JPS59166208A - Manufacture of gas separating membrane - Google Patents

Manufacture of gas separating membrane

Info

Publication number
JPS59166208A
JPS59166208A JP3975683A JP3975683A JPS59166208A JP S59166208 A JPS59166208 A JP S59166208A JP 3975683 A JP3975683 A JP 3975683A JP 3975683 A JP3975683 A JP 3975683A JP S59166208 A JPS59166208 A JP S59166208A
Authority
JP
Japan
Prior art keywords
membrane
solvent
hollow fiber
porous
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3975683A
Other languages
Japanese (ja)
Inventor
Nobuo Yoshizumi
吉住 宣夫
Tatsuo Nogi
野木 立男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3975683A priority Critical patent/JPS59166208A/en
Publication of JPS59166208A publication Critical patent/JPS59166208A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To manufacture an anisotropic membrane having excellent oxygen- enriching performance by treating a porous membrane under an atmosphere contg. a specific solvent. CONSTITUTION:The anisotropic membrane is manufactured from high polymer materials having >=3 separation factor of oxygen to nitrogen such as poly (4- vinylpyridine), polysulfon, polycarbonate, cellulose acetate and cellulose ether. The material is dissolved in an organic solvent contg. a nonsolvent, and pushed out into the air through a spinneret, then introduced into an aq. coagulation bath to obtain a porous membrane. The obtained membrane is treated by passing the membrane through a gaseous atmosphere contg. a solvent for the material of the membrane, by dipping the membrane in a soln. contg. said solvent, or by spraying the soln. By this treatment, the defects of the membrane such as pinholes are mended, and the separation factor is improved.

Description

【発明の詳細な説明】 本発明は気体分離用異方性膜の製造方法に関するもので
あり、特に空気から酸素富化空気をえるだめに有効な、
気体の透過量が大きく、かつ選択性がすぐれた異方性膜
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an anisotropic membrane for gas separation, and is particularly effective for obtaining oxygen-enriched air from air.
The present invention relates to a method for manufacturing an anisotropic membrane with a large amount of gas permeation and excellent selectivity.

膜を用いてガス混合物より特定のガスを分離する方法は
すでによく知られており、均一膜による方法と多孔質膜
による方法に大別できる。均一膜による方法はガスの膜
中への溶解速度、拡散速度の差により混合ガスの分離が
おこり、多孔質膜の場合は100X前後の孔が多数存在
し、ガス分子の平均自由行程の差によって分離が行なわ
れる。後者の例としては、セルロース誘導体からなる非
対称性を有する中空繊維が特開昭51−112917号
明細書に、−!たポリアクリロニトリルを主成分とする
表面活性層、内面多孔層をもつ乾燥状半透膜が特開昭5
6−111005号明細書に開示されている。しかしこ
れらは、いずれも非対称膜(異方性膜)ではあるが、前
述した如くガス分子の平均自由行程の差によって分離が
行なわれる。これに対し本発明の異方性膜においては、
ガスの膜中への溶解速度、拡散速度の差により混合ガス
を分離するものであシ、このような膜を用いてはじめて
Methods for separating specific gases from gas mixtures using membranes are already well known, and can be roughly divided into methods using homogeneous membranes and methods using porous membranes. In the method using a uniform membrane, separation of the mixed gas occurs due to the difference in the dissolution rate and diffusion rate of the gas in the membrane, whereas in the case of a porous membrane, there are many pores of around 100X, and the difference in the mean free path of the gas molecules causes separation of the mixed gas. A separation takes place. As an example of the latter, asymmetric hollow fibers made of cellulose derivatives are described in JP-A-51-112917, -! A dry semipermeable membrane with a surface active layer and an inner porous layer mainly composed of polyacrylonitrile was published in Japanese Patent Application Laid-Open No. 5
6-111005. However, although these are all asymmetric membranes (anisotropic membranes), separation is performed due to the difference in mean free path of gas molecules, as described above. On the other hand, in the anisotropic film of the present invention,
This is the first time that a membrane of this type is used to separate mixed gases based on the difference in gas dissolution rate and diffusion rate in the membrane.

空気より酸素富化空気を得ることが可能になる。It becomes possible to obtain oxygen-enriched air from air.

壕だこれらの例としては2種々の機能膜素材が開発され
ているが、いずれも分離特性と成形特性や形態保持性を
分担させた複合膜が中心であり。
As an example of these, two types of functional membrane materials have been developed, but both are mainly composite membranes that share separation characteristics, molding characteristics, and shape retention.

異方性膜に関するものは少なく、あっても実用上あるい
は製造上に問題がある。例えば空気中の酸素の富化を目
的としたセルロースエステル異方性膜が特開昭57−7
206号明細書に開示されているが、異方性構造を保持
するために凍結乾燥、溶媒置換法等の非常に手間のかか
る方法を用いなければなら々いと言う製造上の難点を有
している。また膜の性能特性の点でも必ずしも満足すべ
きものでなく2選択性の高い異方性膜は酸素透過速度が
小さく、酸素透過速度の大きい膜は選択性が低いという
ジレンマがあった。
There are few examples of anisotropic membranes, and even if there are, there are practical or manufacturing problems. For example, a cellulose ester anisotropic membrane for the purpose of enriching oxygen in the air was developed in JP-A-57-7.
Although it is disclosed in the specification of No. 206, it has a manufacturing drawback in that very labor-intensive methods such as freeze-drying and solvent substitution methods have to be used in order to maintain the anisotropic structure. There is. Furthermore, the performance characteristics of the membrane are not necessarily satisfactory, and there is a dilemma that an anisotropic membrane with high biselectivity has a low oxygen permeation rate, and a membrane with a high oxygen permeation rate has low selectivity.

