JPS6333871B2 - - Google Patents

Info

Publication number
JPS6333871B2
JPS6333871B2 JP54004311A JP431179A JPS6333871B2 JP S6333871 B2 JPS6333871 B2 JP S6333871B2 JP 54004311 A JP54004311 A JP 54004311A JP 431179 A JP431179 A JP 431179A JP S6333871 B2 JPS6333871 B2 JP S6333871B2
Authority
JP
Japan
Prior art keywords
hollow fiber
dialysis membrane
block copolymer
hollow
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54004311A
Other languages
Japanese (ja)
Other versions
JPS5596162A (en
Inventor
Fusakazu Hayano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP431179A priority Critical patent/JPS5596162A/en
Priority to GB7918189A priority patent/GB2047161B/en
Priority to DE2921138A priority patent/DE2921138C2/en
Publication of JPS5596162A publication Critical patent/JPS5596162A/en
Publication of JPS6333871B2 publication Critical patent/JPS6333871B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/081Hollow fibre membranes characterised by the fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/50Polycarbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリエーテルポリカーボネートブロ
ツク共重合体からなる選択透過性を有する中空繊
維透析膜及びその製造方法に関するものである。 従来、血液透析膜としては、キユプラアンモニ
ウムレーヨンからつくられた平膜及び中空繊維が
最も広く用いられているが、透析膜としては分子
量の比較的大きな物質の透析性能、湿潤状態での
強度などの点で、まだまだ十分に満足のゆく透析
膜とはなりえていなかつた。 ポリエーテルポリカーボネートブロツク共重合
体による平膜は、Trans.Amer.Soc.Artif.Int.
Organs、21巻144頁(1975)、特公昭52−28826、
特開昭52−116692、特開昭52−120597により既知
であり、これらの既知文献には、ポリエーテルポ
リカーボネートブロツク共重合体溶液を平板基体
上に展延して形成した血液透折用の平膜は、中分
子量物質を優先的に除去できる透析膜であること
が紹介されている。 一方平膜は、ロール状に巻いて保存されるため
膜間にブロツキングが生じて人工腎臓の組立のと
きの取扱いに支障を来たすばかりでなく、Kiil型
透析器で使用する場合には透析効率が劣りまた残
血量が大きいため患者の負担を大きくするという
欠点がある。以上の諸点が、ポリエーテルポリカ
ーボネート中空繊維透析膜の開発が望まれている
理由である。 ところで、中空繊維膜においては、透析効率、
プライミング量、血液凝固の防止等を考慮して中
空繊維の内側に血液を流すことが通常行なわれて
いる。 しかるに、ポリエーテルポリカーボネートブロ
ツク重合体の中空繊維透析膜の製造では、血液と
接触する中空繊維の内側に溶媒を蒸発させると云
う方法によつて緻密な層を形成させるのは極めて
困難であり、前記既知平膜の製法を応用して1〜
5分程度空中に押出した中空糸から溶媒蒸発させ
るだけでは中空糸に平膜と同じようなすぐれた透
析性能を与えることはできない。 本発明者らは、ポリエーテルポリカーボネート
ブロツク共重合体の水可溶性溶媒の溶液を中空紡
糸するにあたり、紡出中空繊維の内側を加圧下の
凝固液で凝固させると中空繊維の内表面の溶媒を
乾燥させる工程を経ないでも内表面に薄くて緻密
な層を形成させることができること、及び加圧下
の凝固液の圧力で中空繊維の横断面方向(周方
向)に延伸乃至ドラフトを与えることにより中空
繊維内表面及び外表面の緻密度をコントロールで
きることを見出し、内外両表面に薄い緻密層を有
する比較的分子量の大きな物質の透析性能にすぐ
れ、しかも適度の限外過性能をもつ血液透析に
