JPS6029282B2 - Semipermeable membrane and its manufacturing method - Google Patents

Semipermeable membrane and its manufacturing method

Info

Publication number
JPS6029282B2
JPS6029282B2 JP51105638A JP10563876A JPS6029282B2 JP S6029282 B2 JPS6029282 B2 JP S6029282B2 JP 51105638 A JP51105638 A JP 51105638A JP 10563876 A JP10563876 A JP 10563876A JP S6029282 B2 JPS6029282 B2 JP S6029282B2
Authority
JP
Japan
Prior art keywords
semipermeable membrane
membrane
porous layer
hollow fiber
dispersant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51105638A
Other languages
Japanese (ja)
Other versions
JPS5330989A (en
Inventor
健二 伊藤
節夫 今井
康雄 橋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP51105638A priority Critical patent/JPS6029282B2/en
Priority to IE1714/77A priority patent/IE45467B1/en
Priority to GB34933/77A priority patent/GB1565113A/en
Priority to IT27045/77A priority patent/IT1085160B/en
Priority to DE2739118A priority patent/DE2739118C3/en
Priority to FR7726492A priority patent/FR2363350A1/en
Publication of JPS5330989A publication Critical patent/JPS5330989A/en
Publication of JPS6029282B2 publication Critical patent/JPS6029282B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は限外炉過およびミクロ炉適用半透膜の技術分野
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the technical field of semipermeable membranes for ultrafiltration and microfurnace applications.

更に詳しくは、頬斜型多孔質層を有する半透膜の分子量
分画特性、言いかえれば半透膜の節目の孔の大きさを自
由に変えて製造することのでさる製膜技術およびその技
術により得られるところの特徴ある構造をもった半透膜
に関するものである。その目的とするところは、同一の
ポリマー素材を使って、広範囲に、しかも任意に節目の
大きさをコントロールして製造することのできる技術お
よびその技術により得られる半透膜を提供することにあ
る。半透膜による分離法は、蒸発法、イオン交換膜法、
吸着法などの分離法に比較して、その操作エネルギーコ
ストが非常に低く、且つ操作が簡便であるため、近年、
食品工業、医薬品工業、電子工業、塗装工業、機械工業
、化学工業等広範な分野において分離工程の改良、廃水
処理などの目的で利用されるようになっている。
More specifically, the molecular weight fractionation characteristics of a semipermeable membrane having an oblique porous layer, in other words, the membrane manufacturing technology that allows the membrane to be manufactured by freely changing the pore size at the joints of the semipermeable membrane, and its technology. The present invention relates to a semipermeable membrane with a characteristic structure obtained by. The purpose is to provide a technology that can be manufactured using the same polymer material over a wide range and with the size of the joints arbitrarily controlled, and to provide a semipermeable membrane obtained using this technology. . Separation methods using semipermeable membranes include evaporation method, ion exchange membrane method,
Compared to separation methods such as adsorption, the operation energy cost is very low and the operation is simple, so in recent years it has become popular.
It has come to be used for purposes such as improving separation processes and treating wastewater in a wide range of fields such as the food industry, pharmaceutical industry, electronics industry, painting industry, machinery industry, and chemical industry.

これらの分野における被分離体は、塩類、タンパク質、
ウイルス、コロイド、ェマルジョン、重合体ラテックス
等低分子量物質から高分子量物質まで種々の物質を含ん
でおり、各被分離体に応じて効率よく分離する目的で既
に数種の半透膜が市販されている。しかしながら、半透
膜の分画分子量、言いかければ孔蓬は製膜原液の組成、
凝固条件、凝固後の熱処理条件等によって決り、同一素
材の半透膜の孔蓬の変えられる範囲は製膜性、膜強度を
考慮すると極めて狭にのが現状である。従って膜に用い
る素材が同一である半透膜は、その利用分野を限定され
、被分離体に応じて各種の膜素材の半透膜を準備しなけ
ればならない。また膜素材と被分離体との関係によって
は、使用できない膜があったり、被分離体の他の組成が
同じ分離すべきものの分子量のみが異なり、その為に膜
を他の素材のものに変えなければならなくなった場合に
は、膜素材に適合した使用条件に被分離体をコントロー
ルしなければならない場合が生ずる。このような制約は
、単に分離操作を複雑にするだけでなく、同一素材の膜
の使用量に限界が生ずる為膜価格を高くし、更に使用法
も素材毎に変えなければならないことは、分離コストを
も高くする。このように同一素材の半透膜の孔径を自由
に変えられないことは、すぐれた特長を有する陰分離法
の普及を妨げる重大な一要因となっている。本発明者等
は、このような半透膜の孔径の変化中の狭いことがもた
らす不都合を解消する為、孔径の変化を大きくすること
を目標に鋭意検討した結果、同一膜素材の半透膜の孔径
を広範囲に、しかも任意を変えることの出来る技術を開
発し、その技術により半透膜を製造し、同一膜素材の半
透膜で各種の被分離体を処理することを可能にし、且つ
被分離体に最も適した膜素材を提供することを可能なら
しめたのである。
The substances to be separated in these fields include salts, proteins,
It contains various substances ranging from low molecular weight substances to high molecular weight substances such as viruses, colloids, emulsions, and polymer latexes, and several types of semipermeable membranes are already on the market for the purpose of efficiently separating substances depending on the substance to be separated. There is. However, the fractional molecular weight of a semipermeable membrane, or in other words, the composition of the membrane-forming stock solution,
It is determined by coagulation conditions, post-solidification heat treatment conditions, etc., and the range in which the pore size of semipermeable membranes made of the same material can be changed is currently extremely narrow considering membrane formability and membrane strength. Therefore, semipermeable membranes made of the same membrane material are limited in their fields of use, and semipermeable membranes made of various membrane materials must be prepared depending on the objects to be separated. Also, depending on the relationship between the membrane material and the object to be separated, some membranes may not be usable, or the other components of the object to be separated may have the same composition but differ only in molecular weight, so the membrane may be changed to one made of a different material. If this becomes necessary, it may be necessary to control the substances to be separated under usage conditions that are compatible with the membrane material. These restrictions not only complicate the separation operation, but also increase the price of the membrane because there is a limit to the amount of membranes made of the same material that can be used.Furthermore, the method of use must be changed for each material, which makes separation difficult. It also increases costs. The inability to freely change the pore diameter of semipermeable membranes made of the same material is a major factor that hinders the widespread use of the negative separation method, which has excellent features. In order to eliminate the inconvenience brought about by the narrow change in pore size of semipermeable membranes, the inventors of the present invention conducted intensive studies with the goal of increasing the change in pore size, and found that semipermeable membranes made of the same membrane material We have developed a technology that allows the pore size to be changed over a wide range and arbitrarily, and using this technology, we can manufacture semipermeable membranes, making it possible to treat various substances to be separated using semipermeable membranes made of the same membrane material. This made it possible to provide a membrane material most suitable for the object to be separated.