本発明者等は複合膜の性能向上を計るべく多孔質支持膜
の製造方法、形態について鋭意研究を進めた結果、驚く
べきことに特定の多孔質膜に非常し本発明に到達したも
のである。
The inventors of the present invention have conducted extensive research into the manufacturing method and form of porous support membranes in order to improve the performance of composite membranes, and surprisingly, they have developed the present invention by focusing on a specific porous membrane. .

すなわち2本発明は多孔質膜を少なくとも該膜の1形成
酸分である高分子物質の溶剤勅−一ひ、−4−鰺≠断斡
泄を含む雰囲気下で処理することを特命とする気体分離
膜の製造方法である。。
In other words, the present invention uses a gas specially designed to treat a porous membrane in an atmosphere containing at least one of the polymeric substances forming the acid component of the membrane. This is a method for manufacturing a separation membrane. .

かかる本発明方法により容易に気体分離膜を製造するこ
とが可能である。きらに本発明方法の処理により2表面
層が実質的な均一膜に変化することにより空気中の酸素
の富化が可能な異方性膜となる。つ捷り大きな酸素透過
速度と高い分離係数(酸素透過速度と窒素透過速度の比
)を示す酸素富化性能の良好な膜が得られる。
According to the method of the present invention, it is possible to easily manufacture a gas separation membrane. By the treatment of the method of the present invention, the two surface layers are transformed into a substantially uniform film, resulting in an anisotropic film capable of enriching oxygen in the air. A membrane with good oxygen enrichment performance that exhibits a high oxygen permeation rate and a high separation coefficient (ratio of oxygen permeation rate to nitrogen permeation rate) can be obtained.

本発明の多孔質膜を形成する高分子物質としては、膜形
成能を有し、素材としての酸素富化性能の優れたもの(
大きな酸素透過速度と高い分離係数をもつもの)であれ
ば特に限定されるものでない。膜形態が中空繊維の場合
には単位体積肖りの膜面積を大きくとれることから、酸
素透過速度よりも分離係数を重視する方が有利であり、
具体的には分離係数が6以上のポリ(4−ビニルピリジ
ン)、ポリスルホン、・ポリカーボネート、セルロース
アセテート、セルロースエーテルなどを挙げることがで
きる。また該高分子物質は単一重合体であってもよく、
まだ共重合体であってもよい。
The polymeric substance that forms the porous membrane of the present invention is one that has membrane-forming ability and has excellent oxygen enrichment performance as a material (
There are no particular limitations as long as the material has a high oxygen permeation rate and a high separation coefficient. When the membrane form is hollow fiber, the membrane area per unit volume can be increased, so it is advantageous to focus on the separation coefficient rather than the oxygen permeation rate.
Specifically, poly(4-vinylpyridine), polysulfone, polycarbonate, cellulose acetate, cellulose ether, etc. having a separation coefficient of 6 or more can be mentioned. Further, the polymer substance may be a single polymer,
It may still be a copolymer.

寸だこれら高分子物質が全体の50重量憾以上を占める
程度に他の高分子物質を混合してもよい。
Other polymeric substances may be mixed to such an extent that these polymeric substances account for 50% or more of the total weight.

これら高分子物質の中で酸素透過速度が比較的大きいエ
チルセルロース(以下E’Cと称す)や分離係数の比較
的大きいポリスルホンが特に好ましく用いられる。
Among these polymeric substances, ethyl cellulose (hereinafter referred to as E'C), which has a relatively high oxygen permeation rate, and polysulfone, which has a relatively high separation coefficient, are particularly preferably used.

本発明の多孔質膜は1例えば具体的には、添加剤として
非溶剤を含む高分子物質の有機溶剤溶液を紡糸口金を通
して空気中に押し出し2次いで該溶剤を含む水系凝固浴
に導き、膜を形成させ、更に熱水処理を施すことによシ
膜構造を安定化し。
The porous membrane of the present invention is manufactured by extruding a solution of a polymeric substance in an organic solvent containing a non-solvent as an additive into the air through a spinneret, and then introducing it into an aqueous coagulation bath containing the solvent. The membrane structure is stabilized by forming a membrane and then subjecting it to hot water treatment.

乾燥することにより製造可能である。It can be manufactured by drying.

上記多孔質膜の製造法は単に一例であり、必要に応じて
工程の一部を省略あるいは変更してもよく、更に他の工
程を加えてもよい。
The above method for manufacturing a porous membrane is merely an example, and some of the steps may be omitted or changed as necessary, and other steps may be added.