用いることのできる中空繊維透析膜の発明をなす
に至つた。 本発明は、ポリエーテルポリカーボネートブロ
ツク共重合体からなり、内表面及び外表面に緻密
な層を有する中空繊維透析膜、並びにポリエーテ
ルポリカーボネートブロツク共重合体を溶媒に溶
解した溶液を環状オリフイスから押し出して中空
繊維透析膜を製造するに際し、中空繊維の内部に
凝固液を圧入して、中空繊維を周方向に延伸しな
がら空気中に押し出し、次いで凝固液中で凝固さ
せる中空繊維透析膜の製造方法である。 本発明のポリエーテルポリカーボネートブロツ
ク共重合体中空繊維透析膜は、ポリエーテルポリ
カーボネートブロツク共重合体を溶媒に溶解した
溶液を環状オリフイスから押し出して中空繊維透
析膜を製造するに際し、中空繊維の内部に凝固液
を圧入して、中空繊維を周方向に延伸しながら空
気中に押し出し、次いで凝固液中で凝固させるこ
とによつて製造することができる。 本発明の中空繊維透析膜は、37℃での食塩の拡
散透過係数が700×10-4cm/min以上、ビタミン
B12の拡散透過係数が80×10-4cm/min以上、透
水率が10ml/m2・hr・mmHg以下で、実質的にヒ
ト−アルブミンを通過させないものであり、この
ような性能を内径が100〜500μ、膜厚が10〜40μ
の均一な厚みを有する中空繊維において得ること
ができる。 本発明のポリエーテルポリカーボネートブロツ
ク共重合体中空繊維は、中空繊維の内表面及び外
表面に薄い緻密な層を有し、両表面にはさまれた
中間の層は比較的粗な構造を有しており、それ故
に中分子量物質の透析性能が大きく、しかも適度
な限外過性能を持つものである。 本発明で用いられるポリエーテルポリカーボネ
ートブロツク共重合体は、ポリアルキレングリコ
ール単位とビスフエノールA単位とをジオール成
分とし、これにホスゲン等の炭酸誘導体を反応さ
せて得られるものが好適であり、すでに公知のも
のであるが〔Journal of Polymer Science:
Part C、No.4P707−730(1963)〕ポリアルキレン
グリコール単位を約5〜45%、好ましくは10〜35
重量%を含む共重合体が特に好ましい。5重量%
未満では親水性に劣り、また45重量%を超えると
ゴム弾性がでてくる。 ポリカーボネートブロツク共重合体の溶液を調
製する際の溶媒としては、ポリマーに対する溶解
性が大きく、しかも凝固液、例えば水とよく混合
する有機溶媒、例えば1,4−ジオキサン、1,
3−ジオキサン、1,3−ジオキソラン、テトラ
ヒドロフラン、ブチロラクトンなどが用いられる
が、1,3−ジオキソランが最も好適である。ま
た、外表面の緻密層の形成に支障をきたさない範
囲で膨潤剤、例えば、ジメチルスルホキサイド、
ジメチルアセトアミド、ジメチルホルムアミド等
を加えることにより、得られる膜の性能を調整す
ることが可能である。 次に本発明の中空繊維膜の製造方法について説
明する。 まずポリエーテルポリカーボネートブロツク共
重合体を溶媒中に溶解し紡糸原液を調整する。 ポリマー濃度はポリマーの分子量、目的とする
中空繊維膜の性能等によつて決められるが、通常
5〜35重量%であり、溶液粘度は25℃で2000〜
100000CPが適当である。 この様にして得られた紡糸原液を通常の中空繊
維紡糸用の口金即ち中央部に内部凝固液注入用の
中空管を有する環状オリフイスから空気中に押し
出し、中空繊維を形成させる。中空繊維を形成さ
せるに際し、中空繊維の内部に前述の口金の中央
より水等の凝固液を圧入し、中空繊維の内径を拡
げ、周方向に延伸する。次いで中空繊維を水浴中
に導入し、凝固を完全なものにし、水洗浴中で中
空繊維を巻き取ると共に膜中に残つている溶媒を
洗い流す。 凝固液の例としては、水、エチレングリコー
ル、プロピレングリコールなどがあげられるが、
取扱いやすさ、安全性、経済性などの点から、水
が最も好ましい。凝固液には無機塩類、膨潤剤等
の添加剤を加えることができる。 内部に凝固液を圧入しない場合には、中空繊維
の軸方向にかかわる力により中空繊維の内径は口
金の形状により規定される内径よりも細くなるが
凝固液を圧入した場合には、中空繊維の内径は口
金より規定される内径と同等がそれよりも大きく
なる。 得られる中空繊維透析膜の性能は延伸の度合に
より制御することが可能であり、延伸倍率を大き
くすることにより中空繊維透析膜の透析性能は大
きくなる。延伸倍率は、中空繊維内部への凝固液
の圧入圧、原液の吐出量、巻取速度等によりコン
トロールすることができる。紡糸口金から空気中
に押出された中空繊維が凝固浴中に浸漬するまで
の時間を調節することにより、中空繊維透析膜の
外表面に緻密層を形成させ、膜性能、特に透水性
能をコントロールすることができる。 重合体の溶媒との二成分の溶液を使用する場合
には中空繊維の外表面側の緻密層が極めて短時間
に形成されるので、添加剤を溶液に添加し膜の透
析性能をコントロールすることができる。 本発明の中空繊維では外表面の緻密層は極めて
短い時間空気中を通過させるだけで容易に形成さ
