 1019980006962 A KR1019980006962 A KR 1019980006962A KR 19980006962 A KR19980006962 A KR 19980006962A KR 100264676 B1 KR100264676 B1 KR 100264676B1
- Authority
- KR
- South Korea
- Prior art keywords
- density polyethylene
- high density
- hollow fiber
- spinning
- liquid paraffin
- Prior art date
Links
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 20
- 229920001903 high density polyethylene Polymers 0.000 title claims abstract description 16
- 239000004700 high-density polyethylene Substances 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000012528 membrane Substances 0.000 claims abstract description 38
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000000654 additive Substances 0.000 claims abstract description 16
- 229940057995 liquid paraffin Drugs 0.000 claims abstract description 11
- 230000000996 additive effect Effects 0.000 claims abstract description 10
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 238000002074 melt spinning Methods 0.000 claims abstract description 9
- 238000005191 phase separation Methods 0.000 claims abstract description 9
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 235000012424 soybean oil Nutrition 0.000 claims abstract description 5
- 239000003549 soybean oil Substances 0.000 claims abstract description 5
- 239000003085 diluting agent Substances 0.000 claims description 21
- 238000005345 coagulation Methods 0.000 claims description 16
- 230000015271 coagulation Effects 0.000 claims description 16
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 claims description 12
- 238000010622 cold drawing Methods 0.000 claims description 7
- 150000001336 alkenes Chemical class 0.000 claims description 2
- 230000001112 coagulating effect Effects 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 26
- 229920000642 polymer Polymers 0.000 abstract description 20
- 239000011148 porous material Substances 0.000 abstract description 15
- 238000000926 separation method Methods 0.000 abstract description 14
- 239000004698 Polyethylene Substances 0.000 abstract description 11
- -1 polyethylene Polymers 0.000 abstract description 11
- 229920000573 polyethylene Polymers 0.000 abstract description 11
- 239000000203 mixture Substances 0.000 abstract description 10
- 239000000155 melt Substances 0.000 abstract description 4
- PXXNTAGJWPJAGM-VCOUNFBDSA-N Decaline Chemical compound C=1([C@@H]2C3)C=C(OC)C(OC)=CC=1OC(C=C1)=CC=C1CCC(=O)O[C@H]3C[C@H]1N2CCCC1 PXXNTAGJWPJAGM-VCOUNFBDSA-N 0.000 abstract 2
- 230000001939 inductive effect Effects 0.000 abstract 1
- 238000002360 preparation method Methods 0.000 abstract 1
- 238000009987 spinning Methods 0.000 description 24
- 239000000243 solution Substances 0.000 description 14
- 230000035699 permeability Effects 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 238000000071 blow moulding Methods 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 241000220317 Rosa Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 238000001891 gel spinning Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 238000002145 thermally induced phase separation Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/002—Organic membrane manufacture from melts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
- B01D63/021—Manufacturing thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0016—Coagulation
- B01D67/00165—Composition of the coagulation baths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0023—Organic membrane manufacture by inducing porosity into non porous precursor membranes
- B01D67/0025—Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
- B01D67/0027—Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/26—Polyalkenes
- B01D71/261—Polyethylene
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/08—Specific temperatures applied
- B01D2323/082—Cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/10—Specific pressure applied
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/12—Specific ratios of components used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/28—Pore treatments
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
Abstract
Description
본 발명은 고밀도 폴리에틸렌과 희석제를 이용하여 용융방사법으로 중공사형 분리막을 제조하는 방법에 관한 것으로, 좀 더 구체적으로는 중공사 제조시 방사용액조성과 방사조건을 한정하고 이를 이용하여 중공사 분리막을 제조하므로서 투과성과 분리선택성을 향상시킨 고효율의 분리능을 갖는 고밀도 폴리에틸렌 중공사 분리막의 제조방법에 관한 것이다.The present invention relates to a method for producing a hollow fiber-type separator by melt spinning method using a high density polyethylene and a diluent, and more specifically, to limit the spinning solution composition and spinning conditions in the manufacture of hollow fiber and to manufacture a hollow fiber separator using the same Therefore, the present invention relates to a method for producing a high-density polyethylene hollow fiber separator having a high-efficiency separation ability that improves permeability and separation selectivity.
오래전부터 고분자 분리막을 이용하여 액상물질을 분리하는 기술이 사용되어 왔으며, 특히 한외여과막이나 정밀여과막으로서 주로 평막구조의 여과막이 사용되었다.The technology of separating liquid materials using polymer membranes has been used for a long time, and in particular, filtration membranes of flat membrane structure have been mainly used as ultrafiltration membranes or microfiltration membranes.
그러나, 근래에 들어서는 투과면적을 향상시키기 위하여 중공사 형태로 한외여과막을 제조하게 되었고 이후부터 용도범위가 다양하게 확대되게 되었고 사용량도 증가하게 되었다.However, in recent years, in order to improve the permeation area, ultrafiltration membranes were manufactured in the form of hollow fibers, and since then, the scope of use has been variously expanded and the amount of use thereof has increased.