以下更に具体的に多孔質膜がエチルセルロ−ス多孔質中
空繊維である場合について詳述する。
The case where the porous membrane is an ethyl cellulose porous hollow fiber will be described in more detail below.

エチルセルロースの溶剤としては特に限定はないが,具
体的にはN−メチル−2−ピロリドン(以下NMPと称
す)、ジメチルホルムアミドlt下D’MFと称す)、
ジメチルアセドア′ミド(以下DMicと称す)、アセ
トン、エタノール。
There are no particular limitations on the solvent for ethylcellulose, but specific examples include N-methyl-2-pyrrolidone (hereinafter referred to as NMP), dimethylformamide (hereinafter referred to as D'MF),
Dimethylacetoamide (hereinafter referred to as DMic), acetone, ethanol.

ベンゼン、トルエン、シクロヘキセン等−!a[’ける
ことができる。
Benzene, toluene, cyclohexene, etc.! a[' can be put.

また添加剤としては,エチルセルロースの非溶剤であり
,中空糸膜の形成時に多孔化を容易にするものであれば
よいが,更に水洗工程で除去が可能な水溶性物質で,エ
チルセルロースの有機溶剤溶液に対し増粘効果を示すも
のがより好ましい。
In addition, additives may be used as long as they are non-solvents for ethylcellulose and can facilitate the creation of porosity during the formation of hollow fiber membranes, but they can also be water-soluble substances that can be removed in the washing process and are used in organic solvent solutions of ethylcellulose. More preferred are those that exhibit a thickening effect on.

具体的にはポリエチレングリコール、エチレングリコー
ル(以下EGと称す)、グリセリン等の多−価アルコー
ル類,トリトンX  100等の界面活性剤があげられ
る。実際の選択にあたっては溶剤と添加剤の組合せに注
意を要する。
Specific examples include polyhydric alcohols such as polyethylene glycol, ethylene glycol (hereinafter referred to as EG), glycerin, and surfactants such as Triton X 100. In actual selection, care must be taken regarding the combination of solvent and additive.

紡糸原液の組成としては選択した溶剤,添加剤の種類に
より多少異なるがエチルセルロース濃度としては20〜
40重量係,添加剤量は3%以上で,紡糸原液が紡糸温
度で均一な曳糸性のある溶液であれば50係まで添加し
てもよいが,通常は60%程度以下が曳糸性の点で好ま
しい。
The composition of the spinning dope varies slightly depending on the solvent and additives selected, but the ethyl cellulose concentration is between 20 and 20.
40% by weight, the amount of additives is 3% or more, and if the spinning stock solution has uniform stringiness at the spinning temperature, it may be added up to 50%, but usually about 60% or less is necessary for stringiness. It is preferable in this respect.

/ポリマ濃度が低すぎる場合は原液粘度の低下によシス
体注入法による中空糸膜の形成が困難になるとともに、
吐出原液流の紡糸性(曳糸性)が低下するので好ましく
ない。逆にポリマ濃度が高すぎる場合は、添加剤量にも
よるが1得られる中空糸膜の多孔化の程度が小さく、さ
らに原液粘度が高いことから紡糸温度を高く設定するだ
め、乾湿式紡糸法においては乾式部での中空糸膜の表面
緻密層の形成が過度に促進されると考えられる。そのた
めこのような中空糸膜は、酸素透過速度が小さくて好ま
しくない。
/If the polymer concentration is too low, the viscosity of the stock solution decreases, making it difficult to form a hollow fiber membrane by the cis injection method.
This is not preferable because the spinnability (threadability) of the discharged stock solution flow is reduced. On the other hand, if the polymer concentration is too high, the degree of porosity of the resulting hollow fiber membrane will be small (depending on the amount of additives), and the viscosity of the raw solution will be high, so it will be difficult to set the spinning temperature high, and the dry-wet spinning method will be used. It is thought that the formation of a dense layer on the surface of the hollow fiber membrane in the dry section is excessively promoted. Therefore, such a hollow fiber membrane has a low oxygen permeation rate and is not preferable.

まだ本発明の紡糸原液は、溶剤、添加剤の組合せやその
組成により多少異なるが、原液粘度の温度依存性が高い
(例えばB C/N M P/E G =60155、
/15系では、見掛けの流動活性化エネルギーは19.
3 kcal/rn31 )。つまり原液温度が低下す
ると原液粘度は急激に高くなりゲル化する。
Although the spinning stock solution of the present invention differs somewhat depending on the combination of solvent and additives and its composition, the viscosity of the stock solution has a high temperature dependence (for example, B C / N M P / E G = 60155,
/15 system, the apparent flow activation energy is 19.
3 kcal/rn31). In other words, when the temperature of the stock solution decreases, the viscosity of the stock solution increases rapidly and gels.

この性質は気体注入法で中空糸膜を成形する場合。This property applies when hollow fiber membranes are formed using the gas injection method.