れ、通常空気中の通過に要する時間は10秒以下で
ある。 この外表面の緻密層は透水性能のコントロール
に有効であるだけでなく、中空繊維の取り扱いや
すさを改善するのにも有効である。則ち、外表面
に緻密層のない中空繊維ではお互にくつついてブ
ロツキングがおこりやすくなり、取扱いにくいの
に対し外表面に緻密層があると、ブロツキングが
おこりにくくなる。 得られた中空繊維膜はそのまま湿潤状態で保存
する事が可能であるが、グリセリン水溶液に浸漬
させた後乾燥し、乾燥状態で保存する事も可能で
ある。また、従来他の透析膜で公知の方法である
熱処理、繊維軸方向への延伸処理により、膜性能
をコントロールする方法を、本発明により得られ
る中空繊維透析膜に有効に応用することも可能で
ある。 中空糸の透析性能は37℃のとき食塩の透過係数
が700×10-4cm/min以上、ビタミンB12の拡散係
数が80×10-4/min以上、イヌリンの拡散透過係
数が17×10-4〜25×10-4cm/minと特に中分子量
物質の透析性能にすぐれている。しかも、ヒト−
アルブミンの透過率は0であり、充分に欠陥のな
い透析膜となつている。 更に透水量は10ml/m2、hr、mmHg(37℃)以下
好ましくは2〜7ml/m2、hr、mmHg(37℃)と上
記のような高い透析性能を持つた透析膜としては
充分に低くなつており透析性能と透水性能とのバ
ランスのとれた透析膜であり、血液透析ばかりで
なく、一般透析用中空糸膜として用いることもで
きる。 本発明の中空繊維透析膜の破裂強度は5〜10
Kg/cm2であり、平膜の破裂強度0.4Kg/cm2に比較
して12〜25倍と大幅に向上する。 以下実施例によつて詳細に説明する。 実施例 1 ポリエチレングリコール単位25重量%、ビスフ
エノール−A単位75重量%から成るポリエーテ
ル・ポリカーボネートブロツク共重合体(25℃ク
ロロホルムでの〔η〕=2.3)65gを1,3−ジオ
キソラン435gに溶解し、紡糸原液とする。 この紡糸原液を、原液送入口から中空繊維紡糸
用環状オリフイスを有する口金に送入し、内部凝
固液注入用の中空管から、蒸留水を約0.1Kg/cm2
の圧力で圧入しながら紡糸原液を環状オリフイス
から7.5m/分の速度で押し出して中空繊維膜と
する。環状オリフイスの内径と外径はそれぞれ
0.2mm、0.4mmであり、中心部に挿入開口した内径
0.1mmのニードル状の凝固液注入管により内径が
形成されている。 環状オリフイスから押し出された中空繊維膜は
25℃の空気中を約1sec、走行させた後に25℃の水
浴中に浸漬され外側からも凝固と接触させられ
る。凝固させられた中空繊維膜は水洗浴を通り、
次いで巻き取り機では7.5m/分の速度で捲取ら
れる。得られた中空繊維膜は内部凝固水を抜いた
後、蒸留水でよく洗浄され湿潤状態に維持され
る。 この様にして得られた中空繊維透析膜の形状、
尿素、クレアチニン、尿酸、ビタミンB12、イヌ
リン、アルブミンの透析性能及び、限外濾過性能
を、キユプロアンモニウムレーヨン中空繊維と比
較して、表1に示す。 表1に示した結果から、ポリエーテルポリカー
ボネート共重合体からつくられた中空繊維膜が、
キユプロアンモニウムレーヨン中空繊維膜と比較
して、ビタミンB12、イヌリン等の中分子量物質
の透過率が大きく、しかも、限外濾過率は、臨床
上許容されうる程度であることが明らかである。 また、透過型電子顕微鏡で中空繊維断面の構造
を観察したところ、中空繊維の内部及び外部の両
表面ともに緻密な層となつていることが確認され
た。
The present invention relates to a hollow fiber dialysis membrane having permselectivity made of a polyether polycarbonate block copolymer and a method for producing the same. Conventionally, flat membranes and hollow fibers made from cuprammonium rayon have been most widely used as hemodialysis membranes, but dialysis membranes have limited performance in dialysis of substances with relatively large molecular weights, strength in wet conditions, etc. In this respect, the dialysis membrane was still not fully satisfactory. Flat membranes made of polyether polycarbonate block copolymers are manufactured by Trans.Amer.Soc.Artif.Int.