기존의 분리막은 폴리설폰(일본 특공소 56-54164호), 광가교 중합체(일본 특개소 52-136107호, 특개소 58-84006호), 불소계 고분자(일본 특개소 59-166541호), 초산 셀루로우즈, 폴리아미드 또는 폴리에스테르설폰계 등 다양한 소재가 이용되고 있다.Conventional separators include polysulfone (Japanese Patent Application No. 56-54164), optical cross-linked polymer (Japanese Patent Application No. 52-136107, Japanese Patent Application No. 58-84006), fluorine-based polymer (Japanese Patent Application No. 59-166541), and cellulose acetate Various materials, such as a rose, polyamide, or polyester sulfone type, are used.
일반적인 중공사 분리막 제조방법은 용액방사법에 의한 용매교환법이 주로 사용되고 있다. 이는 고분자를 기공형성제와 함께 용매에 용해시켜 건식 또는 건습식 방사법에 의해 방사한 후에 비용매 속에서 용매와 비용매가 교환되어 미세공이 형성되도록 하며 용매가 응고조인 비용매로 확산되는 과정에서 손가락 형상같은 구조(finger like structure)가 형성되어 비대칭막이 형성되기도 하고 외부와 내부가 동일한 대칭막이 형성되기도 한다.As a general hollow fiber membrane manufacturing method, a solvent exchange method using a solution spinning method is mainly used. This is because the polymer is dissolved in a solvent together with a pore-forming agent and spun by dry or dry-wet spinning method, so that the solvent and the non-solvent are exchanged in the non-solvent to form micropores. The same structure (finger like structure) is formed to form an asymmetrical film or the same symmetrical film may be formed the same as the outside.
따라서, 투과성과 분리선택성을 향상시키기 위해서는 중공사막에서 사용압력에 견딜 수 있는 한 분리막의 두께를 최소화하면서 투과저항을 최소화시켜야 한다. 이러한 방법의 하나로 활성층과 거대공지지층 사이에 완충층을 형성시키는 분리막(한국 특허공고 제92-1258호)등이 개발되고 있으나 이는 방사액에 고분자, 주기공형성제, 부기공형성제, 무기염 및 계면활성제 등이 함유되어 있고 이들 성분들이 각각의 인자(factor)로 작용하므로 최적 공정제어를 위한 방사액과 공정 조건 선정에 어려움이 있다. 또한, 고가의 폴리설폰 등의 고분자를 사용할 뿐만 아니라 4종 이상의 화학물질을 사용하므로 2차 폐수가 발생하고 제조공법에 경제성 및 환경친화성 등의 문제가 제기되며, 중공사 분리막의 계면측성을 향상시키기 위하여 사용되는 계면활성제 등의 첨가제는 처리대상인 공업용수 및 가정용수에 의해 씻겨나가는 특성이 있어 첨가제에 따른 영향에 유의해야 할 필요가 있다.Therefore, in order to improve permeability and separation selectivity, the permeation resistance should be minimized while minimizing the thickness of the separator as long as it can withstand the operating pressure in the hollow fiber membrane. As one of these methods, a separation membrane (Korean Patent Publication No. 92-1258), which forms a buffer layer between the active layer and the macroporous support layer, has been developed, but it is used in the spinning solution for polymer, cycle pore former, secondary pore former, inorganic salt and interface. Since the active agent is contained and these components act as factors, it is difficult to select the spinning solution and process conditions for optimal process control. In addition, the use of expensive polymers such as polysulfone, as well as four or more chemicals, the secondary wastewater is generated, and problems such as economic and environmental friendliness in the manufacturing process, and improves the interfacial properties of the hollow fiber membrane Additives such as surfactants used for the purpose of being washed by industrial water and household water to be treated need to pay attention to the effects of additives.
용수 또는 폐수를 처리하는 공정에 있어서 초산 셀룰로우즈, 폴리아미드 분리막을 사용하는 경우에는 분리막의 내열성이 좋지 못하여 고온 처리공정이 어렵고, 폴리설폰 분리막을 사용하는 경우에는 분리막의 내약품성이 우수하지 못하여 산업용 폐수처리 공정에서는 분리막의 손상이 우려되며, 불소계 고분자의 분리막을 사용하는 경우에는 불소계 고분자가 통상의 용매에 용해되지 않는다는 문제점을 가지고 있다. 또한, 폐수중의 고형성분들이 분리막의 표면에 접착하는 오염현상도 해결해야 할 문제점으로 지적되고 있다.When using cellulose acetate or polyamide membranes in the process of treating water or wastewater, the heat resistance of the membranes is not good and the high temperature treatment process is difficult, and when polysulfone membranes are used, the chemical resistance of the membranes is not good. In the industrial wastewater treatment process, there is a concern that the membrane is damaged, and when the membrane of the fluorine-based polymer is used, the fluorine-based polymer does not dissolve in a conventional solvent. In addition, the contamination of solid components in the waste water adhered to the surface of the separator has been pointed out as a problem to be solved.