非常に有利である。またゲル化と共に相分離し不透明ゲ
ルとなる特徴がある。したがって紡糸温度(口金温度)
の設定も重要である。設定温度が低すぎると曳糸性がな
くなり紡糸状態が不安定となるとともに、凝固糸は極端
に弱くなり取扱い上不利である。まだ設定温度が高すぎ
ると原液粘度が低くなりすぎ気体注入法で中空糸膜を形
成させることが困難となる。
Very advantageous. It also has the characteristic that it undergoes phase separation as it gels, forming an opaque gel. Therefore, the spinning temperature (die temperature)
Settings are also important. If the set temperature is too low, the spinnability will be lost and the spinning state will become unstable, and the coagulated yarn will become extremely weak, which is disadvantageous in terms of handling. If the set temperature is still too high, the viscosity of the stock solution will be too low, making it difficult to form a hollow fiber membrane by the gas injection method.

紡糸温度を高めに設定し2口金から押出されたゾル状態
の中空糸のゲル化、相分離が進まないうちに凝固浴に導
くと、比較的表面の緻密な中空糸膜が得られ、逆に紡糸
温度を低めに設定したり。
If the spinning temperature is set high and the hollow fibers in the sol state extruded from the two spindles are introduced into the coagulation bath before gelation and phase separation progress, a hollow fiber membrane with a relatively dense surface can be obtained; Set the spinning temperature lower.

乾式長(口金面から凝固液面1での距離)を長くしたり
すると比較的粗カ膜構造の中空糸膜となる。
If the dry length (distance from the mouth surface to the solidified liquid level 1) is increased, the hollow fiber membrane will have a relatively coarse membrane structure.

つ捷り紡糸温度を高めに設定したり、乾式長を短くした
りすることにより、そのま捷で選択性を示す(α〉1)
中空糸膜が得られる。
By setting the twisting spinning temperature higher or shortening the dry length, selectivity can be shown by simply twisting (α>1)
A hollow fiber membrane is obtained.

条件により異なるが、紡糸温度としては50〜160°
C2乾式長としては0ろq〜50a’oの範囲で選択さ
れる。
Although it varies depending on the conditions, the spinning temperature is 50 to 160°
The C2 dry length is selected within the range of 0 q to 50 a'o.

次に凝固浴としては、使用した溶剤の水溶液が好ましく
用いられる。通常、浴組成としては溶剤を5%以上含む
ものが好寸しい。溶剤の比率が少なすぎる場合は凝固時
にいわゆるスキン層の形成が過度に促進される傾−向か
あり、高濃度原液を用いた場合と同様に9分離係数(α
)は良好だが、酸素透過速度の小さい中空糸膜になりや
すい。
Next, as the coagulation bath, an aqueous solution of the used solvent is preferably used. Usually, it is preferable that the bath composition contains 5% or more of a solvent. If the ratio of solvent is too small, the formation of a so-called skin layer during coagulation tends to be excessively promoted, and as with the case of using a high concentration stock solution, the separation coefficient (α
) is good, but tends to result in hollow fiber membranes with low oxygen permeation rates.

凝固浴温度については特に限定はないが10〜60°C
の浴温か好ましく用いられる。浴温か高いほど平均的に
粗な膜構造になり、逆に低温浴はど。
There is no particular limitation on the coagulation bath temperature, but it is 10 to 60°C.
bath temperature is preferably used. The higher the bath temperature, the rougher the film structure will be on average;

前述した高濃度原液から得られる中空糸膜と同様。Similar to the hollow fiber membrane obtained from the high concentration stock solution mentioned above.

表面開孔率が非常に小さい、いわゆる均一膜を形成しや
すいと考えられ2分離係数は大きいが、酸素透過速度の
小さい中空糸膜になる。
It is thought that it is easy to form a so-called uniform membrane with a very small surface porosity, and the hollow fiber membrane has a large separation coefficient but a low oxygen permeation rate.

壕だ熱水処理温度は50〜100′cの範囲が好ましく
用いられる。この熱水処理工程は凝固で形成さ・れだ膜
構造を固定化する意味で重要である。つまり中空糸膜に
残存する溶媒や添加剤を除去するとともに熱処理を施し
て、中空糸の乾燥時の寸法変化(収縮)を抑制する。
The trench hot water treatment temperature is preferably in the range of 50 to 100'C. This hot water treatment step is important in terms of fixing the membrane structure formed by coagulation. That is, solvents and additives remaining in the hollow fiber membrane are removed and heat treatment is performed to suppress dimensional changes (shrinkage) of the hollow fiber during drying.

以上本発明のエチルセルロース多孔質中空繊維の製造条
件と酸素富化性能の関係について述べだが、上述したよ
うに製造条件の選択により表面に均一層を有する(つ1
り分離係数がエチルセルロースの3.3に近い)多孔質
中空繊維も製造可能である。しかし完全な均一層を有す
る中空糸膜を作ろうとするとどうしても緻密層の厚さが
増し、その結果、酸素の透過淳度は低下する。
The relationship between the manufacturing conditions and oxygen enrichment performance of the ethyl cellulose porous hollow fiber of the present invention has been described above.
It is also possible to produce porous hollow fibers (with a separation coefficient close to that of ethyl cellulose, 3.3). However, if an attempt is made to create a hollow fiber membrane having a completely uniform layer, the thickness of the dense layer inevitably increases, resulting in a decrease in oxygen permeability.