Organs, Vol. 21, p. 144 (1975), Special Publication No. 52-28826,
It is known from JP-A-52-116692 and JP-A-52-120597, and these known documents describe a flat plate for blood dialysis formed by spreading a polyether polycarbonate block copolymer solution on a flat plate substrate. The membrane is introduced as a dialysis membrane that can preferentially remove medium molecular weight substances. On the other hand, since flat membranes are stored in rolls, blocking occurs between the membranes, which not only hinders handling when assembling an artificial kidney, but also reduces dialysis efficiency when used in a Kiil-type dialyzer. It also has the disadvantage of increasing the burden on the patient due to the large amount of residual blood. The above points are the reasons why the development of polyether polycarbonate hollow fiber dialysis membranes is desired. By the way, in hollow fiber membranes, dialysis efficiency,
In consideration of the amount of priming, prevention of blood coagulation, etc., blood is normally allowed to flow inside the hollow fiber. However, in the production of hollow fiber dialysis membranes made of polyether polycarbonate block polymers, it is extremely difficult to form a dense layer on the inside of the hollow fibers that come into contact with blood by evaporating the solvent. Applying the known flat membrane manufacturing method 1~
Simply evaporating the solvent from a hollow fiber extruded into the air for about 5 minutes does not give the hollow fiber the same excellent dialysis performance as a flat membrane. The present inventors discovered that when hollow spinning a solution of a water-soluble solvent of a polyether polycarbonate block copolymer, by coagulating the inside of the spun hollow fibers with a coagulating liquid under pressure, the solvent on the inner surface of the hollow fibers was dried. Hollow fibers can be formed by forming a thin, dense layer on the inner surface without going through the process of drying, and by applying stretching or drafting in the cross-sectional direction (circumferential direction) of the hollow fibers using the pressure of the coagulating liquid under pressure. It was discovered that the density of the inner and outer surfaces can be controlled, and the material has a thin dense layer on both the inner and outer surfaces and has excellent dialysis performance for substances with relatively large molecular weights, as well as a suitable ultrafiltration performance for use in hemodialysis. This led to the invention of a hollow fiber dialysis membrane. The present invention consists of a hollow fiber dialysis membrane made of a polyether polycarbonate block copolymer and having dense layers on the inner and outer surfaces, and a solution of the polyether polycarbonate block copolymer dissolved in a solvent is extruded through an annular orifice. When manufacturing a hollow fiber dialysis membrane, a method for manufacturing a hollow fiber dialysis membrane involves pressurizing a coagulation liquid into the hollow fibers, extruding the hollow fibers into the air while stretching them in the circumferential direction, and then coagulating them in the coagulation liquid. be. The polyether polycarbonate block copolymer hollow fiber dialysis membrane of the present invention coagulates inside the hollow fibers when the hollow fiber dialysis membrane is manufactured by extruding a solution of the polyether polycarbonate block copolymer dissolved in a solvent through an annular orifice. It can be produced by pressurizing a liquid, extruding the hollow fibers into the air while stretching them in the circumferential direction, and then coagulating them in a coagulating liquid. The hollow fiber dialysis membrane of the present invention has a salt diffusion permeability coefficient of 700×10 -4 cm/min or more at 37°C, and a vitamin
B 12 has a diffusion permeability coefficient of 80 x 10 -4 cm/min or more and a water permeability of 10 ml/m 2 · hr · mmHg or less, and does not substantially allow human albumin to pass through. is 100~500μ, film thickness is 10~40μ
can be obtained in hollow fibers with a uniform thickness of . The polyether polycarbonate block copolymer hollow fiber of the present invention has a thin dense layer on the inner and outer surfaces of the hollow fiber, and the intermediate layer sandwiched between both surfaces has a relatively coarse structure. Therefore, it has a high dialysis performance for medium molecular weight substances and also has a moderate ultrafiltration performance. The polyether polycarbonate block copolymer used in the present invention is preferably one obtained by reacting a polyalkylene glycol unit and a bisphenol A unit as a diol component with a carbonic acid derivative such as phosgene, and is already known in the art. [Journal of Polymer Science:
Part C, No. 4P707-730 (1963)] About 5 to 45% polyalkylene glycol units, preferably 10 to 35%
Particularly preferred are copolymers containing % by weight. 5% by weight
If it is less than 45% by weight, the hydrophilicity will be poor, and if it exceeds 45% by weight, rubber elasticity will appear. As a solvent for preparing a solution of a polycarbonate block copolymer, an organic solvent that has high solubility for the polymer and that mixes well with a coagulating liquid, such as water, such as 1,4-dioxane, 1,
3-dioxane, 1,3-dioxolane, tetrahydrofuran, butyrolactone, etc. are used, but 1,3-dioxolane is most preferred. In addition, a swelling agent such as dimethyl sulfoxide,
By adding dimethylacetamide, dimethylformamide, etc., it is possible to adjust the performance of the resulting membrane. Next, a method for manufacturing the hollow fiber membrane of the present invention will be explained. First, a polyether polycarbonate block copolymer is dissolved in a solvent to prepare a spinning stock solution. The polymer concentration is determined depending on the molecular weight of the polymer, the performance of the hollow fiber membrane, etc., but is usually 5 to 35% by weight, and the solution viscosity is 2000 to 2000 at 25℃.