現在、膿表面に近づくにつれて密となる網目構造をとっ
ている多孔質層、即ち、腹表面からの距離が等しいとこ
ろの孔径はほぼそろっており、膿表面の孔径が最小で膜
内部に向って連続的に孔径が大きくなっている多孔質層
を有する膜が、透過特性の秀れた限外炉過膜又はミク。
Currently, the porous layer has a network structure that becomes denser as it approaches the pus surface, that is, the pore diameters are almost uniform at equal distances from the abdominal surface, and the pore diameters on the pus surface are the smallest and towards the inside of the membrane. Ultra-furnace filtration membranes or MIKU membranes have excellent permeability properties and have a porous layer with continuously increasing pore diameters.

炉過膜として知られている。このような多孔質層は傾斜
型多孔質層と言われているので、本発明でもこのような
多孔質層を傾斜型多孔質層と呼ぶことにする。又、この
頃斜型多孔質層が、単独で存在しているのではなく、こ
の層の最大孔径と同じか又はそれ以上の孔径を均一に有
するか、またはその最小孔径が煩斜型多孔質層の最大孔
形と同じであるような絹状多孔質層を、額斜型多孔質層
と連続して有する膜は、膜強度が高いにも拘わらず透過
性の良い改良された腰として知られている。傾斜型多孔
質層に連続する網状構造層の網目の大きさは一般に50
0A〜IAであるが、その層中に膜面に直角な方向に長
軸を有する大きな孔径の空洞を入れると、さらに透過性
がよくなることも知られている。そして、上記し、ずれ
の形態の膜においても、鏡斜型多孔質層は、最小3仏以
上、特に好ましくは10一以上の厚みがなければ、実際
に形成できないとされている。また額斜型多孔質層の膜
厚の最大値は、特に規定されないが、腹面から等しい距
離の孔径を均一に大とするには物理的限界があるので、
一般には、100り以下、より普通には50仏以下であ
るとされている。このような額斜型多孔質層を有する半
透膜の製造法は、これまでにも種々報告さられている。
It is known as a filter membrane. Since such a porous layer is called a graded porous layer, such a porous layer will also be referred to as a graded porous layer in the present invention. Also, at this time, the oblique porous layer does not exist alone, but has a uniform pore diameter that is the same as or larger than the maximum pore diameter of this layer, or the minimum pore diameter is the same as that of the oblique porous layer. A membrane that has a silk-like porous layer that has the same maximum pore size as that of a slanted porous layer is known as an improved membrane that has good permeability despite its high membrane strength. ing. The mesh size of the network structure layer continuous to the graded porous layer is generally 50
0A to IA, but it is also known that the permeability can be further improved by inserting cavities with large pore diameters whose long axes are perpendicular to the membrane surface in the layer. As mentioned above, it is said that even in the case of a membrane with a misalignment, a mirror-slanted porous layer cannot actually be formed unless it has a thickness of at least 3 mm or more, particularly preferably 10 mm or more. The maximum thickness of the oblique porous layer is not particularly defined, but there is a physical limit to uniformly increasing the pore diameters at equal distances from the ventral surface.
It is generally said to be less than 100, more commonly less than 50 Buddhas. Various methods for producing semipermeable membranes having such oblique porous layers have been reported so far.

そして、緑式による半透膜形成能を有することが知られ
ているポリマーならば、何れも使用でき、例えばアクリ
ロニトリル系重合体、アセチルセルロース、芳香族ポリ
アミド、ポリベンズイミダゾール、ポリ塩化ビニール、
ポリピベラジン、ポリスルホン、ポリメチルメタクリレ
ート、再生セルロース等のポリマーが半透膜製造に用い
られる。これらのポリマーを適当な溶媒に溶かして原液
を作り、これを適当な凝固裕中で凝固させて膜を形成さ
せる。凝固俗は水または水を主成分とするものが好んで
用いられるが、ポリマーを溶解せずポリマーの溶媒と溶
け合うものであれば一般に使用できる。煩斜型多孔質層
を有する半透膜は、勿論フィルム状、チュ−ブ状、中空
糸状のいずれの形態をも包含するが、フィルム状のもの
は原液をガラス板等の上に薄膜状に流延し、それをガラ
ス板とともに凝固格に入れて凝固せしめた後洗総して造
ることができる。
Any polymer known to have the ability to form a semipermeable membrane using the green method can be used, such as acrylonitrile polymers, acetyl cellulose, aromatic polyamides, polybenzimidazole, polyvinyl chloride,
Polymers such as polypiverazine, polysulfone, polymethyl methacrylate, and regenerated cellulose are used to make semipermeable membranes. These polymers are dissolved in a suitable solvent to form a stock solution, which is coagulated in a suitable coagulation chamber to form a film. Water or water-based coagulants are preferably used, but any coagulant that does not dissolve the polymer and is soluble in the polymer solvent can be used. Semipermeable membranes having a cline-type porous layer include, of course, any form such as a film, a tube, or a hollow fiber, but for film-like membranes, the undiluted solution is spread on a glass plate, etc., in the form of a thin film. It can be produced by casting, placing it together with a glass plate in a coagulation rack, solidifying it, and then washing it.

又スリット状Tダイスから凝固裕中に押し出して作るこ
とができる。又、中空糸状透膜の製造法も、これまで種
々開示されている。
It can also be made by extruding from a slit-shaped T-die into a coagulation chamber. Furthermore, various methods for producing hollow fiber-like permeable membranes have been disclosed so far.

例えば、特開昭49−90684号公報には、透水率の
大きいアクリロニトリル系中空糸状半透膜及びその製造
法が示され、このものは傾斜型多孔質層に接して直径1
0〃以上の大きな空洞を含む絹状多孔質層が存在する構
造であることが記載されている。
For example, Japanese Patent Application Laid-open No. 49-90684 discloses an acrylonitrile hollow fiber semipermeable membrane with high water permeability and a method for producing the same.
It is described that the structure has a silk-like porous layer containing 0 or more large cavities.

叙述により明らかなように、第1図の模式断面図で示す
如き傾斜型多孔質層1を有する半透膜は、現在透過性の
すぐれた半透膜として知られているが、本発明の半透腰
は、第2図の模式断面図に示すようにその表面に多数の
凹部2を有するものである。
As is clear from the description, the semipermeable membrane having the graded porous layer 1 as shown in the schematic cross-sectional view of FIG. 1 is currently known as a semipermeable membrane with excellent permeability. The open waist has a large number of recesses 2 on its surface, as shown in the schematic cross-sectional view of FIG.