분리막 형성방법에 있어서도 기존의 용액방사법은 제조공정 중 사용하는 용매 및 비용매에 의한 공해문제로 환경친화적인 공정이 아니라는 측면, 사용되는 고분자의 용매가 존재하여야 한다는 점, 성질이 상이한 성분으로 방사액이 구성되므로 분리에 고비용이 요구되며 재활용이 어렵다는 점, 고분자, 용매, 비용매 등의 성분들의 단가가 높다는 점 등의 여러 가지 문제점이 지적되고 있다. 또한, 음용수를 처리하는 시스템에서 분리막을 사용하는 경우 계면활성제 등의 가용성 첨가제의 인체에 대한 유해성 검토는 반드시 전제되어야 한다.Even in the method of forming the membrane, the conventional solution spinning method is not an environmentally friendly process due to the pollution caused by the solvent and non-solvent used in the manufacturing process. Because of this configuration, it is pointed out that various problems such as high cost for separation and difficulty in recycling, high cost of components such as polymer, solvent, and non-solvent are high. In addition, when the separator is used in a system for treating drinking water, it is essential to examine the hazards to humans of soluble additives such as surfactants.
따라서, 본 발명의 목적은 내열성과 내약품성 등의 제반 요구물성이 우수하고 제조비용이 저렴하며 첨가제 없이 방사조건의 변화에 의해서 성능을 개선할 수 있는 분리막의 제조방법을 제공함에 있다.Accordingly, it is an object of the present invention to provide a method for producing a separator that can improve performance by changing spinning conditions without additives, having excellent properties such as heat resistance and chemical resistance, and having low manufacturing cost.
본 발명의 또 다른 목적은 상기 목적의 방법을 이용하여 제조하므로서 적용대상이 광범위하고 투과성과 분리선택성이 우수하며 저렴한 분리막을 제공함에 있다.Still another object of the present invention is to provide a membrane having a wide range of applications, excellent permeability and separation selectivity, and a low-cost separation membrane by using the above-described method.
상기 목적들 뿐만 아니라 용이하게 표출될 수 있는 또 다른 목적을 달성하기 위하여 본 발명에서는 내열성과 내약품성이 우수한 고밀도 폴리에틸렌을 분리막의 소재로 사용하고 비교적 저가인 폴리에틸렌을 희석제와 함께 혼합된 상태에서 고체상태로 압출기내에 공급하고 고온고압 상태에서 용융시킨 후 방사하므로서 종래의 문제점들을 해결할 뿐만 아니라 점도가 거의 없는 상태에서 방사되는 용액방사법과는 달리 외부 전단응력에 의해 고분자쇄들의 배향과 같은 변형을 쉽게 유도하여 분리막의 성능을 개선하며, 투과성과 분리선택성의 향상을 상분리 거동과 연신에 의해 조절하므로서 기공형성제 없이도 단순히 방사 및 연신 조건의 변화에 의해 내압성과 내구성이 허용하는 범위에서 분리막의 두께를 최소화하고 기공밀도를 최대화할 수 있었다.In order to achieve the above object as well as another object that can be easily expressed in the present invention, a high-density polyethylene having excellent heat resistance and chemical resistance is used as a material of the separator, and a relatively low-cost polyethylene is mixed with a diluent in a solid state. It is not only solved the conventional problems by supplying in the extruder and melting after spinning at high temperature and high pressure, but also unlike the solution spinning method which is spun in the state with little viscosity, it is easy to induce deformation such as orientation of polymer chains by external shear stress. It improves the performance of the membrane and adjusts the permeability and separation selectivity by phase separation behavior and stretching, minimizing the thickness of the membrane and allowing porosity within the range to allow pressure resistance and durability by simply changing the spinning and stretching conditions without the pore former. I was able to maximize the density .
제1도는 본 발명의 분리막 제조에 사용되는 고온고압혼련기의 일부절결 정면도이고,1 is a partially cutaway front view of the high temperature high pressure kneader used in the membrane production of the present invention,
제2도는 개략적인 본 발명의 분리막 제조공정도이다.2 is a schematic manufacturing process diagram of the separator of the present invention.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
10 : 고온고압혼련기 11 : 교반봉10 high temperature and high pressure kneader 11: stirring rod
12 : 고온고압조 13 : 압력조절기12: high temperature and high pressure bath 13: pressure regulator
14 : 노즐 15 : 압출기14: nozzle 15: extruder
16 : 질소가스주입구 17 : 방사노즐16: nitrogen gas inlet 17: spinning nozzle
18 : 응고조 19 : 수세조18: coagulation tank 19: water washing tank
20 : 권취 및 연신기20: winding and drawing machine
본 발명을 첨부 도면에 의거하여 좀 더 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
제1도는 본 발명의 분리막 제조에 사용되는 고온고압혼련기의 일부절결 정면도이고, 제2도는 개략적인 본 발명의 분리막 제조공정도이다.FIG. 1 is a partially cutaway front view of a high temperature high pressure kneader used in manufacturing a separator of the present invention, and FIG. 2 is a schematic drawing of a separator manufacturing process of the present invention.