100000CP is appropriate. The spinning dope thus obtained is extruded into the air through a conventional hollow fiber spinning die, ie, an annular orifice having a hollow tube in the center for injecting an internal coagulating liquid, to form hollow fibers. When forming the hollow fibers, a coagulating liquid such as water is forced into the hollow fibers from the center of the above-mentioned die to expand the inner diameter of the hollow fibers and stretch them in the circumferential direction. The hollow fibers are then introduced into a water bath to complete coagulation, and the hollow fibers are wound up in a water wash bath and the solvent remaining in the membrane is washed away. Examples of coagulating liquids include water, ethylene glycol, propylene glycol, etc.
Water is most preferable from the viewpoint of ease of handling, safety, economic efficiency, etc. Additives such as inorganic salts and swelling agents can be added to the coagulation liquid. When the coagulation liquid is not press-fitted inside, the inner diameter of the hollow fiber becomes smaller than the inner diameter defined by the shape of the mouthpiece due to the force related to the axial direction of the hollow fiber. The inner diameter is equal to or larger than the inner diameter defined by the cap. The performance of the hollow fiber dialysis membrane obtained can be controlled by the degree of stretching, and the dialysis performance of the hollow fiber dialysis membrane increases by increasing the stretching ratio. The stretching ratio can be controlled by the injection pressure of the coagulating liquid into the hollow fiber, the discharge amount of the stock solution, the winding speed, etc. By adjusting the time until the hollow fibers extruded into the air from the spinneret are immersed in the coagulation bath, a dense layer is formed on the outer surface of the hollow fiber dialysis membrane, and membrane performance, especially water permeability, is controlled. be able to. When using a two-component solution of a polymer and a solvent, a dense layer on the outer surface of the hollow fibers is formed in a very short time, so it is necessary to add additives to the solution to control the dialysis performance of the membrane. Can be done. In the hollow fibers of the present invention, a dense layer on the outer surface can be easily formed by passing through air for an extremely short period of time, and usually the time required for passing through air is 10 seconds or less. This dense layer on the outer surface is effective not only for controlling water permeability but also for improving the ease of handling the hollow fibers. In other words, hollow fibers without a dense layer on the outer surface are likely to stick together and cause blocking, making them difficult to handle, whereas with a dense layer on the outer surface, blocking is less likely to occur. The obtained hollow fiber membrane can be stored as it is in a wet state, but it can also be stored in a dry state by immersing it in an aqueous glycerin solution and then drying it. Furthermore, methods of controlling membrane performance by heat treatment and stretching in the fiber axis direction, which are conventionally known methods for other dialysis membranes, can be effectively applied to the hollow fiber dialysis membrane obtained by the present invention. be. The dialysis performance of hollow fibers is as follows: At 37°C, the permeation coefficient of common salt is 700×10 -4 cm/min or more, the diffusion coefficient of vitamin B12 is 80×10 -4 /min or more, and the diffusion coefficient of inulin is 17×10 -4 to 25×10 -4 cm/min, which has excellent dialysis performance especially for medium molecular weight substances. Moreover, human-
The albumin permeability was 0, indicating that the dialysis membrane was sufficiently defect-free. Furthermore, the water permeability is 10 ml/m 2 , hr, mmHg (37°C) or less, preferably 2 to 7 ml/m 2 , hr, mmHg (37°C), which is sufficient for a dialysis membrane with the above-mentioned high dialysis performance. This dialysis membrane has a good balance between dialysis performance and water permeability, and can be used not only for hemodialysis but also as a hollow fiber membrane for general dialysis. The bursting strength of the hollow fiber dialysis membrane of the present invention is 5 to 10
Kg/cm 2 , which is significantly improved by 12 to 25 times compared to the flat membrane's burst strength of 0.4 Kg/cm 2 . This will be explained in detail below using examples. Example 1 65 g of a polyether/polycarbonate block copolymer ([η] = 2.3 in chloroform at 25°C) consisting of 25% by weight of polyethylene glycol units and 75% by weight of bisphenol-A units was dissolved in 435 g of 1,3-dioxolane. and use it as a spinning stock solution. This spinning stock solution is sent from the stock solution inlet to a spinneret having an annular orifice for hollow fiber spinning, and about 0.1Kg/cm 2 of distilled water is introduced from the hollow tube for injecting the internal coagulation solution.