この凹部の深さは、煩斜型多孔質層の最外表面の孔径よ
り大きく、同層の厚みより小さい大きさの範囲にあり、
その範囲内で任意の大きさをとり得るものである。本発
明の半透腰の傾斜型多孔質層は、後述の製造法によって
明らかになるように、本質的に第1図のものと変らない
から、凹部でえぐられた分だけ、凹部表面には孔径の大
きな孔が露出することとなり、凹部の深さが深い程凹部
表面の孔径は大となる。
The depth of this recess is in the range of a size larger than the pore diameter of the outermost surface of the oblique-type porous layer and smaller than the thickness of the same layer,
It can take any size within that range. The semi-transparent graded porous layer of the present invention is essentially the same as that shown in Fig. 1, as will become clear from the manufacturing method described later. Holes with large diameters are exposed, and the deeper the depth of the recesses, the larger the pores on the surface of the recesses.

従って、同一素材から得られる同一の煩斜型多孔質層を
有する半透膜であっても、凹部の大きさを変えることに
よってこの半透膜を透過する炉過限界分子の大きさを変
えることができる。
Therefore, even if a semipermeable membrane is made from the same material and has the same oblique porous layer, by changing the size of the recesses, it is possible to change the size of the molecules that pass through the semipermeable membrane. I can do it.

第3図は、本発明中空糸の断面構造を示した模式図であ
る。
FIG. 3 is a schematic diagram showing the cross-sectional structure of the hollow fiber of the present invention.

煩斜型多孔質層は内側3と外側4の両方にあり、凹部も
内側5と外側6の両方にある。第4図は本発明中空糸の
他の形態の榛式的横断面図である。3,4は内外側傾斜
型多孔質層を、5,6は内外側表面凹部を示す。
The oblique porous layer is present on both the inner side 3 and the outer side 4, and the recesses are also present on both the inner side 5 and the outer side 6. FIG. 4 is a schematic cross-sectional view of another form of the hollow fiber of the present invention. 3 and 4 indicate inner and outer inclined porous layers, and 5 and 6 indicate inner and outer surface recesses.

そして7は孔径の大きい空洞を示す。これらの空洞は前
述の傾斜型多孔質層に接して配置している絹状多孔質層
の大空洞であり、表面凹部の形成に関係あるものではな
い。次に、上記本発明半透膜の製造法について述べる。
7 indicates a cavity with a large pore size. These cavities are large cavities in the silk-like porous layer disposed in contact with the above-mentioned inclined porous layer, and are not related to the formation of surface recesses. Next, a method for manufacturing the semipermeable membrane of the present invention will be described.

上記せる本発明の半透膜は、前記せる従来の傾斜型多孔
質層を有する半透膜の製造法において、主としてポリマ
ーとその溶媒とからなる製膜用原液に、該溶媒に対する
溶解度が5以下であり、原液中で液状である分散剤を均
一に分散させ、該溶媒と溶け合うが、該分散剤を熔解し
ない凝固裕中で凝固製膜し、然る後、膜中より該分散剤
を除去することを特徴とする方法によって得られる。
The above-mentioned semipermeable membrane of the present invention has a solubility of 5 or less in the membrane-forming stock solution mainly consisting of a polymer and its solvent in the above-mentioned conventional method for manufacturing a semipermeable membrane having a graded porous layer. A liquid dispersant is uniformly dispersed in a stock solution, and a film is coagulated in a coagulation chamber that dissolves in the solvent but does not dissolve the dispersant, and then the dispersant is removed from the film. It is obtained by a method characterized by:

本発明の方法におけるポリマー、溶媒、及び凝固裕等は
従来の煩斜型多孔質層を有する膜の製造の場合と変らな
い。本発明の方法に用いる分散剤は、第1に製膜用原液
中で液状をなすものでなけれ‘まならず、第2に原液の
溶媒に溶解しないものでなけれだならなし・。
The polymer, solvent, coagulation margin, etc. in the method of the present invention are the same as those used in the production of a conventional membrane having an oblique porous layer. The dispersant used in the method of the present invention must first be in a liquid state in the film-forming stock solution, and secondly, it must be insoluble in the solvent of the stock solution.

第1の理由は、液状のものは固状のものに比べて分散性
が良いことと、分散剤を抜いたあとの空洞が均一な空洞
となり易いからである。第2の溶媒に対する溶解度は、
溶媒100に対し5以下、好ましくはゼロであることが
望ましい。溶解度が大きいとポリマーの溶解性が低下し
て原液の粘度が上昇し、遂には製膜不能にもなるので、
分散剤の添加量を大中に変化することができなくなるか
らである。分散剤の添加量の増減は、分散粒子径の大小
に関係し、結局分散剤の抜けた空洞及び傾斜型多孔質層
の凹部の大小を決定することになるから、分散剤の添加
量を変更し得る中の大きさは重要である。分散剤の添加
量は、製膜原液組成、分散剤の種類により異なるので、
その範囲を一義的に特定できないが、分散剤の分散相が
連続相に逆転しない範囲内において、好ましくは、相逆
転の生じる添加量の80%以内において任意に変えて用
いることができる。
The first reason is that liquid materials have better dispersibility than solid materials, and the cavities after the dispersant is removed tend to be uniform cavities. The solubility in the second solvent is
It is desirable that the amount is 5 or less, preferably zero, based on 100 parts of the solvent. If the solubility is high, the solubility of the polymer will decrease and the viscosity of the stock solution will increase, eventually making it impossible to form a film.
This is because it becomes impossible to change the amount of the dispersant added. The increase or decrease in the amount of dispersant added is related to the size of the dispersed particles, which ultimately determines the size of the cavities through which the dispersant has escaped and the recesses of the graded porous layer, so change the amount of dispersant added. The size of the possible is important. The amount of dispersant added varies depending on the composition of the film forming stock solution and the type of dispersant.
Although the range cannot be uniquely specified, the dispersant can be used in any amount within a range in which the dispersed phase of the dispersant does not invert to a continuous phase, preferably within 80% of the amount added that causes phase inversion.