そこで緻密層が薄くなるように製造条件を選ぶと、乾燥
後の中空糸の分離係数はエチルセルロース本来の特性よ
り低下するようになる。つ寸り緻密層が完全な均一層で
々くなってくる。
Therefore, if manufacturing conditions are selected so that the dense layer becomes thinner, the separation coefficient of the hollow fibers after drying will be lower than the original properties of ethyl cellulose. The dense layer gradually becomes a completely uniform layer.

本発明の一例であるエチルセルロース多孔質中空繊維と
は上述のように、そのまま乾燥しても実質的にある程度
の酸素富化膜としての性能を示すが9選択された溶剤を
含む雰囲気下で処理することにより、該多孔質中空繊維
のピンホール等の欠陥の補修が可能となり、更に分離係
数の高い膜を得ることに成功したものである。
As mentioned above, the ethyl cellulose porous hollow fiber, which is an example of the present invention, exhibits a certain degree of performance as an oxygen-enriching membrane even when dried as is, but it is treated in an atmosphere containing a selected solvent. As a result, defects such as pinholes in the porous hollow fibers can be repaired, and a membrane with a higher separation coefficient can be obtained.

多孔質膜の処理に用いられる溶剤としては、エチルセル
ロース多孔質膜の場合、既述した如く。
In the case of an ethyl cellulose porous membrane, the solvent used for treating the porous membrane is as described above.

NMP、DMF’、DMAc、アセトン、エタノール。NMP, DMF', DMAc, acetone, ethanol.

メタノール、ベンゼン、トルエン、シクロヘキセン、ク
ロロホルム等の他にも膨潤作用のあるジメチルスルホキ
シド、シクロヘキサン等が用いられる。
In addition to methanol, benzene, toluene, cyclohexene, chloroform, etc., dimethyl sulfoxide, cyclohexane, etc., which have a swelling effect, are used.

多孔質膜をこれら溶剤を含むガス雰囲気に通したり、こ
れらを含む溶液に浸漬したり、さらには多、孔質膜にこ
れらを含む溶液をスフツーするなどの方法によシ処理さ
れる。
The porous membrane is treated by a method such as passing the porous membrane through a gas atmosphere containing these solvents, immersing it in a solution containing these solvents, or immersing the porous membrane in a solution containing these solvents.

溶液が用いられる場合は9通常、多孔質膜の非溶剤で希
釈して用いられる。具体的には、水および塩や界面活性
剤を含む水溶液、n−へキサンやインペンタン等から選
択して用いられる。
When a solution is used, it is usually diluted with a non-solvent for the porous membrane. Specifically, it is selected from water, an aqueous solution containing a salt or a surfactant, n-hexane, impentane, and the like.

この時の溶剤の濃度は、用いられる溶剤の種類。The concentration of the solvent at this time depends on the type of solvent used.

浸漬時間、温度により異なるが9通常1%以」二好まし
くは5%以上の範囲で選ばれる。濃度が1φ以下では処
理の効果が乏しく好まし−くない。
Although it varies depending on the immersion time and temperature, it is usually selected in the range of 1% or more, preferably 5% or more. If the concentration is less than 1φ, the treatment effect will be poor and this is not preferable.

処理時間は特に限定はないが9通常1分以下。The processing time is not particularly limited, but is usually 1 minute or less.

更に好捷しくけ10秒以下で処理効果が上がるよう溶剤
濃度、温度等を設定するのが好ましい。一般に処理時間
が長いと溶液の取り込み量が多く。
Furthermore, it is preferable to set the solvent concentration, temperature, etc. so that the treatment effect can be improved in 10 seconds or less. Generally, the longer the processing time, the more solution is taken in.

多孔質膜の緻密層が厚くなるとともに後の乾燥工程にも
負担がかかり好ましくない。
This is not preferable as the dense layer of the porous membrane becomes thicker and the subsequent drying process becomes burdensome.

処理温度は通常15〜ろ5°Cの範囲で選択されるが、
処理溶液の溶解性を調節する意味で0〜15°Cおよび
65〜70°Cの範囲で選択されることもある。
The processing temperature is usually selected in the range of 15 to 5°C,
In order to adjust the solubility of the processing solution, the temperature may be selected within the range of 0 to 15°C and 65 to 70°C.

これらの処理は、熱水処理後の中空繊維を一度巻取り、
その後に行なってもよいが、紡糸に直結して連続処理す
る事が特に好ましい。
In these treatments, the hollow fibers are wound once after being treated with hot water.
Although it may be carried out afterwards, it is particularly preferable to carry out the continuous processing directly in connection with the spinning.

処理の完了した中空糸膜は非接触型の乾燥機で′少々く
とも表面乾燥されるのが望ましい。必要なら更に熱風、
熱ローラ等で乾燥され巻き取られる。
It is desirable that the treated hollow fiber membrane be at least slightly surface-dried in a non-contact dryer. More hot air if necessary,
It is dried using a heated roller or the like and then wound up.

乾燥温度は通常ろO〜80′Cの範囲で選択される。The drying temperature is usually selected within the range of 0 to 80'C.