The spinning stock solution is extruded from the annular orifice at a speed of 7.5 m/min while being press-fitted at a pressure of 100 to form a hollow fiber membrane. The inner and outer diameters of the annular orifice are
The inner diameter is 0.2mm and 0.4mm, with an insertion opening in the center.
The inner diameter is formed by a 0.1 mm needle-shaped coagulation fluid injection tube. The hollow fiber membrane extruded from the annular orifice is
After running in air at 25°C for about 1 second, it is immersed in a 25°C water bath and brought into contact with the coagulation from the outside. The coagulated hollow fiber membrane passes through a water washing bath,
It is then wound up in a winder at a speed of 7.5 m/min. After removing the internal coagulated water from the obtained hollow fiber membrane, it is thoroughly washed with distilled water and kept in a moist state. The shape of the hollow fiber dialysis membrane obtained in this way,
The dialysis performance and ultrafiltration performance for urea, creatinine, uric acid, vitamin B 12 , inulin, and albumin are shown in Table 1 in comparison with the cuproammonium rayon hollow fiber. From the results shown in Table 1, it is clear that the hollow fiber membrane made from polyether polycarbonate copolymer
It is clear that the permeability of medium molecular weight substances such as vitamin B 12 and inulin is higher than that of the cuproammonium rayon hollow fiber membrane, and the ultrafiltration rate is at a clinically acceptable level. Furthermore, when the structure of the cross section of the hollow fiber was observed using a transmission electron microscope, it was confirmed that both the internal and external surfaces of the hollow fiber had a dense layer.

【表】【table】

【表】 実施例 2〜4 実施例1で用いたポリエーテルポリカーボネー
トブロツク共重合体65gを、1,3−ジオキソラ
ン422gとジメチルスルホキシド13gとの混合溶
媒中に溶解し、紡糸原液とする。実施例1と同様
にして、内部凝固液の注入圧のみを変化させて中
空繊維を製造し、その性能を測定した結果を表2
に示す。
[Table] Examples 2 to 4 65 g of the polyether polycarbonate block copolymer used in Example 1 was dissolved in a mixed solvent of 422 g of 1,3-dioxolane and 13 g of dimethyl sulfoxide to prepare a spinning stock solution. Hollow fibers were manufactured in the same manner as in Example 1 by changing only the injection pressure of the internal coagulation liquid, and the performance was measured.Table 2 shows the results of measuring the performance.
Shown below.