分散剤を均一に分散させるには機械的縄拝によるが、必
要に応じて界面活性剤等の分散助剤を添加することは効
果的である。分散剤の具体例を挙げると、例えば凝固俗
に水を用いる場合は、流動パラフィン、塩化パラフィン
、オリーブ油、アマニ油等の各種植物油、シリコーンオ
イル、水素化トリフェニル、ジェチルジフェニル等の各
種有機熱媒体用化合物、絶縁油、スピンドル油等の各種
鉱油等一般に広く用いられている非水溶性の比較的粘度
が高く、蒸気圧の低いものの中からポリマーの溶媒に対
する溶解度の極めて小さいものを選択して用いることが
できる。
Uniform dispersion of the dispersant can be achieved mechanically, but it is effective to add a dispersion aid such as a surfactant if necessary. Specific examples of dispersants include, for example, when water is used for coagulation, liquid paraffin, chlorinated paraffin, various vegetable oils such as olive oil and linseed oil, silicone oil, various organic heat agents such as hydrogenated triphenyl, and jetyl diphenyl. Select a polymer with extremely low solubility in the solvent from among widely used water-insoluble, relatively high viscosity, and low vapor pressure, such as media compounds, insulating oil, spindle oil, and other mineral oils. Can be used.

鏡斜型多孔質層を有する半透膜を製造しうる、従来のポ
リマー、溶媒、凝固格の組合せを用い、上記条件を満足
する分散剤の分散相を含む原液を用いて製膜した場合、
得られた膜は分散剤が凝固格に溶解しない為、分散相の
存在と全く無関係に凝固が行われ、分散剤の存在しない
場合と全く同じ懐斜型多孔質層を有する膜が生成され、
かつ、分散剤粒子が、膜組織内に閉じ込められ、又は膜
表面に埋没突出して固定された鏡斜型多孔質層膜となる
When a membrane is formed using a conventional combination of polymer, solvent, and coagulation phase that can produce a semipermeable membrane having a mirror-oblique porous layer, and using a stock solution containing a dispersed phase of a dispersant that satisfies the above conditions,
Since the dispersing agent does not dissolve in the coagulated phase, the obtained film is coagulated completely regardless of the presence of the dispersed phase, and a film having the same oblique-shaped porous layer as in the case where no dispersing agent is present is produced.
In addition, a mirror-oblique porous layer film is formed in which the dispersant particles are confined within the membrane structure or embedded and fixed on the membrane surface.

従って、この分散剤粒子を除去してやれば、分散剤に基
づく内部空洞又は表面凹部において膜組織を欠落してい
る以外は通常のものと全く異ならない額斜型多孔質層を
有する半透膜となる。即ち、第2〜4図に示し、前記し
た如き本発明の半透膜が得られる訳である。尚第2〜4
図において、2′,5′は、分散剤に基づく内部空洞で
あり、この空洞は炉過限界分子の大きさには関係しない
が、透過性の向上には寄与する空洞であり、脱分散剤の
前は分散剤のつまった孔である。次に、中空糸状半透膜
の一般的製造法について述べる。2〜4の重量%好まし
くは5〜3の重量%の範囲の適当濃度の原液に上記分散
剤を均一に分散させ、炉週、脱泡し、第5図に示すよう
な環状オリフィスを有するノズル8を用い、第6図に示
す如く、ギャポンプ9から原液をギャポン10から凝固
液を送り、押出し、凝固格11中を通し12に巻取る。
Therefore, if these dispersant particles are removed, a semipermeable membrane with a diagonal porous layer, which is completely different from a normal membrane except for the lack of membrane structure in the internal cavities or surface depressions based on the dispersant, will be obtained. . That is, the semipermeable membrane of the present invention as shown in FIGS. 2 to 4 and described above can be obtained. Furthermore, 2nd to 4th
In the figure, 2' and 5' are internal cavities based on the dispersant, and although this cavity is not related to the size of the furnace limit molecule, it is a cavity that contributes to improving permeability. In front of is a pore filled with dispersant. Next, a general method for manufacturing hollow fiber semipermeable membranes will be described. The above-mentioned dispersant is uniformly dispersed in a stock solution with an appropriate concentration in the range of 2 to 4% by weight, preferably 5 to 3% by weight, and then degassed in a furnace, and a nozzle having an annular orifice as shown in Fig. 5 is prepared. 8, as shown in FIG. 6, the stock solution is sent from the gap pump 9 and the coagulating liquid is sent from the gap pump 10, extruded, passed through the coagulation plate 11, and wound into a coil 12.

巻取り後に分散剤を抽出除去すれば、内外両面に傾斜型
多孔質層を有し、中間に絹状多孔質層を有する中空糸状
半透膜が得られる。又ギャーポンプ10から非凝固液を
送れば外面のみに額斜型多孔質層を有する中空糸状半透
膜が得られる。フィルム状又はチューブ状半透膜を製造
する場合は、ノズルを夫々Tダイス又は円形のスリット
を有するものに代えて製造することができる。半透膜は
一般に、性能を安定化させる為、熱処理されるが、本発
明による半透膜は、傾斜型多孔質層および絹状多孔質層
内に分散剤を含んだ膜状物の状態で熱処理すると、分散
剤未添加系のものに比べて熱処理による形状の変化は小
さく、従ってより高い温度で熱処理することが出来、実
用に供した場合に熱安定性に秀れたものとなる。。また
、半透膜は、高温あるいは乾燥条件の下で使用すると、
半透腰全体が収縮して半透膜としての性能を失う場合が
多いが、本発明の半透膜は、高温あるいは乾燥条件の下
においても、傾斜型多孔質層および絹状多孔質層内に存
在する分散剤がぬけたあとの空洞が膜収縮の緩衝作用の
役割を果し、分離機能を有する傾斜型多孔質層の表面に
与える影響は小さく、従釆の構造の半透膜においては失
なわれてし、た透水性能を保持することができる。以上
述ばた如く、本発明の半透膜は、従来にない構造を有し
、且つその構造の故に秀れた特性を有すると共に同一素
材から炉過限界大きさの変化した種々の半透膜となしう
る大きな利点を有する。また、液状分散剤を保持したま
まの半透膜は、そのままの形で保存され、市販されて、
使用者によって熱処理された後、分散剤の除去が行われ
て、半透膜としての使用に供することができるから、こ
のような状態の半透膜も非常に有用な本発明の目的物で
ある。以下に実施例を示す。
If the dispersant is extracted and removed after winding, a hollow fiber semipermeable membrane having inclined porous layers on both the inner and outer surfaces and a silk-like porous layer in the middle can be obtained. If a non-coagulating liquid is sent from the gear pump 10, a hollow fiber semipermeable membrane having a diagonal porous layer only on the outer surface can be obtained. When producing a film-like or tubular semipermeable membrane, the nozzle can be replaced with a T-die or one having a circular slit. Semipermeable membranes are generally heat-treated to stabilize their performance, but the semipermeable membrane according to the present invention is in the form of a membrane containing a dispersant in the graded porous layer and the silk-like porous layer. When heat-treated, the change in shape due to heat treatment is smaller than that of a system to which no dispersant is added, and therefore it can be heat-treated at a higher temperature, resulting in excellent thermal stability when put into practical use. . Additionally, when semipermeable membranes are used at high temperatures or under dry conditions,
In many cases, the entire semi-permeable waist shrinks and loses its performance as a semi-permeable membrane, but the semi-permeable membrane of the present invention retains its properties within the graded porous layer and the silk-like porous layer even under high temperature or dry conditions. The cavities after the dispersant that exists in the membrane acts as a buffer against membrane contraction, and the effect on the surface of the graded porous layer that has a separation function is small. It is possible to maintain water permeability even when the water is lost. As mentioned above, the semipermeable membrane of the present invention has an unprecedented structure, and because of this structure, it has excellent properties. It has great advantages. In addition, the semipermeable membrane retaining the liquid dispersant can be stored as it is and sold commercially.
After heat treatment by the user, the dispersant is removed and the semipermeable membrane can be used as a semipermeable membrane, so the semipermeable membrane in this state is also a very useful object of the present invention. . Examples are shown below.