본 발명의 고밀도 폴리에틸렌 중공사 분리막의 제조방법은 이중관 구조의 중공 성형용 노즐을 이용하고, 고밀도 폴리에틸렌과 희석제 및 첨가제로 구성되는 방사용액을 사용하여 용융방사하되 방사후 응고조에서 응고하여 상분리를 유도하고 연신하여 미세공의 크기를 조절함을 특징으로 한다.In the manufacturing method of the high-density polyethylene hollow fiber membrane of the present invention by using a double-pipe blow molding nozzle, using a spinning solution consisting of a high-density polyethylene, a diluent and an additive melt-spun, but solidified in a coagulation tank after spinning to induce phase separation And stretching to adjust the size of the micropores.
방사원액은 폴리에틸렌 20~95중량%와 희석제 5~80중량%로 구성되는 혼합물에 대하여 첨가제 0~10중량%가 첨가된 것이다.The spinning stock solution is one in which 0 to 10% by weight of an additive is added to a mixture consisting of 20 to 95% by weight of polyethylene and 5 to 80% by weight of a diluent.
본 발명에 있어서 방사용액의 폴리에틸렌은 하기 구조식(I)로 표현되는 반복 단위를 갖는 화합물로 공정에 따라 분자량을 조절하여 사용할 수 있다.In the present invention, polyethylene of the spinning solution is a compound having a repeating unit represented by the following structural formula (I) and can be used by adjusting the molecular weight according to the process.
본 발명에서 사용되는 고밀도 폴리에틸렌은 분자량에 의해 M.I.치(Melt index치: 멜트 플로 인덱서(시험 장치)의 가열 실린더에 성형재료의 정량을 넣고 수지에 따른 가열 가압하에서 실린더의 가는 구멍에서 10분간에 압출된 중량의 비(g/10min)를 말하는 것으로, 용융상태의 열가소성 수지가 나타내는 유동성의 척도.)가 1~20으로 조절된 고분자를 분쇄하여 분말상태로 사용하는 것이 바람직하며, 사용량이 20중량% 미만이면 용융방사가 곤란하고, 80중량%를 초과하면 연신에 의한 기공형성이 어려워진다.The high-density polyethylene used in the present invention is put into a heating cylinder of a MI index (melt flow indexer (test apparatus)) by molecular weight and extruded in a thin hole of the cylinder for 10 minutes under heating and pressing according to the resin. It refers to the ratio of the weight (g / 10min), and it is preferable to grind the polymer in which the thermoplastic resin in the molten state is controlled to 1 to 20 and grind the polymer to be used in powder form. If it is less than the melt spinning is difficult, if it exceeds 80% by weight, the pore formation by stretching becomes difficult.
희석제로는 폴리에틸렌과 혼화성이 있는 것이라면 어느 것이라도 사용가능하지만 액체파라핀 또는 데칼린이 바람직하며, 사용량이 80중량%를 초과하면 용융방사가 곤란하고, 20중량% 미만하면 연신에 의한 기공형성이 어려워진다.Diluents can be used as long as they are miscible with polyethylene, but liquid paraffin or decalin are preferred. If the amount is more than 80% by weight, melt spinning is difficult, and if less than 20% by weight, pore formation due to stretching is difficult. Lose.
또한, 첨가제는 분리막 전체의 기공을 일정한 크기로 형성하는 역할을 하며, 고분자 밀집지역에서 미세한 기공을 형성시키므로 전체적으로 기공밀도를 향상시켜 투과성능이 향상된다. 첨가제 역시 폴리에틸렌과 혼화성이 있는 것이라면 어느 것이라도 사용가능하지만 올레핀계 올리고머가 바람직하며, 사용량이 폴리에틸렌과 희석제의 합량에 대하여 10중량%를 초과하면 제조되는 중공사 분리막의 내구성이 저하되는 단점이 있다.In addition, the additive serves to form the pores of the entire membrane to a certain size, and because the fine pores are formed in the polymer dense area, the overall pore density is improved to improve the permeation performance. The additive may also be used as long as it is miscible with polyethylene, but an olefin oligomer is preferable, and if the amount of use exceeds 10% by weight based on the total amount of polyethylene and the diluent, the durability of the hollow fiber separator manufactured may be reduced. .
첨가제와 희석제, 폴리에틸렌간의 혼화성 차이에 의하여 열유도 상분리시 기공 형성 정도가 달라지므로 그 종류와 함량비 조절은 선택성 향상에 중요한 인자가 되므로 유의하여야 한다.Because the degree of pore formation during heat-induced phase separation is different due to the miscibility between additives, diluents, and polyethylene, the type and content ratio control are important factors to improve selectivity.
방사물은 용융상태에서 균일하게 혼합되어야 하므로 폴리에틸렌 20~95중량%와 희석제 5~80중량%로 구성되는 혼합물에 대하여 첨가제 0~10중량%가 첨가된 것을 150~250℃, 70~120psi로 조절된 고온고압혼련기(10)에서 혼련후 분말화하였다. 고온고압혼련기(10)는 교반봉(11), 고온고압조(12), 압력조절기(13), 노즐(14) 등으로 구성되어 있어 첨가제와 희석제, 폴리에틸렌간의 균질한 혼련이 가능하게 되는 것이지만, 구조의 변경은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자이면 용이하게 유추할 수 있을 것이다.The spinning material should be uniformly mixed in the molten state, so that the additives of 0 to 10% by weight of the mixture of 20 to 95% by weight of polyethylene and 5 to 80% by weight of the diluent are controlled at 150 to 250 ° C and 70 to 120 psi. After kneading in a high temperature and high pressure kneader (10), it was powdered. The high temperature and high pressure kneader 10 is composed of a stirring rod 11, a high temperature and high pressure tank 12, a pressure regulator 13, a nozzle 14, etc., so that homogeneous mixing between the additive, the diluent, and polyethylene is possible. Changes in the structure may be easily inferred by those skilled in the art.