【表】 実施例 5〜9 実施例1で用いたポリエーテルポリカーボネー
トブロツク共重合体65gを、1,3−ジオキソラ
ン422gとジメチルスルホキシド13gの混合溶媒
中に溶解し、紡糸原液とする。実施例1と同様に
して、空気中を通過させる時間のみを変化させて
中空繊維を製造し、その性能を測定した結果を表
3に示す。
[Table] Examples 5 to 9 65 g of the polyether polycarbonate block copolymer used in Example 1 was dissolved in a mixed solvent of 422 g of 1,3-dioxolane and 13 g of dimethyl sulfoxide to prepare a spinning stock solution. Hollow fibers were produced in the same manner as in Example 1 by varying only the time for passing through the air, and the performance was measured. Table 3 shows the results.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリエーテルポリカーボネートブロツク共重
合体からなり、内径が100〜500μ、膜厚が10〜
40μの均一な厚みを有し、内表面及び外表面に実
質的にヒト−アルブミンを通過させない緻密な層
及び両表面にはさまれた中間層に比較的粗な構造
を有する血液透析用の中空繊維透析膜。 2 ポリエーテルポリカーボネートブロツク共重
合体が約10〜35重量%のポリアルキレンエーテル
カーボネート成分と約90〜65重量%のビスフエノ
ールAカーボネート成分とからなる特許請求の範
囲第1項記載の中空繊維透析膜。 3 37℃での食塩の拡散透過係数が700×10-4
cm/min以上、ビタミンB12の拡散透過係数が80
×10-4cm/min以上、透水率が7ml/m2・hr・mm
Hg以下の特許請求の範囲第1項記載の中空繊維
透析膜。 4 ポリエーテルポリカーボネートブロツク共重
合体を溶媒に溶解した溶液を環状オリフイスから
押し出して中空繊維透析膜を製造するに際し、中
空繊維の内部に凝固液を圧入して、中空繊維を周
方向に延伸しながら空気中に押し出し、次いで凝
固液中で凝固させることを特徴とする血液透析用
の中空繊維透析膜の製造方法。 5 ポリエーテルカーボネートブロツク共重合体
が約10〜35重量%のポリアルキレンエーテルカー
ボネート成分と約90〜65重量%のビスフエノール
Aカーボネート成分とからなる特許請求の範囲第
4項記載の中空繊維透析膜の製造方法。
[Scope of Claims] 1. Made of polyether polycarbonate block copolymer, with an inner diameter of 100 to 500 μm and a film thickness of 10 to 500 μm.
A hollow space for hemodialysis having a uniform thickness of 40μ and having a dense layer on the inner and outer surfaces that substantially does not allow human albumin to pass through, and a relatively rough structure in the middle layer sandwiched between both surfaces. Fiber dialysis membrane. 2. The hollow fiber dialysis membrane according to claim 1, wherein the polyether polycarbonate block copolymer comprises about 10 to 35% by weight of a polyalkylene ether carbonate component and about 90 to 65% by weight of a bisphenol A carbonate component. . 3 The diffusion permeability coefficient of salt at 37℃ is 700×10 -4
cm/min or more, the diffusive permeability coefficient of vitamin B 12 is 80
×10 -4 cm/min or more, water permeability 7ml/m 2・hr・mm
The hollow fiber dialysis membrane according to claim 1, in which Hg or less. 4. When manufacturing a hollow fiber dialysis membrane by extruding a solution of a polyether polycarbonate block copolymer dissolved in a solvent through an annular orifice, a coagulating liquid is forced into the inside of the hollow fiber, and the hollow fiber is stretched in the circumferential direction. A method for producing a hollow fiber dialysis membrane for hemodialysis, which comprises extruding it into air and then coagulating it in a coagulation solution. 5. The hollow fiber dialysis membrane according to claim 4, wherein the polyether carbonate block copolymer comprises about 10 to 35% by weight of a polyalkylene ether carbonate component and about 90 to 65% by weight of a bisphenol A carbonate component. manufacturing method.