なお、実施例に先だって半透膜の特性を表わす為に用い
るパラメーターについてまとめて説明する。透水率(肌
【′の・min・atm.):中空糸状半透膜の場合、
外径、内径をあらかじめ測定した中空糸状半透膜を一定
数第T図に示すように一端を装着し、注入側と流出側の
間に1気圧の圧力差をつけ、単位時間当りの蒸留水の透
過量を測定する。
In addition, prior to the examples, parameters used to express the characteristics of the semipermeable membrane will be summarized. Water permeability (skin ['min・atm.): In the case of hollow fiber semipermeable membrane,
A certain number of hollow fiber semipermeable membranes, the outer and inner diameters of which have been measured in advance, are attached at one end as shown in Figure T, and a pressure difference of 1 atm is created between the injection side and the outlet side, and the distilled water per unit time is Measure the amount of permeation.

第7図において13は中空糸東、14は中空糸東末端接
着部分、15はテスト液の注入口である。次に中空糸内
壁面積を計算により求め有効膜面積とする。蒸留水の透
過量を有効膜面積で除して単位面積当りの値として透水
率を算出する。一方フィルム状半透膜の場合は、第8図
に示すような透過セルを用いて、1気圧の圧力差をつけ
て測定する。第8図において16は損洋子、17はフィ
ルム状半透膜、18は多孔板である。孔蚤:孔径は非常
に小さい為、直接測定することはできないので、次の二
通りの方法によって孔雀の目安とした。
In FIG. 7, 13 is the hollow fiber east, 14 is the adhesive portion of the hollow fiber east end, and 15 is the injection port for the test liquid. Next, the hollow fiber inner wall area is calculated and taken as the effective membrane area. The permeation rate of distilled water is divided by the effective membrane area to calculate the water permeability as a value per unit area. On the other hand, in the case of a film-like semipermeable membrane, measurement is performed using a permeation cell as shown in FIG. 8 with a pressure difference of 1 atmosphere. In FIG. 8, 16 is a loss plate, 17 is a film-like semipermeable membrane, and 18 is a porous plate. Peacock: The diameter of the pore is so small that it cannot be measured directly, so the following two methods were used to determine the size of the peacock.

限外炉過分野の孔径については、大きさの異なる各種球
状蛋白の水溶液を三戸過し、炉液の分析により半透膜を
完全に(100%)通過し得ない最小の分子量を炉過限
界分子量として孔径の目安とした。第1表に用いた球状
蛋白の一覧表を示す。第1表 孔雀測定用球状蛋白 分子量 チログロブリン(牛) 669.000ウレ
アーゼ 480.000フ
イブリノーゲン 300.000カタ
ラーゼ 250.0007
ーグロブリン 160.0008
ーグロブリン 90.000ヘモ
グロビン 63.000卵白
アルブミン 45.000Q−キモ
トリブシン 24.500チトク。
Regarding the pore size in the field of ultrafiltration, three aqueous solutions of globular proteins of different sizes are passed through three filters, and the minimum molecular weight that cannot completely (100%) pass through the semipermeable membrane is determined by analysis of the reactor liquid. The molecular weight was used as a guideline for the pore size. Table 1 shows a list of the globular proteins used. Table 1 Globular protein molecular weight for peacock measurement Thyroglobulin (cow) 669.000 Urease 480.000 Fibrinogen 300.000 Catalase 250.0007
- Globulin 160.0008
- Globulin 90.000 Hemoglobin 63.000 Ovalbumin 45.000 Q-Chymotrivcin 24.500 Titoku.

ム 13.000インシュ
リン 5.700バシトラシ
ン 1.400又、ミクロ
炉過分野の孔径については第7図に示した測定装置にお
いて、水で浸潰した中空糸東に、水の代りに空気を送り
込りこんで空気が抜け始めるときの圧力(バブルポイン
ト圧)を孔窪の目安とした。以下に実施例を示す。
Mu 13,000 Insulin 5.700 Bacitracin 1.400 Also, for the pore diameter of the microfurnace field, use the measuring device shown in Figure 7 to pump air instead of water into the hollow fiber east that has been submerged with water. The pressure (bubble point pressure) at which the air begins to escape after entering the hole was used as a guideline for the hole. Examples are shown below.

実施例 1 アクリロニトリル90モル%、メチルアクリレート10
モル%からなる共重合体(N,N−ジメチルホルムアミ
ド中の極限粘度は1.3)を−5℃に保った65%硝酸
に溶解し、15重量%濃度のポリマー溶液を作り、次い
で、分散剤としての界面活性剤ノニオンP208(日本
油脂(株)製)を3重量%含んだ流動パラフィンを、ポ
リマー溶液に対して第2表に示す割合で添加し、縄拝し
て均一に分散させた。
Example 1 Acrylonitrile 90 mol%, methyl acrylate 10
A copolymer consisting of mol% (intrinsic viscosity in N,N-dimethylformamide is 1.3) was dissolved in 65% nitric acid kept at -5°C to make a 15% by weight polymer solution, and then dispersed. Liquid paraffin containing 3% by weight of the surfactant Nonion P208 (manufactured by NOF Corporation) was added to the polymer solution at the ratio shown in Table 2, and the mixture was dispersed uniformly by stirring. .