분말화된 혼합물은 압출기(15)에서 용융되어 정밀 용융물 펌프(precision melt pump)인 기어 펌프(gear pump; 미도시)로 정량 토출하고 방사노즐(spinneret; 17)를 통과시켜 중공사로 만들며 2~20sccm의 질소 가스 주입으로 그 효과를 극대화하였다. 가스주입은 중공 성형에 작용하므로 그 주입량과 주입방법에 따라 중공사 분리막의 두께가 달라져 투과량에 영향을 미치게 된다. 일반적으로 질소 가스의 주입량이 많아지면 분리막의 두께는 줄어들고 투과량은 증가하나 주입된 질소가 방사 방향에 수직하게 작용하는 전단법선응력을 활성화하는 역할을 하는 경우 섬유축에 수직 방향으로 밀도를 증가시켜 때때로 기공을 밀폐시키며 중공사막 두께를 감소시키는 효과를 나타내기도 한다.The powdered mixture is melted in the extruder 15 and quantitatively discharged into a gear pump (not shown), which is a precision melt pump, and passed through a spinneret 17 to make hollow fiber, 2 to 20 sccm. Nitrogen gas injection to maximize the effect. Since gas injection acts on the blow molding, the thickness of the hollow fiber membrane varies depending on the injection amount and the injection method, thereby affecting the permeation amount. In general, when the amount of nitrogen gas is increased, the thickness of the separator decreases and the permeation rate increases, but when the injected nitrogen plays a role of activating the shear normal stress acting perpendicular to the radial direction, sometimes the density increases in the direction perpendicular to the fiber axis. It also has the effect of sealing the pores and reducing the thickness of the hollow fiber membrane.
용매를 사용하므로서 유변학적인 현상을 최소화하여 중공사를 제조하는 용액방사는 고분자가 갖는 고유의 성질 이외에 형태(morphology)에 의한 물리적 특성의 향상은 기대하기 어려운 반면 용융방사의 경우 결정화도, 배향도 등의 방사공정에서의 요인에 의해 다양한 물리적 성질을 갖는 성형물을 얻을 수 있다. 또한, 용융방사에 있어서는 용융상태의 고분자 점도가 온도에 대단히 민감할 뿐만 아니라 점도도 매우 높아 여러 가지 공정인자에 의해 섬유의 구조를 조절할 수 있다. 희석제를 사용하여 용융방사하는 본 발명의 경우 용융물의 방사시 냉각풍 또는 응고조를 이용한 온도 하강에 의해 상분리가 유도되므로 일정 점도 이상에서 방사 외력에 의해 배향을 하는 용융물의 유변학적 특성과 냉각풍 및 응고조의 온도 조절은 분리막의 구조형성에 중요한 인자이므로 이를 조절하여 분리특성을 극대화할 수 있다. 방사 노즐(16)의 온도는 140~200℃로 하였다.Solution spinning, which produces hollow fibers by minimizing rheological phenomena by using a solvent, is difficult to expect improvement of physical properties due to morphology in addition to the inherent properties of polymers. Factors having various physical properties can be obtained by factors in the process. In addition, in melt spinning, the polymer viscosity in the molten state is not only very sensitive to temperature but also very high in viscosity so that the structure of the fiber can be controlled by various process factors. In the present invention of melt spinning using a diluent, phase separation is induced by cooling wind or temperature drop using a coagulation bath during spinning of the melt, so that the rheological properties and cooling wind of the melt are oriented by a radial external force at a predetermined viscosity or more. Temperature control of the coagulation bath is an important factor in the structure formation of the membrane, thereby controlling the separation to maximize the separation characteristics. The temperature of the spinning nozzle 16 was 140-200 degreeC.
통상의 용융방사에 있어서 노즐을 통해 나온 고분자 용융물은 냉각풍으로 냉각되어 고화되며 고화점 이후 섬유를 보호하고 다음 공정에 적용하기 위하여 유제를 처리하고 권취하게 되지만 본 발명에서는 용융물의 냉각을 냉각풍과 응고조에서 유도하여 열유도 상분리에 의한 기공을 형성하였다. 냉각풍의 온도는 5~30℃, 응고조의 온도는 10~30℃로 하였다. 응고조의 응고액으로는 액체 파라핀, 헥산, 콩기름(soybean oil), 데칼린(decalin) 등이 단독 또는 혼합으로 사용된다.In the conventional melt spinning, the polymer melt from the nozzle is cooled and solidified by the cooling wind, and the emulsion is treated and wound in order to protect the fiber after the freezing point and apply it to the next process. Induced in the coagulation bath to form pores by thermally induced phase separation. The temperature of the cooling wind was 5-30 degreeC, and the temperature of the coagulation tank was 10-30 degreeC. As the coagulating solution of the coagulation bath, liquid paraffin, hexane, soybean oil, decalin and the like are used alone or in combination.