JP431179A 1979-01-18 1979-01-18 Polycarbonate hollow fiber dialysis film and its preparation Granted JPS5596162A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP431179A JPS5596162A (en) 1979-01-18 1979-01-18 Polycarbonate hollow fiber dialysis film and its preparation
GB7918189A GB2047161B (en) 1979-01-18 1979-05-24 Hollow fibre form polycarbonate membrane for use in dialysis and process for producing same
DE2921138A DE2921138C2 (en) 1979-01-18 1979-05-25 Hollow fiber-shaped dialysis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP431179A JPS5596162A (en) 1979-01-18 1979-01-18 Polycarbonate hollow fiber dialysis film and its preparation

Publications (2)

Publication Number Publication Date
JPS5596162A JPS5596162A (en) 1980-07-22
JPS6333871B2 true JPS6333871B2 (en) 1988-07-07

Family

ID=11580932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP431179A Granted JPS5596162A (en) 1979-01-18 1979-01-18 Polycarbonate hollow fiber dialysis film and its preparation

Country Status (3)

Country Link
JP (1) JPS5596162A (en)
DE (1) DE2921138C2 (en)
GB (1) GB2047161B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE423106B (en) * 1980-07-25 1982-04-13 Gambro Dialysatoren PLASMAFERES MEMBRANE AND WAY TO MANUFACTURE THIS
DE3069709D1 (en) * 1980-09-01 1985-01-10 Gambro Inc Dry polycarbonate membrane and process of manufacture
EP0046816A1 (en) * 1980-09-01 1982-03-10 Gambro, Inc. Polycarbonate hemofiltration membrane and method of hemofiltering using such a membrane
SE429441B (en) * 1982-04-30 1983-09-05 Gambro Dialysatoren MICROPOROST HALFIBERMENBRAN FOR PLASMAFERES, AS WELL AS MANUFACTURING THE MEMBRANE
SE8204103L (en) * 1982-07-02 1984-01-03 Gambro Lundia Ab FILTRATION MEMBRANE AND SET TO MAKE THE MEMBRANE
SE446505B (en) * 1982-11-16 1986-09-22 Gambro Dialysatoren MEMBRANE AND WAY TO MAKE THIS
EP0135760A1 (en) * 1983-08-19 1985-04-03 Bayer Ag Polyether-polycarbonates for dialysis-membranes
SE443584B (en) * 1985-03-07 1986-03-03 Gambro Dialysatoren SET TO MAKE A SEMIPERMEABLE HALFIBER
KR20110126607A (en) 2009-02-04 2011-11-23 도요 보세키 가부시키가이샤 Hollow-fiber membrane, process for producing same, and blood purification module
CN104906972A (en) * 2015-05-20 2015-09-16 苏州市贝克生物科技有限公司 Nano-grade titanium dioxide/polyether hemodialysis membrane and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116692A (en) * 1976-03-19 1977-09-30 Bard Inc C R Blood dialyzing polycarbonate membrane
JPS52120597A (en) * 1976-03-31 1977-10-11 Bard Inc C R Blood dialyzing polycarbonate thin film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD14882A (en) * 1957-05-06 1900-01-01
US3423491A (en) * 1964-09-02 1969-01-21 Dow Chemical Co Permselective hollow fibers and method of making
JPS5193786A (en) * 1975-02-15 1976-08-17 Makurokagatano chukuseni
US4061821A (en) * 1975-12-29 1977-12-06 Asahi Kasei Kogyo Kabushiki Kaisha Semipermeable composite membranes
JPS6029282B2 (en) * 1976-09-03 1985-07-10 旭化成株式会社 Semipermeable membrane and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116692A (en) * 1976-03-19 1977-09-30 Bard Inc C R Blood dialyzing polycarbonate membrane
JPS52120597A (en) * 1976-03-31 1977-10-11 Bard Inc C R Blood dialyzing polycarbonate thin film

Also Published As

Publication number Publication date
DE2921138C2 (en) 1983-10-20
GB2047161B (en) 1983-01-12
JPS5596162A (en) 1980-07-22
GB2047161A (en) 1980-11-26
DE2921138A1 (en) 1980-07-24

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US5340480A (en) Polysulfone-based hollow fiber membrane and process for manufacturing the same
KR100432463B1 (en) Polysulfone Hollow Fiber Membrane
KR20050083852A (en) Permselective membrane and process for manufacturing thereof
JPH06165926A (en) Polysulfone hollow fabric membrane and production therefor
JP6184464B2 (en) Performance enhancing additives for fiber formation and polysulfone fibers
WO1997034687A1 (en) Hollow yarn membrane used for blood purification and blood purifier
JPS6214642B2 (en)
JPS6333871B2 (en)
JPH07289863A (en) Polysulfone hollow fiber membrane and its production
JPH053335B2 (en)
JPS59166208A (en) Manufacture of gas separating membrane
JPH0371144B2 (en)
JPH0194902A (en) Polysulfone hollow fibrous membrane and production thereof
US5505859A (en) Hollow fiber for dialysis and process of manufacturing
JPS6160165B2 (en)
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JP3317876B2 (en) Method for producing hollow fiber type blood purification membrane
JP2000107577A (en) Production of permselective hollow fiber membranes
JP2818352B2 (en) Manufacturing method of hollow fiber membrane
JP2818359B2 (en) Method for producing cellulose triacetate hollow fiber membrane
JPS60209205A (en) Preparation of hollow yarn porous membrane comprising polyvinylidene fluoride
JPS6229524B2 (en)
JP2005065725A (en) Hollow fiber blood purifying membrane
JPH02164424A (en) Manufacture of hollow fiber membrane of synthetic polymer