次いでこれを−5℃に保持したまま減圧燈梓脱泡、次い
で静置脱泡して、第6図に示す装置で紡糸した。紡糸条
件としては、紡子用環状オリフィス・ノズルは、中心部
のキャピラリーの外径が0.8脚で、原液押出しノズル
の内径を1.5〜2.5側の範囲で変えたものを用い、
原液はギャポンプ9で13〜44の【/minの割合で
ノズルに送り、ノズルの中心にはギャポンプ10で5.
0奴/minの割合で水を供帯溝し、凝園浴1 1には
20qoの水を満した全長lowのもを用い、巻取速度
は10m/minとした。級糸中流動パラフィンの凝固
裕中への流出は殆んど見られなかった。鮫糸して得られ
た中空糸は充分に水洗した後、6000の温水で30分
間熱処理し、次いでジオキサンで処理した中空糸中に分
算している流動パラフィンを抽出除去した後、水中に浸
潰した。
Next, this was degassed under reduced pressure while being maintained at -5°C, and then degassed by standing still, and then spun using the apparatus shown in FIG. As for the spinning conditions, the annular orifice nozzle for the spinner was used, with the outer diameter of the capillary in the center being 0.8 legs, and the inner diameter of the stock solution extrusion nozzle being varied in the range of 1.5 to 2.5. ,
The stock solution is sent to the nozzle with a gap pump 9 at a rate of 13 to 44 [/min, and a gap pump 10 is sent to the center of the nozzle with a rate of 5.
Water was fed into the bath at a rate of 0 qo/min, and a full-length low bath filled with 20 qo of water was used for the condensation bath 11, and the winding speed was 10 m/min. Almost no liquid paraffin in the liquid paraffin was observed to flow out into the coagulation medium. The hollow fibers obtained by making shark threads were thoroughly washed with water, then heat treated with warm water at 6,000 °C for 30 minutes, and then the liquid paraffin fractionated in the dioxane-treated hollow fibers was extracted and removed, and then immersed in water. I crushed it.

これらの中空糸の断面構造は、第4図に示す如きもので
あった。
The cross-sectional structure of these hollow fibers was as shown in FIG.

得られた中空糸は、第7図に示す装置に装着して、透水
率、炉過限界分子量、バルブポイント圧等を測定し、そ
の他の数字と共に第2表に示した。
The obtained hollow fibers were installed in the apparatus shown in FIG. 7, and the water permeability, furnace excess molecular weight, valve point pressure, etc. were measured, and the results are shown in Table 2 together with other figures.

第2表のデータから判るように、流動パラフィンの添加
量を変えることにより、中空糸状半透膜の孔径が限外炉
過分野からミクロ炉過分野まで広い範囲にわたって変化
しており、透水率も大きく、また強度も充分実用に耐え
うるものである。
As can be seen from the data in Table 2, by changing the amount of liquid paraffin added, the pore diameter of the hollow fiber semipermeable membrane changes over a wide range from the ultrafilter field to the micro furnace field, and the water permeability also changes. It is large and strong enough to withstand practical use.

第2表 ァクリ。ニトリル系中空繊維状半透膜の性喰旨
実施例 2260において、ジアセチルセルロースを2
の重量%の濃度でジメチルスルホキシ日こ溶解し、ポリ
マー溶液に対し1の重量%の塩化パラフィン(塩素化率
40%)を均一に分散させ、実施例1と同様の方法で2
0COに保った水中で凝固させ、分散剤を含有する中空
糸状構造体を得た。
Table 2 Acrylic. Example 2260 shows the properties of nitrile-based hollow fibrous semipermeable membrane.
Dissolve dimethyl sulfoxy at a concentration of 1% by weight, uniformly disperse 1% by weight of chlorinated paraffin (chlorination rate 40%) in the polymer solution, and add 2% by weight in the same manner as in Example 1.
It was coagulated in water maintained at 0 CO to obtain a hollow fiber structure containing a dispersant.

次いで中空糸状構造体を40ooの温水で10分間熱処
理した後、中空糸状構造体中に存在する塩化パラフィン
を四塩化炭素を用いて抽出した後、水に浸潰して中空糸
状半透膜を得た。得られた中空糸状の半透膜の透水率は
0.50の‘/地・min・a血、炉過限界分子量は1
60.000であった。
Next, the hollow fiber structure was heat-treated with 40 oo hot water for 10 minutes, and the chlorinated paraffin present in the hollow fiber structure was extracted using carbon tetrachloride, and then soaked in water to obtain a hollow fiber semipermeable membrane. . The water permeability of the obtained hollow fiber-like semipermeable membrane was 0.50'/ground・min・a blood, and the furnace excess limit molecular weight was 1
It was 60,000.

この中空糸の断面は、モデル的に画かれた第3図の構造
をとっており、実施例1のような空洞は存在していなか
った。
The cross section of this hollow fiber had the structure shown in FIG. 3 as a model, and there were no cavities like in Example 1.

実施例 3 実施例1において製造した流動パラフィンを含有した中
空糸状構造体を、60q0の熱風で乾燥した後、流動パ
ラフィンをジオキサンで抽出した。
Example 3 The hollow fiber structure containing liquid paraffin produced in Example 1 was dried with 60q0 hot air, and then the liquid paraffin was extracted with dioxane.

次いで中空糸状半透膜を風乾し、その後半透膜を水に1
時間浸潰し、透水率を測定した。その結果を第4表に示
す。第4表 第4表に示す如く、本発明の分散剤を添加して製造した
中空糸状半透膜は、乾燥後においても透水性能を有し、
その透水量は湿潤状態の19〜27%であった。
Next, the hollow fiber semipermeable membrane is air-dried, and then the semipermeable membrane is soaked in water for 1 hour.
It was immersed for a time and the water permeability was measured. The results are shown in Table 4. Table 4 As shown in Table 4, the hollow fiber semipermeable membrane produced by adding the dispersant of the present invention has water permeability even after drying,
Its water permeability was 19-27% of the wet state.

これは本発明の中空糸状半透膜の特異な構造に因るもの
である。実施例 4 実施例1で用いた流動パラフィンを15重量%含んだ製
膜原液を、0.3肌の厚さでガラス坂上に流延した後、
2ぴ0の水にガラス板とともに浸潰して凝固させた。
This is due to the unique structure of the hollow fiber semipermeable membrane of the present invention. Example 4 After casting the membrane forming stock solution containing 15% by weight of liquid paraffin used in Example 1 onto a glass slope to a thickness of 0.3 skin,
It was immersed together with a glass plate in 200ml of water to solidify it.