한편, 용액방사에 있어서는 중공사 분리막 제조시 준비된 혼합계내에 존재하는 용매 및 기공형성제가 방사후 응고조에서 외부로 확산 추출되며 이 속도에 의해 미세공 크기가 결정된다. 그러나, 본 발명에 있어서 기공 형성은 희석제가 응고조에서 추출되거나 확산 현상이 일어나는 것은 주요한 현상이 아니며 응고액으로 사용한 액체 파라핀, 헥산, 콩기름, 데카린 등 그 종류와 응고조의 온도차에 의해 효과가 달라지기는 하지만 용융물의 온도차에 의한 열유도 상분리 과정과 희석제의 응고조로 확산에 의한 미세한 교환에 의해 이루어진다.On the other hand, in solution spinning, the solvent and pore-forming agent present in the mixed system prepared during the hollow fiber membrane production are diffused and extracted from the coagulation bath after spinning, and the micropore size is determined by this speed. However, in the present invention, the pore formation is not the main phenomenon that the diluent is extracted from the coagulation bath or the diffusion phenomenon is not the main phenomenon, and the effect is different depending on the type and the temperature difference of the coagulation bath such as liquid paraffin, hexane, soybean oil, and decalin used as the coagulation solution However, the heat induced phase separation due to the temperature difference of the melt and the fine exchange by diffusion into the coagulation tank of the diluent are performed.
본 발명에서는 냉연신법에 의해 미세공의 크기를 조절하였다. 용융방사된 중공사 분리막은 압출 후 고화과정에서 고분자, 희석제 및 첨가제의 혼합비나 고분자의 분자량, 압출 및 냉각 온도에 따라 상분리가 유도되고 결정화 과정에서 미세한 결손(defect)를이 형성된다. 이 결손을 가지는 중공사 분리막을 연신비에 따라 냉연신하면 미세공 형성이 유도되거나 발달되는 데 이것은 혼합계내에 존재하는 결손들이 외력에 의해 고분자 희박영역에서 먼저 변형이 일어나고 그 후 고분자 밀집지역으로 응력이 전달되기 때문이다. 그러므로 냉연신비 0~250%로 냉연신하여 투수능과 선택능을 향상시킬 수 있는 미세공 형성을 유도하였다.In the present invention, the size of the micropores was adjusted by the cold drawing method. The melt-spun hollow fiber membrane is subjected to phase separation according to the mixing ratio of the polymer, the diluent and the additive, the molecular weight, the extrusion and the cooling temperature of the polymer during the solidification process after extrusion, and forms a fine defect in the crystallization process. Cold drawing of the hollow fiber membrane with these defects according to the draw ratio induces or develops micropores. The defects in the mixed system are first deformed in the polymer lean region by external force, and then the stress is concentrated in the polymer dense region. Because it is delivered. Therefore, cold drawing was drawn at a cold drawing ratio of 0 to 250% to induce the formation of micropores that can improve the permeability and selectivity.
상술한 바와 같이 본 발명은 희석제와 첨가제를 이용한 새로운 조성의 방사용액을 사용하여 용융방사하므로 종래의 분리막과는 달리 투과성과 선택성을 공정에 의해 제어할 수 있는 방법이다.As described above, the present invention is melt spinning using a spinning solution having a new composition using a diluent and an additive, and thus, unlike conventional separators, permeability and selectivity can be controlled by a process.
다음의 실시예는 본 발명을 좀 더 상세히 설명하는 것이지만, 본 발명의 범주를 한정하는 것은 아니다.The following examples illustrate the invention in more detail, but do not limit the scope of the invention.
[실시예 1]Example 1
고밀도 폴리에틸렌(주식회사호남석유 제품, 5000s) 40중량%와 희석제로 액체파라핀(밀도; 0.8~0.9) 60중량%를 사용하여 200℃, 110psi로 4시간 동안 혼합하여 혼합물을 제조한 후 분말화하였다. 이 혼합물을 2mmø/4mmø의 중공 노즐을 갖는 압출기에서 노즐의 온도는 166℃로 하고, 10rpm의 속도로 방사하였다. 냉각풍 및 액체 파라핀 응고조의 온도는 25℃로 조절하였으며 권취 후 분리막을 일정 길이로 절단하여 헥산으로 구성된 20℃의 수세조에서 24시간 동안 침적하여 희석제를 제거한 후 건조하고 200% 냉연신하였다. 연신된 중공사를 모듈화하여 수투과성과 용질 배제능을 평가하였다.40% by weight of high density polyethylene (manufactured by Honam Petroleum Co., Ltd., 5000s) and 60% by weight of liquid paraffin (density; 0.8 to 0.9) as a diluent were mixed at 200 ° C. and 110 psi for 4 hours to prepare a mixture, and then powdered. The mixture was spun at a speed of 10 rpm at an nozzle temperature of 166 ° C. in an extruder having a hollow nozzle of 2 mm 4/4 mm. The temperature of the cooling air and the liquid paraffin coagulation bath was adjusted to 25 ° C. After the winding, the separator was cut to a predetermined length, immersed in a 20 ° C. water bath composed of hexane for 24 hours to remove the diluent, dried and cold drawn. The stretched hollow fiber was modularized to evaluate water permeability and solute rejection.