得られた中空糸膜の性能評価はガラス管小型モジュール
を用いて行なった。具体的には、外径OD(画)、有効
長/(an)の中空糸膜をn(本)束ねて作製した小型
モジュールに、ボンベより1.0 踵/an・Gに調圧
した酸素を供給し、中空糸膜を透過してモジュールより
でてくる単位時間当りの酸素流量q(me/e e c
 )を薄膜式流量計を用いて測定した。透過方向は中空
糸外表面から内表面であり、中空糸膜の外表面積を有効
膜面積として酸素透過速度Qo2(m3/m2・hr*
atm )を次式より算出しだ。
Performance evaluation of the obtained hollow fiber membrane was performed using a small glass tube module. Specifically, a small module made by bundling n (numbers) of hollow fiber membranes with outer diameter OD (picture) and effective length/(an) is filled with oxygen whose pressure is regulated to 1.0 heel/an・G from a cylinder. The oxygen flow rate per unit time q (me/e e c
) was measured using a thin film flowmeter. The permeation direction is from the outer surface of the hollow fiber to the inner surface, and the oxygen permeation rate Qo2 (m3/m2・hr*
atm ) using the following formula.

まだ窒素透過速度QN2も同様の方法で評価測定を行カ
い、これらの値より分離係数(α−QO2/QN2)を
算出した。
The nitrogen permeation rate QN2 was also evaluated and measured in the same manner, and the separation coefficient (α-QO2/QN2) was calculated from these values.

実施例1〜2および比較例1 市販のエチルセルロース(関東化学、試薬100cps
)210部とN M P 350部に120’cでかく
はん溶解した。同温度でかくはんを続けなからEG14
0部を滴下混合し均一な溶液を得た。この溶液の粘度は
120 ’cで乙90ポイズであり、85°Cでゲル化
し、実質的に曳糸性を示さなくなった。この原液を濾過
、脱を包ルだ後、2重管型の中空糸川口の紡糸温度(口
金温度)は100°Cで乾式長は20mmに保持した。
Examples 1 to 2 and Comparative Example 1 Commercially available ethyl cellulose (Kanto Kagaku, reagent 100 cps
) and 350 parts of NMP were stirred and dissolved at 120'C. Do not continue stirring at the same temperature EG14
0 parts were added dropwise and mixed to obtain a homogeneous solution. The viscosity of this solution was 90 poise at 120'C, gelatinized at 85C and virtually no longer showed stringiness. After filtering, removing and encapsulating this stock solution, the spinning temperature (cutter temperature) of a double-tube type hollow fiber Kawaguchi was maintained at 100°C and the dry length was maintained at 20 mm.

次いで30重量%NMP水溶液からなる5 0 ’cの
凝固浴に浸漬した後、水洗し、史に50 ’aで50秒
間熱水処理を施した。そして引続き連続してエタノール
/水=5D150 (重量%)の混合液に約0.5秒浸
漬処理した後、非接触り′イブの熱風乾燥筒に通して、
52℃の熱風と向流で接触させ、乾燥し巻取った。まだ
比較例1として浸漬処理しないものを、非処理中空糸膜
として同様に巻取った。得られた中空糸膜は処理の有無
に無関係で、外径601μ、膜厚67 lt 、真円度
(短径/長径)97係であった。
Next, it was immersed in a coagulation bath of 50'C consisting of a 30 wt% NMP aqueous solution, washed with water, and subjected to hot water treatment at 50'A for 50 seconds. Then, after being continuously immersed in a mixed solution of ethanol/water = 5D150 (wt%) for about 0.5 seconds, it was passed through a non-contact hot air drying tube.
It was brought into contact with hot air at 52° C. in a countercurrent flow, dried, and wound up. Comparative Example 1, which had not yet been subjected to the immersion treatment, was wound up in the same manner as an untreated hollow fiber membrane. The obtained hollow fiber membrane had an outer diameter of 601 μ, a membrane thickness of 67 lt, and a circularity ratio (minor axis/long axis) of 97, regardless of whether it was treated or not.

得られた中空糸膜の性能は、エタノール/水の混合比率
のみ変化させたものと共に表1に示した。
The performance of the obtained hollow fiber membranes is shown in Table 1 along with those obtained by changing only the mixing ratio of ethanol/water.

表  1 実施例3〜6 実施例1と同一組成の紡糸原液を用いて同様の方法で紡
糸、溶剤処理を行なった。条件としては。
Table 1 Examples 3 to 6 Spinning and solvent treatment were performed in the same manner as in Example 1 using a spinning dope having the same composition. As a condition.

熱風乾燥温度を58”Cとした他は凝固浴組成、熱水処
理温度が異なるだけでその他の条件は実施例1と同じで
ある。得られた中空糸膜の性能を、非処理中空糸膜の性
能とともに表2に示した。
The other conditions were the same as in Example 1, except that the hot air drying temperature was 58"C, the coagulation bath composition and the hot water treatment temperature were different.The performance of the obtained hollow fiber membrane was compared to that of the untreated hollow fiber membrane. It is shown in Table 2 along with its performance.

表  2 * QO2= [m7m21hr−atm ]α−Qo
2/ Q10.。
Table 2 *QO2= [m7m21hr-atm] α-Qo
2/ Q10. .