次で半透膜中の流動パラフィンをテトラヒドロフランで
抽出して水に浸潰した。得られた平板状半透膜の透水量
は18叫′の・min・atm、炉過限界分子量は16
0.000であった。この平板状半透膜の断面の表面構
造は、第2図の如き構造であり、表面の一部に凹部を有
する鏡斜型多孔費層が、片側に存在している。
Next, the liquid paraffin in the semipermeable membrane was extracted with tetrahydrofuran and soaked in water. The water permeability of the obtained flat semipermeable membrane was 18 min atm, and the molecular weight limit for the furnace was 16
It was 0.000. The cross-sectional surface structure of this flat semipermeable membrane is as shown in FIG. 2, with a mirror-oblique porous layer having a recessed portion on one side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は煩斜型多孔質層を有するフィルム状半透膜の断
面構造を示す模式図、第2図は本発明のフィルム状半透
膜の断面構造を示す模式図。 第3図は本発明の中空糸状半透膜の断面構造を示す模式
図。第4図は、本発明の他の中空糸状半透膜の断面構造
を示す模式図。第5図は中空糸状半透膜製造用環状オリ
フィスノズルの断面図。第6図は中空糸状半透膜の紙糸
装置の模式図。第7図は中空糸状半透腰の透過水量測定
装置の断面図。第8図はフィルム状半透腰の透過水量測
定装置の断面図である。1・・・・・・フィルム状半透
膜の煩斜型多孔費層、2・・・・・・フィルム状半透腰
の煩斜型多孔質層の表面凹部、2′・…・・分散剤の抜
けた空洞、3…・・・中空糸状半透膜の内側傾斜型多孔
質層、4・・・・・・中空糸状半透膜の外側傾斜型多孔
質層、5・・・・・・中空糸状半透膜の内側表面凹部、
6・・・・・・中空糸状半透膜の外側表面凹部、5′・
・・・・・中空糸状半透膜の分散剤の抜けた空洞、7・
・・・・・中空糸状半透膜の分散剤によらない空洞、8
・・・・・・中空糸状製造用ノズル、9・・・・・・製
膜原液用ギャポンプ、10・・・・・・凝固液用ギャポ
ンプ、11・・・…凝固俗、12・・・・・・巻取機、
13・・・・・・中空糸束、14・・・・・・中空糸東
末端結合部、15・・・・・・テスト液注入口、16・
・・・・・網梓子、17・・・・・・フィルム状半透膜
、18・・・・・・多孔板。 第1図第2図 第3図 第4図 第5図 第6図 第7図 第8図
FIG. 1 is a schematic diagram showing the cross-sectional structure of a film-like semipermeable membrane having a clique-type porous layer, and FIG. 2 is a schematic diagram showing the cross-sectional structure of the film-like semipermeable membrane of the present invention. FIG. 3 is a schematic diagram showing the cross-sectional structure of the hollow fiber semipermeable membrane of the present invention. FIG. 4 is a schematic diagram showing the cross-sectional structure of another hollow fiber semipermeable membrane of the present invention. FIG. 5 is a sectional view of an annular orifice nozzle for producing a hollow fiber semipermeable membrane. FIG. 6 is a schematic diagram of a hollow fiber semipermeable membrane paper thread device. FIG. 7 is a cross-sectional view of a hollow fiber semi-permeable water permeation measuring device. FIG. 8 is a cross-sectional view of a semi-transparent film-like permeated water amount measuring device. 1...Film-like semipermeable film-like porous layer, 2...Film-like semi-permeable film-like complex-type porous layer, surface recesses, 2'...Dispersion Cavity from which the agent escaped, 3... Inner inclined porous layer of hollow fiber semipermeable membrane, 4... Outer inclined porous layer of hollow fiber semipermeable membrane, 5...・Concavities on the inner surface of the hollow fiber semipermeable membrane,
6... Concavity on the outer surface of the hollow fiber semipermeable membrane, 5'.
...Cavity of hollow fiber-like semipermeable membrane where dispersant escapes, 7.
...Cavity not caused by dispersant in hollow fiber semipermeable membrane, 8
...Nozzle for producing hollow fibers, 9...Ga pump for membrane forming stock solution, 10...Ga pump for coagulation liquid, 11...Coagulation general, 12...・・Rewinder,
13...Hollow fiber bundle, 14...Hollow fiber east end joint, 15...Test liquid inlet, 16.
...Mesh diaphragm, 17...Film-like semipermeable membrane, 18...Porous plate. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1 平均孔径が膜表面に近づくにしたがつて小さくなつ
ている傾斜型多孔質層を一方の表面又は両表面に有し、
多数の空洞を有する網状多孔質層を中心部に有し又は有
さぜる、フイルム状、チユーブ状、又は中空糸状の半透
膜において、該傾斜型多孔質層の表面に、該傾斜型多孔
質層の最外表面の孔径より大きく、該傾斜型多孔質層の
厚みより小さな深さを有する多数の凹部を有することを
特徴とする半透膜。 2 半透膜がアクリロニトリル残基を主成分とする高分
子物で形成されている特許請求の範囲第1項記載の半透
膜。 3 半透膜形成性ポリマー及びその溶媒からなる製膜原
液に、該溶媒に対する溶解度が5以下の液状分散剤を、
連続相を生じる添加量の80%以内の量添加し分散させ
て、均一な分散液相を形成させ、この原液を該溶媒と溶
け合うが、該分散剤を溶解しない凝固液中で凝個せしめ
てフイルム状、チユーブ状又は中空糸状の半透膜を形成
せしめ、次いで、該分散分散剤を除去することを特徴と
する半透膜の製造方法。 4 凝固液をフイルム状、チユーブ状又は中空糸状の形
成する原液の両面に適用する特許請求の範囲第3項記載
の半透膜の製造方法。 5 凝固液をフイルム状、チユーブ状又は中空糸状の半
透膜を形成する原液のいずれかの片面のみに適用し、他
面には非凝固液を適用する特許請求の範囲第3項記載の
半透膜の製造方法。
[Claims] 1. Having a graded porous layer on one or both surfaces, the average pore size of which decreases as it approaches the membrane surface;
In a film-like, tube-like, or hollow fiber-like semipermeable membrane having or including a network porous layer having a large number of cavities in the center, the inclined porous layer is provided with a surface of the inclined porous layer. 1. A semipermeable membrane having a large number of recesses having a depth larger than the pore diameter of the outermost surface of the porous layer and smaller than the thickness of the graded porous layer. 2. The semipermeable membrane according to claim 1, wherein the semipermeable membrane is formed of a polymer whose main component is an acrylonitrile residue. 3. A liquid dispersant having a solubility in the solvent of 5 or less is added to a membrane-forming stock solution consisting of a semipermeable membrane-forming polymer and its solvent.
Add and disperse in an amount up to 80% of the amount added to produce a continuous phase to form a uniform dispersed liquid phase, and coagulate this stock solution in a coagulating liquid that dissolves in the solvent but does not dissolve the dispersant. A method for producing a semipermeable membrane, which comprises forming a semipermeable membrane in the form of a film, a tube, or a hollow fiber, and then removing the dispersant. 4. The method for producing a semipermeable membrane according to claim 3, wherein the coagulating liquid is applied to both sides of the stock solution to form a film, tube, or hollow fiber. 5. The semipermeable membrane according to claim 3, in which a coagulating liquid is applied to only one side of the stock solution forming a film-shaped, tube-shaped or hollow fiber-shaped semipermeable membrane, and a non-coagulating liquid is applied to the other side. Method for producing a permeable membrane.
JP51105638A 1976-09-03 1976-09-03 Semipermeable membrane and its manufacturing method Expired JPS6029282B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP51105638A JPS6029282B2 (en) 1976-09-03 1976-09-03 Semipermeable membrane and its manufacturing method
IE1714/77A IE45467B1 (en) 1976-09-03 1977-08-16 Semipermeable membranes and method for producing same
GB34933/77A GB1565113A (en) 1976-09-03 1977-08-19 Semipermeable membranes and method for producing same
IT27045/77A IT1085160B (en) 1976-09-03 1977-08-29 SEMI-PERMEABLE MEMBRANES AND PROCEDURE FOR THEIR PRODUCTION
DE2739118A DE2739118C3 (en) 1976-09-03 1977-08-31 Semipermeable membrane and process for its manufacture
FR7726492A FR2363350A1 (en) 1976-09-03 1977-08-31 SEMI-PERMEABLE MEMBRANES AND PROCESS FOR THE PREPARATION OF THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51105638A JPS6029282B2 (en) 1976-09-03 1976-09-03 Semipermeable membrane and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5330989A JPS5330989A (en) 1978-03-23
JPS6029282B2 true JPS6029282B2 (en) 1985-07-10