수투과성은 25℃에서 비저항 15.0 MΩ.cm의 순수를 사용하여 2기압에서 6기압까지 상승시키면서 인-투-아웃(in-to-out) 방식으로 측정하였으며, 용질 배제능은 분자량 2000, 8500, 10000, 20000의 폴리에틸렌글리콜(PEG)을 1wt% 수용액으로 용해하여 유입을 2기압 또는 3기압으로 조정, 25℃에서 여과하여 겔여과 크로마토그래피(Gel Filteration Chromatography)를 사용하여 측정한 결과, 종래의 제품과 비교시 동등 이상의 효과가 있었다.The water permeability was measured in-to-out by increasing the water pressure from 2 atm to 6 atm using pure water having a resistivity of 15.0 MΩ.cm at 25 ° C., and the solute rejection capacity was 2000, 8500, Dissolve 10000, 20000 polyethylene glycol (PEG) in a 1wt% aqueous solution, adjust the inflow to 2 or 3 atm, filter at 25 ° C, and measure by gel filtration chromatography. When compared with the equivalent effect was more than.
[실시예 2]Example 2
고밀도 폴리에틸렌(주식회사LG화학 제품, ME6000) 52중량%와 희석제로 액체파라핀(밀도; 0.8~0.9) 48중량%를 사용하고, 압출기에서 노즐의 온도는 164℃로 하고, 12rpm의 속도로 방사하였으며, 냉연신을 160%로 한 것을 제외하고는 실시예 1과 동일한 방법으로 분리막을 모듈화하고 실시예 1과 동일한 방법으로 수투과성과 용질배제능을 평가한 결과, 종래의 제품과 비교시 동등 이상의 효과가 있었다.52 wt% of high density polyethylene (LG Chemical Co., Ltd., ME6000) and 48 wt% of liquid paraffin (density; 0.8 to 0.9) were used as the diluent, and the nozzle temperature in the extruder was 164 ° C and spun at a speed of 12 rpm. Except for 160% cold drawing, the membrane was modularized in the same manner as in Example 1, and the water permeability and solute excretion were evaluated in the same manner as in Example 1. As a result, the membrane had an effect equal to or higher than that of the conventional product. .
[실시예 3]Example 3
고밀도 폴리에틸렌(주식회사LG화학 제품, ME6000) 50중량%, 희석제로 액체파라핀(밀도; 0.8~0.9) 47중량%와 올레핀계 첨가제 3중량%를 180℃, 110psi로 4시간 동안 혼합하여 혼합물을 제조한 후 분말화하고, 압출기에서 노즐의 온도는 170℃로 하고, 15rpm의 속도로 방사하였으며, 냉연신을 200%로 한 것을 제외하고는 실시예 1과 동일한 방법으로 분리막을 모듈화하고 실시예 1과 동일한 방법으로 수투과성과 용질배제능을 평가한 결과, 종래의 제품과 비교시 동등 이상의 효과가 있었다.A mixture was prepared by mixing 50% by weight of high density polyethylene (LG Chemical, ME6000), 47% by weight of liquid paraffin (density; 0.8 to 0.9) with a diluent, and 3% by weight of an olefinic additive at 180 ° C and 110psi for 4 hours. After the powdering, the nozzle temperature in the extruder was 170 ℃, spun at a speed of 15rpm, and the membrane was modularized in the same manner as in Example 1 except that the cold drawing is 200% and the same method as in Example 1 As a result of evaluating water permeability and solute rejection, there was an equivalent or more effect in comparison with the conventional product.
[실시예 4]Example 4
실시예 1과 동일한 방법으로 분리막을 제조하되 응고조의 온도를 10~30℃로 조절하거나 응고액을 25℃의 헥산, 콩기름 또는 데카린으로 변경하여 분리막을 제조하고 수투과성과 용질 배제능을 평가한 결과, 만족할 만한 성능의 분리막을 얻을 수 있었다.In the same manner as in Example 1, but the separation membrane was prepared by adjusting the temperature of the coagulation bath to 10 ~ 30 ℃ or by changing the coagulation liquid to hexane, soybean oil or decalin at 25 ℃ and evaluated the water permeability and solute rejection As a result, a separator with satisfactory performance was obtained.