実施例7〜9 実施例1と同様の方法でE C/ D M F / E
 G比率が、30155/15(重量%)の紡糸原液を
調製した。この原液の粘度は110℃で477ポイズで
あった。この原液を紡糸温度85°C1乾式長5皿、窒
素注入圧19 w H2Oで実施例1と同様に吐出した
。次いで50重量/I)]) M F水溶液からなる6
0゛Cの凝固浴に浸漬した後、水洗し、更に50°Cで
50秒間熱水処理を施した。そして引き続き実施例1と
同様の方法で処理液組成を変ヂして浸漬処理を施しだ。
Examples 7 to 9 E C/DM F/E in the same manner as Example 1
A spinning dope having a G ratio of 30155/15 (wt%) was prepared. The viscosity of this stock solution was 477 poise at 110°C. This stock solution was discharged in the same manner as in Example 1 at a spinning temperature of 85°C, 1 dry length of 5 dishes, and a nitrogen injection pressure of 19 w H2O. Then 50 wt/I)]) 6 consisting of an aqueous M F solution
After being immersed in a coagulation bath at 0°C, it was washed with water and further subjected to hot water treatment at 50°C for 50 seconds. Subsequently, immersion treatment was performed in the same manner as in Example 1 by changing the composition of the treatment solution.

なお、この時の処理液の温度は5°Cに保持した。Note that the temperature of the treatment liquid at this time was maintained at 5°C.

これらの中空糸膜の酸素富化性能を非処理膜の性能と共
に表6にまとめて示した。
The oxygen enrichment performance of these hollow fiber membranes is summarized in Table 6 together with the performance of the untreated membrane.

表  ろ 実施例10 ポリサルホン(商品名″′ユニールポリサルホン″p−
5500) 245部をNMP350部に120 ’c
でかくはん溶解した。同温度でかくはんを続けながらK
Gl[)5部を滴下混合し均一な溶液を得だ。
Table Example 10 Polysulfone (Product name: ``Unyl Polysulfone'' p-
5500) 245 copies to 350 copies of NMP 120'c
The big thing melted. K while continuing to stir at the same temperature.
5 parts of Gl[) was added dropwise and mixed to obtain a homogeneous solution.

この溶液の粘度ば7D’aで739ボイズであった。The viscosity of this solution was 7 D'a and 739 voids.

この紡糸原液をp過脱泡したのち、2重管型の中空糸用
口金をJして空気中に吐出した。同時に中空糸内部には
窒素を注入圧2ろ+nmH2Oで注入した。
After this spinning stock solution was subjected to excessive defoaming, it was discharged into the air using a double tube type hollow fiber nozzle. At the same time, nitrogen was injected into the hollow fiber at an injection pressure of 2 filtration + nmH2O.

この時の紡糸温度は75℃で乾式長は15mtoに保持
した。次いでろO重量%のN、M P水溶液からなる6
0°Cの凝固浴に浸漬した後、水洗し、更に50°Cで
50秒間熱水処理を施しだ。そして連続してアセトン/
水−60/ 40 (重量比)の混合液に約2秒浸漬処
理した後、非接触タイプの熱風乾燥筒に通して58°C
の熱風と向流で接触させ。
At this time, the spinning temperature was 75° C. and the dry length was maintained at 15 mto. Next, 6% by weight of N, MP aqueous solution was filtered.
After being immersed in a coagulation bath at 0°C, it was washed with water and further subjected to hot water treatment at 50°C for 50 seconds. and continuously acetone/
After being immersed in a water-60/40 (weight ratio) mixture for about 2 seconds, it was passed through a non-contact type hot air drying tube at 58°C.
in countercurrent contact with hot air.

乾燥して巻取った。得られた中空糸膜は、外径291μ
、膜厚60μ、真円度(短径/長径)99%であった。
It was dried and rolled up. The obtained hollow fiber membrane had an outer diameter of 291μ
The film thickness was 60 μm, and the circularity (breadth axis/long axis) was 99%.

浸漬処理を施さずに乾燥し巻取った中空糸膜の酸素富化
性能がQo2= 1.42 m3/m2.hr−atm
 、  α=1.0であったのに対して、浸漬処理を施
した中空糸膜はQQ2= 0.051 m3/m2.h
r、atm、 ct = 2.8と大幅に分離性能が向
上していた。
The oxygen enrichment performance of the hollow fiber membrane that was dried and wound without being subjected to dipping treatment was Qo2 = 1.42 m3/m2. hr-atm
, α=1.0, whereas the hollow fiber membrane subjected to the immersion treatment had QQ2=0.051 m3/m2. h
The separation performance was significantly improved with r, atm, ct = 2.8.