Family

ID=14412987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51105638A Expired JPS6029282B2 (en) 1976-09-03 1976-09-03 Semipermeable membrane and its manufacturing method

Country Status (6)

Country Link
JP (1) JPS6029282B2 (en)
DE (1) DE2739118C3 (en)
FR (1) FR2363350A1 (en)
GB (1) GB1565113A (en)
IE (1) IE45467B1 (en)
IT (1) IT1085160B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118665A (en) * 1984-11-14 1986-06-05 Kawasaki Heavy Ind Ltd Apparatus for detecting flow of sand and the like
JPH0517664Y2 (en) * 1984-11-09 1993-05-12

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546916A (en) * 1977-06-20 1979-01-19 Asahi Chem Ind Co Ltd Hollow cellulose fibers and their production
NZ188666A (en) * 1977-10-21 1980-12-19 Unisearch Ltd Anisotropic synthetic membrane
JPS5596162A (en) * 1979-01-18 1980-07-22 Asahi Medical Co Polycarbonate hollow fiber dialysis film and its preparation
JPS5735905A (en) * 1980-08-13 1982-02-26 Asahi Chem Ind Co Ltd Membrane for dialysis and production for the same
JPS5891822A (en) * 1981-11-27 1983-05-31 Kuraray Co Ltd Polysulfone hollow fiber membrane, its production and filtration therewith
US4808315A (en) * 1986-04-28 1989-02-28 Asahi Kasei Kogyo Kabushiki Kaisha Porous hollow fiber membrane and a method for the removal of a virus by using the same
US5679042A (en) * 1996-04-25 1997-10-21 Kimberly-Clark Worldwide, Inc. Nonwoven fabric having a pore size gradient and method of making same
JP4689790B2 (en) * 2000-05-02 2011-05-25 ポール・コーポレーション Internal hydrophilic membrane of anionic copolymer blend
EP1509314B1 (en) * 2002-05-17 2009-07-22 Millipore Corporation Method for producing a high-throughput asymmetric membrane
US20140339165A1 (en) * 2013-05-14 2014-11-20 Pall Corporation High throughput membrane with rough surface

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE336521A (en) * 1925-09-17
GB1132594A (en) * 1964-08-13 1968-11-06 Porous Plastics Ltd Improvements relating to artificial leather
US3423491A (en) * 1964-09-02 1969-01-21 Dow Chemical Co Permselective hollow fibers and method of making
GB1267167A (en) * 1968-09-30 1972-03-15
US3709774A (en) * 1970-05-13 1973-01-09 Gen Electric Preparation of asymmetric polymer membranes
FR2138333B1 (en) * 1971-05-24 1974-03-08 Rhone Poulenc Sa
US3864418A (en) * 1973-03-12 1975-02-04 Standard Oil Co Process of separating complexable materials employing semipermeable polymer film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517664Y2 (en) * 1984-11-09 1993-05-12
JPS61118665A (en) * 1984-11-14 1986-06-05 Kawasaki Heavy Ind Ltd Apparatus for detecting flow of sand and the like

Also Published As

Publication number Publication date
FR2363350B1 (en) 1980-02-08
IT1085160B (en) 1985-05-28
DE2739118A1 (en) 1978-03-09
FR2363350A1 (en) 1978-03-31
GB1565113A (en) 1980-04-16
IE45467L (en) 1978-03-03
IE45467B1 (en) 1982-09-08
DE2739118B2 (en) 1980-04-24
JPS5330989A (en) 1978-03-23
DE2739118C3 (en) 1984-09-20

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US4286015A (en) Polyaryl ether sulfone semipermeable membrane and process for producing same
US4612119A (en) Hollow fiber filter medium and process for preparing the same
US4056467A (en) Hollow fibres
JP6484171B2 (en) Hydrophilic vinylidene fluoride porous hollow fiber membrane and method for producing the same
JPH0122003B2 (en)
US4385094A (en) Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof
JPH0628705B2 (en) Method for producing semipermeable hollow fiber membrane
JPS6029282B2 (en) Semipermeable membrane and its manufacturing method
JPS58114702A (en) Polysulfone hollow fiber membrane and its production
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JPS63296940A (en) Polyvinylidene fluoride resin porous film and its manufacture
GB2086798A (en) Microporous cellulose membrane
JPH0278425A (en) Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride
JPS6138208B2 (en)
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
JPH03258330A (en) Porous hollow fiber membrane
JPS5898105A (en) Fluoride type wet separation membrane and preparation thereof
JPS63296939A (en) Polyvinylidene fluoride resin porous film and its manufacture
JPH0929078A (en) Production of hollow yarn membrane
JPS5932562B2 (en) Hollow fibrous membrane and its manufacturing method
JPH03284326A (en) Porous hollow fiber membrane
US4409162A (en) Process for producing acrylonitrile separation membranes in fibrous form
JPH10337456A (en) Membrane forming stock solution
JPH0952030A (en) Polyvinyl alcohol hollow yarn membrane and its manufacture