상술한 바와 같이 본 발명에서는 내열성과 내약품성이 우수한 고밀도 폴리에틸렌을 분리막의 소재로 사용하고 비교적 저가인 폴리에틸렌을 희석제와 함께 혼합된 상태에서 고체상태로 압출기내에 공급하고 고온고압 상태에서 용융시킨 후 방사하므로서 종래의 문제점을 해결할 뿐만 아니라 점도가 거의 없는 상태에서 방사되는 용액방사법과는 달리 외부 전단응력에 의해 고분자쇄들의 배향과 같은 변형을 쉽게 유도하여 분리막의 성능을 개선하며, 투과성과 분리선택성의 향상을 상분리 거동과 연신에 의해 조절하므로서 기공형성제 없이도 단순히 방사 및 연신 조건의 변화에 의해 내압성과 내구성이 허용하는 범위에서 분리막의 두께를 최소화하고 기공밀도를 최대화할 수 있는 효과를 얻을 수 있었다.As described above, in the present invention, high-density polyethylene having excellent heat resistance and chemical resistance is used as a material of the separator, and a relatively low-cost polyethylene is supplied into the extruder in a solid state in a state mixed with a diluent, melted at high temperature and high pressure, and then spun. In addition to solving the conventional problems, unlike the solution spinning method radiated in the state of little viscosity, it is easy to induce deformation such as the orientation of the polymer chains by external shear stress, thereby improving the performance of the membrane, and improving permeability and separation selectivity. By controlling the phase separation behavior and stretching, it was possible to minimize the thickness of the membrane and maximize the pore density within the range to allow pressure resistance and durability by simply changing the spinning and stretching conditions without the pore former.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980006962A KR100264676B1 (en) | 1998-03-03 | 1998-03-03 | Manufacturing method of high density polyethylene hollow fiber separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980006962A KR100264676B1 (en) | 1998-03-03 | 1998-03-03 | Manufacturing method of high density polyethylene hollow fiber separator |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990046158A KR19990046158A (en) | 1999-07-05 |
KR100264676B1 true KR100264676B1 (en) | 2000-09-01 |
Family
ID=19534153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980006962A KR100264676B1 (en) | 1998-03-03 | 1998-03-03 | Manufacturing method of high density polyethylene hollow fiber separator |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100264676B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101913755B1 (en) | 2016-07-07 | 2018-11-05 | 고려대학교 산학협력단 | Method of Fabricating Thin Film Composite Forward Osmosis Membranes using Polyethylene Porous Supports |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100762174B1 (en) * | 2001-09-05 | 2007-10-01 | 엘지.필립스 엘시디 주식회사 | Alignment Film for Liquid Crystal Display Device and Method of Manufacturing the same |
KR101366224B1 (en) * | 2011-12-16 | 2014-02-24 | (주)세프라텍 | Manufacturing apparatus for hollow fiber membrane |
WO2017195457A1 (en) * | 2016-05-13 | 2017-11-16 | 旭化成メディカル株式会社 | Polyethylene resin porous hollow fiber membrane, separation membrane, and method for manufacturing said membranes |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950002826A (en) * | 1993-07-14 | 1995-02-16 | 타니 가쯔마 | Water Purifier with Different Purity |
-
1998
- 1998-03-03 KR KR1019980006962A patent/KR100264676B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950002826A (en) * | 1993-07-14 | 1995-02-16 | 타니 가쯔마 | Water Purifier with Different Purity |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101913755B1 (en) | 2016-07-07 | 2018-11-05 | 고려대학교 산학협력단 | Method of Fabricating Thin Film Composite Forward Osmosis Membranes using Polyethylene Porous Supports |
Also Published As
Publication number | Publication date |
---|---|
KR19990046158A (en) | 1999-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5489406A (en) | Method of making polyvinylidene fluoride membrane | |
US6074718A (en) | Self supporting hollow fiber membrane and method of construction | |
CA1131861A (en) | Process for preparing microporous hollow fibers | |
JP2885712B2 (en) | Polymer solution for asymmetric single membrane and asymmetric single membrane using the same | |
CA2082511C (en) | Polyvinylidene fluoride membrane | |
CN101342465B (en) | Hollow fiber porous film and process for producing same | |
US4871494A (en) | Process for forming asymmetric gas separation membranes having graded density skins | |
WO2002102500A1 (en) | Membrane polymer compositions | |
KR101077954B1 (en) | A polysulfone-based hollowfiber membrane having a excellent impact strength and water permeability and preparing the same | |
JPH0122003B2 (en) | ||
CN106731897A (en) | High-pollution-resistance polyvinylidene fluoride hollow fiber ultrafiltration membrane, and preparation method and device thereof | |
US4385017A (en) | Method of manufacturing hollow fiber | |
KR100264676B1 (en) | Manufacturing method of high density polyethylene hollow fiber separator | |
IE45467B1 (en) | Semipermeable membranes and method for producing same | |
CA2480432A1 (en) | Hollow fibres | |
CN112316756A (en) | High-strength and high-retention TIPS hollow fiber membrane and preparation method thereof | |
EP1144097A2 (en) | Microporous hollow fiber membranes from perfluorinated thermoplastic polymers | |
US6436319B1 (en) | Method of preparing hollow fiber-type separation membrane from high density polyethylene | |
JPH0419890B2 (en) | ||
JPS59166208A (en) | Manufacture of gas separating membrane | |
JP2010082509A (en) | Porous membrane | |
CN114828990A (en) | Separation membrane and method for producing separation membrane | |
KR100200041B1 (en) | Sponge-like polysulphone hollow fibre membrane having active layer and manufacturing method thereof | |
AU653528B2 (en) | Porous PVdF membranes | |
JPS6329562B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
G15R | Request for early publication | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
EXPY | Expiration of term |