Claims (3)

【特許請求の範囲】[Claims] (1)多孔質膜を少なくとも該膜の1形成成分である高
分子物質の溶剤を含む雰囲気下で処理することを特徴と
する気体分離膜の製造方法。
(1) A method for producing a gas separation membrane, which comprises treating a porous membrane in an atmosphere containing at least a solvent for a polymeric substance that is one component of the membrane.
(2)、多孔質膜の形態が中空繊維状である前記第1項
記載の気体分離膜の製造法。
(2) The method for producing a gas separation membrane according to item 1 above, wherein the porous membrane has a hollow fiber shape.
(3)  高分子物質がエチルセルロースである前記第
1項記載の気体分離膜の製造方法。
(3) The method for producing a gas separation membrane according to item 1 above, wherein the polymeric substance is ethyl cellulose.
JP3975683A 1983-03-10 1983-03-10 Manufacture of gas separating membrane Pending JPS59166208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3975683A JPS59166208A (en) 1983-03-10 1983-03-10 Manufacture of gas separating membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3975683A JPS59166208A (en) 1983-03-10 1983-03-10 Manufacture of gas separating membrane

Publications (1)

Publication Number Publication Date
JPS59166208A true JPS59166208A (en) 1984-09-19

Family

ID=12561790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3975683A Pending JPS59166208A (en) 1983-03-10 1983-03-10 Manufacture of gas separating membrane

Country Status (1)

Country Link
JP (1) JPS59166208A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051527A (en) * 1983-06-30 1985-03-23 パーミー,インコーポレーテッド Asymmetrical gas separating membrane having improved selectivity
EP0207721A2 (en) 1985-06-27 1987-01-07 A/G Technology Corporation Anisotropic membranes for gas separation
EP0244635A2 (en) * 1986-05-09 1987-11-11 Gkss-Forschungszentrum Geesthacht Gmbh Process for enhancing the selectivity of asymmetric membranes
US4838904A (en) * 1987-12-07 1989-06-13 The Dow Chemical Company Semi-permeable membranes with an internal discriminating region
US4877421A (en) * 1987-11-02 1989-10-31 Union Carbide Corporation Treatment of permeable membranes
EP0341696A2 (en) * 1988-05-10 1989-11-15 The Dow Chemical Company A process for drying water-wet polycarbonate membranes
US4955993A (en) * 1987-12-07 1990-09-11 The Dow Chemical Company Semi-permeable hollow fiber gas separation membranes possessing a non-external discriminating region
JP2003080040A (en) * 2001-09-12 2003-03-18 Kuraray Co Ltd Method for manufacturing hollow fiber membrane

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051527A (en) * 1983-06-30 1985-03-23 パーミー,インコーポレーテッド Asymmetrical gas separating membrane having improved selectivity
EP0207721A2 (en) 1985-06-27 1987-01-07 A/G Technology Corporation Anisotropic membranes for gas separation
EP0207721B1 (en) * 1985-06-27 1991-01-23 A/G Technology Corporation Anisotropic membranes for gas separation
EP0244635A2 (en) * 1986-05-09 1987-11-11 Gkss-Forschungszentrum Geesthacht Gmbh Process for enhancing the selectivity of asymmetric membranes
US4877421A (en) * 1987-11-02 1989-10-31 Union Carbide Corporation Treatment of permeable membranes
US4838904A (en) * 1987-12-07 1989-06-13 The Dow Chemical Company Semi-permeable membranes with an internal discriminating region
US4955993A (en) * 1987-12-07 1990-09-11 The Dow Chemical Company Semi-permeable hollow fiber gas separation membranes possessing a non-external discriminating region
EP0341696A2 (en) * 1988-05-10 1989-11-15 The Dow Chemical Company A process for drying water-wet polycarbonate membranes
JP2003080040A (en) * 2001-09-12 2003-03-18 Kuraray Co Ltd Method for manufacturing hollow fiber membrane

Similar Documents

Publication Publication Date Title
US5013339A (en) Compositions useful for making microporous polyvinylidene fluoride membranes, and process
JPH05212255A (en) Hollow fiber membrane
JPS5812932B2 (en) Hollow fiber manufacturing method
JPS6214642B2 (en)
US5290448A (en) Polyacrylonitrile membrane
JPS59166208A (en) Manufacture of gas separating membrane
JP2000325765A (en) Solvent-resistant microporous polybenzoimidazole thin film
JP2542572B2 (en) Hollow fiber
JPS6333871B2 (en)
JPH11309355A (en) Polysulfone hollow fiber type blood purifying membrane and its production
JPS59169510A (en) Anisotropic hollow yarn membrane
JP2818366B2 (en) Method for producing cellulose ester hollow fiber membrane
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JPS6229524B2 (en)
JPS6118402A (en) Hollow yarn membrane for gas separation and preparation thereof
JP2818352B2 (en) Manufacturing method of hollow fiber membrane
JPH05161833A (en) Production of semipermeable membrane having high water permeability
JP3524637B2 (en) Method for producing polymer porous membrane
JPS60209205A (en) Preparation of hollow yarn porous membrane comprising polyvinylidene fluoride
JP2818359B2 (en) Method for producing cellulose triacetate hollow fiber membrane
JP2002517326A (en) Method for producing cellulosic molded article
JP2818355B2 (en) Manufacturing method of hollow fiber membrane
JPS621007B2 (en)
JPH0938473A (en) Production of polysulfone-base porous hollow fiber membrane
JP3224307B2 (en) Manufacturing method of hollow fiber membrane